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ABSTRACT: We present results for step-strain experiments and the resulting damping
functions of polyethylene blends of different structures, including solutions of linear,
star and comb polymers. Remarkably, an entangled melt of combs exhibits a damping
function close to that for entangled linear chains. Diluting the combs with faster-
relaxing material leads to a more nearly constant damping function. We find similar
behavior for blends of commercial low density polyethylene LDPE. Our results sug-
gest a simple picture: on timescales relevant to typical damping-function experi-
ments, the rheologically active portions of our PE combs as well as commercial LDPE
are essentially chain backbones. When strongly entangled, these exhibit the Doi-
Edwards damping function; when diluted, the damping function tends toward
the result for unentangled chains described by the Rouse model — namely, no damp-

ing. ©2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3117-3136, 2007
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INTRODUCTION

At present, linear viscoelastic properties of
model polymers with different architectures (lin-
ears, stars, combs, etc) are relatively well under-
stood in terms of the tube model.! Recently, by
including concepts such as reptation, arm re-
traction, and dynamic dilution, Milner and
McLeish developed a “parameter free” theory
that describes the linear relaxation properties of
star polymers,? linear polymers,® and star/linear
polymer blends.* This approach has also been
applied to other structures such as pompom,
H’s, and comb polymers.5~”

On the other hand, the nonlinear viscoelastic
properties of branched polymers are poorly
understood. Although the step-strain behavior of

Correspondence to: S. T. Milner (E-mail: scott.t.milner@
exxonmobil.com)

*Permanent address: Department of Physics, Universidad
Nacional del Sur, Argentina.

Journal of Polymer Science: Part B: Polymer Physics, Vol. 45, 3117-3136 (2007)
©2007 Wiley Periodicals, Inc.

ST @WILEY .
< InterScience®

DISCOVER SOMETHING GREAT

entangled linear® and star polymers® are reason-
ably well described in terms of the Doi-Edwards
model (DE),! the limits of applicability of the
theory have not been clearly established. In
addition, there are only a few experimental
studies on model branched molecules other than
stars, and structure—property relationships are
not well established.

Given its practical importance, most studies
have focused on commercial long-chain branched
(LCB) polymers such as low density polyethyl-
ene (LDPE). The introduction of small amounts
of LCB is an effective way to increase the melt
strength of commercial polymers. The branched
structure is thought to be responsible for the de-
sirable extensional properties of LDPE. In uni-
axial and biaxial extension, LDPE exhibits
strain hardening.'®!! The control of strain hard-
ening is of high practical importance. For exam-
ple, this property is thought to be responsible
for the superior bubble stability of LDPE in film
blowing as compared with unbranched polymers
with similar molecular weights. However, since
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the chain architecture of this commercial poly-
mer is not known in detail, it is difficult to es-
tablish the basic mechanisms that control the
nonlinear dynamics.

Experiments show that beyond some charac-
teristic time 7, after imposing a step shear
strain of amplitude 7, the time-dependent relax-
ation modulus G(¢,y) for many different poly-
mers can be factored as:'?1*

G(t,7) = G{t) h(y) (1)

in terms of the linear relaxation modulus G(¢)
and the strain dependent “damping function”
h(y).15 This feature is known as time-strain sep-
arability. 617

In entangled linear polymers with moderately
narrow molecular weight distribution (M./M,
< 4.0), h(y) is reasonably well described by the
DE model. However, linear polymers with a few
entanglements per chain or broad molecular
weight distributions exhibits a weaker depend-
ence on y than predicted by DE.*®

The DE theory describes stress in entangled
linear polymers shortly after a step-strain.
“Shortly after” means on timescales such that
chains can relax their contour length within
their tubes, that is, many Rouse times after the
step-strain.

Explicitly, the DE result for the stress o(¢
= 0+) is:*

() = kT ceq E-u
) <E-u|>o<E “|E-u>o' @)

Here E is the second-order deformation gradi-
ent, ceq is the equilibrium concentration of
entanglement strands, and (), denotes an aver-
age over an isotropic distribution function of
unit vectors u.! The stress then relaxes with the
linear relaxation function regardless of strain
amplitude, as the tube explores new conformations
by curvilinear diffusion (reptation). Thus the DE
damping function is A(y) = o(E()/(Gyy), where Gy
is the rubberlike modulus of the material.

For marginally entangled polymers, one
might hope to crudely describe the dynamics
using the Rouse model-for which the stress af-
ter a step-strain is o(¢) = y G(¢), so that A(y) is
equal to unity.

The dotted lines of Figure 1 shows experimen-
tal results of nonlinear relaxation modulus
G(t,y) for an entangled PS solution at different
values of strain (experimental details presented
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Figure 1. Non-linear relaxation modulus G(¢,y) for
samples PSL1 (solid curves) and PSL2 (dotted curves)
at T = 140 °C and T = 60 °C, respectively. Shear
strains increase for each sample from y = 0.2 to y
= 5.0 in the direction indicated in the figure by an
arrow [strains: 0.2 (linear), and 0.5 through 5.0 in

steps of 0.5]. Inset: shifted nonlinear modulus G(¢,y)/
h(y) for PSL1 and PSL2.

below). The figure inset shows the reduced
relaxation modulus G(t,y)/h(y). Each curve for
y = 0.5 has been shifted vertically so it super-
poses onto the curve corresponding to small
strain (y = 0.2) in the long time region. Observe
that the different relaxation curves superpose
only at sufficiently long times. Below the charac-
teristic time of approximately 6 s, time-strain
separability fails.

According to previous studies, the time char-
acterizing the failure of the time-strain super-
posability 7y is related to the time required for a
complete relaxation of the contour length tg!®
through tg ~ 7 ~ 4.57g, where 1R is the longest
Rouse time of the chain .

However, recent experiments of Sanchez-
Reyes and Archer '7 and Inoue et al.'® suggest
that 7, is not dictated by tg. Experiments with
well entangled linear polystyrene solutions show
that good superposition is possible only at times
comparable to the terminal relaxation time of
the chain 74 (tx ~ 74). In more weakly entangled
systems, tg and 71, become very close each
other.'”

Figure 2 shows the comparison between the
theoretical results of DE for A(y) and the experi-
mental data resulting from the data collapse of
Figure 1 (square symbols). Observe that the
agreement between the DE model and experi-
ments is very good.
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Figure 2. Long time damping function A(y) for lin-
ear polymers in an unentangled melt PSL1 (circles)
and an entangled solution PSL2 (squares). The solid
curve is the DE damping function (Apg(y)) (without
independent alignment approximation).!

However, although the DE model gives a very
good description for A(y) for entangled linear poly-
mers with relatively narrow molecular weight
distributions, important deviations from DE have
been observed on other polymeric systems.'®

Recently, careful experiments by Sanchez-
Reyes and Archer'” shed light on an old obser-
vation for very high molecular weight polymers
of damping functions A(y) falling below than the
DE damping function. By preventing wall-slip
effects, they clearly show that the long time
damping function for such polymers are consist-
ent with the DE damping function. However, a
close inspection of the data shows negative devi-
ations in A(y) relative to DE of about 20-30% in
the strain range y = 0.2-2.0. At present, it is
not clear if this remaining discrepancy corre-
sponds to the real behavior of highly entangled
polymers, or an experimental consequence of
non-idealities, such as small remaining wall-slip
effects or non-uniformly distributed strains.

The situation is more complex in the case of
polydisperse linear polymers or highly branched
structures. In polydisperse linear systems a
weaker dependence on 7 in the damping func-
tion relative to DE'® has been observed.
Although the difference can be qualitatively
understood as a crossover between Rouse-like
and DE behaviors, at present there is no theory
describing the damping function of weakly
entangled linear polymers.

Polymers containing LCB, such as LDPE,
also shows A(y) with a weaker dependence on
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strain relative to DE.'®'° However, as conse-
quence of the wide variety of relaxation process
present in the system, in this case the nonlinear
polymer dynamics is certainly not well under-
stood.

Recently, Bick and McLeish?*® (BM) and
Bishko et al.2! proposed a model to describe the
nonlinear step-strain of entangled polymers of
general architecture. Their picture of stress
“shortly after” a step strain builds on DE, by
including the effect of chain segments between
branch points that are unable to relax by
retracting a free end. Such segments can bear
additional tension, up to the point that the aver-
age increase in length of the segment (IE-ul)
approaches the segment priority.?’ The segment
“priority” is defined as the minimum number of
free ends of the two subtrees created by cutting
the segment.

According to BM, the DE expression eq 2
for the stress tensor can be generalized for
branched structures as:*°

_ i<(Eul) -9
GO(<E.11E u>l Z @7L+

E-u|/| & (E-u]

Y H{E-u)|.(3)

i>(|E-ul)

where ¢; is the mass fraction of segments of pri-
ority i.

Thus, according to BM the priority distribu-
tion contains all information required to calcu-
late the damping function, and thus to relate
the nonlinear stress relaxation to the topology of
the branched molecule. This would be a power-
ful simplification because h(y) would be inde-
pendent of many details of the polymer architec-
ture. Observe that eq 3 indicates a decrease in
damping (increase in o) if the content of high
priority material increases.

Equation 3 and the theoretical picture behind
it have not been extensively tested experimen-
tally. In one recent work®? the BM model has
been used to interpret linear and nonlinear
rheological data from low-density polyethylene
(LDPE) by fitting to mixtures of theoretical
“pom-pom” polymers, thus inferring the priority
distribution for the LDPE.

In the present study, we investigate nonlinear
step-strain relaxation dynamics of blends of
both model and commercial branched polyethy-
lenes with linear polyethylenes. We focus the
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study on the effect of concentration and polymer
structure on the damping function.

To make contact with prior work, in Linear
Polymers of the Results we present data on the
damping function of linear entangled and unen-
tangled polystyrenes. In subsequent sections, we
study the effect of polymer structure on A(y) for
two different model branched polyethylenes
[stars (Stars/Linear Blends), and combs (Comb/
Linear Polymer Blends)]. In Low Density Poly-
ethylene/Linear Blends, we show data on the
nonlinear viscoelastic behavior of LDPE and
review previous results.

EXPERIMENTAL

Rheology

Though polyethylene is of considerable commer-
cial importance, it poses problems for step-strain
experiments. Since polyethylene has a high pla-
teau modulus, at high strains the transducers of
most rheometers are easily overloaded. To pre-
vent this, a common tactic is to reduce the plate
diameter (typically ~10 mm);%?32* however, this
leads to lower sensitivity and increased error at
long times.

One of the main sources of error in step-
strain experiments is wall slip.'"?% If slip
occurs, the applied strain is lower than the
desired strain; if this is overlooked, the meas-
ured damping function will be too small. This
artifact is easy to miss.

To reveal the onset of wall slip, we use a pen
to draw a vertical line on the edge of the sam-
ple, and observe its deformation. If there is no
slip, the line deforms affinely, and the ends of
the line move with the upper and lower plates.
If there is slip, the line does not deform affinely,
and the central portion of the line shears less
than expected.

Mechanical measurements were performed on
a Rheometrics mechanical spectrometer (RMS-
800, Rheometric Scientific, Piscataway, NdJ) in
the cone-plate geometry (25 mm diameter, 0.1
rad cone angle). Viscoelastic properties were
characterized by oscillatory shear and step-
strain measurements. The temperature resolu-
tion of this rheometer is =1 °C.

We conducted all experiments under a contin-
uous nitrogen purge to limit thermal degrada-
tion, which we verified by comparing linear
dynamic response before and after our experi-
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Figure 3. Measured strain in a stress relaxation
experiment on the RMS-800 rheometer at y = 5.0
(symbols). The continuous line is a phenomenological
fit to the data (see text).

ments. Depending on the signal-to-noise ratio,
step-strain data shown in this work corresponds
to an average of between 3 and 10 different
runs. Comparative experiments were done on an
ARES rheometer (also from Rheometrics) with
the same cone-plate geometry. Very good agree-
ment between the data of both rheometers was
obtained in both the linear and nonlinear
regime.

Step-strains are never instantaneous. Figure
3 shows the measured strain for a “step” strain
experiment with a total strain of y = 5.0 on the
RMS-800 instrument. Similar results were
observed with ARES. From this figure we can
see that ~98% of the desired strain is achieved
in a time 7y, ~ 0.08 s.

The influence of the non-zero rise time on
step-strain experiments was originally consid-
ered by Laun.’® Whether the strain history of
Figure 3 is fast enough to be considered “instan-
taneous” depends on the polymer relaxation
spectrum. Following Laun we analyze the relax-
ation process using the BKZ model.?® In step-
strain experiments, the BKZ expression for the
resulting stress is:

o(t) = /O T @k )dn (@)

where o(t) is the shear stress, m(¢) is the mem-
ory function, and y, is the relative shear strain
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between the states ¢ and . Equation 4 can be
rewritten as:

/ m(s)[p(t) — (¢t — 9)]

X h(y(t) = v(t —s))ds +h(3(£))y@)G(t) (5)

The first term vanishes for an instantaneous
step, whereupon o(¢) approaches A(yg) 7oG(2).

For ¢ > tgtep, 7(t)~ 7o and the first term in
eq 5 can be approximated; after some arithmetic
we have:

a(t) = yoh(70)G(t) + yom(t)Z(y) (6)
Z(79) = (1/70) /OOO[VO —9(t)]h(yo —y@E)dt"  (7)

Here we have used the fact that [yo — y (¢ — s)]
is different from zero only for ¢ — s < Tgtep,
which implies that m(s) ~ m(z).

A“time dependent” damping function can be
defined as:

.0 = ) ®)
d
~ k)~ Z60) S G@) (9)

(in which we have used the relation m(¢)
= —dG/d¢). Thus the effect of a finite rise time
for the step persists to some extent until the
stress relaxes. However, observe that at very
long times, t > 14, we have d In G/dt ~ —1/74. So
to estimate the size of the effect of finite rise
time, we need to know how big Z(y,) is relative
to the stress relaxation time and A(y).

Now we consider the behavior of Z(y,). A
change of integration variable to y = yo — (¢)
yields

"0 9h(y)dy
()

Z(30) = (1/10) /0 (10)

Making the simple approximation that during
the step the shear rate is a constant j = yo/Tgtep,
we have

Z(7) = (tstep/72) /0 “anpd ()

Now consider two limiting cases for the shape of
h(y): h(y) = 1 and A(y) = V(1 + a*?) with a2
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~ 0.27 (a simple approximation to the DE damp-
ing function). We find

Z(y) = tstep/2, h(y) =1 (12)

26) = ey (1 0%56) (205,
h(y) =1/(1+a%?) (13)

The function In(1 + x%)/x® is close to unity for
small x and approaches 2 In x/x* for large x;
thus it mimics the function 1/(1 + x?) (and like-
wise the DE damping function), but is larger by
a factor of 2 In x where the damping function
starts to fall off.

So we may say Z(yo) is of order t4ph(yo) in
both limiting cases, but larger by a factor of 2 In
70 in the DE damping limit. Examining eq 9, we
see that for slowly relaxing systems where the
terminal relaxation time 74 is much bigger than
Tgtep the corrections from finite rise time are
small, and eq 1 can be employed directly to get
the damping function at long times (t = tg). In
contrast, in quickly relaxing polymers (14 ~ Tgtep)
this assumption is not valid and eq 1 is not appro-
priate to evaluate the damping function.

One may compare h(y,t) to A(yg) to see how
big are the corrections due to finite strain rate.
We calculate A(y,t) from the experimental data
and eq 9. To calculate the stress (eq 4) we fit the
measured strain history with the function y,(¢)
= yot"/(t§ + t"), where ), is the desired strain,
and ¢ty and n are fitting parameters. Figure 3
also shows the fit of the experimental data with
7a(t). Observe that this function describes rea-
sonably well the applied strain.

For the systems studied in this work we
found only minor differences between the long
time values of A(y,t) and h(yg), with corrections
of only a few percent. In Linear Polymers of the
Results, we discuss in more detail the effect of
the non-zero rise time.

Materials and Methods

In this work we focus mainly on polyethylene
blends of different structures. Table 1 shows the
characteristics of the polyethylenes used in this
work (linear, stars, combs, and LDPE).

The model branched polyethylenes were syn-
thesized by Hadjichristidis and coworkers using
techniques of anionic synthesis of polybutadiene,
followed by hydrogenation to saturate the poly-
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Table 1. Characteristics of the Polymers and Blends Used in this Study (Molecular Weights in kg/mol and

Component Fractions in wt %)

Sample Mback Marm Mtot nlgack ngrm ¢PEW ¢main ¢LPE

Diluents

PEW 3.6 4.1 100

LPE 929 101 100
PS linears

PSL1 20 1.5 100

PSL2 6680 23.3 10
PE stars

S1 94 47 141 15.2 7.6 75 25

S2 94 47 141 38.3 19.1 50 50
PE combs

C1 104 5.4 173.4 42.3 2.2 50 1.25 48.75

C2 104 54 173.4 42.3 2.2 50 2.5 47.5

C3 104 54 173.4 42.3 2.2 50 5 45

C4 104 5.4 173.4 42.3 2.2 50 10 40

C5 104 54 173.4 42.3 2.2 50 20 30
LDPEs

LDPE1 239 0 100

LDPE2 239 25 75

LDPE3 239 50 50

LDPE4 239 75 25

nb2% and n2™ are number of entanglements in backbone and arm, accounting for dilution effect of PEW. ¢pain refers to

“main” component (i.e., not PEW or LPE).

mer. The resulting polymers are model polyethy-
lenes with well-controlled architecture. They
contain a few percent butene comonomer, which
results from the infrequent 1,2 insertion of buta-
diene in the original polymerizations, and which
make essentially no difference to the rheological
behavior of the polymers. Details about the syn-
thesis of the model polyethylenes can be found
in Hadjichristidis et al.?’

In step-strain experiments, we find wall slip
for well entangled linear polyethylene melts at
relatively small values of strain (y = 2.0).
Roughly speaking, we expect to encounter slip
when the wall stress exceeds some threshold
that the surface bond between polyethylene and
the plate can support. Then, the onset of wall
slip will depend on surface characteristics and
the dynamic modulus on the timescale at which
the step is imposed.

In our experiments, the maximum shear rates
applied during the imposition of the step strain
were jn.c < 100 s '. We observe the onset of
slip in polymers with a high frequency storage
modulus (at v = 100 rad/s) bigger than about
2 % 10° Pa.

Sanchez-Reyes and Archer'” showed that slip
can be dramatically reduced by attaching a sin-

gle layer of micron-sized glass beads to the
shear surfaces. By this method, they found a
roughly wuniversal damping function for en-
tangled linear polystyrenes, irrespective of the
number of entanglements.

In our case, instead of treating the shear sur-
faces, we reduce the wall stress by diluting the
polymer with a low molecular weight linear pol-
yethylene. For our branched polyethylene sam-
ples, we dilute with a low molecular weight lin-
ear polyethylene Bareco-4000 (PE wax, or PEW)
at a concentration of 50 wt %.

However, although by dilution both trans-
ducer overload and wall slip can be prevented,
this also speeds up the polymer dynamics at low
polymer concentrations. To mitigate this effect,
in samples with low branched polymer concen-
trations we also add to the blend an anionically
synthesized entangled linear polyethylene (LPE).
This allow us to adjust the properties of our
branched polymer samples to made them more
amenable to step-strain experiments.

Table 1 shows the characteristics of polymer
blends used in this study. The parent materials
for the model PE blends are: Bareco-4000 PE
wax (PEW); linear PE (LPE) of about 100 kg/
mol; a three-arm PE star with arm molecular
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weight 47 kg/mol; and a PE comb with backbone
molecular weight 104 kg/mol, arm molecular
weight 5400 g/mol, and an average of 14.8 arms
per comb. The LPE, stars, and combs were all
made by anionic synthesis of polybutadiene fol-
lowed by hydrogenation.

In Table 1, for convenience the number of
entanglements n. for the backbone (n22%) and
arms (n2™) are reported. In computing these
values, we include the effect of dilution, consid-
ering only the PEW as diluent. The scaling of n,
with volume fraction is taken to be n.(¢)= n.(0)
$»*3.28 The melt value of the entanglement mo-
lecular weight for the model PE materials is
taken to be 975 g/mol,?® following the conven-
tion of Doi and Edwards’ that defines the entan-
glement molecular weight in terms of the pla-
teau modulus as G = (4/5)pkTN4/M,. (The cor-
responding value for PS is 13.3 kg/mol.)

The polyethylene blends were made by dis-
solving the desired amounts of the components
in boiling xylene and precipitating with an
excess of cold methanol. Blends were placed
under flowing nitrogen at room temperature to
remove most of the solvents. When the specimen
weight indicated than less than 5 wt %
remained, the blends were put under vacuum to
completely drive off the solvents. The blends
were stabilized by the addition of 0.1 wt % anti-
oxidant (50/50 Irganox 1076/Irgafox 168, both
from Ciba Geigy).

To make contact with well-established litera-
ture data on damping functions, we also studied
a linear low molecular weight polystyrene (PS)
and a 10 wt % solution of high molecular weight
linear PS (Polymer Source) in dibutylphthalate
(Aldrich). Table 1 shows the molecular charac-
teristics of the two linear polystyrenes used in
this work, indicated in the table as PSL1 and
PSL2.

Polyethylene blends and the low molecular
weight PS PSL1 samples were compression
molded at 160 °C. For the polystyrene solution
PSL2 a sufficiently large specimen to fill the
test gap was placed on the lower plate of the
rheometer, and then the rheometer oven was set
to a temperature just high enough to relax the
normal force as the upper plate was lowered
(but not so high that the material flowed of the
plate before setting the gap).

To minimize strain-history effects, a mini-
mum waiting time of about 10 terminal relaxa-
tion times was employed between repeated step-
strain experiments.
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RESULTS

Linear Polymers

Here we analyze the nonlinear viscoelastic
behavior of an unentangled linear PS melt and
an entangled PS solution.

Figure 1 shows the result of stress relaxation
experiments at different values of strain for
both PS systems and the inset of this figure the
result of data collapse onto the linear shear
relaxation modulus G(¢,y = 0.2). Observe the
good time-strain separability (TSS) at long
times. Not also that the unentangled polymer
PSL1 presents a weaker dependence on strain,
and shows good superposition over a wider time
window.

It is sometimes difficult to determine the
onset of time-strain superposition, because the
overlap of the different curves do not clearly
define a single characteristic time. In such cases
we use the procedure of Sanchez-Reyes and
Archer,'” which define the onset of superposition
as the time at which A(y,f) becomes flat or
presents a minimum. This allow us to estimate
the onset of TSS at times ¢t < 0.2 s for PSL1
and ¢ < 6.0 s for PSL2.

Figure 4 shows the dynamic shear moduli
G'(w) and G"(w) and dynamic viscosity n* (o) for
polymers PSL1 and PSL2. In Figure 5 we show
the predictions of eq 4 for both samples at two
different strains. The prediction uses the fit to
the finite rise-time step strain y,(¢), the long-
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Figure 4. Dynamic storage modulus G'(w) and loss
modulus G’(w), and dynamic viscosity n*(w) for
PSL1 (filled symbols) and PSL2 (open symbols) at
T = 140 °C and T = 60 °C, respectively. [Squares:
G'(w). Circles: G"(w). Stars: n*(w)].
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J- . PSLY. w »=02 A y=40

G(t, )/ h(y) [Pa]

10" 10° 10’
t[s]
Figure 5. Reduced relaxation modulus G(z,y)/h(y)
versus time for PSL1 and PSL2 at low (y = 0.2) and
high (y = 0.4 for PSL1, y = 0.5 for PSL2) strains.
Curves are predictions using eq 4 for low (solid
curves) and high (dotted curves) strains.

time damping function A(yy), and the relaxation
spectrum. The relaxation spectrum is deter-
mined through a fit with the Maxwell model to
the complex shear modulus G*(w):

G'(w) =G (w) +1G"(w)

wT; iw??
= 14
Zg‘[1+w22 1+w2i2’ (14)

Here t; and g; are both fitting parameters. The
number of Maxwell modes is increased until the
decrease in the residual error does not justify in
a statistical sense any additional fitting parame-
ters (i.e., until we are “fitting the noise”). The fit
to the experimental data was made with the fit-
ting package provided with the software Orches-
trator from Rheometric Scientific.

Note in Figure 5 that the predictions of eq 4
(lines) shows a behavior very similar to the ex-
perimental data, that is, similar characteristic
time for the failure of TSS and similar degree of
splitting at short times of the curves correspond-
ing to different strains. Within the BKZ model,
this behavior is due entirely to the finite rise
time of the step strain; if the step is instantane-
ous, the BKZ model predicts time-strain separa-
bility over the entire time range.

Therefore, although the failure of TSS can be
produced by the presence of different mecha-
nisms dictating the existence of a “time-depend-
ent damping function” [e.g., A(y,f) going from
h(y) = 1 (Rouse) at short times towards A(y)
= hpg(y) at long times], the finite rise time of

the step strain appears to be sufficient to
explain the failure of TSS in our experiments.
Since the rise time for step strains on available
commercial rheometers are of similar magni-
tudes, this may be a common cause of apparent
failure of T'SS in other data as well.

The failure of the superposition at short times
is often attributed to the Rouse-like dynamics of
the contour length at times lower than approxi-
mately ~5-20 -times the longest Rouse time tg
of the chain.%®%1%18 Other have recently
claimed that good superposition is possible only
at times 1, ~ 74 > tr..” In addition, experiments
indicates a stronger dependence of 7, on poly-
mer concentration (t, ~ ¢>2) when compared
with a pure Rouse-like relaxation mechanism
(tic ~ ¢0).1

Although different mechanisms have been
proposed to explain the difference between 7y
and 7R, it appears that the effect of the finite
rise time in the step-strain experiment has been
often overlooked since the work of Laun. Equa-
tion 9 makes clear that the log derivative d In
G(t)/dt of stress relaxation function G(¢) controls
the rate at which the sample “forgets” the finite
rise time effect. Depending on the shape of G(¢),
the effects of the step rise time may persist out
to times of over 14 itself.

Figure 5 shows directly that eq 4 does a rea-
sonable job of accounting for the onset of TSS in
samples PSL1 and PSL2. Now we set about esti-
mating 74 for the PS samples, to see if the val-
ues we obtain are consistent with the onset of
T'SS we observe.

To account for effects of the broad of the spec-
trum of relaxation times obtained from eq 14,
we consider the average relaxation time pro-
posed by Watanabe et al.,*® which can be shown
to be the product of the zero-shear viscosity and
the steady-state compliance:

o3 = Zfizgi/zfigi (15)

For sample PSL2 we obtained n¢J? ~ 7.5 s, a
value very close to 7, from Figure 3. The same
analysis for sample PSL1 produces for the crude
estimate tq ~ 0.02 s, which is about 10 times
lower than 7, (from Figure 1, 7, ~ 0.2 s). Using
the Watanabe estimate we obtained 5¢J? ~ 0.4 s,
which is likewise close to 7y.

Figure 2 shows the long time damping func-
tion A(y) obtained through the shift factors
employed in Figure 1, when compared with the
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DE result (solid curve). The dotted line is a
guide to the eye.

For linear polymer solutions the number of
entanglements per chain n. can be estimated as
ne(¢) = nPt $*3 where n™°!t is the melt value.?®
From Table 1, for PSL2 we have n, ~ 23, which
is a well entangled sample. For this sample, in
Figure 2 we observe a very good agreement of
our data with DE (solid line). By reducing the
number of entanglements per chain into the
unentangled regime we observe a consistent
decrease in the damping.

Figure 2 also shows h(y) for the relatively
unentangled polystyrene melt PSL1 (M, = 2
x 10* g/mol, n, ~ 1.5, at T = 140 °C). For this
sample we observe a much weaker dependence
of h(y) on y. Similar behavior has been reported
for other systems.'® The decrease in damping
for relatively unentangled polymers can be
ascribed to a crossover to Rouse-like behavior.
For concentrated but unentangled polymers, the
dynamics is roughly described by the Rouse
model, in which the stress is related to the
strain as a(¢) = yG(¢). Thus for such samples we
may expect something like A(y) = 1.

Star/Linear Blends

Although the stress relaxation processes in star
and linear polymers are quite different, accord-
ing to the DE model the nonlinear behavior is
completely equivalent. In step-strain experi-
ments, at ¢ = 0+ both the average arm length
Ly and chain tension F, are larger than their
equilibrium values L., and F.,, respectively.
Thus for entangled stars as for entangled linear
chains, the contour length should relax quickly,
via Rouse motion. The equilibrium, unstretched
values L., and F,, are recovered after a time of
order tg. Once this fast relaxation process is
completed the tube orientation should relax
through arm retraction and constraint release.
Beyond g, the relaxation modulus for star poly-
mers would be expected to satisfy the time-
strain separability with the same damping func-
tion as linear polymers.

There are a few experimental results support-
ing this prediction at intermediate entanglement
densities®®! but a more detailed study would be
welcome. The results of Osaki et al.,*! are lim-
ited to less than five entanglements per star
arm, and these authors found good agreement
with the DE damping function.
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Figure 6. Dynamic moduli G'(w) (squares) and
G"(w) (circles) for star/linear blends S1 (filled sym-
bols) and S2 (open symbols).

On the other hand, Graessley and Vrentas®
explored two four-arm polybutadiene star sys-
tems with many more entanglements per arm,
and found some results for the damping function
in disagreement with the DE model. The DE
model gives a good description of the results for
a star solution in Flexon 391 with about 18
entanglements per star arm. However, a star
melt with about 30 entanglements per star arm
shows a stronger strain dependence than DE,
similarly to those observed for well entangled
linear polymers.’® In view of the new data of
Sanchez-Reyes and Archer'” for linear polymers,
we are tempted to assume that wall-slip effects
were present on the experiments with well
entangled star polymer systems.

Here we test two star/linear blends to study
the effect of dilution on the damping function.
Figure 6 shows the linear dynamic rheology, and
Figure 7 shows the relaxation modulus, for the
star/linear blends S1 and S2. As consequence of
dilution, the dynamics of the sample S1 are
much faster than S2. The inset of Figure 7
shows the results of data collapse for these two
polymer samples onto the corresponding linear
relaxation modulus. One can obtain a reason-
ably good superposition for sample S1 (despite
the noisy data) for times larger than approxi-
mately 0.2 s, whereas for sample S2 good super-
position is possible only beyond 4 s.

As for the linear chains discussed in the pre-
vious section, we estimated the time at which
one might expect time-strain superposition to be
valid, by computing the average relaxation time
from the linear viscoelastic spectrum using
eq 15 and the data of Figure 6. We find 1oJ°
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Figure 7. Relaxation modulus G(t,y) for star/linear
blends S1 (dotted curves) and S2 (solid curves). Fig-
ure inset: shifted relaxation modulus G(z,y)/h(y) for
samples S1 and S2.

~ 0.03 s and 7J° ~ 0.8 s for blends S1 and S2,
respectively. These values are reasonably close
to but still underestimate the the onset of TSS
as evident in the inset to Figure 7.

Figure 8 shows the damping function for both
star/linear blends. Observe that sample S1
presents a relatively weak dependence on strain,
an expected result considering that as conse-
quence of dilution, the arms are relatively unen-
tangled (see Table 1).

For sample S2 the damping function presents
some puzzling features. Figure 8 shows A(y,f) at
two different times for this sample. At short
times, the damping function for S2 is smaller at
large strains than the DE damping function.
This behavior is presumably again due to rise
time effects. At long times, A(y) for S2 is higher
than DE and becomes close to Apg(y) at the
highest values of gamma studied here for this
polymer (transducer overload restricts the strain
toy < 3.5).

In Figure 7 it is evident that there is a wealk,
slow relaxation process in sample S2, with a
characteristic time of about 5 s. This timescale
well in excess of the estimated terminal time of
0.8 s using eq 15, which itself is in good agree-
ment with a visual assessment of the approach
to terminal behavior evident in Figure 6 (e.g.,
the location of the crossing of G"(w) and G”"(w)).

Only on further inspection in Figure 6 do we
see that at low frequencies (below « = 0.1 rad/s,
say) there is a weak elastic response evident,
with an amplitude of perhaps 30 Pa, consistent

with the long-time process evident in Figure 7.
Such a process is barely evident in the corre-
sponding data for the more dilute sample S1.

The existence of this weak, slow relaxation
process in these star samples complicates the
extraction of the damping function. The origin
of this relaxation in these samples is not clear.
Conceivably there could be some small contami-
nating admixture of more slowly-relaxing mate-
rial, despite the care taken to synthesize the
samples. Or, there could be some relaxation pro-
cess generic to entangled star melts heretofore
unremarked upon. In any case, present theories
of stress relaxation in star melts and solutions
would not account for this process.?

Comb/Linear Polymer Blends
Linear Viscoelastic Properties

Here, we report results on the viscoelastic prop-
erties of comb/linear blends at different concen-
trations. Recall that our samples C1-C5 are
50% by weight PE wax, with the remainder
made up of varying amounts of PE comb and
linear PE, so that as we increase the comb con-
centration we are doing so at the expense of the
linear PE component.

Figures 9 and 10 show the storage and loss
modulus for the comb/linear blends at different
comb concentrations. For comparison, data on a
sample without combs was included. Observe
the systematic increase at low frequencies of
both G"(w) and G'(w) as the comb content
increases. Note also that in the high frequencies

= v
R e h v
£ DE \\
S1: —A— i
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S2: —o—hiy) (t=5sec) \::
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0.1 . \
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Figure 8. Damping function A(y) for star/linear
blends S1 and S2. The solid curve is the DE damping
function (without IA approximation).
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Figure 9. Dynamic storage modulus G'(w) for comb/
linear blends at 7' = 170 °C.

region (~100 rad s~') the dynamic moduli are
more or less independent of comb concentration.
Figure 11 shows the dynamic viscosity #*(w)
for different comb concentrations. Like the
dynamic moduli, n* (w) becomes insensitive to
comb concentration at high frequencies, while
the zero shear viscosity 1 increase strongly
with ¢comp. The inset shows that the 1y depends
exponentially with the comb concentration:

Mo ~ 706 exp[10.3 $oomy]  [Pas]  (16)
This star-like strong dependence reflects the
concentration dependence of the effective num-

ber of entanglements per comb arm.
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Figure 10. Dynamic loss modulus G''(w) for comb/
linear blends at 7' = 170 °C.
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Figure 11. Dynamic viscosity n*(w) for comb/linear

blends at T' = 170 °C. Inset: zero-shear viscosity 7o
versus comb concentration (symbols) with exponential
fit (line).

Step-Strain Experiments

Figure 12 shows the results of stress relaxation
experiments for the comb/linear blends C1 and
C5, containing 1.25 and 20 wt % combs, respec-
tively. Evidently the relaxation spectrum broad-
ens and the terminal times increase as the comb
content increases. Figure 13 shows the data col-
lapse of the relaxation modulus for different
comb concentrations, after shifting the relaxa-
tion modulus G(¢, y) onto the linear relaxation
modulus G(¢). The data were superposed at long
times (except that we ignore the noisy data at

'IIJ" 1.25 w1 % comb
———20 0wt % comb
©
a,
=
=
G] 10° 4
101 ’ A
10" 10°
Time [s]

Figure 12. Nonlinear relaxation modulus G(¢,y) for
comb/linear blends C1 and C5 at strains increasing
from y = 0.2 to y = 5.0 in the direction indicated by
the arrow.



3128 VEGA AND MILNER

10

©

o,

Em‘- comb

=

-

= 2

‘(5'10—

10"+ L

107 10 10’

Time [s]

Figure 13. Reduced relaxation modulus G(,y)/h(y)
for comb/linear blends C1-C5. Comb concentration
increases in the direction indicated by an arrow from
1.25 wt % (sample C1) to 20.0 wt % (sample C5).

very late times with G(¢, y) < 100 Pa). The mag-
nitude of the relaxation modulus grows as the
comb concentration increases. Also, the onset of
time-strain factorability moves to progressively
longer times as the comb content increases.

Remarkably, these results on comb-linear
blends are in qualitative agreement with the
results of Sanchez-Reyes and Archer!” on linear
PS solutions. Their results predicts that the
characteristic time 7, scales with polymer con-
centration as 1, ~ ¢$>2 Note that a Rouselike
behavior for 7 predicts 7, ~ ¢°. This led San-
chez-Reyes and Archer to state that “the true
separability time, evaluated from approximate
overlap of G(t, y) h(y)~' data, appears to have
very little to do with the longest Rouse relaxa-
tion time”.

However, this observation is also consistent
with the effects of non-zero rise time on step-
strain experiments. By increasing comb concen-
tration, the terminal relaxation time also
increases. Then, according to eq 9 superposabil-
ity starts at later times.

Figure 14 shows the damping function corre-
sponding to data showed in Figure 13. We can
observe that h(y) shows a progressively weaker
dependence on strain as the comb content
decreases. In contrast, a theory such as that
leading to eq 3 would predict the opposite trend:
namely, that by decreasing the content of high
priority material (in our case, decreasing comb
content), the damping function should evolve
towards a DE behavior.

To understand this unexpected behavior of
our data, we must estimate the characteristic
relaxation times of the different components of
the polymer blend.

Pearson et al.?? studied the linear viscoelastic
behavior of model anionically prepared linear
polyethylenes with molecular weights ranging
from 10% to about 10° g/mol. His sample 3 had a
molecular weight of 4.02 kg/mol, very close to
our PEW, and a zero-shear viscosity of 0.7 Pa s
at 175 °C. Using the plateau modulus of the
model PE from Fetters® of Gy = 2.28 MPa, we
make the simple estimate of a terminal relaxation
time Tpgw as 7o/Gn, which is about 3 X 1077 s.
Thus, although PEW is weakly entangled (about
four entanglements per chain), in the timescale
of the imposition of the step-strain is utterly
relaxed and acts like a solvent. Since our blends
contain 50 wt % of PEW, the entanglements of
LPE and combs are diluted?® by a fraction ¢*3
~ 0.4.

In the presence of PEW, the terminal relaxa-
tion time of LPE is reduced as consequence of
dilution. The terminal relaxation time of LPE
can be estimated from our data for the sample
without combs as tq4 ~ 7o/Go(¢p). The zero-shear
viscosity for this sample is ¢ ~ 640 Pa s (Fig. 11)
and the plateau modulus at a 50 wt % dilution can
be estimated as Go(¢) = Godp™® ~ 5 X 10° Pa.
Then, the terminal relaxation time typr(¢prw
= 0.5) for diluted LPE is roughly 102 s. There-
fore, the LPE component as well relaxes quickly

10"
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-
ooy Doi-Edwards theory v
= " entangled solution (n ~24)
£ *  unentangled mell (n_~1.5)
—0— 0.0125
o 0.025
& 0.05 comb concentrations
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) > 0.20
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10" 10°
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Figure 14. Damping function A(y) for comb/linear
blends C1-C5, and unentangled linear solution PSL1
(filled circles) and entangled melt PSL2 (filled
squares). The solid curve is the DE damping function.
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on the timescale of the “instantaneous” step
strain.

We now make a very rough estimate of the
characteristic relaxation time of the comb arms,
using experimental data on model PE (hydro-
genated 1,4-polybutadiene) stars.

Graessley and Raju®® have studied the rheo-
logical properties of melts and blends of low mo-
lecular weight linear and star hydrogenated pol-
ybutadienes. The data of zero-shear viscosity of
four arm star melts at 190 °C from this work
can be reasonably well described by:

Mo ~5.4 X 1074(M,)*® exp[M,/5840] [Pas] (17)

where M, is the arm molecular weight.

This expression holds for polymer solutions
satisfying 6.8 X 10° < M, < 3.3 X 10* g/mol.
[To determine zero-shear viscosity at 170 °C
(our measurement temperature) from data at
T = 190 °C, we employed the activation energies
measured by Graessley and Raju for these stars,
which are found to depend on arm length.] In
our case, the molecular weight of the comb arms
is 5400 g/mol. From eq 17, a melt of stars with
arms of this molecular weight would have a
zero-shear viscosity at 170 °C of about 8 Pa s.

Note that for such an arm molecular weight
we are close to but below the lower bound of
applicability of eq 17. This value compares rea-
sonably well with the data of Graessley and
Raju for a four-arm star melt with similar arm
molecular weight at 190 °C (M, ~ 6.8 X 10° g/
mol, 19 ~ 13 Pa s) and a star/linear blend with
similar effective number of entanglements (M,
~ 3.3 X 10% ¢ = 0.294, M,¢*® ~ 6.8 x 10% g/
mol, 59 ~ 27 Pa s).

Our combs (see Table 1) have about 15 arms
of molecular weight 5400 g/mol, and a backbone
of about 104,000 g/mol. Thus the arms are about
43 percent of the comb. The entire sample is 50
wt % PEW, and we have between 1 and 20%
combs in the entire sample.

With the 7/3 power law for dilution of the pla-
teau modulus,?® we estimate the plateau modu-
lus of our comb-linear-wax blends (50% wax) to
be Go(¢p = 0.5) ~ 5 X 10° Pa. Then estimating a
characteristic time using t ~ 1¢o/Go, we find that
a star arm with molecular weight of 5400 g/mol
diluted by 50% wax should relax in approxi-
mately Tarms ~ 107 % s.

This estimate is very rough, since (1) the
presence of (very) slowly relaxing comb back-
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bones and (relatively) slowly relaxing LPE
presents a dilute network of “permanent” entan-
glements to the star arms that can considerably
slow the arm relaxation;® and (2) the low molec-
ular weight of the PEW speeds up the arm
relaxation, similar to what happens in the Raju-
Graessley experiments in the presence of
diluents.

We may hope these errors compensate to
some extent. In any event, the estimated relaxa-
tion time is two orders of magnitude lower than
the finite rise time of the step. Thus such short
comb arms as we have may be expected to be
thoroughly relaxed on experimental timescales.

Thus, after a millisecond or so, most of the
constituents of the blend—polywax diluent, lin-
ear chains, and comb arms—are completely
relaxed, and the stress relaxation is dominated
by the relaxation of comb backbones. From Fig-
ure 11, we see that samples with the highest
comb content have terminal times of order one
second. Then, on the timescale of practical step-
strain experiments, we can consider the comb to
be like a linear chain, but with a large effective
friction factor at each junction point because of
the slowly relaxing arms.

Under dilution with linears and comb arms,
the number of entanglements per comb back-
bone goes from n?® < 10 to nb* < 0.5, for con-
centrations of combs ranging from 20 down to
1.25 wt %. Then, by decreasing the comb con-
centration, we expect that h(y) changes from a
DE behavior at high comb content (entangled)
to behavior characteristic of unentangled linear
chains at low comb content (unentangled), which
is what we observe.

Thus we should not be surprised that the BM
model (eq 3) does not even qualitatively describe
our data. Their model describes the damping
function “shortly after” an “instantaneous” step
strain, where “shortly after” means on time-
scales of order the Rouse time of linear chains
and dangling arms, and “instantaneous” means
fast compared to all stress relaxations except
Rouse relaxation. As our timescale estimates
make clear, for our comb samples these condi-
tions are far from being met. The comb arms of
our polymers would need to be much longer to
be unrelaxed on the timescale of the step-strain
and the subsequent measurement.

With regard to the BM model, what remains
to be considered is whether its assumptions are
valid for common commercial branched poly-
mers, such as LDPE, to which one might like to
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Figure 15. Transient shear data 5" (¢,7) for sample
C5 at T'= 170 °C and various shear rates.

apply the model. We return to this question in
Section 4 below.

Shear Start-Up Experiments

Figure 15 shows transient shear data 5" (¢, y) for
sample C5 (¢eomp = 0.2) at five different shear
rates, ranging from 0.1 to 10 s~!. Upon increas-
ing the shear rate the overshoot is more pro-
nounced and the position of the maximum shifts
to lower times. By plotting 5" (¢,7) as function of
the strain (y = J¢), it is evident that the maxi-
mum is located at approximately constant
strain.

Figure 15 also includes the predictions of the
BKZ model (eq 4), considering the strain history
corresponding to start-up of shear rate experi-
ments and the damping function determined via
stress relaxation experiments. The BKZ model
adequately predicts the behavior at low shear
rates, but clearly underpredicts the size of the
overshoot and also the steady-shear viscosity at
the highest shear rate studied here (; = 10 rad/
s™1). This failure of BKZ is a likely result of its
inaccurate handling of the stretching of the
comb backbones.?*

Recently Kasehagen and Macosko®* have
used the BKZ equation for randomly branched
polybutadiene to obtain h(y) by fitting the steady-
state shear viscosity. In this work branching
was produced by reacting a difunctional silane
coupling agent with the vinyl groups distributed
randomly along a polybutadiene precursor of
molecular weight 1.4 X 10° g/mol. By employing
this method, we have obtained values of A(y)

roughly consistent with step-strain results, that
is, by decreasing the comb concentration, A(y)
presents a weaker dependence on strain. How-
ever, h(y) obtained through the two methods pro-
duces slightly different numerical values. The
difference between A(y) determined by the two
methods was also observed by Laun'® for LDPE
melts. Since h(y) determined by BKZ depends on
the quality of this constitutive equation to
describe the real data, in this work we use only
h(y) determined directly from step-strain experi-
ments.

Low Density Polyethylene/Linear Blends

In this section, we analyze the linear and non-
linear viscoelastic behavior of a commercial low
density polyethylene (LDPE) melt (ExxonMobil
LD 113) and blends of a LDPE with a linear low
molecular weight polyethylene wax (PEW) (see
Table 1 for details). The molecular weight distri-
bution for this LDPE is showed in Figure 16.

Previous Studies on LDPE

Nonlinear rheology of LDPE of various origins
has been extensively studied. Figure 17 presents
damping functions from the literature for
IUPAC A from Laun,'® TUPAC X [same polymer
as IUPAC A but different batch] from Samurkas
et al.'! and Dupont Alathon 20 from Soskey and
Winter.'® The weight-averaged molecular weight
M, and the polydispersity index PD = M,/M,
for these polymers are indicated in the figure.

1.04
| LDPELD 113

0.84

0.6+

0.4+

0.24

0.0 '
10° 10° 10° 10°
Molecular weight [g/mol]

Figure 16. Molecular weight distribution for LDPE
LD113 (M, = 4.3 X 10* g/mol, M,/M,, = 5.6).
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Figure 17. Literature results for damping function

h(y) for different LDPE samples.

Observe that at high strains A(y) is well above
DE for the three LDPEs.

Note how similar are the A(y) curves for all
three polymers, despite the considerable differ-
ence in molecular weight distribution between
the TUPAC and Alathon samples. One might
have expected that such different polymers pres-
ent completely different structures and hence
different nonlinear responses.

Linear Viscoelastic Behavior

Figure 18 shows the shear viscosity as function
of frequency for LDPE and LDPE/PEW blends
at 170 °C. Observe that zero shear viscosity
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Figure 18. Shear viscosity n*(w) for LDPE and
LDPE/PEW blends at T = 170°C. Inset: Zero-shear
viscosity 1o versus LDPE concentration (symbols) and
exponential fit (line).
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drops more than three orders of magnitude by
reducing the LDPE concentration from 100 to
25 wt %.

The dependence of zero-shear viscosity on
LDPE concentration is displayed in the inset to
Figure 18. Similar to melts and solutions of star
polymers, here 7, presents an exponential
behavior on LDPE concentration: 19 ~ exp [10.4
¢LppEl-

Recently, Crosby et al.>®> have analyzed the
effect of dilution with squalane on different
industrial polyethylenes from Dow Chemical.
On a very highly branched metallocene-cata-
lyzed polyethylene CM5 (M,, = 7.56 X 10* g/mol,
M /M, = 2.44) these authors found an exponent
very close to the value reported here (79 ~ exp
[10.3 ¢cmsl). On the other hand, on a LDPE
LD150 (M, = 1.04 x 10° g/mol, M/M, = 6.53)
they found a larger exponent (179 ~ exp[14.1
¢1pprl). Perhaps coincidentally, the exponent for
our LDPE (10.4) and CM5 (10.3) are very close
to the value obtained previously for comb/linear
blends (exponent 10.3).

Stress-Relaxation Experiments

Figure 19 shows the data collapse of the relaxa-
tion modulus for different LDPE concentrations,
after shifting the relaxation modulus G(¢, y) onto
the linear relaxation modulus G(¢).

In Figure 20 the corresponding damping func-
tions are reported. As for the comb/linear
blends, by diluting LDPE with PEW we found a
systematic decrease in the damping [a more
nearly constant A(y)], although the effect is less
pronounced for LDPE. This is again the opposite

10' E T=443 K
’E‘ -
o,
=
o -y
— 2 =
‘-—?:_:-10 3 S
= T
QD‘ a
e \
3 o
L) \
107 10° 10’ 10°

Time [s]

Figure 19. Reduced relaxation modulus G(¢,y)/h(y)
for LDPE and LDPE/PEW blends at T = 170 °C.
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Figure 20. Damping function A(y) for LDPE and
LDPE/linear blends at 7' = 170 °C. The solid curve is
the DE damping function.

trend to what one would expect based on the
BM result (eq 3).

Taken together with our results on the comb/
linear/wax blends, the results on damping func-
tions in diluted LDPE suggest a simple view of
stress relaxation in LDPE. Since the molecular
weight distribution is very broad, LDPE con-
tains a relatively large amount of unentangled
branched molecules (analogous to the PEW in
our blends). In addition, the high molecular
weight molecules in LDPE have a lot of unen-
tangled or partially entangled branches (analo-
gous to the relatively short arms of our comb
polymers). Both of these components of LDPE
will relax completely on timescales short com-
pared to the “instantaneous” step strain in a me-
chanical rheometer.

The slowly relaxing portion of LDPE is then a
relatively small fraction of long “backbones” of
high molecular weight molecules, from which
more quickly relaxing dangling arms have been
“pruned”. Except for extremely high molecular
weight components of LDPE, these backbones
will tend to be linear or three-arm stars. Only
these backbone portions will support stress at
late times. Because polyethylene is a very fast-
relaxing molecule (low friction constant, and
glass transition temperature far below crystalli-
zation), “late times” in fact means essentially all
of the experimentally accessible time window
with mechanical rheometry.

Figure 21 presents a cartoon of the stress-
bearing portions of an LDPE melt at very early
(A) and experimentally accessible “late” (B)

times. At sufficiently early times, the whole set
of molecules contributes to the stress. Very
quickly, large portions of the melt (unentangled
short molecules, and short branches) are com-
pletely relaxed, and act as a diluent. What
remains is a weakly entangled or dilute solution
of “backbones”, which are predominantly linear
or singly branched. These relax locally by Rouse
dynamics (and reptation, if entangled), but
much slowed down by the friction created by the
decoration of short branches along the back-
bones.

From the molecular weight distribution for
our LDPE (Fig. 18), we see that about half of
the molecules (everything to the left of the peak
in the distribution) have a molecular weight less
than 6 X 10* g/mol. We can find an upper bound
for the relaxation time of any branched struc-
ture with a given molecular weight, as follows.
Because of the exponential dependence of arm
retraction on arm length, at fixed total molecu-
lar weight the three-arm star is the slowest-
relaxing branched structure. Bartels et al.>®
have determined the terminal relaxation time of
a symmetric three arm hydrogenated polybuta-
diene stars with this molecular weight (Mg,
=2 x 10* g/mol) at T = 170 °C to be about 0.01 s.
Hence, half of the chains in our LDPE relax in
less than 0.01 s, and play a role similar to the
PEW in our comb blends.

Although LDPE is certainly not a simple, uni-
form, well-characterized branched model poly-
mer, some things are known about the array of
structures found in an LDPE melt. By combined
used of gel permeation chromatography, dilute-
solution viscometry, and light scattering, it is
possible to characterize the molecular weight as
well as various measures of the size of a poly-
mer coil in dilute solution.

?}fé«a\}@

Figure 21. Cartoon of stress-bearing parts of LDPE.
(A) t = 0+, all chains contribute to the stress tensor.
(B) Quickly thereafter, low molecular weight mole-
cules and branches are relaxed, and the stress is sup-
ported by a few long “skeletons” with friction
enhanced by the presence of sidebranches.
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Because branched molecules are more com-
pact than linear chain of the same molecular
weight, it is possible to infer the frequency of
branches under some assumptions as to the ran-
domness of the branched architecture. Applying
such techniques gives estimates of the molecular
distance between branch points, or length of
dangling arms, in various LDPEs to be in the
range 2000—-10,000 g/mol.3"38

It is therefore reasonable to suppose based on
the timescales we have estimated that the BM
assumptions are not valid for commercial LDPE,
insofar as a preponderance of the “long”
branches in LDPE have a molecular weight of
only a few thousand g/mol, and so relax too
quickly on the experimental timescale for BM to
be valid. Thus it appears from our experimental
results for LDPE that the BM model is not a
good description of step-strain relaxation in that
system either, and for the same reason as for
our model comb-linear—-wax blends; namely,
that the dangling arms relax too fast to contrib-
ute to the stress.

This result appears to be in contradiction
with the recent findings®?*3° on step strain
experiments for model branched polymers.
Archer and Varshney®® and Islam et al.?® have
studied the behavior of polybutadiene pom-pom
polymers with three and four arms, and McLeish
et al.’ have made similar studies of polyisoprene
H shaped polymers. The arm molecular weights
in the three references are similar (M ., < 2.1
x 10* g/mol).

These authors find that A(y) presents an ab-
rupt transition at values of strain similar to
that expected from theory for H and pom-pom
polymers. It may be that their data are contami-
nated with slip effects, as this work predates
the paper dealing with wall slip.!” In our case,
with similar experimental conditions (cone and
plate stainless steel fixtures and relatively high
value of elastic modulus G'(w = 100 rad/s)
greater than about 2 X 10° Pa, we found wall
slip at relatively low strains in highly entangled
H melts synthesized by Hadjichristidis.

In addition, the arm relaxation time for these
polymers can be estimated to be lower than
~ 0.3 s for both the polybutadiene pom-poms
and the polyisoprene H-polymers (see McLeish
et al.® for details about how to estimate the ter-
minal relaxation time of the arms in the pres-
ence of unrelaxed backbones). Then, the longest
Rouse time for these arms is clearly much less
than 0.3 s.
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In fact, the Rouse time of the arms can be esti-
mated as tg ~ ton2. Considering My = 2 X 10*
g/mol the number of entanglements per arm is
ne ~ 4 for polyisoprene and n, ~ 13 for polybuta-
diene. At T' = 300 °C for polyisoprene we have 1,
~ 8 X 10°% s and for polybutadiene 7, ~ 2
X 1077 s. From this results that g < 2 X 107 * s
(tg < 4 X 107° s) for polyisoprene (polybutadiene).

Thus the conditions for the validity of the
Bick-McLeish model were not satisfied in these
experiments, insofar as the time to impose the
step of strain was larger than the Rouse time of
the arms. This supports the idea that wall slip
effects were responsible for the abrupt change
in the behavior of A(y).

In fact, it is rather difficult to obtain a Rouse
time of the arms larger than 7y, and thus
to satisfy the conditions of the Bick-McLeish
model in either of these polymer systems at T
= 300 °C, because both polymers relax rather
quickly. For example, to have tg ~ Tgep ~ 0.1 s
with polyisoprene at 7' = 300 °C the arm molec-
ular weight must be approximately M., = 5.3
X 10° g/mol, resulting in impossibly slow dy-
namics for the total molecule.

Time-Strain Superposition for LDPE

The remarkably good time-strain superposition
in a wide range of times showed in Figure 19 for
LD 113 is typical of previous results for LDPE.
In contrast, even linear entangled polymers
show poor superposition at short times. This
poor superposition at short times is also found
for different model polymers, such as stars, Hs,®
combs or pom-poms.?

It has been argued that the good time-strain
factorability of LDPE is a result of the broad
spectrum of relaxation times in such materials,
which smears the non-factorability observed in
model systems over a broad time window.®

In addition, there is another effect that
improves TSS at short times in LCB polymers.
According to the BKZ approach considering the
effect of non-zero rise time, the failure of TSS at
short times is a consequence of the contribution
Z(yo)d In G(¢)/dt to h(yg) in eq 9. As is clear from
eq 13 (and the discussion immediately follow-
ing), the ratio of Z(yy) to h(yo) is larger by a fac-
tor of about 2 In 7y for damping functions like
DE, compared to roughly constant damping
functions.

Figure 22 shows G(t,y) for LDPE at two differ-
ent strains (y = 0.2 and y = 4.0) and the results
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Figure 22. Reduced relaxation modulus G(z,y)/h(y)
for LDPE at two different values of strain [y = 0.2
(squares) and y = 4.0 (circles)]. Lines correspond to
the prediction of eq 4.

of eq 4. To determine G(¢,y) we employed the
same procedure as for linear PS. Observe the
good agreement between experiments and eq 4
and the reduced splitting of the curves at small
times (compared to Fig. 5 for the linear chain
samples).

Evidently, the BKZ model (eq 4) captures the
essence of the broad applicability of T'SS in our
LDPE samples, relative to the linear PS. Both
the shape of d In G(¢)/d¢ and the weak damping
function play a role. For LDPE, with its broad
smooth range of timescales, d In G(¢)/dt is spread
out over a broad range of timescales (and is
thus rather small in any particular time win-
dow). This is essentially a restatement of the
McLeish-Larson argument, captured by the BKZ
model.

CONCLUSIONS

We have studied the nonlinear behavior of
blends containing various model and commercial
branched polymer architectures through step-
strain experiments. We find that upon diluting
both model combs and commercial LDPE, the
damping function becomes more weakly depend-
ent on strain.

This is at odds with the qualitative behavior
of the Bick-McLeish (BM) model for the damp-
ing function of entangled branched polymers.
The BM model relates departures from the DE
damping function, which successfully describes
well-entangled linear chains, to the presence of

chain segments between branch points. These
segments cannot retract in the same way as seg-
ments with a dangling end, and thus bear addi-
tional stress.

The observed behavior of the damping func-
tion of our combs and LDPE samples on dilution
is very similar to that observed for entangled
linear chains, which when diluted show a damp-
ing function that is more nearly constant than
predicted by DE. Insofar as the limit of margin-
ally entangled chains may be described by an
approach to the Rouse model, which has a con-
stant damping function, we may expect weakly
entangled linear chains to show a damping func-
tion intermediate between DE and Rouse behav-
ior.

The observed behavior of our model comb
blends can be understood in terms of “dynamic
dilution”. For our combs, and for commercial
LDPE, the relaxation time of the dangling arms
in the sample is very fast, faster even than the
time a mechanical rheometer takes to make a
step-strain. Thus a substantial fraction of the
sample has relaxed its stress and acts like a dil-
uent on experimental timescales.

For the model combs, the remaining stress is
borne by the comb backbones, which relax very
slowly because of the large friction generated by
the presence of the entangled arms. The comb
backbones in our samples are analogous to a
slowly relaxing solution of moderately to weakly
entangled linear chains. Thus it is reasonable
that we find the same trend of a more constant
damping function upon dilution, as is found for
linear chain melts and solutions.

The BM model should not be expected to
apply to such a system, since it assumes that
the branched species have not yet relaxed their
stress on the timescale of the step strain. For
our polyethylene combs with arms of a few thou-
sand g/mol, we estimate the relaxation timescale
for the arms to be a few milliseconds, shorter
than the rise time of the step strain. Of course,
for branched polymers with sufficiently long and
slowly-relaxing arms, the BM model should be
applicable.

Remarkably, we find behavior similar to that
of the model comb blends for the damping func-
tion upon diluting commercial LDPE, also at
odds with expectations from the BM model. This
suggests that dynamic dilution is also effective
in “pruning” the LDPE chains down to a weakly
entangled solution of effectively linear or weakly
branched chains.
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Indeed, the lengths of dangling arms and seg-
ments between branch points in LDPE (based
on combining molecular weight and size infor-
mation about LDPE chains in dilute solution)
are estimated to be in the range of 2000-10,000
g/mol. Such dangling arms are of similar size to
our comb arms, and would relax quickly on the
timescale of the step-strain. This suggests that
the branches in LDPE are typically too short
and quickly relaxing for LDPE to be well
described by the BM model.

In the course of this work we “rediscovered”
two potential sources of artifacts in damping
function experiments, that bear emphasizing.

Our results, as well as previous results on lin-
ear polymers from Sanchez-Reyes and Archer,'”
suggest that previous literature results concern-
ing well- entangled polymeric systems with
large elastic moduli may be contaminated by
wall slip effects, irrespective of the polymer
architecture. The effect of wall slip can be miti-
gated by dilution, or by treatment of the surface
of the rheometer plates to improve the adhesion
with the polymer.

As well, a relatively simple analysis using the
BKZ model suggest that the non-zero rise time
involved during the imposition of the step strain
can contribute spuriously to the failure of time
strain superposition (T'SS) at short times, which
was implicit in the work of Laun.'?

As a consequence, the onset of good TSS is
governed by the stress relaxation function itself,
can extend many times the rise time of the step
strain, and is certainly not limited by the lon-
gest Rouse time. This analysis also implies that
those systems with a damping function with a
relatively weak strain dependence should show
better time-strain superposition at short times.
In general, the effect of finite rise time in step-
strain experiments has often been neglected
since Laun’s original work; however, we find it
to be an important consideration in analyzing
step-strain data.

Examining well entangled star/linear blends,
we find some unexpected and puzzling character-
istics, such as a damping function with a stronger
dependence on strain than DE at intermediate
times. The expected result, that star melts and
solutions should have a damping function
described by DE (because the dangling end of
each arm permits retraction just as for linears), is
not well satisfied. The reason for this is not clear.

Finally, we note that at present there is no
detailed theory describing the damping function
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one should expect for weakly entangled effec-
tively linear chains, which this work suggests is
an important class of systems to which both
diluted combs and LDPE belong.
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