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Abstract
In this paper we study the behavior of best LP-approximations by rational func-
tions to an analytic function on union of disks, when the measure of them tends to
Zero.
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§1. Introduction

Let X = {z, };‘-’:1 C C, k€N, and let B; be disjoint pairwise open disks centered at z;
and radius 8 > 0. We denote A(]) the space of analytic functions on I := U?ZlBj, which

are continuous on 1. Let n,m € NU{0} and let II" be the class of algebraic polynomials
with complex coefficients of degree at most n. We consider the set of rational functions

Ry, =Ry, (1) ::{g:PEH”,QEH’”,Q(Z);AOforallze]}.
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Clearly, we can assume that g € R with ||Q|l := max |Q(z)| = 1.
zel

If || - || is a norm defined on A(I) and h € A(I), for each 0 < € < 1, we write ||h]|c = ||h¢||, where
he(z) = h(e(z — zj) + z;), z € B;. We put

k
|dz]
W= 3] e 1 i~

where v, : [0,27] — C is the path 'yj( ) = zj + Be. We observe that if 7, : [0,27] — C is the path

Vj.e(t) = zj + €fBe, then ||h|[P = Z f z)[P dikziﬁ. We use the notation

IIhIIBj=< Ih(Z)I”IdZ|> :
v

Let f € A(I) and 0 < € < 1. Then u, € R, is called a best rational approximation of f from R,
if
I =l = g 17 = ul. (1)

It is well known that u. always exists (see [9, p. 682]).

From now on, we make the assumption that n +m +1=kq+7r, ¢ € NU{0},0<r < k.

Given ¢ > 0 and u € R}, 1f(f—u)(5)(zj)=0,Ogsgq—l7 1 < j <k, then u is said to be a
Padé approzimant of f at X. This approximant may not exist, for example, if X = {0}, n=m =1
and f(z) = 22 + 1 (see [7, p.700]). If it exists and r = 0, then it is unique, as it follows immediately
from its definition.

We define

VI (f, X) = {u € Ry, : uis a Padé approximant of f at X}.

If ¢ = 0, no constraint over the rational function is assumed and V2 (f, X) =

Suppose V{ . (f, X) is not an empty set. We say that ug € me(f, )is a best Padé approzimant of
f at X if

M-

|(F = u0)® (z)] i\ 0 ()| we v, (..

1

J
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In 1934, J. L. Walsh proved [10] that the Taylor polynomial of degree n for an analytic function f
can be obtained by taking the limit as ¢ — 0 of the best (Tchebychev) approximant from II™ to f on
the disk |z] < e. Later, in [11] he generalized this result to Padé approximants of analytic functions.
In [12], it was shown that the Padé approximant to any function f € C"*™*1[0,¢] under suitable
conditions is obtained by taking the best rational approximant (with real coefficients) on the interval
[0, €] and then making € — 0. The same year, this work was generalized to any function in C* T +1[0, ¢]
[4]. In [7], the authors extended the last work to LP-approximation on k disjoint intervals, 0 < p < oo,
in the case where n + m + 1 is divisible by k. Finally, similar results in Orlicz spaces can be seen in
[3] and [6].

In Section 2, we show that there exists at least a best Padé approximant of f at X. In Section
3, we prove that as ¢ — 0, any net of the best rational approximations u. approaches a best Padé
approximant of f at X on any closed set of I.

§2. Existence of best multipoint Padé approximants

Henceforth, for simplicity we assume 3 = 1. Now, we establish an existence theorem of best multipoint
Padé approximants.

Theorem 2.1. Let f € A(I). If Vi, (f,X) # 0, then there evists at least a best Padé approzimant
of f at X.

Proof. Let {&}l Cc Ve (f,X) be a sequence satisfying
eN ’

Q
k () P k () P
P, P
lim - — zj)| = inf - — zi)| = E. 2.1
> (r-5) @ A (7-5) @ 2.1)
If ¢ > 0, then
P\
<f_5> (z)) =0, 0<i<q—1, 1<j<k (2.2)
1
According to (2.1), there is a constant M > 0 such that
pA\®
(1= &) @) <Mo vsi<a 155k IeN (23)
!
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where § is the Kronecker’s delta function. From the Leibniz rule for the ith derivative of a prod-

, (a)
uct of two factors, (fQ; — P)W(z;) = 0,0 <i <g—1,1<j <k, and ‘(f— %) ! (z5)

(fQ— P)@ (Z])ﬁz]) . So, (2.3) and the normalization of @; imply

I(fQ1 — P)P(z)| < Mb,,, 0<i<gq, 1<j<k, leN. (2.4)
We observe that if ¢ = 0, (2.4) is also true, by (2.1).

Let £ € Vi, (f,X) and M; = 1121;%6’(]“— %)(Q) (zj)‘ Using the Leibniz rule again, we get

’((% — f) Ql)(i) (ZJ)‘ < Midg), 0<i<q,1<j <k, l€N. Therefore, from (2.4)
(i) (1)
SQ, —Th S
|<7l 1) ()| = |(TQ’ —P,) (25)

T
. . () . _
<3 < <7< . s IP]| ;= m P ) g k(g+1)—1
0<i1<gq,1<j<k 1leN As|P| OS?SqumS?SXk| (T) (zj)] is a norm on II , the

equivalence of the norms in IT*@*+D=1 implies that {SQ; — TP} is uniformly bounded on T, and
consequently {T'P,} is uniformly bounded on I. Since ||PT| s, with P € II", is a norm on II", we
get that {P,} is uniformly bounded on I. So, there are two subsequences of {P} and {Q,;}, which
are denoted in the same way, Py € 11" and @y € II" such that P, — Py and Q; — (o uniformly
on I, as | — co. By the Hurwitz Theorem [2, p. 152], Qo(z) # 0, z € I. Then % € Ry, and %
converges to % uniformly on any closed set of I. From (2.1) and the analytical convergence theorem,

< (My+ M),

k o\ (@ P
ng (f - Q—g) (zj)| = E. Since (2.2) implies
P (4)
( ——0) (2j)=0, 0<i<q-—-1, 1<j<k,
Qo
we conclude that % is a best Padé approximant of f at X. u

§3. Convergence of best rational approximations

In [8], the author proved the following characterization result for best approximants based on the
one-sided Gateaux derivative, when the approximant set is a linear subspace of a complex Banach
space.
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Theorem A. Let (E,| -||) be a compler Banach space, S a linear subspace of E and f € E\ S.

Then s € S is the best approzimant of f from S if and only if infye(o,2x) V4 (f — 5,9) > 0, for all

g € S, where y4(h,g) = lirgl+ 2(|[h+teg|| — ||h])) is the ¢-Gateauz derivative of || - || at h in g in the
t—

direction ¢.

Let P,(2) = z9. We denote by M, , € 197! the best approximant of P, from I1%"! with respect

to the norm )
P
1Al = ( / |h<z>|p|dz|) |
Yy

where 7 : [0,27] — C is the path v(t) = e (here, 17! = {0})
A straightforward computation shows that v, (h, g) := “th e f Re (|h( )|P—2h(z)e—i¢ﬁ) |dz|,
h # 0. Since
/Re(|zq|p 227e7%5) |dz| =0, 0<s<qg—1, ¢e€l0,2m),
then v,(FP;, Q) = vaor all Q € 119! and ¢ € [0,27). So, Theorem A implies M, , = 0. We put
Kp = [Py = My gllp = | Pyllp = (2m)"/7.
Proposition 3.1. Let f € A(I) and 2 € Vi (f, X). Then

(7-2)| -%|(r- %)w ()

Proof. If ¢ = 0 the result is obvious. Now assume ¢ > 0. As f — % is an analytic function on [

and (f )( ?) () =0,0<s<qg—1,1<j <k, expanding f — by its Taylor polynomial at z;,
1 <5<k, uptoorderq 1, we have

S(-3) =g (-7 et szl [ U T
3.1

Ky, 1<j<k

B;

forzeFj,O<e<)\<1. SinceforeacthB_j,

[ B, [ U,

o (W= (e(z = 2j) + 2;)) (w — 2)1

e(z—2) (f - 3) (w) " €
[m ((w — 25) = €(z — 2j))(w — 2;)H1 a } = AL (N =€) [y
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from (3.1) and the Cauchy differentiation formula we have

i 2 (1-8) =Gl [ LB 1 (2 e

JA

uniformly in z € B;. Therefore,

(7-2)] - (f—%)(q) (2)

Now, substituting z — z; by w into the above equality,

NG-3)] =210 §>(q) (2)

This finishes the proof. |

(2 = )l -

B;

[w? = Mp,q(w)l,, =

p

e~>0 6(1‘

B;

Remark 3.2. Let f € A(I) and £ € V?  (f, X). Then | f - %He = O(e?) as € — 0. In fact, we see

that
1 5N 1
(7)ol g [

which is clear from (3.1).

(f——) ’|dw| z€Bj, 0<e<A<]l,

Proposition 3.3. Let f € A(I) and { } be a net of best rational approximants of f from R}, with

respect to || -||c. Suppose Vi . (f, X) # @, Then {S¢} and {T.} are uniformly bounded on compact sets
as e — 0. Moreover, if ¢ > 0 and {8}, {T¢,} are convergent subsequences to S, and Tk, respectively,
then

(i)
<f_%> (z)=0, 1<j<k, 0<i<q-L (3:2)

Proof. Since ||T¢||c =1, 0 < € < 1, the net {7} is uniformly bounded on compact sets.
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Let % e Vi (f; X). As Te # 0, then 0 < mj(e) := max |T¢(z)] < 1,1 < j < k. So,

ZGBJ‘
H(SET_TES)EHBj - i I SET_TES)EHBj i i - § € - (2/@#)1/1’ % B §
€tm;; () T etmy(e)max|Te(z)] T el |[\Te T) |z, = e T. T,
z€ N J -
2(2km)1/P S .
e - = 1<7<k
- €4 T\’ =7=

From Remark 3.2 we get
[(SeT = TeS) || 5, = Oe"m;(€)) as €—0, 1<j<k.

Since (S.T —T.S)¢ € T*4+Y on Bj, by Bernstein’s inequality [1, Corollary 5.1.6] and the equivalence
of the norms in ¥4+ we have

(ST —T.9) " ()| =0(e™) as e—0, 1<j<k, 0<i<gq. (3.3)

But S. T — T.S € II¥(@t1) | then there exist M > 0 and €; > 0 such that
I1SeT — TeS)loo < M, 0<e<e.

Finally, as
[TeSloo < [IS]lee, 0 <e< e,

and ||PT||oc, P € II", is a norm on II", from the equivalence of the norms in II" we conclude that
{S¢} is uniformly bounded on compact sets as ¢ — 0.

Now, suppose that ¢ > 0 and {S, }, {7, } are convergent subsequences to S, and T, respectively, and
let 1 <j<kand0<i<gqg-—1. From (3.3),

(.7 = T.5)(z;) = 0,
and according to the Hurwitz Theorem, T.(z) # 0, z € I. Therefore, using the Leibniz rule,
(4) i
(% - i—) (zj) = 0. Since (f — %)( ) (z;) = 0, we get (3.2). [ |

Remark 3.4. If
follows that % =

Vi (f,X) # 0 and r = 0, then Vi, (f, X) = {£}. So, from the above proof it
s
T.
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In the following theorem, we obtain best multipoint Padé approximants as limits of rational func-
tions of best LP-approximation on complex domain.
Theorem 3.5. Let f € A(I) and { } be a net of best rational approrimants of f from Ry, with

respect to || - ||e. Suppose that there exists a unique best Padé approximant of f at X, say T' Then

% s convergent to % uniformly on any closed subset of I, as € — 0.

Proof. Tt is sufficient to prove that if {S,} and {T.,} are convergent subsequences to S, and T,
respectively, then % = 2. Since || T, ||« = 1, for all [, then ||T|| = 1 and by the Hurwitz theorem
T.(z) # 0, z € I. Therefore, % is convergent to % uniformly on any closed subset of I, as [ — oc.
« »
Next, we show that ;— = % If ¢ = 0, then
(-3)e

S
E (f—?)(zj) —hme—— hme——
Now assume ¢ > 0. Let 1<j<k0<i<g—1land0<\<1. Since f— el are analytic functions
Te,

-

D k
=1

Jj=1 € i

on Bj, expanding f — T— by its Taylor polynomial at z;, 1 < j <k, up to order ¢ — 1, we have
€l

iq ( - &yl (2) = I (f - &)(i) (Zj)ﬁ*q(z—zj)@Rq (f i Sl Zj)’ (3.4)

i=0 Te, il

_ _a)d
for each z € Bj, where Ry(h,a, A, z) = M / ﬁdw. Since
2w )y, (w—2)(w—a)?

Ry (5 -%)w Com(P-f)w
vy (W =27 | (w v

(w—zj) —alz — 2))(w — 2;)

(7= 3) ) aul.
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for each z € Bj, then

S,
1 S. oz [ %)@
lim — R, (f - T—ej, zj, A €(z — z;) + zj> = 27rij [y CEEA dw, (3.5)
uniformly in z € Fj As IS,— is an analytic function on Bj, from (3.5) and the Cauchy differentiation
formula we have

JA

1 S, 1 5.\
in 5, (£ Fmha-5)+x) =5 (- 5) @E-Ln 6o

l—o0 i €
€
(-3
Te,

g—1 (4)
1 S i s
S i (r-32) -

i=0 !

uniformly in z € B_j According to Remark 3.2,

(3.6) imply

. O(efl) as I — oo. So, (3.4) and

=0(¢}) as | — .
B

Therefore, by the equivalence of the norms in II17!, we get

(i)
(f - i:) (25)

Now, from (3.4), (3.6) and (3.7) there exist a subsequence of {¢}, which is denoted in the same way,
and numbers a;; € C, 0 < i< qg—1,1 <5 <k, such that

. S\ 1 S\ @ . = :
i (-3) O-2(1-F) Ge-u DICICEN (38)

uniformly in z € B;. Thus, substituting z — z; by w into (3.8) gives

=O0(l™") as | — o0 (3.7)

1 Se \" 1 S\ = ,
lim — _za == _ = ) — )1 iz — 2)°
i (-52)], - (- 5) e -Sae-ar|
(@)
1 Sk
2L (r- %) )|l - bt
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for each 1 < j < k. Since {%} is a sequence of best rational approximants of f from R}, with
€l

respect to || - ||e, by Proposition 3.1 we get

S* (q) p k S (q) p
Z (f— ?> (z5)] < Z (f— T) (25)
j=1 * j=1
Therefore, IS,— is a best Padé approximant of f at X by (3.2). Finally, by hypothesis % = % This
finishes the proof. |
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