Multipoint Padé approximants as limits of rational functions of best approximation in the complex domain ${ }^{\dagger}$

Fabián E. Levis and Claudia N. Rodriguez

Abstract

In this paper we study the behavior of best L^{p}-approximations by rational functions to an analytic function on union of disks, when the measure of them tends to zero.

Keywords: best approximation, rational functions, Padé approximant, L^{p} norm.

MSC: Primary 41A20, 41A21; Secondary 32A10.

§1. Introduction

Let $X=\left\{z_{j}\right\}_{j=1}^{k} \subset \mathbb{C}, k \in \mathbb{N}$, and let B_{j} be disjoint pairwise open disks centered at z_{j} and radius $\beta>0$. We denote $\mathcal{A}(I)$ the space of analytic functions on $I:=\cup_{j=1}^{k} B_{j}$, which are continuous on \bar{I}. Let $n, m \in \mathbb{N} \cup\{0\}$ and let Π^{n} be the class of algebraic polynomials with complex coefficients of degree at most n. We consider the set of rational functions

$$
\mathcal{R}_{m}^{n}=\mathcal{R}_{m}^{n}(I):=\left\{\frac{P}{Q}: P \in \Pi^{n}, Q \in \Pi^{m}, Q(z) \neq 0 \text { for all } z \in I\right\} .
$$

[^0]Clearly, we can assume that $\frac{P}{Q} \in \mathcal{R}_{m}^{n}$ with $\|Q\|_{\infty}:=\max _{z \in \bar{I}}|Q(z)|=1$.
If $\|\cdot\|$ is a norm defined on $\mathcal{A}(I)$ and $h \in \mathcal{A}(I)$, for each $0<\epsilon \leq 1$, we write $\|h\|_{\epsilon}=\left\|h^{\epsilon}\right\|$, where $h^{\epsilon}(z)=h\left(\epsilon\left(z-z_{j}\right)+z_{j}\right), z \in B_{j}$. We put

$$
\|h\|=\left(\sum_{j=1}^{k} \int_{\gamma_{j}}|h(z)|^{p} \frac{|d z|}{2 \beta k \pi}\right)^{\frac{1}{p}}, \quad 1<p<\infty,
$$

where $\gamma_{j}:[0,2 \pi] \rightarrow \mathbb{C}$ is the path $\gamma_{j}(t)=z_{j}+\beta e^{i t}$. We observe that if $\gamma_{j, \epsilon}:[0,2 \pi] \rightarrow \mathbb{C}$ is the path $\gamma_{j, \epsilon}(t)=z_{j}+\epsilon \beta e^{i t}$, then $\|h\|_{\epsilon}^{p}=\sum_{j=1}^{k} \int_{\gamma_{j, \epsilon}}|h(z)|^{p} \frac{|d z|}{2 \beta k \pi \epsilon}$. We use the notation

$$
\|h\|_{B_{j}}=\left(\int_{\gamma_{j}}|h(z)|^{p}|d z|\right)^{\frac{1}{p}}
$$

Let $f \in \mathcal{A}(I)$ and $0<\epsilon \leq 1$. Then $u_{\epsilon} \in \mathcal{R}_{m}^{n}$ is called a best rational approximation of f from \mathcal{R}_{m}^{n} if

$$
\begin{equation*}
\left\|f-u_{\epsilon}\right\|_{\epsilon}=\inf _{u \in \mathcal{R}_{m}^{n}}\|f-u\|_{\epsilon} . \tag{1.1}
\end{equation*}
$$

It is well known that u_{ϵ} always exists (see [9, p. 682]).
From now on, we make the assumption that $n+m+1=k q+r, q \in \mathbb{N} \cup\{0\}, 0 \leq r<k$.
Given $q>0$ and $u \in \mathcal{R}_{m}^{n}$, if $(f-u)^{(s)}\left(z_{j}\right)=0,0 \leq s \leq q-1,1 \leq j \leq k$, then u is said to be a Padé approximant of f at X. This approximant may not exist, for example, if $X=\{0\}, n=m=1$ and $f(z)=z^{2}+1$ (see $[7, \mathrm{p} .700]$). If it exists and $r=0$, then it is unique, as it follows immediately from its definition.

We define

$$
\mathcal{V}_{n, m}^{q}(f, X):=\left\{u \in \mathcal{R}_{m}^{n}: u \text { is a Padé approximant of } f \text { at } X\right\} .
$$

If $q=0$, no constraint over the rational function is assumed and $\mathcal{V}_{n, m}^{q}(f, X)=\mathcal{R}_{m}^{n}$.
Suppose $\mathcal{V}_{n, m}^{q}(f, X)$ is not an empty set. We say that $u_{0} \in \mathcal{V}_{n, m}^{q}(f, X)$ is a best Padé approximant of f at X if

$$
\sum_{j=1}^{k}\left|\left(f-u_{0}\right)^{(q)}\left(z_{j}\right)\right|^{p} \leq \sum_{j=1}^{k}\left|(f-u)^{(q)}\left(z_{j}\right)\right|^{p}, \quad u \in \mathcal{V}_{n, m}^{q}(f, X) .
$$

In 1934, J. L. Walsh proved [10] that the Taylor polynomial of degree n for an analytic function f can be obtained by taking the limit as $\epsilon \rightarrow 0$ of the best (Tchebychev) approximant from Π^{n} to f on the disk $|z| \leq \epsilon$. Later, in [11] he generalized this result to Padé approximants of analytic functions. In [12], it was shown that the Padé approximant to any function $f \in \mathcal{C}^{n+m+1}[0, \epsilon]$ under suitable conditions is obtained by taking the best rational approximant (with real coefficients) on the interval $[0, \epsilon]$ and then making $\epsilon \rightarrow 0$. The same year, this work was generalized to any function in $\mathcal{C}^{n+m+1}[0, \epsilon]$ [4]. In [7], the authors extended the last work to L^{p}-approximation on k disjoint intervals, $0<p \leq \infty$, in the case where $n+m+1$ is divisible by k. Finally, similar results in Orlicz spaces can be seen in [3] and [6].

In Section 2, we show that there exists at least a best Padé approximant of f at X. In Section 3, we prove that as $\epsilon \rightarrow 0$, any net of the best rational approximations u_{ϵ} approaches a best Padé approximant of f at X on any closed set of I.

§2. Existence of best multipoint Padé approximants

Henceforth, for simplicity we assume $\beta=1$. Now, we establish an existence theorem of best multipoint Padé approximants.

Theorem 2.1. Let $f \in \mathcal{A}(I)$. If $\mathcal{V}_{n, m}^{q}(f, X) \neq \emptyset$, then there exists at least a best Padé approximant of f at X.

Proof. Let $\left\{\frac{P_{l}}{Q_{l}}\right\}_{l \in \mathbb{N}} \subset \mathcal{V}_{n, m}^{q}(f, X)$ be a sequence satisfying

$$
\begin{equation*}
\lim _{l \rightarrow \infty} \sum_{j=1}^{k}\left|\left(f-\frac{P_{l}}{Q_{l}}\right)^{(q)}\left(z_{j}\right)\right|^{p}=\inf _{\frac{P}{Q} \in \mathcal{V}_{n, m}^{q}(f, X)} \sum_{j=1}^{k}\left|\left(f-\frac{P}{Q}\right)^{(q)}\left(z_{j}\right)\right|^{p}=: E \tag{2.1}
\end{equation*}
$$

If $q>0$, then

$$
\begin{equation*}
\left(f-\frac{P_{l}}{Q_{l}}\right)^{(i)}\left(z_{j}\right)=0, \quad 0 \leq i \leq q-1, \quad 1 \leq j \leq k \tag{2.2}
\end{equation*}
$$

According to (2.1), there is a constant $M>0$ such that

$$
\begin{equation*}
\left|\left(f-\frac{P_{l}}{Q_{l}}\right)^{(i)}\left(z_{j}\right)\right| \leq M \delta_{i, q}, \quad 0 \leq i \leq q, \quad 1 \leq j \leq k, \quad l \in \mathbb{N} \tag{2.3}
\end{equation*}
$$

where δ is the Kronecker's delta function. From the Leibniz rule for the i th derivative of a product of two factors, $\left(f Q_{l}-P_{l}\right)^{(i)}\left(z_{j}\right)=0,0 \leq i \leq q-1,1 \leq j \leq k$, and $\left|\left(f-\frac{P_{l}}{Q_{l}}\right)^{(q)}\left(z_{j}\right)\right|=$ $\left|\left(f Q_{l}-P_{l}\right)^{(q)}\left(z_{j}\right) \cdot \frac{1}{Q_{l}\left(z_{j}\right)}\right| \cdot$ So, (2.3) and the normalization of Q_{l} imply

$$
\begin{equation*}
\left|\left(f Q_{l}-P_{l}\right)^{(i)}\left(z_{j}\right)\right| \leq M \delta_{i, q}, \quad 0 \leq i \leq q, \quad 1 \leq j \leq k, \quad l \in \mathbb{N} . \tag{2.4}
\end{equation*}
$$

We observe that if $q=0,(2.4)$ is also true, by (2.1).
Let $\frac{S}{T} \in \mathcal{V}_{n, m}^{q}(f, X)$ and $M_{1}=\max _{1 \leq j \leq k}\left|\left(f-\frac{S}{T}\right)^{(q)}\left(z_{j}\right)\right|$. Using the Leibniz rule again, we get $\left|\left(\left(\frac{S}{T}-f\right) Q_{l}\right)^{(i)}\left(z_{j}\right)\right| \leq M_{1} \delta_{(i, q)}, 0 \leq i \leq q, 1 \leq j \leq k, l \in \mathbb{N}$. Therefore, from (2.4)

$$
\left|\left(\frac{S Q_{l}-T P_{l}}{T}\right)^{(i)}\left(z_{j}\right)\right|=\left|\left(\frac{S}{T} Q_{l}-P_{l}\right)^{(i)}\left(z_{j}\right)\right| \leq\left(M_{1}+M\right) \delta_{(i, q)}
$$

$0 \leq i \leq q, 1 \leq j \leq k, l \in \mathbb{N}$. As $\|P\|:=\max _{0 \leq i \leq q} \max _{1 \leq j \leq k}\left|\left(\frac{P}{T}\right)^{(i)}\left(z_{j}\right)\right|$ is a norm on $\Pi^{k(q+1)-1}$, the equivalence of the norms in $\Pi^{k(q+1)-1}$ implies that $\left\{S Q_{l}-T P_{l}\right\}$ is uniformly bounded on \bar{I}, and consequently $\left\{T P_{l}\right\}$ is uniformly bounded on \bar{I}. Since $\|P T\|_{\infty}$, with $P \in \Pi^{n}$, is a norm on Π^{n}, we get that $\left\{P_{l}\right\}$ is uniformly bounded on \bar{I}. So, there are two subsequences of $\left\{P_{l}\right\}$ and $\left\{Q_{l}\right\}$, which are denoted in the same way, $P_{0} \in \Pi^{n}$ and $Q_{0} \in \Pi^{m}$ such that $P_{l} \rightarrow P_{0}$ and $Q_{l} \rightarrow Q_{0}$ uniformly on \bar{I}, as $l \rightarrow \infty$. By the Hurwitz Theorem [2, p. 152], $Q_{0}(z) \neq 0, z \in I$. Then $\frac{P_{0}}{Q_{0}} \in \mathcal{R}_{m}^{n}$ and $\frac{P_{l}}{Q_{l}}$ converges to $\frac{P_{0}}{Q_{0}}$ uniformly on any closed set of I. From (2.1) and the analytical convergence theorem, $\sum_{j=1}^{k}\left|\left(f-\frac{P_{0}}{Q_{0}}\right)^{(q)}\left(z_{j}\right)\right|^{p}=E$. Since (2.2) implies

$$
\left(f-\frac{P_{0}}{Q_{0}}\right)^{(i)}\left(z_{j}\right)=0, \quad 0 \leq i \leq q-1, \quad 1 \leq j \leq k
$$

we conclude that $\frac{P_{0}}{Q_{0}}$ is a best Padé approximant of f at X.

§3. Convergence of best rational approximations

In [8], the author proved the following characterization result for best approximants based on the one-sided Gateaux derivative, when the approximant set is a linear subspace of a complex Banach space.

Theorem A. Let $(E,\|\cdot\|)$ be a complex Banach space, S a linear subspace of E and $f \in E \backslash \bar{S}$. Then $s \in S$ is the best approximant of f from S if and only if $\inf _{\phi \in[0,2 \pi)} \gamma_{\phi}(f-s, g) \geq 0$, for all $g \in S$, where $\gamma_{\phi}(h, g)=\lim _{t \rightarrow 0^{+}} \frac{1}{t}\left(\left\|h+t e^{i \phi} g\right\|-\|h\|\right)$ is the ϕ-Gateaux derivative of $\|\cdot\|$ at h in g in the direction ϕ.

Let $P_{q}(z)=z^{q}$. We denote by $M_{p, q} \in \Pi^{q-1}$ the best approximant of P_{q} from Π^{q-1} with respect to the norm

$$
\|h\|_{p}=\left(\int_{\gamma}|h(z)|^{p}|d z|\right)^{\frac{1}{p}}
$$

where $\gamma:[0,2 \pi] \rightarrow \mathbb{C}$ is the path $\gamma(t)=e^{i t}$ (here, $\Pi^{-1}=\{0\}$).
A straightforward computation shows that $\gamma_{\phi}(h, g):=\frac{1}{\|h\|_{p}^{p-1}} \int_{\gamma} \operatorname{Re}\left(|h(z)|^{p-2} h(z) e^{-i \phi} \overline{g(z)}\right)|d z|$, $h \neq 0$. Since

$$
\int_{\gamma} \operatorname{Re}\left(\left|z^{q}\right|^{p-2} z^{q} e^{-i \phi} \overline{z^{s}}\right)|d z|=0, \quad 0 \leq s \leq q-1, \quad \phi \in[0,2 \pi),
$$

then $\gamma_{\phi}\left(P_{q}, Q\right)=0$ for all $Q \in \Pi^{q-1}$ and $\phi \in[0,2 \pi)$. So, Theorem A implies $M_{p, q} \equiv 0$. We put $\mathcal{K}_{p}:=\left\|P_{q}-M_{p, q}\right\|_{p}=\left\|P_{q}\right\|_{p}=(2 \pi)^{1 / p}$.
Proposition 3.1. Let $f \in \mathcal{A}(I)$ and $\frac{S}{T} \in \mathcal{V}_{n, m}^{q}(f, X)$. Then

$$
\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{q}}\left\|\left(f-\frac{S}{T}\right)^{\epsilon}\right\|_{B_{j}}=\frac{1}{q!}\left|\left(f-\frac{S}{T}\right)^{(q)}\left(z_{j}\right)\right| \mathcal{K}_{p}, \quad 1 \leq j \leq k
$$

Proof. If $q=0$ the result is obvious. Now assume $q>0$. As $f-\frac{S}{T}$ is an analytic function on I and $\left(f-\frac{S}{T}\right)^{(s)}\left(z_{j}\right)=0,0 \leq s \leq q-1,1 \leq j \leq k$, expanding $f-\frac{S}{T}$ by its Taylor polynomial at z_{j}, $1 \leq j \leq k$, up to order $q-1$, we have
$\frac{1}{\epsilon^{q}}\left(f-\frac{S}{T}\right)^{\epsilon}(z)=\frac{1}{\epsilon^{q}}\left(f-\frac{S}{T}\right)\left(\epsilon\left(z-z_{j}\right)+z_{j}\right)=\frac{\left(z-z_{j}\right)^{q}}{2 \pi i} \int_{\gamma_{j, \lambda}} \frac{\left(f-\frac{S}{T}\right)(w)}{\left(w-\left(\epsilon\left(z-z_{j}\right)+z_{j}\right)\right)\left(w-z_{j}\right)^{q}} d w$, for $z \in \overline{B_{j}}, 0<\epsilon<\lambda<1$. Since for each $z \in \overline{B_{j}}$,

$$
\begin{aligned}
& \left|\int_{\gamma_{j, \lambda}} \frac{\left(f-\frac{S}{T}\right)(w)}{\left(w-\left(\epsilon\left(z-z_{j}\right)+z_{j}\right)\right)\left(w-z_{j}\right)^{q}} d w-\int_{\gamma_{j, \lambda}} \frac{\left(f-\frac{S}{T}\right)(w)}{\left(w-z_{j}\right)^{q+1}} d w\right| \\
& \quad=\left|\int_{\gamma_{j, \lambda}} \frac{\epsilon\left(z-z_{j}\right)\left(f-\frac{S}{T}\right)(w)}{\left(\left(w-z_{j}\right)-\epsilon\left(z-z_{j}\right)\right)\left(w-z_{j}\right)^{q+1}} d w\right| \leq \frac{\epsilon}{\lambda^{q+1}(\lambda-\epsilon)} \int_{\gamma_{j, \lambda}}\left|\left(f-\frac{S}{T}\right)(w)\right||d w|,
\end{aligned}
$$

from (3.1) and the Cauchy differentiation formula we have

$$
\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{q}}\left(f-\frac{S}{T}\right)^{\epsilon}(z)=\frac{\left(z-z_{j}\right)^{q}}{2 \pi i} \int_{\gamma_{j, \lambda}} \frac{\left(f-\frac{S}{T}\right)(w)}{\left(w-z_{j}\right)^{q+1}} d w=\frac{1}{q!}\left(f-\frac{S}{T}\right)^{(q)}\left(z_{j}\right)\left(z-z_{j}\right)^{q}
$$

uniformly in $z \in \overline{B_{j}}$. Therefore,

$$
\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{q}}\left\|\left(f-\frac{S}{T}\right)^{\epsilon}\right\|_{B_{j}}=\frac{1}{q!}\left|\left(f-\frac{S}{T}\right)^{(q)}\left(z_{j}\right)\right|\left\|\left(z-z_{j}\right)^{q}\right\|_{B_{j}}
$$

Now, substituting $z-z_{j}$ by w into the above equality,

$$
\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{q}}\left\|\left(f-\frac{S}{T}\right)^{\epsilon}\right\|_{B_{j}}=\frac{1}{q!}\left|\left(f-\frac{S}{T}\right)^{(q)}\left(z_{j}\right)\right|\left\|w^{q}-M_{p, q}(w)\right\|_{p}=\frac{1}{q!}\left|\left(f-\frac{S}{T}\right)^{(q)}\left(z_{j}\right)\right| \mathcal{K}_{p}
$$

This finishes the proof.

Remark 3.2. Let $f \in \mathcal{A}(I)$ and $\frac{S}{T} \in \mathcal{V}_{n, m}^{q}(f, X)$. Then $\left\|f-\frac{S}{T}\right\|_{\epsilon}=O\left(\epsilon^{q}\right)$ as $\epsilon \rightarrow 0$. In fact, we see that

$$
\left|\frac{1}{\epsilon^{q}}\left(f-\frac{S}{T}\right)^{\epsilon}(z)\right| \leq \frac{1}{2 \pi \lambda^{q}(\lambda-\epsilon)} \int_{\gamma_{j, \lambda}}\left|\left(f-\frac{S}{T}\right)(w)\right||d w|, \quad z \in \overline{B_{j}}, \quad 0<\epsilon<\lambda<1
$$

which is clear from (3.1).
Proposition 3.3. Let $f \in \mathcal{A}(I)$ and $\left\{\frac{S_{\epsilon}}{T_{\epsilon}}\right\}$ be a net of best rational approximants of from \mathcal{R}_{m}^{n} with respect to $\|\cdot\|_{\epsilon}$. Suppose $\mathcal{V}_{n, m}^{q}(f, X) \neq \emptyset$. Then $\left\{S_{\epsilon}\right\}$ and $\left\{T_{\epsilon}\right\}$ are uniformly bounded on compact sets as $\epsilon \rightarrow 0$. Moreover, if $q>0$ and $\left\{S_{\epsilon_{l}}\right\},\left\{T_{\epsilon_{l}}\right\}$ are convergent subsequences to S_{*} and T_{*}, respectively, then

$$
\begin{equation*}
\left(f-\frac{S_{*}}{T_{*}}\right)^{(i)}\left(z_{j}\right)=0, \quad 1 \leq j \leq k, \quad 0 \leq i \leq q-1 \tag{3.2}
\end{equation*}
$$

Proof. Since $\left\|T_{\epsilon}\right\|_{\infty}=1,0<\epsilon \leq 1$, the net $\left\{T_{\epsilon}\right\}$ is uniformly bounded on compact sets.

Let $\frac{S}{T} \in \mathcal{V}_{n, m}^{q}(f, X)$. As $T_{\epsilon} \neq 0$, then $0<m_{j}(\epsilon):=\max _{z \in \overline{B_{j}}}\left|T_{\epsilon}^{\epsilon}(z)\right| \leq 1,1 \leq j \leq k$. So,

$$
\begin{aligned}
\frac{\left\|\left(S_{\epsilon} T-T_{\epsilon} S\right)^{\epsilon}\right\|_{B_{j}}}{\epsilon^{q} m_{j}(\epsilon)} & \leq \frac{1}{\epsilon^{q}} \frac{\left\|\left(S_{\epsilon} T-T_{\epsilon} S\right)^{\epsilon}\right\|_{B_{j}}}{m_{j}(\epsilon) \max _{z \in \overline{B_{j}}}\left|T^{\epsilon}(z)\right|} \leq \frac{1}{\epsilon^{q}}\left\|\left(\frac{S_{\epsilon}}{T_{\epsilon}}-\frac{S}{T}\right)^{\epsilon}\right\|_{B_{j}} \leq \frac{(2 k \pi)^{1 / p}}{\epsilon^{q}}\left\|\frac{S_{\epsilon}}{T_{\epsilon}}-\frac{S}{T}\right\|_{\epsilon} \\
& \leq \frac{2(2 k \pi)^{1 / p}}{\epsilon^{q}}\left\|f-\frac{S}{T}\right\|_{\epsilon}, \quad 1 \leq j \leq k
\end{aligned}
$$

From Remark 3.2 we get

$$
\left\|\left(S_{\epsilon} T-T_{\epsilon} S\right)^{\epsilon}\right\|_{B_{j}}=O\left(\epsilon^{q} m_{j}(\epsilon)\right) \quad \text { as } \quad \epsilon \rightarrow 0, \quad 1 \leq j \leq k
$$

Since $\left(S_{\epsilon} T-T_{\epsilon} S\right)^{\epsilon} \in \Pi^{k(q+1)}$ on B_{j}, by Bernstein's inequality [1, Corollary 5.1.6] and the equivalence of the norms in $\Pi^{k(q+1)}$ we have

$$
\begin{equation*}
\left|\left(S_{\epsilon} T-T_{\epsilon} S\right)^{(i)}\left(z_{j}\right)\right|=O\left(\epsilon^{q-i}\right) \quad \text { as } \quad \epsilon \rightarrow 0, \quad 1 \leq j \leq k, \quad 0 \leq i \leq q \tag{3.3}
\end{equation*}
$$

But $S_{\epsilon} T-T_{\epsilon} S \in \Pi^{k(q+1)}$, then there exist $M>0$ and $\epsilon_{1}>0$ such that

$$
\left\|S_{\epsilon} T-T_{\epsilon} S\right\|_{\infty} \leq M, \quad 0<\epsilon \leq \epsilon_{1}
$$

Finally, as

$$
\left\|T_{\epsilon} S\right\|_{\infty} \leq\|S\|_{\infty}, \quad 0<\epsilon \leq \epsilon_{1}
$$

and $\|P T\|_{\infty}, P \in \Pi^{n}$, is a norm on Π^{n}, from the equivalence of the norms in Π^{n} we conclude that $\left\{S_{\epsilon}\right\}$ is uniformly bounded on compact sets as $\epsilon \rightarrow 0$.
Now, suppose that $q>0$ and $\left\{S_{\epsilon_{l}}\right\},\left\{T_{\epsilon_{l}}\right\}$ are convergent subsequences to S_{*} and T_{*}, respectively, and let $1 \leq j \leq k$ and $0 \leq i \leq q-1$. From (3.3),

$$
\left(S_{*} T-T_{*} S\right)^{(i)}\left(z_{j}\right)=0
$$

and according to the Hurwitz Theorem, $T_{*}(z) \neq 0, z \in I$. Therefore, using the Leibniz rule, $\left(\frac{S}{T}-\frac{S_{*}}{T_{*}}\right)^{(i)}\left(z_{j}\right)=0$. Since $\left(f-\frac{S}{T}\right)^{(i)}\left(z_{j}\right)=0$, we get (3.2).
Remark 3.4. If $\mathcal{V}_{n, m}^{q}(f, X) \neq \emptyset$ and $r=0$, then $\mathcal{V}_{n, m}^{q}(f, X)=\left\{\frac{S}{T}\right\}$. So, from the above proof it follows that $\frac{S_{*}}{T_{*}}=\frac{S}{T}$.

In the following theorem, we obtain best multipoint Padé approximants as limits of rational functions of best L^{p}-approximation on complex domain.
Theorem 3.5. Let $f \in \mathcal{A}(I)$ and $\left\{\frac{S_{\epsilon}}{T_{\epsilon}}\right\}$ be a net of best rational approximants of f from \mathcal{R}_{m}^{n} with respect to $\|\cdot\|_{\epsilon}$. Suppose that there exists a unique best Padé approximant of f at X, say $\frac{S}{T}$. Then $\frac{S_{\epsilon}}{T_{\epsilon}}$ is convergent to $\frac{S}{T}$ uniformly on any closed subset of I, as $\epsilon \rightarrow 0$.
Proof. It is sufficient to prove that if $\left\{S_{\epsilon_{l}}\right\}$ and $\left\{T_{\epsilon_{l}}\right\}$ are convergent subsequences to S_{*} and T_{*}, respectively, then $\frac{S_{*}}{T_{*}}=\frac{S}{T}$. Since $\left\|T_{\epsilon_{l}}\right\|_{\infty}=1$, for all l, then $\left\|T_{*}\right\|_{\infty}=1$ and by the Hurwitz theorem $T_{*}(z) \neq 0, z \in I$. Therefore, $\frac{S_{\epsilon_{l}}}{T_{\epsilon_{l}}}$ is convergent to $\frac{S_{*}}{T_{*}}$ uniformly on any closed subset of I, as $l \rightarrow \infty$. Next, we show that $\frac{S_{*}}{T_{*}}=\frac{S}{T}$. If $q=0$, then

$$
\sum_{j=1}^{k}\left|\left(f-\frac{S_{*}}{T_{*}}\right)\left(z_{j}\right)\right|^{p}=\lim _{l \rightarrow \infty}\left\|f-\frac{S_{\epsilon_{l}}}{T_{\epsilon_{l}}}\right\|_{\epsilon_{l}}^{p} \leq \lim _{l \rightarrow \infty}\left\|f-\frac{S}{T}\right\|_{\epsilon_{l}}^{p}=\sum_{j=1}^{k}\left|\left(f-\frac{S}{T}\right)\left(z_{j}\right)\right|^{p}
$$

Now assume $q>0$. Let $1 \leq j \leq k, 0 \leq i \leq q-1$ and $0<\lambda<1$. Since $f-\frac{S_{\epsilon_{l}}}{T_{\epsilon_{l}}}$ are analytic functions on B_{j}, expanding $f-\frac{S_{\epsilon_{l}}}{T_{\epsilon_{l}}}$ by its Taylor polynomial at $z_{j}, 1 \leq j \leq k$, up to order $q-1$, we have

$$
\begin{equation*}
\frac{1}{\epsilon_{l}^{q}}\left(f-\frac{S_{\epsilon_{l}}}{T_{\epsilon_{l}}}\right)^{\epsilon_{l}}(z)=\sum_{i=0}^{q-1} \frac{1}{i!}\left(f-\frac{S_{\epsilon_{l}}}{T_{\epsilon_{l}}}\right)^{(i)}\left(z_{j}\right) \epsilon_{l}^{i-q}\left(z-z_{j}\right)^{i}+\frac{R_{q}\left(f-\frac{S_{\epsilon_{l}}}{T_{\epsilon_{l}}}, z_{j}, \lambda, \epsilon_{l}\left(z-z_{j}\right)+z_{j}\right)}{\epsilon_{l}^{q}} \tag{3.4}
\end{equation*}
$$

for each $z \in \overline{B_{j}}$, where $R_{q}(h, a, \lambda, z)=\frac{(z-a)^{q}}{2 \pi i} \int_{\gamma_{a, \lambda}} \frac{h(w)}{(w-z)(w-a)^{q}} d w$. Since

$$
\begin{aligned}
& \left|\int_{\gamma_{j, \lambda}} \frac{\left(f-\frac{S_{\epsilon_{l}}}{T_{\epsilon_{l}}}\right)(w)}{\left(w-\left(\epsilon_{l}\left(z-z_{j}\right)+z_{j}\right)\right)\left(w-z_{j}\right)^{q}} d w-\int_{\gamma_{j, \lambda}} \frac{\left(f-\frac{S_{*}}{T_{*}}\right)(w)}{\left(w-z_{j}\right)^{q+1}} d w\right| \\
& \quad=\left|\int_{\gamma_{j, \lambda}} \frac{1}{\left(w-z_{j}\right)^{q}}\left(\frac{\left(\frac{S_{*}}{T_{*}}-\frac{S_{\epsilon_{l}}}{T_{\epsilon_{l}}}\right)(w)}{\left(w-z_{j}\right)-\epsilon_{l}\left(z-z_{j}\right)}+\epsilon_{l} \frac{\left(z-z_{j}\right)\left(f-\frac{S_{*}}{T_{*}}\right)(w)}{\left(\left(w-z_{j}\right)-\epsilon_{l}\left(z-z_{j}\right)\right)\left(w-z_{j}\right)}\right) d w\right| \\
& \quad \leq \frac{1}{\lambda^{q}\left(\lambda-\epsilon_{l}\right)} \int_{\gamma_{j, \lambda}}\left|\left(\frac{S_{*}}{T_{*}}-\frac{S_{\epsilon_{l}}}{T_{\epsilon_{l}}}\right)(w)\right||d w|+\frac{\epsilon_{l}}{\lambda^{q+1}\left(\lambda-\epsilon_{l}\right)} \int_{\gamma_{j, \lambda}}\left|\left(f-\frac{S_{*}}{T_{*}}\right)(w)\right||d w|
\end{aligned}
$$

for each $z \in \overline{B_{j}}$, then

$$
\begin{equation*}
\lim _{l \rightarrow \infty} \frac{1}{\epsilon_{l}^{q}} R_{q}\left(f-\frac{S_{\epsilon_{l}}}{T_{\epsilon_{l}}}, z_{j}, \lambda, \epsilon_{l}\left(z-z_{j}\right)+z_{j}\right)=\frac{\left(z-z_{j}\right)^{q}}{2 \pi i} \int_{\gamma_{j, \lambda}} \frac{\left(f-\frac{S_{*}}{T_{*}}\right)(w)}{\left(w-z_{j}\right)^{q+1}} d w \tag{3.5}
\end{equation*}
$$

uniformly in $z \in \overline{B_{j}}$. As $\frac{S_{*}}{T_{*}}$ is an analytic function on B_{j}, from (3.5) and the Cauchy differentiation formula we have

$$
\begin{equation*}
\lim _{l \rightarrow \infty} \frac{1}{\epsilon_{l}^{q}} R_{q}\left(f-\frac{S_{\epsilon_{l}}}{T_{\epsilon_{l}}}, z_{j}, \lambda, \epsilon_{l}\left(z-z_{j}\right)+z_{j}\right)=\frac{1}{q!}\left(f-\frac{S_{*}}{T_{*}}\right)^{(q)}\left(z_{j}\right)\left(z-z_{j}\right)^{q}, \tag{3.6}
\end{equation*}
$$

uniformly in $z \in \overline{B_{j}}$. According to Remark 3.2, $\left\|\left(f-\frac{S_{\epsilon_{l}}}{T_{\epsilon_{l}}}\right)^{\epsilon_{l}}\right\|_{B_{j}}=O\left(\epsilon_{l}^{q}\right)$ as $l \rightarrow \infty$. So, (3.4) and (3.6) imply

$$
\left\|\sum_{i=0}^{q-1} \frac{1}{i!}\left(f-\frac{S_{\epsilon_{l}}}{T_{\epsilon_{l}}}\right)^{(i)}\left(z_{j}\right) \epsilon_{l}^{i}\left(z-z_{j}\right)^{i}\right\|_{B_{j}}=O\left(\epsilon_{l}^{q}\right) \quad \text { as } \quad l \rightarrow \infty .
$$

Therefore, by the equivalence of the norms in Π^{q-1}, we get

$$
\begin{equation*}
\left|\left(f-\frac{S_{\epsilon_{l}}}{T_{\epsilon_{l}}}\right)^{(i)}\left(z_{j}\right)\right|=O\left(\epsilon_{l}^{q-i}\right) \quad \text { as } \quad l \rightarrow \infty . \tag{3.7}
\end{equation*}
$$

Now, from (3.4), (3.6) and (3.7) there exist a subsequence of $\left\{\epsilon_{l}\right\}$, which is denoted in the same way, and numbers $a_{i j} \in \mathbb{C}, 0 \leq i \leq q-1,1 \leq j \leq k$, such that

$$
\begin{equation*}
\lim _{\epsilon_{l} \rightarrow 0} \frac{1}{\epsilon_{l}^{q}}\left(f-\frac{S_{\epsilon_{l}}}{T_{\epsilon_{l}}}\right)^{\epsilon_{l}}(z)=\frac{1}{q!}\left(f-\frac{S_{*}}{T_{*}}\right)^{(q)}\left(z_{j}\right)\left(z-z_{j}\right)^{q}-\sum_{i=0}^{q-1} a_{i j}\left(z-z_{j}\right)^{i} \tag{3.8}
\end{equation*}
$$

uniformly in $z \in \overline{B_{j}}$. Thus, substituting $z-z_{j}$ by w into (3.8) gives

$$
\begin{aligned}
\lim _{\epsilon_{l} \rightarrow 0} \frac{1}{\epsilon_{l}^{q}}\left\|\left(f-\frac{S_{\epsilon_{l}}}{T_{\epsilon_{l}}}\right)^{\epsilon_{l}}\right\|_{B_{j}} & =\left\|\frac{1}{q!}\left(f-\frac{S_{*}}{T_{*}}\right)^{(q)}\left(z_{j}\right)\left(z-z_{j}\right)^{q}-\sum_{i=0}^{q-1} a_{i j}\left(z-z_{j}\right)^{i}\right\|_{B_{j}} \\
& \geq\left|\frac{1}{q!}\left(f-\frac{S_{*}}{T_{*}}\right)^{(q)}\left(z_{j}\right)\right|\left\|w^{q}-M_{p, q}(w)\right\|_{p} \\
& =\frac{1}{q!}\left|\left(f-\frac{S_{*}}{T_{*}}\right)^{(q)}\left(z_{j}\right)\right| \mathcal{K}_{p},
\end{aligned}
$$

Galleys-1

for each $1 \leq j \leq k$. Since $\left\{\frac{S_{\epsilon_{l}}}{T_{\epsilon_{l}}}\right\}$ is a sequence of best rational approximants of f from \mathcal{R}_{m}^{n} with respect to $\|\cdot\|_{\epsilon}$, by Proposition 3.1 we get

$$
\sum_{j=1}^{k}\left|\left(f-\frac{S_{*}}{T_{*}}\right)^{(q)}\left(z_{j}\right)\right|^{p} \leq \sum_{j=1}^{k}\left|\left(f-\frac{S}{T}\right)^{(q)}\left(z_{j}\right)\right|^{p}
$$

Therefore, $\frac{S_{*}}{T_{*}}$ is a best Padé approximant of f at X by (3.2). Finally, by hypothesis $\frac{S_{*}}{T_{*}}=\frac{S}{T}$. This finishes the proof.

References

[1] Borwein P. and T. Erdélyi (1995)
Polynomials and Polynomial Inequalities, Graduate Texts in Mathematics, Springer Verlag, New York.
[2] Conway J. B. (1978)
Functions of One Complex Variable, Second edition, Graduate Texts in Mathematics 11, SpringerVerlag, New York-Berlin.
[3] Cuenya H. H. and C. N. Rodriguez (2002)
Rational approximation in L^{ϕ}-spaces on a finite union of disjoint intervals, Numer. Funct. Anal. Optim. 23(7-8), 747-755.
[4] Chui C. K., O. Shisha and P. W. Smith (1974)
Padé approximants as limits of best rational approximants, J. Approximation Theory 12, 201204.
[5] Chui C. K., O. Shisha and P. W. Smith (1975)
Best local approximation, J. Approximation Theory 15(4), 371-381.
[6] Li J. L. (1994)
Padé approximants as limits of rational functions of best approximation in Orlicz space, Approx. Theory Appl. (N.S.) 10(2), 74-82.
[7] Marano M. and H. H. Cuenya (1991)
Multipoint Padé approximants and rational functions of best L^{p}-approximation on small intervals, in: Progress in Approximation Theory, Academic Press, Boston, MA, pp. 693-701.
[8] Salah M. (2006)
Relation between best approximant and orthogonality in C_{1}-classes, JIPAM, J. Inequal. Pure Appl. Math. 7(2), Paper No. 57, 7 pp.
[9] Walsh J. L. (1931)
The existence of rational functions of best approximation, Trans. Amer. Math. Soc. 33 (3), 668-689.
[10] Walsh J. L. (1934)
On approximation to an analytic function by rational functions of best approximation, Math. Z. $38(1), 163-176$.
[11] Walsh J. L. (1964)
Padé approximants as limits of rational functions of best approximation, J. Math. Mech. 13, 305-312.
[12] Walsh J. L. (1974)
Padé approximants as limits of rational functions of best approximation, Real Domain, J. Approximation Theory 11, 225-230.

Fabián E. Levis and Claudia N. Rodriguez, Departamento de Matemática, Facultad de Ciencias Exactas Físico Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Argentina.
flevis@exa.unrc.edu.ar, crodriguez@exa.unrc.edu.ar

[^0]: ${ }^{\dagger}$ The authors thank to Universidad Nacional de Río Cuarto and CONICET for supporting this work.

