Provided for non-commercial research and educational use only.
Not for reproduction or distribution or commercial use.

OPTICS
COMMUNICATIONS

This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the
author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without
limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s
administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,
or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission
may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial


http://www.elsevier.com/locate/permissionusematerial

ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

Optics Communications 268 (2006) 340-345

OPTICS
COMMUNICATIONS

www.elsevier.com/locate/optcom

Optical simulation of the quantum Hadamard operator

D. Francisco, C. Iemmi, J.P. Paz, S. Ledesma *

Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (1428) Buenos Aires, Argentina

Received 27 March 2006; received in revised form 14 July 2006; accepted 16 July 2006

Abstract

A possible way to optically simulate quantum algorithms is by making use of the spatial distribution of light in a laser beam. In this
approach, the quantum states are represented by the amplitudes of the electromagnetic field in the beam. Temporal evolution is simu-
lated by using optical elements such as lenses and phase shifters. Different elements are required depending on the operation whose imple-
mentation is desired. In this paper, we present an optical module to simulate the Hadamard transformation operating on a single qubit.
The system is composed by a set of lenses, a phase plate and a phase grating and it could be used as a part of more complex arrange-
ments. As an example, we make use of our Hadamard optical module as a part of the quantum circuit that solves the Deutsch problem.
We show the obtained experimental results and we discuss the limitations of the proposal.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Due to the current interest in quantum information and
computation, the area of optical simulations of quantum
information processing has received increasing attention.
The main idea of this kind of simulation is that both, the
electromagnetic field in classical optics, and the quantum
state of a physical system, evolve following the wave equa-
tion and satisfy the superposition principle [1]. Therefore,
experiments that only involve classical optics could be use-
ful tools to simulate the behavior of quantum computers
[2-7]. Optical architectures that can reproduce different
quantum algorithms are interesting not only from the aca-
demic point of view but also to understand their basic
properties. In this sense is important the development of
new configurations that can be performed in a laboratory
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with a low degree of difficulty, a high accuracy and inex-
pensive equipment.

Various works have been performed in this line. In a pio-
neer paper, Cerf et al. proposed optical configurations to
simulate quantum circuits [2] and presented an all optical
simulation of the Grover’s search algorithm [3]. In these
works, single photons were used for the representation of
quantum bits (qubits) and the implementation of universal
quantum gates was made by using simple optical compo-
nents like beam splitters and phase shifters in the context
of quantum optical experiments. Around the same time,
Spreeuw [4] suggested for the first time, the analogy between
entangled states of qubits and certain configurations of clas-
sical electromagnetic light waves. The information was cod-
ified in the polarization states of a single classical light beam
(polarization classical bits) or in the amplitudes and phases
of 2" different spatially separated parallel beams (position
classical bits). Entangled states were emulated by combin-
ing these two kinds of cbits representations. By using spa-
tially distributed cbits, Bhattacharya et al. [6] simulated
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several iterations of the Grover’s search algorithm.
Recently, Puentes et al. [7] implemented a simulation of
the Deutsch—Jozsa’s algorithm and one step of the Grover’s
algorithm by using programmable liquid crystal displays.

In general, the described simulations involve unitary
operations that can be implemented by means of linear opti-
cal elements. For instance, Spreeuw has proposed the use of
a beam splitter to simulate the Hadamard operator. By add-
ing to the beam splitter a phase variation, any unitary oper-
ation can be simulated. Although the representation of
unitary operations with beam splitters is conceptually sim-
ple and easy to be understood, its implementation presents
some experimental drawbacks. In fact, the experimental
implementation of this proposal requires the additional
use of mirrors to redirect the light arriving from each cbit.
The stability requirements of this architecture are similar
to those needed for interferometric systems. In addition, a
real beam splitter will cause two images that interfere each
other corrupting with fringes the signal of interest.

On the contrary, our proposal is based on an imaging
architecture, which renders the system more robust to noise
and instabilities. We show here a compact optical system
that can simulate the quantum Hadamard operation work-
ing on a single bit. The Hadamard transformation is a uni-
tary operation frequently used in quantum computing.
Many quantum algorithms make use of this transforma-
tion in some intermediate stage, so our experimental set-
up could be inserted as a module in the whole process.
As example we show the performance of our Hadamard
module when it is inserted in a quantum circuit that solves
experimentally the Deutsch problem [1].

In Section 2, some fundamental concepts are presented.
The notion of qubit and its optical representation are dis-
cussed and we also describe the Hadamard operator acting
on 1 qubit. In Section 3, the optical simulation of the Had-
amard operator is detailed and it is shown the experimental
implementation. In Section 4, it is presented the Deutsch
problem and the corresponding experimental results.
Finally, in Section 5, we discuss the limitations of the pro-
posed system and we give some conclusions.

2. Background

As a classical computer operates over classical bits
(cbits) a quantum computer operates on quantum bits
(qubits). The computational basis for the case of 1 qubit
is composed by two vectors usually denoted as |0) and
[1). The more general state of a qubit is a linear combina-
tion of the form |@) = «|0) + B|1), where « and f§ are com-
plex coefficients that satisfy the normalization condition
||+ |B|> = 1. Thus, the quantum state can be described

by a vector in a bidimensional complex space. In

the case of n-qubits, a 2" dimensional vector is needed to
characterize the quantum state.

The optical simulation of quantum algorithms can be
done by representing each of the 2" coefficients by means

of the electromagnetic amplitudes of 2" arbitrarily chosen
spatial portions of a laser beam [5,6,8].

Before describing the simulation of the Hadamard
transformation, let us briefly introduce how the states can
be emulated as a spatial distribution of light [7]. Let us sup-
pose that the input plane is limited to a square region, we
assign the upper region to one state of the basis and the
bottom region to the other one. We have selected a zone
contained in the upper region to represent the state |0).
The state |1) is represented by a zone included in the bot-
tom region of the square. These examples are shown in
Fig. 1a. In Fig. 1b, it is shown an arbitrary state of a single
qubit where the coefficients « and f in the superposition are
arbitrary complex numbers. The representation of such
state requires a medium where amplitudes and phases
could be represented as we have previously discussed [7].
Following the same idea a state of n qubits can be repre-
sented by assigning 2" places in the square. Obviously,
the larger the base the higher should be the resolution of
the physical medium where the trasmitance will be repre-
sented. In Fig. lc, it is shown a possible organization of
the input plane for representing a 2 qubit state. In this
paper, we propose an architecture that can be used to per-
form the Hadamard transformation over the first bit of a
state with an arbitrary dimension. First, we show results
of the transformation applied to a state corresponding to
a single qubit. In Section 4, results for the same operation
applied to a 2 qubit state are shown.

Now we will briefly discuss how operates the Hadamard
transformation. Let us consider the computational basis of
1 qubit, in this basis the Hadamard transformation H can
be represented by the 2 X 2 matrix:

()

Note that the effect of applying H to each element of a ba-
sis of 1 qubit is to obtain a superposition of both states as
follows:

a b
a|0)+ B|1)
\0 ®|0) |0} ®|1) [1y®|0) [1®|[1)

Fig. 1. Example of the input transmittance of the system: in (a) the two
states of a basis; in (b) an arbitrary state of a single qubit; in (c) the four
states basis of 2 qubits space.
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where we have made explicit the matrix and the bracket
notations.

3. Hadamard operator

In order to simulate this operator, we propose the exper-
imental set-up shown in Fig. 2. A laser is expanded and fil-
tered by the spatial filter SF, and collimated by lens L,. The
collimated beam impinges onto the plane Il where the
quantum state is represented. To illustrate the Hadamard
transformation we represent three examples: the state |0),
the state |1) and an equally weighted combination of both
states |0) + |1). To this end, a binary screen is used to sim-
ulate each state. The dimensions of the zones with trans-
mittance 1 (white rectangles in Fig. 1) were 0.18 cm X
2 cm and they were separated 0.95 cm. The next element
is a phase plate that introduces a retardance of m (with
an error of approximately 1%) in the bottom half. The
phase plate was constructed by deposition of a transparent
film over a plane glass plate. Lens L, (focal length 30 cm)
allows to obtain the Fourier transform of the input plane
I1. In the Fourier plane a phase grating is placed. The
phase grating is constructed in such a way that the three
principal orders (—1, 0 and 1) have identical intensities.
The frequency of the grating is selected to produce dif-

laser

6)\/

SF

Lo

phase plate

fracted orders whose separation in the final plane is equal
to the distance between the 2 qubit images.

In our case, we synthesized an holographic bleached
grating with period of 751/mm. A third lens L, (focal
length 30 cm) is used to obtain the inverse Fourier trans-
form which is projected onto a screen and registered by a
CCD. It should be noted that this architecture with some
modifications, allows to obtain the optical simulation of
any U(2) operation. In fact, this can be done by using a
grating with different efficiency for the three principal
orders (1, 0 and —1) and eventually two arbitrary phase
plates: one in front of, and one behind the Fourier plane
[1].

In Fig. 3, we show a scheme of how the Hadamard
transformation in 1 qubit is obtained by means of the set
composed by the grating and the phase plate. Two elements
of the basis and their corresponding outputs are shown in
the left side and in the right side, respectively.

When the state |0) is used as input, the result in the out-
put plane are the orders 0 and +1. This corresponds to an
image containing the states |0) and |1) with equal weights.
Instead, if the entrance is the state |1), orders 0 and —1 will
be registered. The —1 order (which is dephased in © with
respect to the orders 0 and +1) plus the phase of © intro-
duced by the plate reproduces in the output plane the state
|0); the 0 order with the addition of the phase m reproduces
the state —|1). The orders that do not appear in the square
image (in dashed line in the figure) are not registered by the
camera.

Finally, we show the results obtained with this set-up. In
Fig. 4, the first column represents the quantum states to be
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Fig. 2. Experimental set-up to obtain the Hadamard transformation.
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Fig. 3. Schematic demonstration of the Hadamard transformation.
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Fig. 4. Experimental results: the first column schematize the input, in the
second column the captured images are shown and in the third column line
intensity profiles of the images are depicted. (a), (b) and (c) correspond to
inputs [0), |1) and |0) + |1), respectively.

transformed, the second column shows the obtained images
and finally in the third column intensity line profiles of
these images are shown, in arbitrary units. The arrow in
the second column indicates where the line profiles were
obtained. Fig. 4a corresponds to the state |0) as the input
of the system, Fig. 4b corresponds to state |1) as input,
and Fig. 4c¢ corresponds to a linear combination of both
states |0) + |1). It can be observed that a good reproduc-
tion of the expected results is obtained.

Fig. 4a and b show that the final image is composed by
two approximately equal weighted states. It should be
pointed out that the intensity captured by the CCD corre-
sponds to the square modulus of the states described by
Eq. (2). As a consequence the final intensity distributions
in both cases must be the same. Although these results
are the expected it is not possible to obtain from them an
evidence of the difference of signs between the two linear
combination expressed by Eq. (2). Nevertheless, this differ-
ence could be revealed by transforming a linear combina-
tion as that shown in Fig. 4c. From Eq. (2) is obtained
H((]0) + [1))/v/2) = |0). The result is an image where only
a region corresponding to state |0) is present. Moreover,
the intensity profile reveals that the intensity of such state
is approximately two times greater than the weight of each
state in the previous two cases. We can conclude that the
reinforcement of the state |0) and the vanishing of the state
[1) are due to an interference effect with the appropriate
phases and amplitudes.

4. Example: application to the Deutsch problem

Let us briefly describe the Deutsch algorithm. Let f{x) be
a function whose domain and image is the set {0,1} i.e., f:
{0,1} — {0,1}. The function is either constant (f{0) = f{(1))
or balanced (f{0) # f{(1)). The goal of the algorithm is to
decide whether f{x) is constant or balanced. In a classical
way, we need to evaluate f{x) twice. The quantum algo-
rithm solves this problem by just calling once the circuit
that evaluates f{x). This circuit represent a 2 qubits unitary
operator Uy that acts as Ujx) @ |y) = |x) @ |y @ fix))
where the symbol @ denotes the binary sum. The algorithm
(which has been divided into two stages or modules for
simplicity) works as follows: first, we must prepare the ini-
tial state as the following combination (omitting the nor-
malization constant) (]0) +|1)) ® (|0) —|1)). Acting with
Uy on this initial state we find:

011, (10-11

o V2 )= (")

D0 10) - o) @ 1)+ (-1 V(1 [0) - ) ©]1)
2

0+ )Y o]y

- - O 7 (3)

Uy can be interpreted as generating a selective phase shift
to each term of the first qubit state depending on the value
of the function f. In a second module, we perform the
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Hadamard transform of the state of the first qubit. Then,
the probability to detect the state |x = 0) in the first qubit
is equal to (((—=1Y"” + (=1Y")/2)%. This probability is
therefore equal to zero if the function is balanced and equal
to one if the function is constant. Thus, by detecting the fi-
nal state, we find out what class does the function in the
oracle belong to. We summarize the algorithm in Fig. 5.
In this scheme, the upper horizontal line represents the first
qubit and the lower horizontal line represents the second
qubit. The initial states of these qubits are specified in the
left of the scheme. Unitary operators acting on 2 qubit
space (like Uj) are representing as a square that includes
the two lines meanwhile the 1 qubit operators (like the
1 qubit Hadamard) includes only the line of the qubit that
it affects. The input states are on the left of the square oper-
ators and the output states are on the right, so the circuit
must be read from the left to the right.

In order to test the optically simulated Hadamard oper-
ator, we performed an optical simulation of the Deutsch
algorithm. As we have mentioned above we divided the
process into two modules. The first module consists in
the optical simulated Uy operator. In Fig. 6, we show the
result of the complete optical simulation. In the first col-
umn the four possible functions are described and in the
second column, the phase shift induced by U, is shown.
In the upper zone the amplitude is multiplied by the factor
(—1Y'” modifying the phase of the state |0) as required by
Uy. Similarly, the lower zone induces a phase shift of nf{1)
on the state |1). The complete experimental set up is similar
to the one sketched in Fig. 2. An Ar laser is used to illumi-
nate the system. The input state and the operator Uy are
represented in a single spatial light modulator (SLM)
working in phase mode. As it has been demonstrated [§]
an arbitrary complex function could be represented in this
type of medium. On the top of Fig. 6, we show the input
state given by Eq. (3). The spatial light modulator consists
in a Sony liquid crystal display TV (LCTV) that combined
with two polarizers and two wave plates, acts as a pure
phase modulator [8]. The LCTV (model LCX012BL) was
extracted from a commercial video-projector and is a
VGA resolution panel (640 x 480 pixels) with square pixels
of 34 um size separated by a distance of 41.3 um. The
resulting image was projected onto a screen and registered
by a CCD.

In the third column of Fig. 6 the captured image associ-
ated with the resulting states after application of the Had-
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Fig. 5. Quantum circuit that solves the Deutsch problem.
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Fig. 6. Experimental results for the Deutsch Problem: in the top the input
state is shown. Bellow, in the first column we describe the one bit to one bit
function that evaluates the oracle. In the second column the optical
representation of the oracle is shown. In the third column are the images
of the output state after Hadamard transformation of the first qubit
captured by CCD. In the fourth and last column, the line intensity profile
of the images are depicted.

amard module is shown. Finally, in the fourth column an
intensity line profile (corresponding to the dashed line
drawn on the images of the third column) is depicted. It
should be noted that in the case of constant functions,
the result is an image where only the region corresponding
to the state |0) of the first qubit is significantly present in
accordance with the expected result. Also, in the case of
balanced functions only the states with projection |1) on
the first qubit are non-negligible. These results are in a
good agreement with the predicted probability distribution.

5. Discussion and remarks

It can be noted that, as in other optical simulations, the
proposed set-up has limitations concerning the number of
bits that can be processed. In our case, this limitation is
mainly associated to the number of states that can be
accommodated in the input plane. On one hand it depends
on the dimension of the optical system and, on the other
hand, on the resolution of the media where the states will
be represented. Other points that must be considered are
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that the high coherence of the light source introduces
speckle noise and the aberrations of the optical elements
can introduce undesired phases. These effects can be
observed, for instance, in Fig. 4 where the intensity profiles
are partially corrupted by noise and irregularities. How-
ever, the system can reproduce correctly the predicted
results. It should be noted that if the module were used
in some stage of an iterative process, a previous estimation
of losses must be done in order to insurance the intensity is
measurable after the whole process. We estimate that by
optimizing the manufacture of the optical elements the
losses by reflection and diffraction could be approximately
reduced up to 75% in each trip. For instance, by using the
standard laser and camera that we have described above we
estimate that the final state corresponding to 10 iterations
could be detected with a good contrast. In order to increase
the number of iterations, a more powerful source and/or a
more sensitive camera must be used.

Summarizing, we have shown an arrangement that
allows to obtain the Hadamard transformation in 1 bit.
The experimental results are promising. The set-up could
be included in a more complex optical system in which this
transformation is needed in some stage of the process. As
example, we have proposed an experiment that makes use
of the optically simulated Hadamard operator in the quan-
tum circuit that solves the Deutsch problem. This problem
is a simple but non-trivial subject with some relevance in

quantum computing. In the future, we plan to use the Had-
amard set up described above as a step in an optically sim-
ulated quantum random walk.
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