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In this work we present a faster modified protocol for first order reversal curve (FORC) measurements.
The main idea of this procedure is to use the information of the ascending and descending branches con-
structed through successive sweeps of magnetic field. The new method reduces the number of field
sweeps to almost one half as compared to the traditional method. The length of each branch is reduced
faster than in the usual FORC protocol. The new method implies not only a new measurement protocol
but also a new recipe for the previous treatment of the data. After of these pre-processing, the FORC dia-
gram can be obtained by the conventional methods.
In the present work we show that the new FORC procedure leads to results identical to the conven-

tional method if the system under study follows the Stoner-Wohlfarth model with interactions that do
not depend of the magnetic state (up or down) of the entities, as in the Preisach model. More specifically,
if the coercive and interactions fields are not correlated, and the hysteresis loops have a square shape.
Some numerical examples show the comparison between the usual FORC procedure and the propose
one. We also discuss that it is possible to find some differences in the case of real systems, due to the
magnetic interactions. There is no reason to prefer one FORC method over the other from the point of
view of the information to be obtained. On the contrary, the use of both methods could open doors for
a more accurate and deep analysis.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction order to gain definition in the regions of interest diminishing the
The use of FORC diagrams for the study of magnetic systems has
gained popularity in the last years[1]. Numerous works use this
tool to study and describe different aspects of a given magnetic
system[2–12]. The use of FORC diagrams is not limited to the study
of the conventional magnetic systems. Different systems can be
characterized by means of this experimental technique. For exam-
ple FORC diagrams have been used on the study of the long-term
thermal aging in vessel steels[13], the magnetization reversal of
three-dimensional nickel anti-sphere arrays[14], etc. An important
field in which the FORC diagrams become a very useful tool is the
Geophysics, principally in the study of magnetic rock properties
[15], but in magnetic minerals in general[16,17]. In the perspective
of the academic interest, but not so far away of possible applica-
tion, the reversal curves are used in the study of artificial nanos-
tructures[8,18–20].

The widespread use of FORC diagrams in several fields of
research lead to the development of better protocols. As example
of this, a new protocol was introduced by Zhao[21] et al. who pro-
pose change the sweeping field step creating an irregular grid in
consuming time.
In this paper we present a variation of the usual measurement

protocol of magnetization reversal curves to generate FORC dia-
grams. The new protocol implies an important decrease in the
experimental effort. Hereinafter we shall refer to the usual protocol
as UFP (usual FORC protocol) and the new proposal as NFP (new
FORC protocol).

The NFP uses the information of the magnetization descending
branches, which are not taken into account in the UFP. In addition,
the field data points are reduced by a factor of 2 with respect to the
traditional method. Then, if the sweep velocity remains constant
(both in the rise and in the decrease of the field) the experimental
time is reduced to almost one half. However, the implementation
of the NFP requires data pre-processing before the building of
the conventional FORC diagram 1,[16]. We present the basic ideas
of the pre-processing algorithm, and discuss the possible differ-
ences between NFP and UFP in real systems.
2. Usual FORC protocol

Before presenting the NFP, we review the usual FORC proce-
dure. To obtain a set of first order reversal curves the measurement
protocol starts at the lowest value of H (Hmin), as shown in the
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Fig. 1. Schematic representation of the measurement protocol of: (a) top panel:
Usual FORC Protocol (UFP); (b) bottom panel: New FORC Protocol (NFP). The arrows
indicate the sense of the field sweep. In the case of the NFP the dashed lines
correspond to the descending branches.
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upper panel of Fig. 1. In this figure we show the ascending
branches of the UFC, labeling their initial field for more clarity.
The arrows indicate the field sweep direction. The external mag-
netic field is swept up to the highest field Hmax and the magnetiza-
tion is measured in the process. The field is swept down to
H0 ¼ Hmin þ �h, where D is the sweep field step. Again, the magneti-
zation is recorded while the field is sweep to Hmax. The FORC
method consists in the measurement of the magnetization as a
function of the external magnetic field when it is increased from
different values of H0 to Hmax. The total magnetization of the sys-
tem at the applied field H on the FORC with reversal point H0 is
denoted by M(H0, H), with H P H0. A FORC distribution is defined
as the mixed second derivative[22]:

qðH0;HÞ ¼ �1
2
@2MðH0;HÞ
@H0@H

ð1Þ

and the FORC diagram is the contour plot of this distribution.
In this procedure the magnetic field must be swept successively

in opposite directions. However, only the ascending branches (AB)
are used in the computation for the diagram calculation.

3. The modified FORC protocol

3.1. Measurement protocol

The NFP starts as the usual by sweeping the magnetic field from
Hmin to Hmax (see the bottom panel of Fig. 1). Usually Hmin = �Hmax,
but this is not strictly necessary. Next, the field is inverted to
Hmin + D recording the magnetization DB (dashed line). The AB is
swept to Hmax � D and the magnetization is also recorded. This is
different than the usual method in which each ascending branch
reaches Hmax. At this point, the magnetic field is inverted again to
Hmin + 2D. The new ascending branch is measured up to Hmax � 2D.
The procedure is repeated diminishing successively the magnitude
of the magnetic field sweep, down to zero.

Summarizing the characteristics of both procedures, we can
observe that in the UFP only the AB of the magnetization are
recorded, at variance with the NFP in which the DB are also mea-
sured. Also, in the UFP the AB always reach Hmax, and in the NFP
the higher value of H diminishes progressively in the same manner
as H0 increase.

Let n be the number of fields used in the sweep from Hmin to
Hmax. Then, the number of ascending and descending branches
for the UFP and NFP is given by: NBU = 2(n � 1) and NBN = n,
respectively. Then for n � 1 we have NBU � 2NBN , which means
that the new method reduces the number of branches by a factor
of two. In addition, the fact that the NFP uses the descending
branch information helps to reduce the length of the branch
compared to the usual method. In effect, if we compare the number

of points used in each method we have: NUPF ¼ ðn� 1Þ2 þ 2 and
NNPF ¼ nðn� 1Þ=2þ 1, respectively. It is important to mention that
the value of NUPF considered here takes into account the descend-
ing branch, despite this information is not used in this method.
Then the ratio C ¼ NNPF=NUPF ¼ ð1=2Þ½1þ 1=ðn� 1þ 2=ðn� 1ÞÞ�
shows that the new method diminishes almost to a one half the
length of the magnetic field sweep. We want to emphasize that
in the case that the sweep ratio is constant in both, ascending
and descending cases, the ratio C shows, for practical purposes
(n � 1), that the experimental time spent in the NFP is almost
one half the associated to the UFP.

Following the above mentioned concepts, we analyze the real
number of data used in each method. The conventional method
actually uses nUFP = n(n + 1)/2 points corresponding to the AB
only. On other hand, the number of points used in the NFP is
nNPF = NNPF = 1 + n(n � 1)/2, that it to say, that all points are
used in this case. If we compute the difference obtain:
nUPF � nNPF = n � 1. This could suggest that the new method uses
less information than the usual one. This does not really happen.
The reason is that the points that act as links between AB and DB
must be considered twice. Each one of these points Hi corresponds
to the final part of a given branch (H0i, Hi), and also to the initial
ordered pair (Hi, Hi) of the following branch. Because we have
NBN = n then, the number of links is precisely n � 1. On other hand,
if we consider the new coordinate space[22] ð~Hc; ~HuÞ in which the
FORC density is plotted, we can observe that for both protocols the
number of points is the same, and spatially arranged in the same
way. In order to illustrate these concepts, we show in Fig. 2 a sche-
matic representation of the above mentioned ideas. In this partic-
ular example we take n = 7. The left panels (A) and (C) of Fig. 2
correspond to the UFP and the right ones (B) and (D) to the NFP.
The top panels show an illustration of the branch corresponding
to each method[23], and the bottom ones all the points associated
to the ð~Hc; ~HuÞ space. We use the following definitions: for the
ascending branches (of UFP and NFP): ~HC ¼ ðH � H0Þ=2,
~Hu ¼ �ðH þ H0Þ=2. For the descending branches (of NFP):
~Hu ¼ �ðH þ H0Þ=2. The minus sign in the ~Hu definition is for plot
in the positive region of the Hu the cases Hi positive. In both cases
H0 is the initial field of the branch.

There are some important characteristics that we can observe in
Fig. 2. The first one is the way in which the AB and DB of the NFP
are placed in the ð~Hc; ~HuÞ space. The AB are arranged at the top



Fig. 2. Schematic representation of the UFP and NFP for the particular case n = 7. Uppers panels (A) and (B) represent magnetic field sweeping as function of the time
(assuming a constant sweep speed). The open labeled circles correspond to the successive values of field. The black starts indicate the return of H from Hmax to the beginning
of the next branch. The label inside each dot indicates the order in which a given H is achieved. Panel (B) (associated to the NFP) shows three kinds of dots: open circles,
corresponding to the AB; full circles, to DB; and open squares, associated to the links values of H between the AB and DB. Bottom panels (C) and (D) represent the same set of
elements in the ðHc ;HuÞ space for the UFP and NFP respectively. The continuous lines that join the points help to visualize how the branches of the upper panels are
accommodated in the lower ones.
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ð~Hu P 0Þ, where the DB are placed at the bottom ð~Hu < 0Þ. The sec-
ond is to observe that the linker dots appear twice in the ð~Hc; ~HuÞ
space (once for the AB and other for the DB). Top of Fig. 2 help
us to compare (for the particular case of n = 7) the time spend in
each protocol. In the bottom panels it is possible to observe that
the number of points ð~Hc; ~HuÞ corresponding to both methods is
the same. Then, we can conclude that the ð~Hc; ~HuÞ space has the
same number of points for both methods. This fact is a ‘‘good sig-
nal” of the proposed method, however this fact does not guarantee
that the collected information is the same in both methods. By this
reason, we need to ensure that the AB and DB of the NFP have the
same information as at corresponding to the UFP branches. We will
deal with this important issue from two points of view. First,
through an example that will help us gain insight into what is hap-
pening. In second place, we will return to this topic in greater
depth in Appendix I.

3.1.1. The magnetic model
With the purpose to present a numerical example we will pre-

viously expose the basic postulates of our model. We will assume
that the magnetic moments behave according to the Stoner-
Wohlfarth model. The interactions are included as an additional
field which has a known distribution. In this sense, we can say that
the interaction follows the Preisach picture[24,25]. Specifically we
postulate that:

(1) The magnetization is built as the addition of square loops,
which are called hysterons. This shape comes from the
Stoner-Wohlfarth model.

(2) We will assume that each hysteron is an individual entity.
The interaction over a given hysteron can be represented
by a local internal field Hint, which is independent of the
magnetic state (up or down) of the other hysterons.
(3) Each hysteron has a magnetization normalized to 1 and can
be characterized completely by a coercive field Hc and an
interaction field Hint. There is a function mðH0;H;Hc;HintÞ
which determines completely the magnetic state (up or
down) of each magnetic entity (hysteron).

(4) We will assume that the fields Hc and Hint, are an intrinsic
property of each magnetic entity, that is, they do not depend
on the magnetic state and are also independent between
them.

(5) We will assume that there is a coercive fields distribution f
(Hc) and interaction fields distribution g(Hint). Then, the total
magnetization can be expressed as:

M ¼
X
j

f ðHj
cÞf

X
k

gðHk
intÞmðH0;H;H

j
c;H

k
intÞg ð2Þ

Under these hypotheses, we will show an example in order to
illustrate the ideas that we have been exposed previously.

In Fig. 3 we show an example in which we have simulated the
UFP and NFP. In all the numerical examples we have used h = H/
Hmax (reduced external magnetic field), hint = Hint/Hmax (reduced
internal interaction field), and hc = Hc/Hmax (reduced coercive field).
For the particular case of the Fig. 3, we have used normal distribu-
tions for hc and Hint fields, with mean values of hc � 0.27 and
hint = 0, dispersions rhc � 0:07 and rhint ¼ 0:07, respectively.

It is useful to first analyze the branches corresponding to both
methods. In the NFP, the problem is naturally separated in two:
the AB gives us the information about all the magnetic entities that
have an interaction field Hint which satisfy the relation
Hint P ðHmin þ Hmax � DHÞ=2 where Hmin and Hmax are the lowest
and highest magnetic fields, respectively. On other hand, the DB
contains the information for the Hint < ðHmin þ Hmax � DHÞ=2 cases.

Fig. 3 is divided in four panels. In panel (A) we show the
branches corresponding to UFP, in panels (B) and (C), the AB and



Fig. 3. Magnetic branches of a particular example (see the text) for the UFP (panel (A)) and NFP (panels (B), (C) and (D)).
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DB of NFP respectively and finally in panel (D) the AB and DB
together. We can see in the figure that the ascending branches of
the NFP are identical to those corresponding to the UFP except in
the region that divides the ascending and descending branches.
The last panel shows that both branches, AB and DB, fill the space
occupied by the hysteresis loop area, as the AB in the case of the
UFP. This fact does not imply that both methods offer the same
information, however an indication of this fact is. While the lower
ascending branches coincide perfectly with those of the UFP
method, the higher descending ones would correspond to a hypo-
thetical FORC (UFP) in which the magnetic field is swept descend-
ing and starting at Hmax. However, as we move to the frontier that
divides AB and DB, the AB began to differentiate of the usual pro-
tocol. This happens because the sweep field becomes small in the
interference (dashed box in Fig. 3(D)).

In order to continue with the analysis we can build the FORC
diagrams corresponding to the AB and DB and put this information
together in a unique plot (see Fig. 4(A)). Fig. 4(B) corresponds to
the UFP treatment, for comparison. We can observe that both dia-
grams are identical with the exception of the region close to
hU � 0. This result is expected based on the previously exposed
ideas and also the way in which the AB and DB are accommodated
in the ð~Hc; ~HuÞ plane (see Fig. 2(D)). The big difference observed is
due to the fact that, when we calculated separately with the
ascending and descending branches, we did not have information
about the neighborhood branches in the frontier indicated in
Fig. 3 (D). We will then focus in the use all the available informa-
tion to correctly calculate the FORC diagram using the AB and
DB. The main idea of the processing method consists in retrieving
or reproducing the AB of the UFP with the information available
from the NFP.

3.1.2. Algorithm description
We will use matrices and vectors with the following conven-

tion: all matrices start from the (0, 0) indexes. However, the vec-
tors can start from a no null index value, as we will opportunely
indicate. This choice helps us to simplify the description of the
algorithm.
3.1.3. The UFP data treatment
In the UFP processing it is usual to store the branches informa-

tion in two associated matrixes, that we will call U and H, both of
n � n range. The H matrix contains information of the magnetic
field, the U of the magnetization. Due to the characteristics of the
measurement protocol, both matrices are triangular inferior. The
H matrix is built in a simple way:

H½i; j� ¼

Hmin þ iD if i P j

0 if i < j

8>>><
>>>:

ð3Þ

where i and j go from 0 to n – 1. Thus the first row of H has only
a no null element at H½0;0� ¼ Hmin, and also the last row have all
the elements equal to H½n� 1; j� ¼ Hmin þ ðn� 1ÞD ¼ Hmax.

Then, consistently with the H definition, the rule to fill the U
matrix is the following:

U½i; j� ¼

MjðHmin þ iDÞ if i P j

0 if i < j

8>>><
>>>:

ð4Þ

where Mj(Hmin + i) represents the magnetization of the ascending
branch j at the field Hi = Hmin + i. As in the case of H½i; j� definition
i and j go from 0 to n - 1. In this way, the values of the magnetiza-
tion associated to the i ascending branch are placed in the i column
of U, so that the positions of a given magnetization value match
with the position of the corresponding field in the i column of the
H matrix. The rest of the elements of U are zero. Then, for example,
if we want to recover the i ascending branch, we need to plot
ðH½k; i�;U½k; i�Þ for k = i to n � 1.

3.1.4. The NFP data treatment
The goal of the preprocessing effort is to build a new matrix N,

with the information of the AB and DB of the NFP, identical to U.
For this purpose, we need to use four auxiliary matrices, two asso-
ciated to the ascending branches: NA and HA, and two to the



Fig. 4. FORC diagrams built from data of Fig. 3. Left panel: FORC diagram as a result of the union of the ascending and descending branches information. Right panel:
traditional diagram of the UFP. The hu � 0 region of the panel (A) shows loss of information.

Fig. 5. Schematic representation of the ascending (HA and NA) and descending (HD
and ND) matrices for the case n = 7 corresponding to Fig. 2.
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descending branches: ND and HD. These are matrices of n � n1
range, where n1 = (n + nmod(2))/2. The expression p mod(n) = q
indicates the rest of the quotient p/n = q which p,n and q integers.
The rules for the construction of the above mentioned matrices fol-
low the same ‘‘spirit” of the H and U ones, with the corresponding
changes due to the differences in the experimental data recording
between both protocols. The NA and HA are constructed according
the following expressions:

HA½i; j� ¼

Hmin þ iD if ðn� jÞ > i P j

0 otherwise

8>>><
>>>:

NA½i; j� ¼

MjðHmin þ iDÞ if ðn� jÞ > i P j

0 otherwise

8>>><
>>>:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð5Þ

where j goes from 0 to n1 � 1. Mj(H) represents the magnetization
of the j ascending branch at the H field.

On other hand, the ND and HD matrices are built according to
the following rules:

HD½i; j� ¼
Hmin þ iD if ðn� jÞ P i P j > 0
0 otherwise

8><
>:

ND½i; j� ¼ MjðHmin þ iDÞ if ðn� jÞ P i P j > 0
0 otherwise

�

8>>>>>><
>>>>>>:

ð6Þ

where j goes from 1 to n1 � 1. Note that, at variance with the
ascending case, the first descending branch is labeled as 1 (Mj(0)
does not exist).

As in the case of the H and U matrices, ðHA½k; i�;NA½k; i�Þ and
ðHD½k; i�;ND½k; i�Þ have the information about the i ascending and
descending branches, respectively, with the particularity that the
descending branches are presented in a sense opposite to the real
measurement. To illustrate the matrix construction, we show a
scheme of HA, NA, HD and ND matrices in Fig. 5. In these matrices
the value Mi(h) represents the magnetization of the branch i at the
h field. In all cases shaded boxes indicate null elements that will
not be taken into account in the data processing protocol. We
can observe that, at variance with the H and U matrices, the new
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ones do not present a triangular inferior shape. To simplify the
notation of the algorithm we have labeled as ‘‘100 the first DB and
as ‘‘000 the first AB. As in the case of Fig. 3, the magnetic field is nor-
malized by its maximum value and we are assuming (which it is
not strictly necessary, but it is usual in the FORC procedure) that
Hmin = �Hmax. Although n is an odd number in the example, it could
also be even.

The first step in order to build the N matrix is to use the infor-
mation of the NA matrix. For this it is necessary to introduce some
definitions, which will be used in the description of the algorithm:

We define the ascending difference vector Dk[i], of
nD ¼ dimðDkÞ ¼ n� 2k elements built according to the rule:

Dk½i� ¼
NA½i;0� if k ¼ 0
NA½i; k� � NA½i; k� 1� if k > 0

�
ð7Þ

with i ¼ k; . . . ;n� ðkþ 1Þ; and k ¼ 0; . . . ;n1� 1. The k value
indicates at which column of NA (and also N) the Dk[i] vector is
associated.

We will call propagate the Dk[i] vector into the N matrix to the
following procedure:

forj ¼ k; . . . ;n� ð1þ kÞdo
f
fori ¼ j; . . . ;n� ðkþ 1Þdo
f
N½i; j� ¼ N½i; j� þ Dk½i� ð8Þ

g
g

As shown in expression (8) it is important to sweep i and j in the
correct order.

With the above definitions in mind, we will proceed as follow:

(1) Set all the elements of N to zero. N[i, j] = 0 for i = 0, . . ., n � 1
and j = 0, . . ., n � 1.

(2) For k = 0 to n1 � 1:

(A) Create the Dk[i] vector according to Eq. (7).
(B) Propagate the Dk[i] vector into the N matrix following

the procedure given by expression (8).
Note that in the case k = 0, the propagation of D0[i] into the N
matrix results in the fact that the first column of the N matrix
becomes equal to the first of the NA matrix.

To complete the N matrix we need to use the ND information
(corresponding to the descending branch of the NFP). In the case
of the ascending branch processing, using the matrix NA, the idea
was to propagate the information from the lower ascending
branches towards the upper ones. In the same way, for the
descending branches the spirit of the algorithm is to propagate
the information from the higher descending branches towards
the lower ones using the matrix ND.

There are two important differences between the matrices HA
and HD which makes it necessary to modify the structure of the
above mentioned algorithm for the case of the DB treatment. The
first one is the fact that the first column of the HA matrix exactly
matches with the corresponding to the H matrix, contrary to what
happens with the HD one (see Fig. 5). The second difference is that
despite in both HA and HD matrices the field of a given column
(branch) increases as we advance in the column, the branches of
HD are measured in the opposite direction. For these reasons we
are forced to modify the previous algorithm and definitions in
order to adapt them to the treatment of the information contained
in the HD and ND matrices. We then these reasons introduce the
following concepts:
� We will use a descending difference vector dk[i] of
nd ¼ dimðdkÞ ¼ nþ 1� 2k elements, given by:
dk½i� ¼ ND½i; k� 1� � ND½i; k� ð9Þ
with i ¼ k; . . . ; n� k, and k ¼ 2; . . . ;n1� 1. As in the case of the
ascending difference vector, the k index indicates the associated
column.

� From each dk½i� vector we obtain nd new vectors dk;b½j�, with
b ¼ k; . . . ;n� k, and dimension nd ¼ dimðdk;bÞ ¼ nþ 1� ðkþ bÞ,
spanning from nd ðb ¼ kÞ to 1 ðb ¼ n� kÞ. Each one of these
dk;b½j� vectors has all of their elements equal, and given by the
following expression:
dk;b½j� ¼
dk½b� b ¼ k

dk½b� � dk½b� 1� b > k

�
ð10Þ

for j ¼ b; . . . ;n� k.
� As in the case of the vector Dk, we call propagate the vector dk;b
into the N matrix to the following procedure:

forb ¼ k; . . . ;n� kdo
f
fori ¼ b; . . . ;n� kdo
f
N½i;b� ¼ N½i;b� þ dkb½i� ð11Þ

g
g

With these concepts and definitions in mind, we can describe
the second part of the pre-processing protocol:

(1) For k ¼ 2 to n1� 1:

(A) Create the dk½i� vector according to Eq. (9). For each of

their nd components:

(A1) Create the dk;b½j� vector according to the instruc-

tions of Eq. (10).
(A2) Propagate the vector dk;b into the N matrix.
Then, following these steps we can build the N matrix, which
should be identical to U, using the NA and ND matrices
information.

The ideas behind of the algorithm, as well as a detail discussion
about the no loss of information in the NFP respect the UFP are
given in the Appendix I: Grounds of the algorithm.

4. Numerical results

With the same data of the example corresponding to Figs. 3 and
4, we show in Fig. 6 the result of a FORC diagram using the NFP.
Panel (A) shows the AB built in the construction of the N matrix.
They are identical to those corresponding to the UFP (see Fig. 3
(A)). Dashes lines (horizontal and vertical) in panel (B) indicate
the cross sections performed to obtain hc and Hint distributions.
The horizontal cross corresponds to the hC distribution, and the
vertical one to Hint. In all cases the distributions have been normal-
ized by their maximum value to 1. We can observe that the results
are exactly the same for both methods, the UFP and NFP. This was
also confirmed numerically by the fact that the U and N matrices
are identical. This fact is also reflected in the hC and Hint distribu-
tions obtained by these methods, which correspond almost exactly
with the input information.

We want to present another numerical example in which both
protocols were used. The calculations were performed for both
methods, the traditional one (UFP) and for the new one. The results



Fig. 6. Results of the new FORC processing for the example of Fig. 3. Panel (A) shows the ascending branches built form the AB and DB of the NFP. Panel (B): FORC diagram.
Panel (C): Comparison of the hc distribution input data with the one obtained from the UFP and NFP. Panel (D): Comparison of the Hint distribution input data with that one
obtained from the UFP and NFP.

Fig. 7. Numerical example of the use of NFP. The input hc and Hint distributions are non-soft functions. Panel (A): ascending and descending branches. Panel (B): FORC
diagrams. Panel (C): Comparison of the hc distribution input data with the one obtained from the NFP. Panel (D): Comparison of the Hint distribution input data whit the
obtained from the NFP.
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were numerically indistinguishable, whereby, only those corre-
sponding to the NFP are shown. In this case, with the idea of test
the proposed protocol, we used two unusual distributions for hc
and Hint. The first one is uniform, while the second one has a trian-
gular profile. The results of the simulations are illustrated in Fig. 7.
Panel (A) shows the AB and DB, panel (B) shows the FORC diagram,
and panels (C) and (D) the results of the hc and Hint distributions
compared with the input data. The dashed lines (horizontal and
vertical) in panel (B) indicate the cross sections performed for
obtain the hc and Hint distributions. In this case, at variance with
Fig. 4, the irreversibility mean field distribution is displaced from
zero. For this reason the occupied area of the AB is greater than
the DB in panel (A). From the rest of the panel we can observe that
the numerical results do not exhibit anomalies, and also the distri-
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butions obtained from the FORC diagram of panel (B) are very close
to the input data, even in the case of these anomalous
distributions.

Other numerical examples with different kinds of hc and Hint

distributions (lognormal, normal, etc.) has been used for build their
FORC diagrams using both methods. In all cases the numerical
results has been exactly the same, without difference between
both FORC constructions.

5. NFP and UFP in real systems

We have discussed the use of the NFP and compared it with the
UFP within the hypothesis of the five postulates given in the Sec-
tion 3. We want to mention some features that we could expect
when applying both method to real systems, or in magnetic sys-
tems that do not satisfy the above mentioned postulates. The first
observation is that both methods could not give equal results. For
example, it is known that for the case in which the easy axes are
not along the orientation of the magnetic field, the UFP diagram
shows some anomalous and spurious information[26] due to a par-
ticular curvature in the hysteresis loops of each magnetic entity.
We observed these artifacts, with some differences, in numerical
simulation using the NFP (not shown in this work). Another impor-
tant case occurs when the interactions are state dependent, that is,
the interaction between two magnetic entities depends on the
magnetic state of both. In this case we also expect to find differ-
ences between the FORC diagrams of the UFP and NFP. These dif-
ferences appear as a consequence of the different paths that each
method has to reach a given magnetic point. One could ask which
method gives a better description of the magnetic characteristics.
The answer is that a priori it is not possible to elucidate this,
because the interpretation that the system can be characterized
by their coercive and interactions field distributions is based on
the hypothesis of state independent interaction. For more clarity,
consider the case of the UFP. In this case, the magnetization of
one particular hysteron, as a function of H and H0 (see Section 3)
can be expressed as:

mðH0;H;Hc;HintÞ ¼ 2hðH0 þ Hint þ HcÞ½1� hðH þ Hint � HcÞ�
þ 2hðH þ Hint � HcÞ � 1 ð12Þ

where hðxÞ is the Heaviside step function.
Observe that in this expression, the interaction field Hint is the

same when the system is under H0 and H fields, according to the
second postulate of Section 3. Then, using the m expression in
Eq. (2), the calculated FORC distribution according to Eq. (1) defini-
tion, and using the ~Hc and ~Hu definition we obtain:

qð~Hc; ~HuÞ ¼
X
j

f ðHj
cÞdð~Hc � Hj

cÞ
( ) X

k

gðHk
intÞdð~Hu � Hk

intÞ
( )

ð13Þ

This result shows that the information about f ðHj
cÞ and gðHk

intÞ is
contained in the ~Hc and ~Hu axis respectively. However, if Hk

int

depends on the state of the system, the expression (13) is modified,
and the deltas become:

dð~Hc � Hj
cÞ ! dð~Hc � Hj

c þ ðHk
intðH0Þ � Hk

intðHÞÞ=2Þ

dð~Hu � Hk
intÞ ! dð~Hu � ðHk

intðH0Þ þ Hk
intðHÞÞ=2Þ

8><
>: ð14Þ

Then, the factorization of Eq. (13) is lost. The same problems
appear in the NFP, which prevents to choose, a priori, one method
over the other. The differences can be greater if, for example, the
coercitive field also depends on the interactions. In effect, in real
system the FORC diagrams cannot understand as the description
of a collection of non-interacting hysterons. These diagrams
become a ‘‘fingerprint” of the magnetic characteristics of the sys-
tem. In this sense, the new method could offer a different ‘‘finger-
print”. This fact opens a new possibility for a deeper study of the
characteristic interactions and also their effects on the coercitive
field.
6. Conclusions

In this work we have presented a modified protocol to generate
FORC diagrams. The protocol consists in an adapted measurement
recipe and an algorithm for data pre-processing. We have shown
that the new method and the usual one give exactly the same
information if the system under study is described by the Stoner-
Wohlfarth model with an interaction field distribution as in the
Preisach-type models. Numerical simulations have confirmed this
fact, even in the case of anomalous or non-conventional field
distributions.

The use of the new method implies an important experimental
time saving. It requires an small additional effort of data pre-
processing, after which, the data treatment is identical to the usual
method.

We have also considered in our discussion the case in which the
interactions are state-dependent and conclude that it is possible to
find a difference between the traditional method and the proposed
one. Even though this fact prevents the choice of the appropriated
method, it opens interesting possibilities for future studies in order
to gain a deep understanding on the interaction and coercive fields
description of magnetic materials.
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Appendix I.

A.I. Grounds of the algorithm

After giving the algorithm to process the data of the ascending
and descending branches, we will explain the idea that motivates
it. Some concepts were already exposes, but now we will give a
constructive explanation of the algorithm summarized in Eqs.
(7)–(11). In addition, we will also discuss the non-loss of informa-
tion associated to the pre-processing carried out in the case of the
NFP. In order to perform this analysis, we will introduce an appro-
priate nomenclature to refer to the ascending and/or descending
branches, as well as to the initial and final fields. Unless otherwise
indicate we will refer to branches as those associated to the NFP.
We will referred to the ascending branch k as Rk, and the descend-

ing one as rk. The initial and final fields of Rk will be refer as HRk
i and

HRk
f respectively. Consistently with this, the initial and final fields

of rk are mentioned as hrki and hrkf respectively. In addition, follow-
ing this convention of uppercase and lowercase letters, Mk(h) and
mk(h) indicate the value of the magnetization at the h field corre-
sponding to the k ascending and descending branches respectively.

We will start the analysis from the AB of the NA matrix. Due to
the fact that the first ascending branch is the same for UFP and NFP,
this will be the first brick of our construction and is placed as the
first column of the matrix N. The first column is then propagated
towards the rest of the matrix according to the procedure given
in Eq. (8). This implies that all branches of N are equal to R1, except,



Fig. 8. Schematic representation of ascending and descending branches in the field
irreversibility region of the hysteresis loop. Due to the characteristics of the new
measurement protocol, the irreversibility does not imply information loss (see text
on the Appendix I).
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of course, for the initial field of each branch. Let us now imagine
the case where all ascending branches ðR2;R3; . . . ;Rn�1Þ of the NA
matrix were measured up to hmax = 1, as it happens in the UFP. In
this hypothetical case, computing the difference between R2 and
R1 branches generates the D2[i] vector (i runs over the rows), which
is added to the second column of N (N½i;2� ¼ N½i;2� þ D2½i�) we will
obtain in the second column of N all the information of the second
ascending branch corresponding to the UFP. We continue until we
propagate this information over the rest of the Nmatrix. By repeat-
ing this procedure for each of the ascending branches we would
have in the N matrix all the required information. This is the
‘‘spirit” of the pre-processing ascending algorithm, to propagate
the information of the ascending branches successively on the N
matrix.

However, in the new protocol, the final field of the ascending k

branch, Hk
f does not achieve the Hmax value, but reduced as we

advance in k, the branch number. In other words, we are ‘‘losing”
the last rows of NA as we increase k. We want to show that, under
the hypothesis of the proposed model, the above mentioned fact
does not imply loosing information for the successive branches.
Let h	

> 0 be the irreversibility field, defined as the field above
which the magnetic system has not longer an irreversible response,
i.e., the magnetization of the branches collapse in a unique curve

for h > h	. While we work in branches that satisfy RHj
f P h	, it́s

obvious that the successive decrease of the final field value RHj
f ,

does not imply a loss of information. In these cases, for fields

h > RHj
f (which are not accessible for the NFP) we have that[27]

Dj[i] = 0 for i > j. In other words, the difference between the

branches for h > RHj
f is null, because there is not hysteresis. Then,

the above mentioned procedure to propagate a given column to the
rest of the matrix is enough to retrieve the information which is
not contained in a given branch, but in its predecessors. Now sup-

pose the case in which the Rk and Rk+1 branches satisfies RHk
f P h	

and RHkþ1
f < h	. In this case we don’t have problems, because

Dk+1[i] = 0 for h > RHkþ1
f , due to the fact that the field next to

RHkþ1
f is RHk

f . For the next branches we should remember that,

according to our assumption, the magnetization at h ¼ RHkþ1
f is

irreversible, then mkðhÞ > Mkþ1ðhÞ, which means that variation of
magnetization X ¼ mkðhÞ �Mkþ1ðhÞ is positive, as illustrated[28]
in Fig. 8. The difference X comes from the contribution of a group
of hysterons that reverse their magnetization from up to down at

HRk
i (that is at the beginning of the Rk), but they do not reverse

at the beginning of Rk+1. All the ascending branches Rt that follow

the Rk (with t > k) satisfy HRt
i > HRk

i , and the before mentioned hys-
terons remain up in the rest of the protocol development (based on
the second and third hypotheses of the model). For this reason,
their contribution to the magnetization will be constant (and was
already taken into account when we computed the Dk+1[i] differ-
ences). Then, we can ignore their contribution to the hysteresis.
This fact allows us to imagine a new situation in which, for practi-

cal purposes, the irreversibility field is h	 ¼ HRkþ1
i . Then, we can

apply the previous reasoning to the new situation, which means
that there is no loss of information. Obviously, this reasoning can
be performed for each of the ascending branches Rt with t > k + 1.
This argument demonstrates our assertion that there is no loss of
information by the successive decrease of the field sweep in each
branch.

In reference to the processing of the descending branches, we
can assert that the reasoning is very similar to that of ascending
branches exposed before. The idea is to complete the information
of the N matrix, based in the difference between the descending
branches,. However, there are two important differences with
respect to the case of the ascending branches. The first one is that
when we are moving forward in the descending branch number,
the magnetization decreases. This is reflected on the definition of
dk[i] in Eq. (9), because the computed difference is from the previ-
ous branch minus the next branch, unlike in the Eq. (7), which
gives the definition of Dk[i]. The second difference is the fact that
the field is diminishing as we advance in each descending branch.
This fact modifies the processing with respect to the case of the
ascending branches. For convenience we choose to generate the
HD and ND matrices in a similar fashion to HA y NA, that is: when
we advance along a given column of HD, the field is increased. This
results in the need to modify the recipe for the propagation of a
given column, as is given in Eqs. (9)–(11) for the case of the
descending branches. The opposite sense in the field sweeping in
the descending branches makes necessary to define dk,b[j] from
dk[i] in order to propagate the information.

Finally, the argument used in the discussion of the no loss of
information in the case of the ascending branches is also valid in
this case, due to the symmetry of the problem.
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[2] C.-I. Dobrotă, A. Stancu, Tracking the individual magnetic wires’ switchings in
ferromagnetic nanowire arrays using the first-order reversal curves (FORC)
diagram method, Phys. B Condens. Matter. 457 (2015) 280.

[3] S. Samanifar, M. Almasi Kashi, A. Ramazani, M. Alikhani, Reversal modes in
FeCoNi nanowire arrays: correlation between magnetostatic interactions and
nanowires length, J. Magn. Magn. Mater. 378 (2015) 73.

[4] M. Almasi-Kashi, A. Ramazani, M. Amiri-Dooreh, FORC investigation of as-
deposited and annealed CoZn alloy nanowires, Phys. B Condens. Matter. 452
(2014) 124.

[5] D.A. Gilbert et al., Quantitative decoding of interactions in tunable nanomagnet
arrays using first order reversal curves, Sci. Rep. 4 (2014) 1.

[6] M. Pan, P. Zhang, H. Ge, N. Yu, Q. Wu, First-order-reversal-curve analysis of
exchange-coupled SmCo/NdFeB nanocomposite alloys, J. Magn. Magn. Mater.
361 (2014) 219.

[7] D. Cimpoesu, I. Dumitru, A. Stancu, Kinetic effects observed in dynamic first-
order reversal curves of magnetic wires: experiment and theoretical
description, J. Appl. Phys. 120 (2016) 173902.

[8] M. Pohlit et al., First order reversal curves (FORC) analysis of individual
magnetic nanostructures using micro-hall magnetometry, Rev. Sci. Instrum. 87
(2016) 113907.

[9] X.T. Zhao et al., Weak dipolar interaction between CoPd multilayer nanodots
for bit-patterned media application, Mater. Lett. 182 (2016) 185.

[10] N.S. Bezaeva et al., The effects of 10 to 160 GPa shock on the magnetic
properties of basalt and diabase, Geochem. Geophys. Geosyst. 17 (2016) 4753.

http://refhub.elsevier.com/S0304-8853(17)30836-3/h0005
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0005
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0005
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0010
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0010
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0010
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0015
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0015
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0015
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0020
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0020
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0020
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0025
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0025
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0030
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0030
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0030
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0035
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0035
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0035
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0040
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0040
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0040
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0045
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0045
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0050
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0050


268 E. De Biasi / Journal of Magnetism and Magnetic Materials 439 (2017) 259–268
[11] A.H. Montazer et al., Developing high coercivity in large diameter cobalt
nanowire arrays, J. Phys. D. Appl. Phys. 49 (2016) 445001.

[12] M. Alikhani, A. Ramazani, M. Almasi Kashi, S. Samanifar, A.H. Montazer,
Irreversible evolution of angular-dependent coercivity in Fe80Ni20 nanowire
arrays: Detection of a single vortex state, J. Magn. Magn. Mater. 414 (2016)
158.

[13] S. Kobayashi et al., Investigation of effects of long-term thermal aging on
magnetization process in low-alloy pressure vessel steels using first-order-
reversal-curves, AIP Adv. 7 (2017) 56002.

[14] L. Yu et al., Magnetization Reversal of Three-Dimensional Nickel Anti-Sphere
Arrays, IEEE Magn. Lett. 8 (2017) 1.

[15] Q. Li et al., Rock magnetic properties of the Lz908 borehole sediments from the
southern Bohai Sea, eastern China, Chin. J. Geophys. (Acta Geophys. Sin.) 59
(2016) 1717.

[16] A.P. Roberts, C.R. Pike, K.L. Verosub, First-order reversal curve diagrams: a new
tool for characterizing the magnetic properties of natural samples, J. Geophys.
Res. Solid Earth 105 (2000) 28461.

[17] C. Kissel, Z. Liu, J. Li, C. Wandres, Magnetic minerals in three Asian rivers
draining into the South China Sea: Pearl, Red, and Mekong Rivers, Geochem.
Geophys. Geosyst. 17 (2016) 1678.

[18] E. De Biasi, J. Curiale, R.D. Zysler, Quantitative study of FORC diagrams in
thermally corrected Stoner– Wohlfarth nanoparticles systems, J. Magn. Magn.
Mater. 419 (2016) 580.

[19] M.P. Proenca et al., Identifying weakly-interacting single domain states in Ni
nanowire arrays by FORC, J. Alloys Compd. 699 (2017) 421.
[20] F. Béron et al., Nanometer scale hard/soft bilayer magnetic antidots, Nanoscale
Res. Lett. 11 (2016) 1.

[21] X. Zhao, D. Heslop, A.P. Roberts, A protocol for variable-resolution first-order
reversal curve measurements, Geochem. Geophys. Geosyst. 1364 (2015).

[22] C.R. Pike, A.P. Roberts, K.L. Verosub, C.R. Pike, A.P. Roberts, Characterizing
interactions in fine magnetic particle systems using first order reversal curves
Characterizing interactions in fine magnetic particle systems using first order
reversal curves, J. Appl. Res. 85 (1999) 6660.

[23] Note that the last point of the chain is also represented by an open square dot,
because it represents the last link of the descending branch and the initial link
of the last chain.

[24] I.D. Mayergoyz, Mathematical Models of Hysteresis, Springer, New York, 1991,
pp. 1–63.

[25] E. Della Torre, Magnetic Hysteresis, IEEE Press, 1999.
[26] A.J. Newell, A high-precision model of first-order reversal curve (FORC)

functions for single-domain ferromagnets with uniaxial anisotropy, Geochem.
Geophys. Geosyst. 6 (2005) Q05010.

[27] Note that the Dj½i� vector does not have components for i > j, according to their
definition in equation 7. The paragraph indicates that if we extend the range of
the vector, their components that satisfy i > j will be null, because the
magnetic branches have the same magnetization values for the same fields
h > RHj

f .
[28] Note that it may happen that Mkþ1ðh0Þ > Mkðh0Þ or Mkþ1ðh0Þ ¼ MkðhÞ, but what

will always happen is that, according to the definition of h	 D > 0, that is
mkðh0Þ > Mkþ1ðh0Þ.

http://refhub.elsevier.com/S0304-8853(17)30836-3/h0055
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0055
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0060
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0060
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0060
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0060
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0065
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0065
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0065
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0070
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0070
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0075
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0075
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0075
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0080
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0080
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0080
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0085
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0085
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0085
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0090
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0090
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0090
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0095
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0095
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0100
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0100
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0105
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0105
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0110
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0110
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0110
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0110
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0120
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0120
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0120
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0125
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0125
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0130
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0130
http://refhub.elsevier.com/S0304-8853(17)30836-3/h0130

	Faster modified protocol for first order reversal curve measurements
	1 Introduction
	2 Usual FORC protocol
	3 The modified FORC protocol
	3.1 Measurement protocol
	3.1.1 The magnetic model
	3.1.2 Algorithm description
	3.1.3 The UFP data treatment
	3.1.4 The NFP data treatment


	4 Numerical results
	5 NFP and UFP in real systems
	6 Conclusions
	Acknowledgements
	Appendix I.
	A.I Grounds of the algorithm

	References


