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Distribution of backswimmers in shallow ponds of Patagonia and their predatory

role on a common tadpole�copepod assemblage

FG Jara*, MG Perotti and MC Diéguez

Laboratorio de Fotobiologı́a, INIBIOMA-CONICET- UNComa, Quintral 1250, San Carlos de Bariloche, Rı́o
Negro, Argentina

(Received 4 December 2011; final version received 18 May 2012)

In this study, the distribution and occurrence of backswimmers in 21 fishless ponds was analysed
in the Nahuel Huapi National Park (Patagonia, Argentina). We performed laboratory
experiments to study the impact of different developmental stages of the endemic backswimmer
Notonecta vereertbruggheni on typical co-occurring prey. We recorded three species of
backswimmers N. vereertbruggheni, Notonecta virescens and Notonecta fazi. A seasonal study
in Fantasma pond showed that adults of N. vereertbruggheni colonise and reproduce in the pond
in spring and summer, co-occurring with other macroinvertebrates and endemic tadpoles.
Predation experiments explored the impact of N. vereertbruggheni on two large co-occurring
prey, the calanoid copepod Parabroteas sarsi and the tadpoles of Pleurodema thaul. The
backswimmer consumed more copepods than tadpoles when prey was offered separately.
Selectivity experiments demonstrated that the copepods were preferred over the tadpoles.
Backswimmers may impact the typical assemblages of organisms found in fishless ponds of
Patagonia during spring and summer.

Keywords: Patagonia; shallow-fishless ponds; notonectids; predation; copepods; tadpoles

Introduction

Predation and competition are major interac-

tions affecting the dynamics and structure of

prey communities (Murdoch et al. 1984; Sih et al.

1985; Schneider & Frost 1996; Wellborn et al.

1996; Hero et al. 1998). In temporary fishless

ponds, aquatic insects, spiders and salamanders

are usually the top predators (Heyer et al. 1975;

Wellborn et al. 1996; Wilbur 1987, 1997; Jara

2008a,b). In fact, in some pond communities,

predation by several macroinvertebrates like

notonectids (backswimmers), belostomatids

and dragonflies may control the size structure

and species composition (Williams 1987; Blaus-

tein et al. 1995; Hössler et al. 1995; Herwig &

Schindler 1996; Spencer et al. 1999; Cobbaert

et al. 2010; Hampton et al. 2000). Backswimmers

in particular are well known for their voracious

predatory habits and their ability to exploit

many prey types such as rotifers, crustaceans,

mosquito larvae, tadpoles and small fish

(Cronin & Travis 1986; Streams 1987a;

Hampton et al. 2000; Mazzucconi 2008; Gilbert

& Diéguez 2010). Furthermore, they often

attack other predators like damselflies and

dragonflies that eventually exceed many times

their own size. Additionally, the predation

pressure exerted by notonectids can induce

numerical as well as developmental, morpholo-

gical and behavioural shifts in their prey (Black

1993; Repka et al. 1994; Jara & Perotti 2010).

In particular, Notonecta species are typically

ambush predators that remain still, perched on

aquatic vegetation, and seize moving prey or
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organisms stranded in the water surface (Gittel-

man 1974; Streams 1987a). Prey detection in

backswimmers is both visual and mechanical

(Schwind 1980; Peckarsky 1982; Streams 1982;

Savage 1989). Visual detection is relevant

particularly for catching small prey and thus,

prey size may determine day�night differences
in their foraging efficiency (Diéguez & Gilbert

2003). Backswimmers catch the prey using their

anterior and middle legs, pierce it with the

rostrum, inject with digestive enzymes and suck

the liquefied contents.
In Northwestern Patagonia, the dynamics

and impact of predatory invertebrates on

aquatic communities have been poorly studied.

In small lakes and temporary fishless ponds,

ciliates, turbellarians, large copepods and water

mites are the primary invertebrates preying on

zooplanktonic prey, including rotifers, clado-

cerans and copepods (Vega 1995; Diéguez &

Balseiro 1998; Trochine et al. 2006, 2008).

These predators co-occur seasonally with sev-

eral other carnivorous insect species such as

notonectids, belostomatids, diving beetles and

odonate larvae, which are known to consume

tadpoles (Jara & Perotti 2009, 2010) as well as

zooplanktonic prey (Gilbert & Diéguez 2010).
Notonectids are widespread in Patagonia

and most of the species present are endemic to

this region (Bachmann 1962, 1963; Mazzuconi

2008; Melo 2009). In the Nahuel Huapi Na-

tional Park (NHNP), four species of the genus

Notonecta have been recorded: N. peruviana

Hungerford, N. vereertbruggheni Hungerford,

N. virescens Blanchard and N. fazi Hungerford

(Mazzucconi 2008). In this park adult notonec-

tids have been found in temporary ponds and

pools during spring and summer (Jara 2010).

The endemic backswimmer N. vereertbruggheni

is known to prey on tadpoles of the anurans

Pleurodema thaul and Pleurodema bufoninum

(Jara & Perotti 2010) while the younger nymphs

consume zooplankton (Gilbert & Diéguez

2010). Although Notonecta has the potential

to exploit a wide range of prey type and size, up

to the moment there is no evidence about its

impact on the structure of Patagonian pond
communities.

The objectives of this study were to analyse
the occurrence of backswimmers in shallow
ponds located inside NHNP and their potential
impact on co-occurring prey, such as crusta-
ceans and tadpoles. For this purpose we
surveyed 21 ponds located at different altitude
on a longitudinal transect of 40 km, compris-
ing high altitude water bodies in the west and
piedmont pools in the east. In each location we
recorded notonectid species and potential prey
such as macroinvertebrates and tadpoles.
Furthermore, we analysed the life cycle of the
endemic backswimmer N. vereertbruggheni in
Fantasma pond, a fishless temporary piedmont
system. Finally, we studied the feeding and
selectivity of N. vereertbruggheni on two prey
species, the copepod Parabroteas sarsi and
tadpoles of P. thaul, which co-occur in
Fantasma Pond during spring and summer.
These experiments were performed under light
and dark conditions in order to determine
whether prey type along with light availability
could influence the foraging efficiency of
backswimmers.

Materials and methods

Field sampling

This research was conducted in 21 ponds
located in Nahuel Huapi National Park
(NHNP), Northwestern Patagonia, Argentina
(Fig. 1). The study area is located within a
sharp (40 km) east�west precipitation gradient
(800�1500 mm), which largely determines the
water regime and pond duration. The ponds
studied are located in different landscape units
within the NHNP, including steppe and transi-
tional zones, Andean�Patagonian forest and
Sub-Antarctic forest (Table 1). These shallow
ponds are fishless and include temporary, semi-
temporary and permanent water bodies. Ponds
located at piedmont (B906 m a.s.l) are located
mostly in urban and suburban areas, while high
altitude ponds (�1400 m a.s.l) are located in
remote zones of the park (Table 1).
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All the ponds were visited monthly from
September to December 2008. At each sam-
pling occasion, depth, temperature, pH, con-
ductivity and dissolved oxygen were measured
using multi-parameter probes (HI 9828). The
presence of aquatic vegetation was recorded at
each pond. Two types of samples were taken in
order to: (1) characterise the biotic assemblages
of the ponds, and (2) collect backswimmers,
copepods and tadpoles for their use in feeding
experiments. Macroinvertebrate and amphi-
bian species were collected in the littoral and
in the open water areas of the ponds by
sweeping 10 longitudinal sections of 2 m with
a dip-net (36�25 cm; 300 mm mesh). Zoo-
plankton samples were collected using a
Schindler�Patalas trap (12 l) in the open water,
while littoral samples were taken using a 5-l van
Dorn bottle, and filtered through 45-mm mesh
net. Tadpole samples were preserved using
formaldehyde 10% while zooplankton was
preserved with Lugol’s solution.

Macroinvertebrates including notonectids
were identified to the lowest taxonomic level
after Bachmann (1963, 1998) and Mazzuconi
(2008). Backswimmer instars were identified
following Angrisano (1982) and quantified
separately. The amphibian species were identi-
fied following Cei (1980) and their larval stages
after Gosner (1960). The different stages were
pooled in the categories ‘vulnerable‘ (stages 23
to 27) and ‘invulnerable‘ (stages older than 28)
following Jara & Perotti (2010).

In particular, the assemblage composed by
N. vereertbruggheni, the tadpoles of P. thaul
and large calanoid copepods observed in Fan-
tasma Pond (Garcı́a 2010; Jara 2010) was
considered amenable for the study of the life
cycle of this backswimmer and its predatory
impact on tadpoles and co-occurring crusta-
ceans. For this purpose, two stations were set
up in Fantasma pond, one in the littoral and
one in the open-water, which were visited and
sampled monthly from September to December

Figure 1 Map of the study area (Nahuel Huapi National Park, Patagonia, Argentina). Numbers refer to
pond location: 1, Llao-Llao; 2, Fantasma; 3, Virgen de las Nieves; 4, Pinar de Festa; 5, Teleférico; 6, Mallı́n
Ñireco; Ñireco 1 and 2; 7, Los Patos and Verde; 8, Refugio de Jesús; 9, Bernal 1 to 6; 10, Ñirihuau 1 to 4.

Distribution of backswimmers in shallow ponds of Patagonia 461

D
ow

nl
oa

de
d 

by
 [

H
ar

va
rd

 C
ol

le
ge

] 
at

 1
4:

54
 2

8 
Fe

br
ua

ry
 2

01
3 



Table 1 Environmental features of 21 shallow fishless ponds inside Nahuel Huapi National Park (NHNP, Patagonia, Argentina).

Pond

(map reference) Location

Elevation

(m a.s.l)

Landscape
unit

(proximity

to city)

Area

(m2)

Depth

(m)

Water

regime

Aquatic

vegetation

pH, mean

(91SEM)

Conductivity
(mS/cm), mean
(91SEM)

Notonectid

species

Amphibian

species

Llao-Llao (1) 4182’S;
71833’W

821 APF (R) 150 0.4 T * 7.16 NA 1 4, 5, 6

Fantasma (2) 4185.6’S;
71827’W

794 APF (U) 10000 2 T * 7.22 (0.22) 99.86 (6.11) 1 4

Virgen de las Nieves (3) 41808’S;
71824’W

801 APF(U) 550 1 P * 8.39 (0.1) 74.45 (13.22) 1, 2 4

Pinar de Festa (4) 4180.7’S;
71821’W

830 APF(U) 13 0.4 T � 7.11 (0.34) 57.99 (3.68) � 4, 7

Teleférico (5) 4187’S,
71822’W

816 APF (U) 257 1.7 T * 7.09 (0.17) 183.74 (42.12) 1, 2 4

Mallı́n Ñireco (6) 41810’S;
71819’W

899 S (R) 1000 0.88 P * 6.6" 77.1 (10.9) 1, 2 7, 8

Ñireco 1 (6) 41810’S;
71819’W

906 S (R) 240 1.4 T � 7.8 (0.05) 75.9 (1.97) � 7

Ñireco 2 (6) 41810’S;
71818’W

906 S (R) B20 0.3 T � 8.09 (0.32) 85.33 (1.79) � 7

Los Patos (7) 41815’S;
718 17’W

1461 SAF (R) 1010 0.7 P * 8.02" 45.7 (7.49) 3 4, 9

Verde (7) 41815’S;
718 17’W

1525 SAF (R) 3540 5 P � 7.28 (0.62) 28.96 (2.55) 3 9

Refugio de Jesús (8) 41807’S,
71813’W

825 S (R) 15000 0.7 T * 7.46 (0.95) 67.05 (8.64) 1 7

Bernal 1 (9) 41808’S;
71811’W

837 S (SU) 556 0.38 T � 7.82 (0.27) 377.89 (59.82) � 7

Bernal 2 (9) 41808’;
71811’W

837 S (SU) 234 0.45 T � 7.1 (0.2) 28.30 (5.78) � 7

Bernal 3 (9) 41808’S;
71811’W

838 S (SU) 543 0.46 T � 7.07 (0.34) 73.94 (27.34) � 7

Bernal 4 (9) 41808’S;
71810’W

838 S (SU) 87 0.4 T � 7.13 (0.42) 76.46 (12.14) � 7
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Table 1 (Continued )

Pond
(map reference) Location

Elevation
(m a.s.l)

Landscape
unit

(proximity
to city)

Area
(m2)

Depth
(m)

Water
regime

Aquatic
vegetation

pH, mean
(91SEM)

Conductivity
(mS/cm), mean
(91SEM)

Notonectid
species

Amphibian
species

Bernal 5 (9) 41808’S;
71810’W

844 S (SU) 33 0.3 T � 7.3 (0.4) 62.18 (5.37) � 7

Bernal 6 (9) 41808’S;
718 10’W

837 S (SU) 15 0.4 T � 7.18 (1.09) 84.6 (10.14) � 7

Ñirihuau 1 (10) 41805’S;
71810’W

771 S (SU) 1000 0.7 T * 7.54 (0.47) 77.61 (9.94) 1 4, 7

Ñirihuau 2 (10) 41805’S;
71810’W

771 S (SU) 6.837 0.6 T * 7.31 (0.42) 76.75 (18.52) 1 4, 7

Ñirihuau 3 (10) 41805’S;
71810’W

771 S (SU) 15.1 0.6 T * 7.48" 68.96 (8.8) 1 7

Ñirihuau 4 (10) 418 05’S;
718 10’W

777 S (SU) 651.5 0.5 T * 7.03 (0.49) 94.99 (7.32) 1 7

Capital letters indicate different landscape units: APF, Andean�Patagonian forest; SAF, Sub-Antarctic forest; S, steppe and transitional zone; U, urban; SU,
suburban; R, remote; P, permanent water body; T, temporary or semi-temporary water body. Asterisks (*) indicate the presence of aquatic vegetation. Numbers
indicate the presence of backswimmer and amphibian species: 1, Notonecta vereetbrugghenni; 2, N. virescens; 3, N. fazi; 4, Pleurodema thaul; 5, Hylorina sylvatica; 6,
Batrachyla taeniata; 7, Pleurodema bufoninum; 8, Rhinella spinulosa; 9, Atelognathus nitoi. Diamonds (") indicate point values. NA, not available.
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2008. Macroinvertebrates and tadpoles were
collected using a dip-net as described before,
poured into a shallow plastic container and
counted in situ. Also, a separate sample was
collected and preserved in order to confirm
species identification, to estimate the abun-
dance and to obtain the total body length (TL).

Laboratory experiments

Predation experiments were conducted in the lab-
oratory and involved the incubation of different
stages of the backswimmer N. vereertbruggheni,
the calanoid copepod P. sarsi and the tadpoles of
P. thaul obtained from Fantasma pond. These
species were selected for the feeding experiments
because they are the larger organisms co-occur-
ring with notonectids during spring and summer
in Fantasma pond.

Feeding trials were set up to analyse the
consumption of the copepod P. sarsi and tad-
poles of P. thaul by different stages of
Notonecta, separately. Another set of experi-
ments tested for the selectivity of different stages
of Notonecta on mixed copepod and tadpole
prey. Dark and light treatments were applied to
feeding and selectivity trials in order to evaluate
the effect of light availability on prey consump-
tion and to infer potential light-dependent
periodicity in the use of different prey type.

The feeding experiments were performed
using four different stages of Notonecta as pre-
dators; instar II (mean TL91SEM�4.990.23
mm), III (6.790.14 mm), V (8.490.6 mm) and
adults (11.590.7 mm), incubated separately
with P. sarsi adults (4.8790.08 mm) and with
newly hatched tadpoles of P. thaul stage 25
(1190.1 mm). Each replicate contained six
tadpoles or 10 copepods and one backswimmer.
These prey numbers were equivalent in terms of
biomass based on prey wet weights.

Selectivity experiments were set up to ana-
lyse the preference of different instars (II, III,
V and adult) of N. vereertbruggheni on a
copepod�tadpole assemblage, under light and
dark. Each replicate contained 10 copepods, six
tadpoles and one backswimmer.

The following general conditions were ap-
plied to all the experimental assays. Backswim-
mers, copepods and tadpoles were collected from
Fantasma pond on November 2008, using a dip
net and were taken to the laboratory within 1 h
of collection. The prey and predators were
incubated at 1891 8C for 24 h before conduct-
ing the experiments. Parabroteas sarsi was
maintained in 5-l buckets filled with pond water
with natural co-occurring prey (rotifers, cope-
pods and cladocerans). Tadpoles were incubated
in 5-l flat plastic containers filled with pond
water and fed with a suspension of the algae
Chlamydomonas reinhardtii and Scenedesmus sp.
from laboratory cultures. Backswimmers were
incubated in 5-l flat plastic containers filled with
filtered (50-mm mesh) pond water deprived of
food to ensure 24 h of starvation before setting
up the experiments. For each prey, a total of 50
replicates were set up in 1000-ml plastic beakers
filled with 700 ml of natural pond water. Prey
were placed in each of the 50 containers; one
backswimmer was added to 10 of the replicates
while 10 containers without the predator served
to control for natural mortality of the prey. The
experiment was run separately with instars II,
III, V and adults. Light and dark treatments
were run simultaneously in two separate com-
partments inside an environmental chamber; in
one compartment light was supplied by two
fluorescent lamps (Philips daylight, TLT 40W/
54RS) while the other was kept dark with a
cover of aluminium foil. A cylindrical wooden
rod was put in each replicate in order to serve as
a perch for the predator. After 2 h, the number
of prey remaining alive was recorded in each
replicate. This exposure period was established
following the results of preliminary trials and
corresponded to the time at which 50% of the
prey was consumed.

Analytical procedures

The correspondence of environmental variables
and notonectid species occurrence in 21 ponds
inside the NHNP was analysed by means of
Canonical Correspondence Analysis (CCA).
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Calculations were performed by the program
CANOCO (ter Braak 1988). The data set
analysed was based on qualitative and quanti-
tative samples. Forward selection was used for
adding environmental variables to the model.
The significance of the ordination axes was
assessed by Monte Carlo permutations.

The abundance of N. vereertbruggheni in the
littoral and open water of Fantasma pond was
compared using the non-parametric Mann�
Whitney test. The ingestion rate (IR) of
Notonecta on copepods and tadpoles when
prey was exposed separately, was calculated as
the number of prey consumed (initial prey minus
final prey) divided by the exposure time and
predator abundance, and was expressed as prey/
predator/h (Hampton 2004). Two-way analysis
of variance (ANOVA) was applied to study the
effects of the instar (II, III, V and adult) and
light availability (light and dark) on the IR of
Notonecta on copepods and tadpoles (Zar 1999).

The preference index a was calculated for
each instar of Notonecta from the results of the
selectivity experiments after Manly (1974) and
Chesson (1978) as follows:

ai ¼
1n Ri=Nið Þ

P
K
j¼i1n½ Rj=Nj

� �h i
�

where Ni and Nj are the initial and final number
of copepods in the experiment; Ri and Rj are
the initial and final number of tadpoles in the
experiment; K is the number of prey species. ai
ranges between 0 and 1 and thus a�0.5
indicates neutral selectivity, a values �0.5
indicate positive selection while values B0.5
denote negative selection. This index is appro-
priate for experiments in which prey is not
replaced after consumption. Three-way ANO-
VA was applied to evaluate the effect of light
availability (light and dark), prey type and
predator instar on prey selectivity (a).

All the statistical analyses were conducted
using the software SPSS (9.0). When significant
effects of main factors were found, post hoc
multiple comparisons were performed applying
the Holm�Sidăk test (HS; Zar 1999).

Results

Distribution of notonectid species in ponds of
NHNP

Eleven of the 21 ponds surveyed inside the
NHNP had aquatic vegetation (Table 1). The
aquatic vegetation was found to be variable and
included submerged and floating hydrophytes
and rushes in the littoral zone. In shallower
ponds, different species of rushes were found
covering almost all the surface. In general, the
ponds had conductivity values below 130 mS/cm
coinciding with pH deviating slightly from
neutrality. However, higher values of conduc-
tivity up to �700 mS/cm were recorded in two
ponds along with more alkaline conditions
(Table 1). Temperature varied widely during
spring and summer, and also on a daily basis,
with low temperatures in the morning (as low
as 4 8C) and high values in the afternoon (up to
30 8C). Concomitantly, dissolved oxygen (O2)
varied broadly; however, the values were never
below 5 mg/l, reflecting the action of the strong
winds characteristic of the area.

The survey of ponds revealed the occurrence
of several species of predatory insects. The most
common were waterbugs, beetle larvae, dragon-
flies and damselflies, as have been previously
recorded also by Jara & Perotti (2010). Noto-
nectids in particular, were found inhabiting 12 of
the 21 ponds studied. Three species of back-
swimmers of the genus Notonecta were recorded,
N. vereertbruggheni and N. fazi (adults up to 14
mm) and N. virescens (adults up to 9 mm).
Notonecta vereertbruggheni was the most wide-
spread species in the study area occurring in
�50% of the surveyed ponds, while N. virescens
and N. fazi occurred in less than 20% of the
ponds (Table 1).

The CCA performed using the environmen-
tal variables pond area, depth, altitude, pH,
conductivity and vegetation revealed that alti-
tude by itself determined the occurrence of
notonectid species. However, depth, vegetation
and conductivity contributed as well to the first
axis accounting overall for 97% of the total
variance (Table 2). A Monte Carlo unrestricted
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permutation test on the first eigenvalue indi-

cated that the altitude was significantly corre-

lated with the first axis (Table 2; Fig. 2).
Overall, N. fazi was the only backswimmer

species present in the high altitude ponds Los

Patos and Verde, which are characterised by

comparatively greater depths and low conduc-

tivities. Notonecta vereertbruggheni was present

in 10 piedmont ponds, co-occurring with N.

virescens in three of them. Other predatory

insects occurred along with backswimmers.

The most common were waterbugs (Belostoma

bifoveolatum), beetle larvae (Rhantus antarcticus,

Tropisternus and Lancetes sp.) and odonate

larvae (Rhionaeschna variegata, Erythrodiplax

connata) and Cyanallagma interruptum).
Other components of pond communities

were amphibians, with a total record of six

Table 2 Results of the Canonical Correspondence Analysis (CCA) performed to study the distribution of

notonectids in ponds belonging to Nahuel Huapi National Park.

Variables Axis (r) Axis 2 (r) Lambda Conditional effects testing

Altitude 0.988 �0.007 0.97 F�25.89, P�0.004
Depth 0.580 0.109 0.34 F�0.54, P�0.48
Area �0.064 �0.450 0.08 F�2.13, P�0.146
pH 0.182 �0.024 0.03 F�0.28, P�0.6
Conductivity �0.339 0.089 0.12 F�0.63, P�0.47
Vegetation �0.680 0.071 0.46 F�1.6, P�0.232

Correlation coefficients (r) of the different variables with Axis 1 and 2. Eigenvalues (Lambda) of the environmental
variables to Axis 1 and conditional effects testing are provided.

Figure 2 Plot of Axis 1 and 2 of the Canonical Correspondence Analysis applied to study the effects of
environmental variables on the distribution of notonectid species in 21 ponds inside the Nahuel Huapi
National Park (Patagonia, Argentina). Environmental variables are indicated by arrows. Numbers and black
triangles refer to ponds: 1, Llao-Llao; 2, Fantasma; 3, Virgen de las Nieves; 4, Pinar de Festa; 5, Teleférico; 6,
Mallı́n Ñireco; Ñireco 1 and 2; 7, Los Patos and Verde; 8, Refugio de Jesús; 9, Bernal 1 to 6; 10, Ñirihuau 1 to
4. Grey triangles indicate notonectid species.
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species. Pleurodema thaul was found in eight
ponds located in areas of mixed Nothofagus
forests and in the transition to the steppe.
Hylorina sylvatica and Batrachyla taeniata
were present exclusively in the westernmost
pond Llao-Llao, while Atelognathus nitoi was
restricted to the high altitude pond Verde and
was observed occasionally in Los Patos pond.
Pleurodema bufoninum and Rhinella spinulosa
occurred in steppe ponds and transitional
areas (Table 1). Crustaceans, particularly cala-
noid copepods, cladocerans and amphipods
were found in most ponds. The zooplankton
community of the ponds was dominated by
calanoid copepods of the genus Boeckella:
B. gracilis, B. gracilipes, B. brevicaudata,
B. antiqua and the large predator P. sarsi. The
cyclopoid Acanthocyclops robustus was also
present in some ponds along with cladocerans
such as Daphnia spp., Ceriodaphnia dubia and
Simocephalus serrulatus.

Life cycle of Notonecta vereertbruggheni in
Fantasma pond

During 2008, the adults of N. vereertbruggheni
were captured with the dip net from September
to the end of December in Fantasma pond. In

September, the adults of Notonecta attained a

total density of 3 ind/m3 (Fig. 3). Instars I and

II were observed in October along with adults

at a density of 4.5 ind/m3. In November, the

greatest total density of 9 ind/m3 was recorded,

with the overlap of instars I, II, III, IV and the

adults. In December the instars III, IV, V and

adults were present in the pond at a total

density of 7.5 ind/m3 (Fig. 3). The distribution

of Notonecta in the pond assessed during day-

time in November, showed a higher abundance

of backswimmers in the littoral (15.493.3 ind/

m3) compared with the open water (2.691.4

ind/m3) (Mann�Whitney, U�93.5, P�0.001).
Furthermore, the density of nymphs was higher

in the littoral (12.896 ind/m3) than in the open

water (2.694.5 ind/m3). In contrast, the adults

occurred exclusively inside the vegetation belt

in the littoral zone of the pond, where they

attained a lower density than the nymphs

(2.694 ind/m3).
In Fantasma pond, N. vereertbruggheni co-

occurred with the predatory beetle larvae of

Lancetes sp. and Rhantus antarcticus, the flat-

wormMesostoma ehrenbergii, and a crustacean

assemblage dominated by calanoid and cyclo-

poid copepods. The most common crustaceans

in the pond during spring were the calanoids

Figure 3 Seasonal abundance of Notonecta vereertbruggheni in Fantasma pond during 2008. The bars
indicate density (mean91SEM; ind/m3) of N. vereertbruggheni. Maximum body length of the different instars
of Notonecta: I�2 mm, II�3.9 mm, III�5.4 mm, IV�8.9 mm, V�9.8 mm, adult�14 mm.
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P. sarsi and Boeckella gracilis, the cyclopoid

Acanthocyclops robustus, the cladoceran Simo-

cephalus serrulatus and the amphipod Hyalella

curvispina.
Pleurodema thaul was the only amphibian

present in the pond (Table 1). The tadpole

stages 24 to 28 (body lengths ranging from 7 to

20 mm) of this frog have been reported as

vulnerable to predation by Notonecta and other

aquatic insects, while older developmental

stages are invulnerable to insect predators

(Jara & Perotti 2010). The vulnerable stages

24 to 28 had higher abundances during October

and occurred in patches in the littoral zone

attaining densities up to 30 ind/m3. During

November and December, most of the tadpoles

were older than stage 28, and therefore not
vulnerable to predation.

Laboratory experiments

The survivorship of tadpoles and copepods in
the feeding experiments was 100% in the
controls indicating that natural mortality was
negligible. Feeding experiments revealed that
older nymphs of Notonecta had higher IRs than
younger ones, independent of the prey type
(Fig. 4a, b).

The IR of Notonecta on the copepod
P. sarsi increased with the backwimmer instar
(F3, 38�20.6, PB0.001) and was higher in
the light compared with the dark treatment
(F1, 38�4.97, PB0.03; Fig. 4a).

Figure 4 Ingestion rate (IR) (mean91SEM; prey/pred./h) of different developmental stages of Notonecta
vereertbruggheni on: a, the calanoid copepod Parabroteas sarsi and b, newly hatched tadpoles of Pleurodema
thaul. IRs were calculated from laboratory feeding experiments in light and dark treatments.
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The consumption rate of the adults of
Notonecta on tadpole prey was significantly
higher than those shown by its nymphs
(F3, 39�12.8, PB0.001). Instar II did not
feed on this prey regardless of the light treat-
ment, while instars III and V had lower
consumption rates than the adults (PB0.001).
Interestingly, tadpoles were consumed by the
adult backswimmers with higher rates in the
dark than in light treatment (PB0.01) (Fig. 4b).

In the selectivity experiment, the different
instars of backswimmer selected almost exclu-
sively the copepod, neglecting the tadpoles
(F1, 75�508.05, PB0.001). Instars II and III
exclusively selected the copepod (a�1), re-
gardless of the light availability (P�0.22).
Instar V and the adults also preferred cope-
pods, although they were also able to kill
tadpoles, but at a lower rate and regardless of
the light treatment (P�1) (Fig. 5).

Discussion

Three species of backswimmers of the genus
Notonecta, N. vereertbruggheni, N. fazi and N.
virescens, occurred during spring and summer
in 12 out of the 21 ponds surveyed inside the

NHNP (Patagonia). Notonecta fazi was found
exclusively in the two high altitude ponds
surveyed, Verde and Los Patos, characterised
by comparatively lower conductivity and great-
er depth. The most widespread species, N.
vereertbruggheni, occurred in nine piedmont
ponds studied, co-occurring in three shallow
and vegetated piedmont ponds with N.
virescens (Table 1). Several authors have found
a strong association of Notonecta with aquatic
vegetation (Streams & Newfield 1972 ; Hamp-
ton 2004). Aquatic plants play an important
role in the reproduction of backswimmers since
they have been observed to use macrophyte
stems to insert or glue their eggs (Rice 1954).

The co-occurrence of Notonecta virescens
and N. vereertbruggheni could be explained by
the habitat complexity provided by aquatic
vegetation in piedmont ponds inside the
NHNP. Vegetation increases habitat complex-
ity thereby providing refuge from predators
and promoting co-occurrence. In particular the
co-occurrence of notonectids has been reported
to increase competition for shared prey and
intraguild predation (Streams 1992a, b; Svens-
son et al. 2000; Hampton 2004). The different
body sizes of N. vereertbruggheni (up to 14 mm)
and N. virescens (up to 9 mm), may also
facilitate their co-occurrence since it may de-
termine differential prey use, diminishing diet
overlap, as has been pointed out by several
authors (Streams 1974, 1992a; Svensson et al.
2000).

The study of the life cycle of N.
vereertbruggheni in Fantasma pond revealed
that migrant adult notonectids colonised the
pond in spring and reproduced during October.
The assemblage of developmental stages of
N. vereertbruggheni reached its maximum com-
plexity from November throughout December,
when all nymphs were found co-occurring with
the adults. The adults of N. vereertbruggheni
were found exclusively in the littoral zone of the
pond during daytime, perching on the vegeta-
tion, while the nymphs occurred also in the
open water. This spatial segregation seems to
be a common behavioural pattern in several

Figure 5 Selectivity index (a) of Notonecta
vereertbruggheni on Parabroteas sarsi calculated
from mixed prey experiments exposing P. sarsi and
newly hatched tadpoles of Pleurodema thaul, in light
and dark treatments (mean91SEM). The dashed
line indicates maximum a (a�1). Values close to 1
indicate total preference for P. sarsi.
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notonectid species to avoid overlap (Fox
1975a, b; Murdoch & Sih 1978; Streams &
Shubeck 1982; Streams 1987b; Gilbert et al.
1999; Hampton 2004). In Fantasma pond, the
higher abundance of notonectids in the littoral
may be due to the presence of aquatic vegeta-
tion, which provides them with refuge against
other insect predators. Although, the availabil-
ity of their prey was higher in the open water,
P. sarsi and newly hatched tadpoles were more
abundant inside the vegetation. Thus, back-
swimmers appear to respond to factors other
than simple prey availability when selecting
optimal habitat inside the pond as has been
suggested in previous studies (Hampton 2004).
Habitat heterogeneity and the particular habi-
tat use by different interacting stages or species
may determine different levels of competition,
intraguild predation and cannibalism in back-
swimmers (Bennett & Streams 1986; Sih 1987;
Hampton 2004).

In Fantasma pond, N. vereertbruggheni
co-occur with several groups of organisms
including rotifers (Gilbert & Diéguez 2010),
crustaceans (Garcı́a 2010), insects and tadpoles
(Jara & Perotti 2010; Table 1), which may be
considered potential prey given the fact that
notonectids can access a wide variety of organ-
isms (Cooper et al. 1985; Blaustein 1998).
Several studies have pointed out that back-
swimmers actively select larger crustacean prey
such as copepods and cladocerans (Cooper
1983; Cooper et al. 1985; Streams 1994; Gilbert
et al. 1999). By exerting size selective predation,
backswimmers are important organisers of
community structure, strongly reducing larger
pelagic or neustonic species, and indirectly
favouring smaller and less competitive species
(Scott & Murdoch 1983; Blaustein 1998;
Hampton et al. 2000).

In Fantasma pond, the large calanoid
copepod P. sarsi (up to 5 mm) and the newly
hatched tadpoles of P. thaul (7�20 mm) are
the largest prey occurring with several stages of
N. vereertbruggheni during spring. The feeding
experiments performed in the laboratory showed
that different stages of N. vereertbruggheni were

able to feed on the copepod while only stages

III, V and adults fed on tadpoles. The back-

swimmer removed up to 3 copepods/pred./h

and up to 1.5 tadpoles/pred./h (Fig. 4a, b).

Light availability did not affect the IR of

Notonecta on tadpoles; however, when the

prey was Parabroteas the IR was comparatively

lower in the dark. This suggests that visual

detection is involved in foraging on copepods

while mechanical cues may be enough for suc-

cessful detection of tadpole prey. In fact, the

instar V and the adults of N. vereertbruggheni

preyed on tadpoles at a higher rate in the dark

treatment (Fig. 4a, b).
Furthermore, Notonecta showed marked

preference towards the copepod (0.8BaB1)

when presented with copepod and tadpoles

together in selectivity experiments. Instar II

and III exclusively selected the copepod (Fig.

5), while the remaining developmental stages of

Notonecta also preyed on tadpoles, although

with a lower selectivity coefficient. Preference

for copepods was not affected by light avail-

ability and thus, it can be inferred that they

may be preferentially consumed regardless the

light availability during day and night (Fig. 5).

The feeding efficiency of notonectids on small

crustacean prey has been observed previously

to depend on light availability (Streams 1982;

Diéguez & Gilbert 2003).
Differences observed in the IR and selectiv-

ity may be due to prey palatability, size,

conspicuousness and behaviour. Both prey

used seem to be palatable as they were not

rejected after capture. Tadpoles used in the

experiments were up to 11 mm of total body

size, more than two-fold larger than the cope-

pods. Tadpole size may have constrained

notonectid feeding, as apparently occurred in

the case of the instar II. Also, the tadpoles

remained still in the bottom of the experimental

vessels when the predator was present, thus

reducing their conspicuity. This behaviour has

been observed to protect this prey from differ-

ent predators such as waterbugs, dragonfly

naiads and beetle larvae (Jara & Perotti 2010).
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The higher consumption rate and selectivity
of Notonecta on Parabroteas may reflect the
fact that its size is readily accessible for all the
instars, even though larger instars of the back-
swimmer fed more efficiently on the copepods,
perhaps suggesting a more favourable pre-
dator�prey size relationship. Parabroteas is
bright red coloured and about 5 mm of body
length, and therefore can be considered a
conspicuous prey, both for visual or mech-
anically oriented predators. This copepod can
elicit jumps of several times its body length
when encountered and can be considered
highly evasive. However, this swimming beha-
viour is likely to enhance conspicuousness for
Notonecta as reflected by the results of our
experiments in the dark.

As far as we know, P. sarsi and the flatworm
Mesostoma ehrenbergii are the only predators
that have been considered to impact on other
invertebrates in Fantasma pond (Vega 1998;
Trochine et al. 2008). However, our results
show that all nymphs of N. vereertbruggheni
prey up on Parabroteas and thus, when noto-
nectids are present in the pond (September�
December) they may add complexity to the
trophic interactions. Recently, Gilbert & Die-
guez (2010) suggested that predation pressure by
Notonecta and Parabroteas may drive the po-
pulation cycle of the rotifer Brachionus
calyciflorus, which may also apply to other co-
occurring prey, such as cladocerans, and cope-
pods.

Overall, our results indicate that backswim-
mers are common in shallow piedmont and
high altitude ponds inside the NHNP (Patagonia,
Argentina). In particular, N. vereertbruggheni
is the most common species. Predation by noto-
nectids in fishless Patagonian ponds could influ-
ence the size structure and species abundance of
pond communities during spring and summer
when they are present at higher abundances.

Acknowledgements

This research was performed under the institutional

animal care guidelines established by the Bureau for

National Parks of Argentina (APN). This institution

also granted the permissions to collect samples and

living animals in ponds within the Nahuel-Huapi

National Park (APN Nos. 498�730). Subsecretaria
de Medio Ambiente of San Carlos de Bariloche

authorised the samplings in Fantasma pond. We are

grateful to S Mazzucconi and J Muzzon who kindly

identified the backswimmers and macroinvertebrate

species. C Queimaliños advised us with the Canoni-

cal Correspondence Analysis. This work was sup-

ported by UNComa B166, FONCyT PICT 01205,

PICT 0381 and CONICET fellowship to FG Jara.

References

Angrisano EB 1982. Biologı́a de algunas Notonecti-
dae argentinas (Insecta, Heteroptera). Physis 40:
121�132.

Bachmann AO 1962. Apuntes para una hidrobiolo-
gı́a Argentina. V. Los hemı́pteros acuáticos de
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