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We address the problem of quantifying the decay of plasmons excited in the electron gas of a condensed
medium. Within the dielectric formalism, we thoroughly describe the theoretical framework in which we
define the damping parameter c. We present two detailed procedures to assess it as a function of the
momentum transfer q, one based on a classical description of the excitation process and the second based
on a quantum formulation of it. We present results corresponding to aluminum and magnesium, and
compare them with experimental data obtained from the literature.
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1. Introduction

Plasmons are collective excitations of the valence electrons of a
solid and, along with individual excitations, are one the main
causes of the energy loss of an external charged particle traversing
a condensed medium [1,2]. The excitation of plasmons and their
subsequent decay are of great interest in many branches of funda-
mental and applied physics [3–5]. Charged-particle spectroscopic
techniques, such as EELS, REELS, XPS, etc. [6] show distinct features
corresponding to the activation of plasmon modes by the interac-
tion with the incident particle. The shape of the detected signals
is determined to a large extent by the way plasmons interact with
the medium and ultimately decay. In particular, the width of plas-
mon characteristic peaks is mainly given by the way the plasmon
energy is dissipated.

A widely used quantum model to describe these processes was
originally proposed by Lindhard [7], assuming a random phase
approximation (RPA) for the free electron gas. This model takes
into account both types of electronic excitations (individual and
collective), and supplies a very good approximation to the dielec-
tric response of real metals [8]. Within this frame, plasmons decay
into a single electron–hole pair and it only occurs when the
momentum transfer exceeds a critical value [9,10]. Below this
value, plasmons are long-lived excitations with a well defined dis-
persion relation and negligible decay rate. They can be described
using the so-called plasmon pole approximation [11], which mod-
els the typical narrow peak centered at a characteristic frequency
xP and includes a small damping parameter c to account for its
width. In the transition to the individual-excitations regime, the
damping increases and the sharp peak widens. Experimental data
show that the dependence of c with the momentum transfer
reflects this transition with a threshold behaviour around a critical
value [12–14].

The theoretical description of plasmon’s decay has been studied
in several works and with different approaches [15–18]. However,
to our knowledge, an accurate quantitative theoretical model to
calculate the damping rate c remains an open question.

In this work, we explore different methods (from classical to
quantum approaches) for quantifying c in order to determine its
value for realistic situations. The paper is structured as follows:
in Section 2 we briefly develop the theory related to the response
of the electron gas of a solid to the perturbation represented by
an external charged particle. Section 3 is devoted to explain the dif-
ferent methods considered for the calculation of c and to compare
their results between them and with experimental data. Finally, we
make some concluding remarks in Section 4.
2. Theoretical description of plasmon excitation

As we mentioned above, plasmons are one of the most signifi-
cant effects in the response of the electron gas in a solid to an
external perturbation (e.g., a charged particle). In classical electro-
dynamic theory, this response is mediated by the complex dielec-
tric function �ðq;xÞ, which gives the relation between the induced
and the external charge densities in the reciprocal Fourier space
with variables fq;xg. These variables are to be identified with
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Fig. 1. Map of the ELF using Lindhard’s model. The plasmon dispersion relation
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the momentum transfer and the frequency of the excitations. Here
we consider an homogeneus and isotropic medium, where the rel-
evant variable is the modulus of the wave vector q ¼j q j, so the
induced charge density qind can be written in terms of the external
charge density qext as

qindðq;xÞ ¼ qextðq;xÞ 1
�ðq;xÞ � 1

� �
: ð1Þ

The zeroes of �ðq;xÞ yield the resonances identified as plasmon
modes, which correspond to the poles of the energy loss function
ELFðq;xÞ:

ELFðq;xÞ ¼ Im � 1
�ðq;xÞ

� �
: ð2Þ

Lindhard’s model gives for �ðq;xÞ the following expression in
terms of the reduced variables u ¼ x=kvF and z ¼ q=2kF:

�Lðu; zÞ ¼ 1þ v2

z2
f 1ðu; zÞ þ if2ðu; zÞ½ � ð3Þ

with vF and kF are the Fermi velocity and Fermi wave vector respec-
tively, v ¼ e2=p�hvF is a density parameter and f 1 and f 2 are given by

f 1ðu; zÞ ¼
1
2
þ 1
8z

gðz� uÞ þ gðzþ uÞ½ � ð4Þ

xplðqÞ emerges in the q < qc region with a sharp but finite width since we have
considered a complex frequency x ¼ xþ ig in the Lindhard’s equation for �ðq;xÞ.
The line xþðqÞ limits the region where individual excitations are allowed from that
where they are forbidden.
f 2ðu; zÞ ¼

p
2 u zþ u < 1

p
8z ð1� ðz� uÞ2Þ jz� uj < 1 < zþ u

0 jz� uj > 1;

8>>>>>><>>>>>>:
ð5Þ

with

gðxÞ ¼ ð1þ x2Þ ln xþ 1
x� 1

���� ����:
This formulation divides the plane ðq;xÞ in three regions corre-

sponding to the allowed excitations due to the energy and momen-
tum transfers from the incident particle. Individual excitations take
place in the band region with ju� zj < 1, where the imaginary part
of � is different from zero (Im½�L�– 0). In the other regions there is
no contribution to the ELF, except along a line defined by the con-
dition �L ¼ 0, where the plasmon excitations occur. This line
defines the dispersion curve xplðqÞ, as shown in Fig. 1 for a typical
metal. This figure presents a map of the ELF calculated for alu-
minum using the Lindhard model for �ðq;xÞ. The plasmon reso-
nance xplðqÞ distinctively shows up in the region q < qc;x < xc ,
being ðqc;xcÞ a critical point determined by the intersection of
the plasmon line and the upper boundary of the region of individ-
ual excitations; beyond this critical point, the line widens as it
enters the region where plasmons are heavily damped by the indi-
vidual excitations. The width of these resonances is determined by
the way the plasmon energy is dissipated.

In the context of the plasmon-pole approximation (PPA) the
dielectric function is represented as [11]:

�PPAðq;xÞ ¼ 1� x2
P

xðxþ icÞ þx2
P �x2

q

; ð6Þ

Here, xP is the resonant plasma frequency, and xq ¼ xplðqÞ is
the dispersion relation. The damping is introduced here with c
playing the role of the imaginary part of a complex frequency
(x! xþ ic) and gives the width of the plasmon resonance in
the ELF. A usual approach for the dispersion relation is given by
x2

q ¼ x2
P þ b2q2 þ a2q4 where b is a typical velocity, related to the
Fermi speed as b2 ¼ ð3=5Þv2
F , and a ¼ �h=2me. Notice that, in the

limit q ! 0 we obtain from Eq. (6) the well-known Drude’s approx-
imation [19] which describes the non-dispersive case xq ¼ xP:

�ðxÞ ¼ 1� x2
P

xðxþ icÞ : ð7Þ

Continuing the analysis of Fig. 1, we observe that in the transi-
tion zone it is still possible to follow the plasmon line beyond the

critical point, in a sort of fuzzy dispersion relation x
�

plðqÞ; energy
loss spectra will show a wide peak but with a defined maximum
at a certain value exq. In this sense we will be able to determine
the value of c as a function of q for q > qc . In the following we
explore different approaches to accomplish this task.

3. Determination of the damping parameter c

3.1. The plasmon decay process

The damping of plasmons can be easily visualized through the
following thought experiment. Let us consider an external charge
density, oscillating in an arbitrary direction x with amplitude A,
that is switched off at t ¼ 0,

qextðr; tÞ ¼ Aeik1x�x1tegtHðtÞ; ð8Þ
with HðtÞ ¼ 1 for t 6 0 and HðtÞ ¼ 0 for t > 0, and let g be a small-
ness parameter that will be taken as zero at the end of the calcula-
tion. If we take k1 and x1 as those corresponding to a plasmon
(using the dispersion relation x1 ¼ xplðk1Þ), we ensure that it will
excite a pure plasmon mode of frequency x1 in the x direction.
Now, since the perturbation is switched off at t ¼ 0, we can study
how the plasmon decays for t > 0.

We write the external charge density in Fourier space

qextðq;xÞ ¼ Að2pÞ3dðq?Þdðqx � k1Þ
iðx�x1 � igÞ ð9Þ
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where q? and qx are the components of momentum in the direc-
tions perpendicular and parallel to the arbitrary direction x. We
use Eq. (2) to obtain the induced charge density,

qindðr; tÞ ¼
A
2pi

eiðk1x�x1tÞ
Z 1

1
dx

eiðxþx1tÞ

x�x1 � ig
1

�ðq;xÞ � 1
� �

q¼k1

:

ð10Þ
This expression shows the decay of the oscillatory induced

charge density, identified with the plasmon propagating into the
solid. The first factor yields the amplitude of the external charge
and its oscillatory behavior. The integral includes the effects of
the damping due to internal processes governed by the response
of the medium through the dielectric function. Fig. 2 shows an
example of a calculation of qind using the Lindhard’s dielectric
function (Eq. (3)), for a value of k1 greater than kc , that is within
the region where individual excitations are present. As can be seen,
the induced charge is damped for t > 0, and can be fitted with an
exponential decay with c as a parameter.
in
d

Fig. 2. Attenuation of the induced charge density calculated for aluminum, with g ¼ 0
absolute value of qind . Fitted exponential decay yields a value of c � 0:81 a.u.
Now, we are interested in finding a sistematic procedure that
allows us to calculate the behavior of c as a function of k, for a
given metal of known electron density n0. To this end, we consider
two different approaches: (1) fitting ELF’s data obtained from Lind-
hard’s model using Drude’s expression (Eq. (7)); and (2) using a
quantum calculation of transition probabilities.
3.2. Study of ELF: fitting Lindhard with Drude

Lindhard’s model allows us to build a map of the energy loss
functions, where the plasmon resonancexplðqÞ distinctively shows
up in the region q < qc (see Fig. 1). At the critical point, the line
broadens as it enters the region where plasmons are heavily
damped by the individual excitations. We propose that, for a given
value of the momentum transfer q, it is possible to fit the ELF
obtained with Lindhard’s dielectric function �ðq;xÞ, using a
Drude-like expression where xP and c are fitting parameters. In
this way, we can obtain the damping constant c as a function of
in
d

:01 a.u. and k1 ¼ 1 a.u. (� 1:88 Å). Left panel: real part of qind; right panel: square



Fig. 3. Fitting Lindhard’s curves for ELF (dashed blue lines) using Drude’s expression (Eq. (4), red lines) for aluminum; three representative curves corresponding to
q ¼ 0:78;0:81 and 1.0 a.u. For each value of q, we obtained a value for xpl (from the position of the maximum) and c, from the width of the ELF at half its height. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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q, as well as the dispersion relation xplðqÞ, even beyond the qc

point where it enters the damping region.
Fig. 3 (a-c) show a series of curves for ELFðxÞ for fixed values of

q as a function of x, calculated with Lindhard’s model for alu-
minum (xP ¼ 15:5 eV), and fitted using the Drude expression.
Notice that, even when Lindhard model yields an asymmetric
ELF, Drude’s model yield a reasonable approach for the general
shape, at least in the range of q considered where the contributions
of the excitation of plasmons is still relevant (right above the crit-
ical value qc). The critical value of q is determined from the inter-
section of the plasmon line xplðqÞ and the upper boundary of the
region of individual excitations (see Fig. 1). Although this method
does not provide a closed expression for c, it allows us to extract
quantitative information of the decay process which is not explici-
tely given in Lindhard’s formulation.
3.3. Quantum calculation

Now, we turn to the quantum formulation of the plasmon decay
process, considering the interaction of the quantum fields corre-
spondig to plasmons and electronic states [20]. In this context,
the damping rate can be associated to the transition probability
between an initial state of the system with one plasmon in eigen-
state fq;xqg and one electron with momentum k, and a final state
with zero plasmon in the state q and an electron emitted with
kþ q (notice that here we take q and k as vectors for geometrical
considerations of momentum conservation). We consider the
hamiltonian of this system in terms of second-quantization opera-
tors [21],
H0 ¼ Hpl þ He þ Hint: ð11Þ
where we have included the contribution from the plasmon field
(Hpl), the electron field (He), and the interaction term between
them, Hint . They can be written in terms of the corresponding cre-
ation and annihilation operators ay

q; aq and cyk; ck for plasmon and
electron states respectively:

Hpl ¼
X
q

�hxq ayqaq þ
1
2

� �
; ð12Þ

He ¼
XSFermi

k

Ekc
y
kck ð13Þ

Hint ¼ e
X
k

X
q

kq aqc
y
qþkck þ ayqc

y
k�qck

� �
: ð14Þ

with

kq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p
L3

�hx2
P

q2xq

s
:

Here L3 is the volume of the system considered. In this context,
we can calculate c using the transition probability from the initial
state with one plasmon in a given mode jqi and a free electron in
the state jki, to a final state with an electron with momentum
jkþ qi and zero plasmons in mode jqi:

c ¼ 2p
�h

XSFermi

k

jhf jHintjiij2dð�hxq � DEðk;qÞÞ ð15Þ



Fig. 5. c values for magnesium obtained from the fitting method (violet line with
crosses), and the quantum method (red line). Experimental c values from Chen [14]
(green circles and blue squares). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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with DE ¼ Ekþq � Ek. We sum upon all the possible electron states k
close to the Fermi energy level such that, when absorbing the plas-
mon momentum q, their energy falls outside the Fermi sphere. By
making the usual replacement of the discrete summation by a vol-

ume integral
P

k ! R
d3k

ð2p=LÞ3
� �

, and applying the creation and annihi-

lation operators involved in Eq. (14) to the plasmon and electron
states described above, we rewrite Eq. (15) as:

c ¼ 4pe2
�h

L
2p

� �3

kq
�� ��2 Z

EF

d3kdð�hxq � DEðk;qÞÞ; ð16Þ

The integral is solved taking into account the conditions specified
above [22], and we obtain the following expression for c:

c ¼ mee2x2
p

�h2q3xq

ðk2F � k21Þ ð17Þ

with k1 ¼ me
�hq xq � �hq2

2me

� �
.

In contrast with the previous method (Section 3.2), the quan-
tum calculation gives an analytical expression for c as function of
momentum q. Notice that the dispersion relation xq needed to
evaluate this formula is external to the theory, and in particular
is not well defined for q > qc. In the following assessment we use
the dispersion relation obtained from the Lindhard’s ELF maxima.

3.4. Comparison of results

In order to validate the methods described above, we compare
the present results with available experimental data [12–14]. In
particular we compare with data obtained from energy loss spec-
troscopy for aluminum and magnesium, which are good examples
of metallic and alkaline earth elements. These experimental values
of c for both elements show the expected threshold behaviour
around a critical point, which is charateristic of each material.
We have calculated values of c for Mg (with plasma frequency
�hxP ¼ 10:35 eV) and Al (with �hxP ¼ 15:5 eV) using the methods
described in the previous sections. In Fig. 4 we show the results
obtained for aluminum, which is usually taken as a reference since
its metallic behaviour is almost ideal. Experimental data are those
given in references [12,13] (we have included representative error
bars when available). The critical value qc , according to the Lind-
hard’s model, shows the point where the plasmon resonance
Fig. 4. c values for aluminum obtained from the fitting method (violet line with
crosses), and the quantum method (red line). Experimental c values from Zacharias
[12] (green circles) and from Gibbons et al. [13] (blue squares). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
merges into the region of single-particle excitations. The curves
of gamma show a sharp threshold behavior at q ¼ qc and a step
increase for larger q values. We observe that the values calculated
with Eq. (17) provide the correct qualitative trend above the criti-
cal q and explain the sudden increase of the damping rate observed
experimentally. The experimental points, however, show a softer
transition; the reason for this behavior lies outside the description
of the single particle scheme contained in the present analysis and
is probably due to interband transitions not considered here [3].
Regarding the values obtained with the fitting method described
in Section 3.2, we observe that this gives a worse approximation
than the quantum calculation; nevertheless, as stated before, the
method allows to highlight some implicit information contained
in the Lindhard’s model.

A similar analysis can be done for the case of magnesium
(Fig. 5), where we have included data from reference [14]. In this
case there is greater plasmon damping in the limit q ! 0 in com-
parison with aluminum (the plasmon width of magnesium is more
than twice the one for aluminum) and a softer transition around
the qc point.
4. Conclusions

In this work we have explored different methods to assess the
damping constant c for plasmons defined within the dielectric
and hamiltonian formulations. In the first place we have studied
the decay process of plasma oscillations describing the physical
process from a phenomenological point of view. Then we analyzed
two procedures to quantitatively determine the value of c as a
function of fundamental parameters with clear physical meaning,
and compared the results with experimentally available data.

The first procedure was to fit Lindhard’s ELF using Drude’s
approximation, which does not provide a closed expression for c,
but it allows us to extract quantitative information of the decay
not explicitely given in Lindhard’s formulation.

Quantum formalism yields a rather simple expression for c
which can be easily evaluated using the metal parameters; never-
theless, systematic differences are observed that can be ascribed to
the approximations considered. In particular we notice a very dif-
ferent behavior of the two theoretical curves with opposite curva-
tures. One relevant difference between both calculations is that the
method based on the Lindhard function includes in a self consis-
tent way the effects of the collective screening of the electron



222 S. Segui et al. / Nuclear Instruments and Methods in Physics Research B 408 (2017) 217–222
gas, as a function of q and x, while the hamiltonian method yields
a more schematic representation of the electron-plasmon interac-
tion parameterized in terms of the kq coefficient in Eq. (14). The
existing experimental data do not allow us to conclude which of
the two behaviors is more realistic. This poses an interesting ques-
tion for possible future experiments.

As final remarks, we can state that while a better agreement
between theory and experiment remains to be achieved, we think
the present study represents a significative contribution to the
understanding of the process of volume plasmon decay of impor-
tance for spectroscopic techniques. On the other hand, and due
to its own relevance, a complementary analysis for surface plas-
mon decay is under way,
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