
Expert Systems with Applications 39 (2012) 10251–10268
Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
SmartGantt – An intelligent system for real time rescheduling based
on relational reinforcement learning

Jorge Palombarini a, Ernesto Martínez b,⇑
a GISIQ (UTN), Av. Universidad 450, Villa María 5900, Argentina
b INGAR (CONICET-UTN), Avellaneda 3657, Santa Fe, S3002 GJC, Argentina
a r t i c l e i n f o

Keywords:
Manufacturing systems
Real-time rescheduling
Automated planning
Reinforcement learning
Information systems
Relational abstractions
0957-4174/$ - see front matter � 2012 Elsevier Ltd. A
doi:10.1016/j.eswa.2012.02.176

⇑ Corresponding author.
E-mail address: ecmarti@santafe-conicet.gov.ar (E
a b s t r a c t

With the current trend towards cognitive manufacturing systems to deal with unforeseen events and dis-
turbances that constantly demand real-time repair decisions, learning/reasoning skills and interactive
capabilities are important functionalities for rescheduling a shop-floor on the fly taking into account sev-
eral objectives and goal states. In this work, the automatic generation and update through learning of
rescheduling knowledge using simulated transitions of abstract schedule states is proposed. Deictic rep-
resentations of schedules based on focal points are used to define a repair policy which generates a goal-
directed sequence of repair operators to face unplanned events and operational disturbances. An indus-
trial example where rescheduling is needed due to the arrival of a new/rush order, or whenever raw
material delay/shortage or machine breakdown events occur are discussed using the SmartGantt proto-
type for interactive rescheduling in real-time. SmartGantt demonstrates that due date compliance of
orders-in-progress, negotiating delivery conditions of new orders and ensuring distributed production
control can be dramatically improved by means of relational reinforcement learning and a deictic repre-
sentation of rescheduling tasks.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Increasing global competition, a shift from seller markets to
buyer markets, mass customization, operational objectives that
highlight customer satisfaction and ensuring a highly efficient pro-
duction, give rise to complex dynamics and on-going disruptive
events in industrial environments (Henning & Cerdá, 2000; Zaeh,
Reinhart, Ostgathe, Geiger, & Lau, 2010). Moreover, stringent
requirements with regard to reactivity, adaptability and traceabil-
ity in production systems and supply chains are demanded for
products, processes and clients all over the product lifecycle. In this
context, established production planning and control systems
must cope with unplanned events and intrinsic variability in man-
ufacturing environments where difficult-to-predict circumstances
occur as soon as plans are released to the shop-floor (Méndez,
Cerdá, Harjunkoski, Grossmann, & Fahl, 2006; Vieira, Herrmann,
& Lin, 2003). Equipment failures, quality tests demanding repro-
cessing operations, rush orders, delays in material inputs from pre-
vious operations and arrival of new orders give rise to uncertainty
in real time schedule execution. In this way, for both human plan-
ners and shop floor operators (who interpret the plan) uncertainty
in a real manufacturing system is a complex phenomenon that
cannot be addressed exclusively through the inclusion of uncertain
ll rights reserved.

. Martínez).
parameters into problem statement (Aytug, Lawley, McKay, Mo-
han, & Uzsoy, 2005). Several disturbances and events may produce
different impacts depending on the context in which they occur,
e.g. operators performance may vary during the week or events
arising at night may have a greater impact due to the absence of
specialized support personnel, as well as the uncertainty that af-
fects materials availability may disrupt production processes in
different ways, depending on product recipes.

The vast majority of the scheduling research does not explicitly
consider execution issues such as uncertainty, and implicitly as-
sumes that the global schedule will be executed exactly as it
emerges from the algorithm that generates it. The existing body
of theory does not address different causes, the context in which
uncertainty arises, or the various impacts that might result (McKay
& Wiers, 2001; Pinedo, 2005, 2008). Moreover, including additional
constraints into global scheduling models significantly increases
problem complexity and computational burden, of both the sche-
dule generation and rescheduling tasks, which are (in general)
NP-hard (Chieh-Sen, Yi-Chen, & Peng-Jen, 2012). Hence, schedules
generated under deterministic assumptions are often suboptimal
or even infeasible (Henning, 2009; Li & Ierapetritou, 2008; Vieira
et al., 2003; Yagmahan & Yenisey, 2010; Zaeh et al., 2010). As a
result, reactive scheduling is heavily dependent on the capability
of generating and representing knowledge about strategies for
repair-based scheduling in real-time. Finally, producing satisfactory
schedules rather than optimal ones in reasonable computational

http://dx.doi.org/10.1016/j.eswa.2012.02.176
mailto:ecmarti@santafe-conicet.gov.ar
http://dx.doi.org/10.1016/j.eswa.2012.02.176
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

Fig. 1. Repair-based architecture implemented by SmartGantt.

10252 J. Palombarini, E. Martínez / Expert Systems with Applications 39 (2012) 10251–10268
time, in an integrated manner with enterprise resource planning
and manufacturing execution systems is mandatory for respon-
siveness (Herroelen & Leus, 2004; Trentesaux, 2009; Vieira et al.,
2003).

Reactive scheduling literature mainly aims to exploit peculiar-
ities of the specific problem structure (Adhitya, Srinivasan, &
Karimi, 2007; Miyashita, 2000; Miyashita & Sycara, 1995; Zhang
& Dietterich, 1995; Zhu, Bard, & Yu, 2005; Zweben, Davis, Doun,
& Deale, 1993). More recently, Li and Ierapetritou (2008) have
incorporated uncertainty in the form of a multi-parametric pro-
gramming approach for generating rescheduling knowledge for
specific events. However, the tricky issue is that resorting to a
feature-based representation of schedule state is very inefficient,
and generalization to unseen schedule states is highly unreliable
(Morales, 2004). Therefore, any learning performed and acquired
knowledge are difficult to transfer to unseen scheduling domains,
being the user-system interactivity severely affected due to the
need of compiling the repair-based strategy for each disruptive
event separately. Most of the existing works on rescheduling
prioritize schedule efficiency using a mathematical programming
approach, in which the repairing logic is not clear to the end-user.
In contrast, humans can succeed in rescheduling thousands of
tasks and resources by increasingly learning in an interactive
way a repair strategy using a natural abstraction of a schedule:
a number of objects (tasks and resources) with attributes and
relations (precedence, synchronization, etc.) among them. Such
conditions, as well as the requirements agility and productivity,
together with poor predictability of a shop-floor dynamics, an
increasing number of products, reconfigurable manufacturing
lines and fluctuations in market conditions demand from produc-
tion planning and control systems to incorporate higher levels of
intelligence.

Today’s standard, rigid and hierarchical control architectures in
industrial environments have been unable to face with the above
challenges, so it is essential to pursue a paradigm shift from off-
line planning systems to on-line and closed-loop control systems
(Zaeh & Ostgathe, 2009), which take advantage of the ability to
act interactively with the user, allowing him to express his prefer-
ences in certain points of the decision making process to counter-
act the effects of unforeseen events, and set different schedule
repair goals that prioritize various objectives as such stability, effi-
ciency, or a mix between the two, having into account particular
objectives related to customer satisfaction and process efficiency.
A promising approach to sustainable improvements in flexibility
and adaptability of production systems is the integration of artifi-
cial cognitive capabilities, involving perception, reasoning /learn-
ing and planning skills (Zaeh et al., 2010). Such ability enables
the scheduling system to assess its operation range in an auto-
nomic way, and acquire experience through intensive simulation
while performing repair tasks. By integrating learning and plan-
ning, the system builds models about the production process, re-
source and operator capabilities, as well as context information,
and at the same time discovers structural patterns and relations
using general domain knowledge. Therefore, a scheduling system
integrates continuous real-time information from shop-floor sen-
sors/actuators with models that are permanently updated to adapt
to a changing environment, and to optimize action selection. At the
representation level, it is mandatory to scale up towards a richer
language that allows the incorporation of the capabilities men-
tioned above (Morales, 2003; Van Otterlo, 2009); in that sense,
first-order relational representation it’s a natural choice because
it enables the exploitation of the existence of domain objects and
relations (or, properties) over these objects, and make room for
quantification over objectives (goals), action effects and properties
of schedule states (Blockeel, De Raedt, Jacobs, & Demoen, 1999;
Džeroski, De Raedt, & Driessens, 2001).
In this work, a novel real-time rescheduling prototype applica-
tion called SmartGantt, which resorts to a relational (deictic) repre-
sentation of (abstract) schedule states and repair operators with
RRL is presented. To learn a near-optimal policy for rescheduling
using simulations (Croonenborghs, 2009), an interactive repair-
based strategy bearing in mind different goals and scenarios is pro-
posed. To this aim, domain-specific knowledge for reactive sched-
uling is developed using two general-purpose algorithms already
available: TILDE and TG (De Raedt, 2008; Džeroski et al., 2001).
2. Repair-based (re)scheduling in SmartGantt

Fig. 1 depicts the repair-based architecture implemented by
SmartGantt, embedded in a more general setting including an
Enterprise Resource Planning System (ERP) and a Manufacturing
Execution System with communication and control infrastructures,
which integrates artificial cognitive capabilities in resources and
processes to include by design flexibility and adaptability in pro-
duction systems (Trentesaux, 2009). In this approach, search con-
trol knowledge about optimal selection of repair operators is
generated through reinforcements using a schedule state simula-
tor. In the simulation environment, an instance of the schedule is
interactively modified by the learning system which executes con-
trol actions using a sequence of repair operators until a repair goal
is achieved. In each learning episode, SmartGantt receives informa-
tion from the current schedule situation or state s and then selects
a repair operator which is applied to the current schedule, result-
ing in a new one.

The evaluation of the resulting quality of a schedule after a re-
pair operator has been applied is performed by SmartGantt using
the simulation environment via an objective or reward function
r(s). The learning system then updates its action-value function
Q(s, a) that estimates the value or utility of resorting to the chosen
repair operator a in a given schedule state s. Such an update is
made using a reinforcement learning algorithm (Sutton & Barto,
1998) such as the well-known Q-learning rule, which is showed
in Fig. 2. By accumulating enough experiences over many simu-
lated transitions, SmartGantt is able to learn an optimal policy for
choosing the best repair operator at each schedule state.

The main benefit of applying reinforcement learning techniques
such as Q-learning to search control knowledge for improving
quality and efficiency of real-time rescheduling is that there is no
extra burden on the availability of domain experts, allows online
adaptation to a dynamic environment and make room for abstrac-
tions that are necessary to deal with large state spaces, e.g. supply
chains. For repairing a schedule, SmartGantt is given a repair-based
goal function:

Fig. 2. Basic Q-learning algorithm.

J. Palombarini, E. Martínez / Expert Systems with Applications 39 (2012) 10251–10268 10253
goal : S! ftrue; falseg ð1Þ

defining which states in the repaired schedule are target states, e.g.
states where total tardiness is less than or equal to 1 working day.
Usually, a precondition function like (2):

pre : S� A! ftrue; falseg ð2Þ

is used to specify which subset of repair operators can be applied at
each state of the schedule to account for resource capabilities and
precedence constraints (e.g. product recipes) as well as alternative
repair actions such split a batch, merge batches, shifting a task be-
tween resources, etc. The objective of any schedule repair task can
be phrased as: given a starting state for the schedule s1, find a se-
quence of repair operators a1, a2, . . . ,an with ai 2 A such that:

goal dð. . . dðs1; a1Þ . . . ; anÞð Þ ¼ true ð3Þ

where d is the transition function which is only revealed to the
learning agent through simulation.

The reward function is used to translate the goal in Eq. (3) into a
reinforcement signal to guide the search for a policy that select the
best repair operator in each schedule state (Martinez, 1999).
Resorting to the reward function and simulations, the optimal pol-
icy: ai = psi is approximated here using a regression tree (Blockeel &
De Raedt, 1998; Van Otterlo, 2009), and then used to compute the
action-sequence to reach a repaired scheduled, improving respon-
siveness at the shop-floor to handle unplanned events and reject-
ing disturbances at the shop-floor (Palombarini & Martínez,
2010). In turn, different operational and performance objectives,
Fig. 3. A RRL algorithm for learning to repair
as well as user preferences and customized repair tactics can be
provided by a human expert to SmartGantt. The latter provides
visualization, alternative solutions and what–if analysis capabili-
ties, so that the user can work in a fully interactive fashion by using
a graphical interface that allows achieving alternative rescheduling
goals.

3. Relational reinforcement learning

Relational reinforcement learning (RRL) is often formulated in
the formalism of Relational Markov Decision Processes (RMDP),
which are an extension from standard MDPs based on relational
representations in which states correspond to Herbrand interpre-
tations (Džeroski et al., 2001), and can be defined formally as fol-
lows (Van Otterlo, 2009):

Definition 1. Let P = {p1/a1, . . . ,pn/an} be a set of first order
predicates with their arities, C = {c1, . . . , ck} a set of constants, and
let A’ = {a1/a1, . . . ,am/am} be a set of actions with their arities. Let S’
be the set of all ground atoms that can be constructed from P and C,
and let A be the set of all ground atoms over A’ and C. A Relational
Markov Decision Process (RMDP) is a tuple M = hS,A,T,Ri, where S is
a subset of S’, A is defined as stated, T: S � A � S ? [0,1] is a
probabilistic transition function and R: S � A � S ? IR a reward
function.

The difference between RMDPs and MDPs is the definition of S and
A, whereas T and R are defined as usual. Formulating the reschedul-
schedules through intensive simulations.

10254 J. Palombarini, E. Martínez / Expert Systems with Applications 39 (2012) 10251–10268
ing problem as a RMDP enables SmartGantt to rely upon relational
abstractions of the state and action spaces to reduce the size of
the learning problem. RMDP offers many possibilities for general-
ization due to the structured form of ground atoms in the states
and actions spaces, which share parts of the problem structure
(e.g. constants). So, in RRL, states are represented as sets of first-
order logical facts, and the learning algorithm can only see one state
at a time. Actions are also represented relationally as predicates
describing the action as a relationship between one or more
variables, as it is shown in Example 1 below.

Example 1. state1¼focalðtaskðtask1;productðaÞÞÞ;resourceð1;
extruderð1Þ; ½taskðtask1; productðaÞÞ; taskðtask2; productðbÞÞ;
taskðtask5;productðaÞÞ�Þ;resourceð2;extruderð2Þ; ½taskðtask3;
productðaÞÞ; taskðtask4; productðcÞÞ; taskðtask7; productðcÞÞ�Þ;
action1 ¼ actionðrightMoveðtaskðtask1Þ; taskðtask2ÞÞÞÞ.

Hence, RRL algorithms are concerned with reinforcement learn-
ing in domains that exhibit structural properties and in which dif-
ferent kinds of related objects, namely tasks and resources exist
(De Raedt, 2008; Džeroski et al., 2001; Van Otterlo, 2009). This is
usually characterized by a large and possibly unbounded number
of different states and actions as it is the case of planning and sched-
uling. In this kind of environments, most traditional reinforcement
learning techniques break down, because they generally store the
learned Q-values explicitly in a state-action table, with one value
for each possible combination of states and actions. Rather than
using an explicit state–action Q-table, RRL stores the Q-values in a
logical regression tree (Blockeel & De Raedt, 1998). The relational
version of the Q-learning algorithm is shown in Fig. 3.

The computational implementation of the RRL algorithm has to
deal successfully with the relational format for (states, actions)-pairs
in which the examples are represented and the fact that the learner is
given a continuous stream of (state, action, q-value)-triplets to learn
predicting q-values for (state, action)-pairs during training.

Because of the relational representation of states and actions
and the inductive logic programming component of the RRL algo-
rithm, there must exist some body of background knowledge which
is generally true for the entire domain to facilitate induction. After
the Q-function hypothesis has been initialized, the RRL algorithm
starts running learning episodes (Džeroski et al., 2001; Sutton &
Barto, 1998). During each episode, all the encountered states and
the selected actions are stored, together with the rewards related
to each visited (state, action)-pair. At the end of each episode, when
the system encounters a goal state, it uses reward back-propaga-
tion and the current Q-function approximation to compute and
update the corresponding Q-value approximation for each encoun-
tered (state, action)-pair in the episode The algorithm presents the
set of (state, action, q-value)-triplets encountered in each learning
episode to a relational regression engine, which will use this set
of Examples to update the current regression tree of the Q-function.

TG relational regression algorithm (De Raedt, 2008; Driessens,
Ramon, & Blockeel, 2001; Sutton & Barto, 1998) is used by Smart-
Fig. 4. A simple example of a relational regression tree (left), and
Gantt for accumulating simulated experience in a compact way,
yet readily available decision-making rule for generating a se-
quence of repair operators available at each schedule state s. Such
experience is stored in a first-order decision tree (FODT), in which
every internal node contains a test which is a conjunction of first-
order literals (see Fig. 4). Also, every leaf (terminal node) of the tree
involves a prediction (nominal for classification trees and real val-
ued for regression trees). Prediction with first-order trees is similar
to prediction with propositional decision trees: every new instance
is sorted down the tree. If the conjunction in a given node succeeds
(fails) for that instance, it is propagated to the left (right) subtree.
This FODT is converted by SmartGantt in a set of Prolog rules that is
used in execution time to predict Q-values and select repair oper-
ators accordingly.

The TG algorithm starts with the tree containing a single node,
all examples and the Root Query, and then recursively completes
the rest of nodes. It is important to define correctly the Root Query,
because it is the first node of the tree, and the basis upon which
further refinements will be performed. Furthermore, the Root
Query generates a set of basic variables about which TG may
execute several tests to build the rest of the regression tree. As a
consequence, in the derived set of Prolog rules, the Root Query is
present in the first part of the antecedent of each one of them. In
this work, the query defined as a root is showed in the Example 2:

Example 2. rootððfocalTaskðTÞ;totalTardinessðWÞmaxTardiness
ðXÞ;avgTardinessðYÞ;totalWorkInProcessðZÞ;tardinessRatioðAÞ;
inventoryRatioðBÞ; totalCleanoutTimeðFÞ; focalTardinessðGÞ;
actionmoveðCons;T;SFÞÞÞ.

In order to complete a node, the algorithm first tests whether
the example set in the node is sufficiently homogeneous. If it is,
the node is turned into a leaf; if it is not, all possible tests for the
node are computed and scored using a heuristic. This possible test
are taken from the background knowledge definition, which is ex-
plained below, and can be relational facts, queries about the value
of a discretized variable, or more complex predicates that can in-
volve several rules. Then, the best test is added into the node,
and two new nodes are incorporated to the tree: the left one con-
tains those examples for which the test has been successful and the
right one those for which the test fails. The procedure is then called
recursively for the two sub-nodes. Once the instance arrives in a
leaf node, the value of that leaf is used as the prediction for that in-
stance. The main difference between this algorithm and traditional
decision tree learners relies in the generation of the tests to be
incorporated into the nodes. To this aim, the algorithm employs
a refinement operator q that works under h-subsumption. There-
fore, the refinement operator specializes a query Query (a set of
literals) by adding literals lits to the query yielding Query, lits. An
example for the query precedes(X,Y) is showed in Table 1.

Related to the use of the operators, the procedure needs to be
able to propagate the query along the succeeding branches in the
tree. This propagation allows the binding of the variables between
a detail of two from ten possible derived Prolog rules (right).

Table 1
Example of several refinement operations for the query precedes(X, Y).

Query Refinement

 precedes(X,Y) precedes(X, Y), orderOfProduct(X, Product)
 precedes(X, Y), task_in_resource(X, Resource)
 precedes(X, Y), task_DueDate(X, DueDate)
 precedes(X, Y), task_Time(X, Time)
 precedes(X, Y), task_DueDate(X, DueDate)

J. Palombarini, E. Martínez / Expert Systems with Applications 39 (2012) 10251–10268 10255
the different tests. Several heuristic functions can be used to deter-
mine the best tests, and to decide when to turn nodes into leaves.
The function employed by TG is based on information gain, which
measures the amount of information gained by performing a par-
ticular test. The entropy (or information) I(P,N) needed to classify
an example in one of two classes P and N (with E = P [N) is defined
in Eq. (4) (De Raedt, 2008)

IðP;NÞ ¼ �nðPÞ
nðEÞ � log2

nðPÞ
nðEÞ �

nðNÞ
nðEÞ � log2

nðNÞ
nðEÞ ð4Þ

where P and N are the sets of positive and negative examples,
respectively, and n(X) denotes the number of examples in the set
X. Furthermore, if the set of examples E = P [N is splitted into the
sets El = Pl [Nl and Er = Pr [Nr with regard to the test t then the
information gain can be expressed as is showed in Eq. (5) (De Raedt,
2008).

IGðE; El; ErÞ ¼ IðP;NÞ � nðElÞ
nðEÞ � IðPl;NlÞ �

nðErÞ
nðEÞ � IðPr ;NrÞ ð5Þ

In the above Eq. (5), IG measures how much information is gained
by performing the test t. Thus, a decision tree learning algorithm se-
lects the test resulting in the maximal information gain. So, TG
stores the current tree together with statistics for all tests that
can be used to decide how to split each leaf further. Every time
an example (triplet) is inserted, it is sorted down the tree according
to the tests in the internal nodes and, in the resulting leaf the statis-
tics of the tests are updated.

3.1. Relational (deictic) representation of schedule states and repair
operators

The drawbacks of attribute-value representations in learning a
rescheduling policy that have been described in previous sections
are solved by SmartGantt by resorting to relational (or first-order)
deictic representations. This approach, relies to a language for
expressing sets of relational facts that describe schedule states
and actions in a compact and logical way; each state is character-
ized by only those facts that hold in it, which are obtained applying
a hold(State) function. Formally, first-order representations are
Fig. 5. Relational representa
based in a relational alphabet R, which consists of a set of relation
symbols P and a set of constants C. Each constant c 2 C denotes an
object (i.e. a task or resource) in the domain and each p=a 2 P de-
notes either a property (or attribute, i.e. task tardiness) of some ob-
ject (if a ¼ 1) or a relation between objects (for example, if a > 1,
e.g. precedesðtask1 ;task2Þ).

To represent structured terms in the schedule domain, e.g.
resource (1;extruderð1Þ; ½task1;task2;task5�), the relational
alphabet is extended with a set of function symbols or functors
F = {f1/a1, . . . , fk/ak} where each fi(i = 1, . . . ,k) denotes a function
from Ck to C, where a is called the ‘‘arity’’ of the functor, and fixes
the number of its arguments, e.g. precedes/2, task/5, averageTardi-
ness/1, focalRightSwappability/0, among others. SmartGantt imple-
ments the concept of ‘‘learning from interpretations’’ (Blockeel
et al., 1999; De Raedt & Džeroski, 1994), so in this notation, each
(state, action) pair will be represented as a set of relational facts,
which is called a relational interpretation.

In addition to a relational abstraction, a deictic representation
for describing schedule states and repair operators is proposed as
a powerful alternative used by SmartGantt to scale up RRL in
rescheduling problems. Deictic representations deal naturally
with the varying number of tasks and resources in the planning
world by defining a focal point for referencing objects (tasks
and resources) in the schedule. This focal point is represented
by a functor called focal/1, which takes one parameter to specify
a task that fixes the repair scope and objectives. Such task is se-
lected by SmartGantt using different criteria, depending on the
type of event which generates the disruption. Once this focal task
is known, other facts that describe the schedule state and are rel-
evant for repairing it can be established, such as leftTardiness/1
or altRightTardiness/1, among others. So, to characterize transi-
tions in the schedule state due to repair actions, a deictic repre-
sentation resorts to constructs such as: (i) The first task in the
new order, (ii) The next task to be processed in the affected re-
source, and (iii) Tasks related to the last order in the priority
order.

Fig. 5 provides a relational (deictic) representation of a schedule.
Note that the number of facts in an example is not fixed, and the or-
der of them is arbitrary; then each state can have a varying number
and type of relationships that characterize it, providing a higher
level of flexibility and allowing SmartGantt to deal with situations
where there exist uncertainty and incomplete information. Further-
more, the relational nature of states and actions gives rise to
structural patterns that can be exploited by SmartGantt to define
compact abstractions, inducing Prolog logical rules, something that
is not possible in a propositional representation of rescheduling
problems. For example, the structure precedesðtaskðtask1Þ;
taskðtask2ÞÞ shares the parameter object ‘‘task(task2)’’ with the
fact precedesðtaskðtask2Þ; taskðtask3ÞÞ; it can be generalized
tion of a schedule state.

10256 J. Palombarini, E. Martínez / Expert Systems with Applications 39 (2012) 10251–10268
by the logical conjunction precedesðA;BÞ;precedesðB;CÞ where
A, B and C are unbounded variables which can represent any object
of type ‘‘task’’, covering several examples of different facts where
this relation aptly applies.

Summing up, in a deictic representation, both scheduling states
and repair operators (actions) are defined in relation to a given fo-
cal point (i.e. a task, group of tasks, a resource, or a virtual produc-
tion line) as it is shown in Fig. 6. These local repair operators move
the position of a task alone, however due to the ripple effects
caused by tight resource-sharing constraints other tasks may need
to be moved as well which is not desirable. Whenever the goal-
state for the schedule cannot be achieved using primitive repair
operators more elaborated macro-operators can be used to imple-
ment a combination of basic repair operators such as task-swap-
ping, batch-split or batch-merge until a goal state in the repaired
schedule (e.g. order insertion without delaying other orders) is
achieved.
Fig. 7. Algorithm that determines the abstract state corresponding to a ground
state.

Fig. 8. Part of the abstract state action-value function for the minimize tardiness
goal.
3.2. Induction of abstract schedule states and repair policy using
logical decision trees

Relational representations of schedule states and repair opera-
tors are symbolic in nature; therefore, many methods have been
developed to perform the process of generalizing and abstracting
over them, like Distances and Gaussian Kernels for structured data
(Gärtner, 2008) and Relational Instance Based (RIB) regression
(Driessens, 2004). In this work, this task is carried on by SmartGantt
using the result of applying TG, in combination with the algorithm
depicted in Fig. 7, based mainly in the concept of first-order
abstractions of version spaces (Mitchell, 1997).

In simulation-based generation of rescheduling knowledge the
main challenge is to exploit the inherent structure of relational
schedule states, as well as the structure shared among several
schedules or parts of them (i.e. precedence o parallelism relations
between tasks in production recipes) using variables to range over
constants, and background knowledge with syntactic bias in the
form of types and modes (i.e. declarations written as type(pred(ty-
pe1, . . . , typen)), where pred denotes the name of the predicate and
the typei denote the names of the types), that consists of the
definitions of general predicates that can be used in the induced
hypotheses, for generalization, abstraction, and knowledge
transferring purposes (Croonenborghs, Driessens, & Bruynooghe,
2008; Morales, 2004; Torrey, Shavlik, Walker, & Maclin, 2006).

As can be seen in Fig. 8, each abstract state models a set of inter-
pretations of the underlying learning process (RMDP), and defines
which relations should hold in each of the states it covers. For
Fig. 6. Deictic repair operators.
example, in Fig. 8, the blue region covers the set of states where
Total Tardiness is less than 59.44 h, the focal task A precedes a
certain task L, and has less tardiness than task L, the total Work
in Process is less than 41.92 h, and the repair operator that has
been applied is JumpAltRight. Formally, this is expressed as a
conjunction � 1 ^ � � � ^m of logical atoms, e.g. a logical query.
The use of variables, as is showed in the same figure in the Root
Query, admits abstracting over specific domain objects as well.
The process starts with a first-order logical alphabet containing
predicates, constants and variables. Thus, an abstract state is basi-
cally a logical sentence, specifying general properties of several
states visited during learning through simulation of abstract state
transitions. An example is showed in Example 3.

Example 3. 8A;B;C;DðavgTardðAÞ;precedesðB;CÞ;precedesðC;DÞ;
A > 57:8Þ is an Abstract State that denotes the set of schedules
states in which the average tardiness A is greater than 57.8, where
a task B precedes a task C, who in turns precedes the task D. Note
that in this case, the task denoted by C must be the same in all
cases where it appears.

Fig. 8 highlights that the action-value Q-function relies on a set
of abstract states, which together encode the kind of rescheduling
knowledge learned through intensive simulation in a compact and
formal way, which can be used in real time to repair plans whose
feasible have been affected by disruptive events. Furthermore, the
definition of an abstract state must be independent of the kind of

J. Palombarini, E. Martínez / Expert Systems with Applications 39 (2012) 10251–10268 10257
disruptive event which may have caused it: it only depends on the
desired goal for the repaired schedule state. As a result, it is no
mandatory to identify the event type that has driven the schedule
to the current state in order to find a sequence of repair operators
to achieve a goal for the repaired schedule. However it is relevant
to know the available resource (options) to undertake the repair
task realistically. In other sense, the abstract state S represents par-
tial knowledge about an actual schedule state, and at the same time
aggregates a set of state atoms into an equivalence class [S]. Using
this powerful abstraction, schedule states are characterized by a
set of common properties and the obtained repair policy expresses
its generalization capability based on the problem structure and
relations among objects in the schedule domain (Morales, 2004),
which makes room for transferring the rescheduling policy to
somewhat different problems were the same relations apply, and
without any further learning. As only fully observable worlds are
considered, this partial knowledge is only due to abstracting
schedules using relationships between concerned objects. An
Fig. 9. Induction of several groun

Fig. 10. Test checking using
abstract state S covers a ground state s iff s| = S, which is decided
by SmartGantt using h-subsumption. An example of an induced ab-
stract state is shown in Fig. 9.

Abstract state spaces compactly specify in a logical way a
Relational Markov Decision Process state space S as a set of ab-
stract states, and can be defined formally as follows (Van Otterlo,
2009):

Definition 2. Let C be a logical vocabulary and let A be the set of
all C-structures A, a multi-part abstraction (MPA) over A is a list
du1; . . . ;une, where each uiði ¼ 1:::nÞ (called a part) is a formula. A
structure A 2 A is covered by an MPA iff there exists a part
uiði ¼ 1 . . . nÞ such that Aj ¼ ui. An MPA is a partition iff for all
structures there is exactly one part that covers it. An MPA l over R
induces a set of equivalence classes over R, possibly forming a
partition. MPAs are to be seen as sets. In other words, l is a
compact representation of a first-order abstraction level over R. An
element r 2 R is covered by a part < u > iff r |=u.
d states in an abstract state.

background knowledge.

Table 2
Some examples of the tests designed.

Definition Interpretation

rmode(#(1 � 10 � C: threshold(totalTardiness(W), [W], C), +W < C)) Get values of the discretized variable totalTardiness
rmode(10: (focal_Task(+T),predec(T,�T2), task_Tardiness(T,�Number),

task_Tardiness(T2,�Number1),Number > Number1))
Focal Order T is predecessor of T2 and has more tardiness

rmode(10: (focal_Task(+T), atLeftOf(T,�T2), task_Tardiness(T,�Number),
task_Tardiness(T2,�Number1),Number > Number1))

Focal Order T is at left of T2 and its tardiness is greater than the
last

rmode(10: (order_of_product(+O, +A))) Order O is of product A
rmode(10: (task_in_resource(+T, +R))) Task T is scheduled to be processed in the resource R
rmode(10: (task_Time(+T,�N), task_Time(+T1,�N1), N > N1)) Processing time of task T is greater than the processing time of

task T1
rmode(10: (task_Tardiness(+T,�N), task_Tardiness(+T1,�N1), N > N1)) Tardiness of task T is greater than the tardiness of task T1
rmode(10: (task_DueDate(+T,�N), task_DueDate(+T1,�N1),N > N1)) Due date of task T is greater than the due date of task T1
rmode(10: (focal_Task(+T), task(�T1), task_Time(T,�Time1), task_Time(T1,�Time2),Time1 > Time2)) Processing time of focal task T is greater than the processing

time of task T1
rmode(10: (time_on_resource(�R,�Time), time_on_resource(�R1,�Time1),Time < Time1)) Total processing time of tasks scheduled in resource R is minor

than the Total processing time of tasks scheduled in resource R1
rmode(10: (tard_on_resource(�R,�Tard), tard_on_resource(�R1,�Tard1),Tard < Tard1)) Total tardiness of tasks scheduled in resource R is minor than

the Total tardiness time of tasks scheduled in resource R1
rmode(10: (time_Prog_In_Res(Res1,Time1), time_Prog_In_Res(Res2,Time2),Time1 > Time2)) The total time of the scheduled tasks in Res1 is greater than the

programmed into Res2

10258 J. Palombarini, E. Martínez / Expert Systems with Applications 39 (2012) 10251–10268
Based on the presented RRL approach, SmarttGantt generates
the definition of the Q-function from a set of examples in the form
of abstract state-action-value tuples, and dynamically makes parti-
tions of the set of possible states, as can be seen in Fig. 10. These
partitions are described by a kind of abstract schedule state, that
is, a logical condition, which matches several real schedule states.
For instance, the condition that is shown at right of Fig. 9, matches
all states in which A is the focal task, E is the total WIP, L is the
number of tasks that are in the queue for resource #2, and M is
the corresponding number of tasks in resource #3, M is greater
than L, the focal task is planned before than task N, K is the last task
that will be carried out in the corresponding resource, the process
time for the focal task is tf, the process time for the task N is tN, tf is
greater than tN, the total WIP is less than 66.89, the focal task pre-
cedes a task R, the due date of the focal task is greater than the due
date for R, the process time of task N is greater than the process
time for R, and the process time for K is greater than the process
time for R. The relational Q-learning approach sketched above thus
needs to solve two tasks: finding the right partition and learning
the right values for the corresponding abstract state-action pairs.
The abstract Q-learning algorithm starts from a partition of the
state space in the form of a decision list of abstract state-action
pairs ððS1;A1Þ; . . . ; ðSn;AnÞÞ where is assumed that all possible ab-
stract actions Ai are listed for all abstract states Si. Each abstract
state Si is a conjunctive query, and each abstract action Ai contains
a possibly variabilized action. The relational Q-learning algorithm
now turns the decision list into the definition of the qvalue/1 pred-
icate, and then applies Q-learning using the qvalue/1 predicate to
rank state-action pairs. This means that every time a concrete
state-action pair (s,a) is encountered, a Q-value q is computed
using the current definition of qvalue/1, and then the abstract Q-
function, that is, the definition of qvalue/1 is updated for the ab-
stract state-action pair to which (s, a) belongs.

3.3. Background knowledge

As it was previously mentioned, the background knowledge
(BK) serves a number of purposes, but two of the most important
are: (i) the extension of the formal language explained in previous
sections with additional predicate definitions e.g. as derived rela-
tions in planning (Shapiro, Langley, & Shachter, 2001) or back-
ground predicates, and (ii) the provision of domain constraints
and ramifications (i.e. the static and dynamic laws in the schedul-
ing domain). For example, whereas a ground schedule state is only
described in terms of resource/2 and task/5, abstract states might
also use derived predicates such as totalNumberOfTasks/1 which
comprise the BK. SmartGantt uses background knowledge for the
induction of logical trees that represent Q-functions, and to evalu-
ate if a ground state belongs to a certain abstract state. Hence, all
predicates present in the knowledge base can be used recursively
to generate complex combinations of tests in the abstract states
and repair actions. This is a powerful feature of inductive logic pro-
gramming approach used in this here to keep simple test defini-
tions which to be useful has to be previously derived in terms of
other relationships that must be true in the state that is been eval-
uated. Fig. 10 highlights how the test T1:

test(time_Prog_In_Res(Res1,Time1),time_Prog_In_Res(Res2,Time2),
Time1 > Time2)

is derived using the available background knowledge. Basically,
this test is true when the total processing time of the scheduled
tasks in the resource Res1 is greater than the total time of sched-
uled tasks in Res2 (Note that Res1 and Res2 might be any pair of
different resources in the system).

The truth value of the test T1 cannot be determined directly, be-
cause it doesn’t exist on the set of facts that determine the sche-
dule state, but is based on a Prolog rule defined in the BK. This
rule needs to obtain the list of tasks programmed in a resource -
using resource(Res,_,Tasks), which exists in the state definition-
and thereafter calculate the required time using the sum_Times/
2 predicate, which in turn takes as an argument a list of tasks
(Tasks variable). If the recursive execution of these predicates ob-
tains a pair of values Time1 and Time2 that makes true
Time1 > Time2 , (and consequently, a pair of resources Res1
and Res2) then the test T1 can be used as a candidate to carry
out the node splitting process (if the test is done as part of the
regression tree induction), or take part in the derived Prolog rules
which encode the rescheduling knowledge (if the test is used as
part of the Abstract State checking process or Q-Value retrieving).
Furthermore, BK also might specify constraints such as

BK : 8 XYðprecedesðX;YÞ ! X= ¼ YÞ;

saying that if task X precedes task Y, they should be different
objects. In Table 2, some examples of the designed BK are showed.

In consequence, BK can cover different types of information for
a given domain, like experts or users having general domain
knowledge, value function information, partial knowledge about
the application of a repair operator, similarities between different
states, or new relations derived of the relational states. In Table
1, some examples of the BK designed are given. The main advan-

Fig. 12. Graphical user interface.

Fig. 11. Schema of the SmartGantt architecture.

J. Palombarini, E. Martínez / Expert Systems with Applications 39 (2012) 10251–10268 10259
tage of resorting to BK in SmartGantt is that different relationships
can be inferred between domain objects (tasks and resources)
which affect decisively in the learning curve (Shapiro et al.,
2001). In addition, due to the presence of the inductive logic
programming component, it is necessary to provide the learning
system with some kind of declarative bias specification, through
types and modes. This technique is employed to reduce the
hypotheses search space and mostly focusing on the most relevant
feature for goal achievement. Then, in the definition of each
predicate that can take part in a logical query the type of the argu-
ments should be established which in turn restrict the types of
queries that can be generated. In Table 2, the types and modes
are included in the definition of predicates.

4. SmartGantt prototype

The prototype application has been implemented in Visual Ba-
sic.NET 2005 Development Framework 2.0 SP2 and SWI Prolog
5.6.61 running under Windows Vista. Also, the TILDE and TG mod-
ules from The ACE Datamining System developed by the Machine
Learning group at the University of Leuven have been used. The
overall architecture of the prototype is shown in Fig. 11 whereas

10260 J. Palombarini, E. Martínez / Expert Systems with Applications 39 (2012) 10251–10268
Fig. 12 depicts the graphical user interface. The prototype admits
two modes of use: training and consult. During training SmartGantt
learns to repair schedules through simulated transitions of sche-
dule states, and the generated knowledge is encoded in the Q-func-
tion. Exploitation of rescheduling knowledge is made in the consult
interaction. The disruptive events that the system can handle are
the arrival of a new order/rush order to the production system, de-
lay or shortage in the arrival of raw materials, and machine
breakdown.

Before starting a training session the user must define through
the graphical interface, the value of all simulation and training
parameters, related to:

� Initial schedule conditions: for simulation purposes, is necessary
to determine the minimum and maximum values associated to
the size and due date that the automatically generated orders
can adopt, as well as the (variable) number of orders that may
be present in the system at the beginning of the training episode.
� Learning parameters: by means of graphical sliders, the user

must adjust the RRL associated parameters, like c, e, and a.
� Training results folder: the user can select the folder where the

system stores the images that it generates as a result of training,
and its format (gif or bmp).
� Goal state definition: this key parameter that has to be estab-

lished before starting simulation since it establishes the desired
repair goal. Checking the option ‘‘Try Reinsertion,’’ enables the
system to change the due date of the new order to define the
minimum value that this attribute should take so the order
can be inserted in the actual schedule conditions. This feature
is very import for due date negotiation purposes whenever
the order cannot be inserted with its initial requirements.

In the current version of SmartGantt, training a rescheduling
agent can be carried out by selecting one of three alternative goals,
which is selected through an option list:

� Tardiness improvement: the repaired schedule should have less
tardiness than the initial one. This goal prioritizes the efficiency
of the schedule.
� Stability: tries to minimize the number of changes made to the

initial schedule, and rewards are assigned according to (6),
where n0 is the total number of tasks, and nc is the number of
tasks that have changed their position with respect to the origi-
nal schedule. The stability goal tries to minimize the impact of
changes to the original schedule:
r ¼
n0�nc

n0
if goalðstÞ ¼ true

0 if goalðstÞ ¼ false

(
ð6Þ
� Balancing: tries to trade off tardiness with the number of
changes made to the original schedule (stability goal) in order
to achieve the goal. Thus, rewards are defined as follows:
r ¼ T Initial � TFinal

N
ð7Þ
Fig. 13. SmartGantt consult and training phases.
where N is the number of required steps for achieving the goal
state. In all cases, each option means to change the conditions that
define the goal state and the way in which rewards are assigned to
applied repair operators, depending on the obtained results. For
example, in the case of Tardiness Reduction, credit assignment
has the particularity of penalizing sequences of repair actions lead-
ing to a final state where the total tardiness is greater than the one
for initial schedule.

At the beginning of each training episode, the prototype gener-
ates a set of tasks for arriving orders with their corresponding attri-
butes, bounded within their allowable ranges defined interactively.
To generate the initial schedule state s0, these tasks are randomly
assigned to one of the available resources. Later on, if the selected
disruptive event is the arrival of a new order, or rush order, the
attributes of the order to be inserted – without increasing the total
tardiness in the initial schedule – are generated, and it is assigned
arbitrarily to one of the available resources (extruders). If the dis-
ruptive event is machine breakdown, the system randomly selects
one resource, and generates the breakdown time. Then, the focal
task is selected among the available ones. The remaining case oc-
curs when the disruptive event is shortage or delay in the arrival
of raw materials; in this situation, the system select randomly a
task, and set a delay; then, the selected task is taken as focal point
for rescheduling. The learning episode progresses by applying a se-
quence of repair operators until the goal state is reached. Despite
the goal is selected interactively – depending on the disruptive
event – there may be stringent situations in which the system
cannot simultaneously meet the requirements stated by the user
and the goal state, e.g. when the selected goal is Tardiness
Improvement, and the disruptive event is machine breakdown. In
these cases SmartGantt automatically relaxes the goal proposed
by the user, and flags a message to make the user aware of the
change. Fig 13 shows schematically the elements related to each
phase in the interaction between an user and the leaning system.

Based on the suitable initialization of the Q-function, the RRL
algorithm starts to simulate learning episodes, while updating its
knowledge base using the standard Q-learning algorithm. In each
training episode, every found state-action pair is stored with the
associated reward. At the end of the episode, when the agent has
reached the goal state, the Q-values of each state-action pair vis-
ited are updated using back-propagation. Then, the algorithm feeds
the set of tuples (state, action, Q) to a relational regression engine
(RRTL component in the architecture) in order to update the
regression tree that represents the Q-function. Then, SmartGantt
continues executing the next episode. In the obtained tree, differ-
ent nodes are basically Prolog queries. In consequence, to find a
Q-value, a Prolog program based on a tree which is built on-line
(shown in Fig. 13 as Policy(Prolog Rules)). After that, when the
query (state-action) is executed, this engine returns the desired
value, or the best repair operator for a given schedule state. The
estimated Q-value will depend on the quality of the generated tree,
which rely upon defined rules in the background knowledge,
which is valid all over the domain. Fig. 14 shows an example of
an induced rule, although the policy can contain hundreds of them.

The logical in Fig. 14 sequence must be interpreted as follows:
‘‘If the Focal Task is A, Total Tardiness is B, Maximum Tardiness
is C, Average Tardiness is D, WIP is E, Tardiness Ratio is F, Inventory

qvalue(0.84):-
focal_Task(A),totalTardiness(B),maxTardiness(C),avgTardiness(D),
totalWorkInProcess(E),tardinessRatio(F),inventoryRatio(G),
totalCleanoutTime(H),focalTardiness(I),action_move(J,A,K),
numberOfTasks(Res1,L),numberOfTasks(Res2,M),M>L,
is_Last_Task(K),atLeftOf(A,N),task_Time(A,O),task_Time(N,P),
O>P,E<66.89,focal_Task(A),predec(A,Q),task_DueDate(A,R),
task_DueDate(Q,S),R>S,task_Time(N,T),task_Time(Q,U),T>U,
E<61.72,focal_Task(A),atLeftOf(A,V),task_DueDate(A,W),
task_DueDate(V,X),W<X,task_Time(K,Y),task_Time(Q,Z),Y>Z,
action_move(rightJump,A,K), !.

Fig. 14. An induced Prolog rule.

Table 3
General component description of the rescheduling prototype application.

Component Description

Global Planning General Global Planning System
Application Coordinates the simulation process and presents the

results graphically. Evaluates the actual state and the
repair operator applied, and returns the reward.
Reports if a state is a goal state

.Net Agent Performs the repair operator application, consults the
Q-value and abstract states, saves the states in
relational format, and varies order features to make it
insertable, if is not

States Knowledge base (KB) that stores the states in
relational format. KB is used to generate the RRT. It is
implemented in a file called Planning.kb

RRT learner TG Regression tree induction algorithm from ACE.
Uses States, available Background Knowledge and
settings from Planning.s file

Background
knowledge

Set of rules that defines general knowledge across the
domain. Is stored in the files Planning.bg and
Background Knowledge.pl

Repair policy Learned repair policy, reflected in the form of Prolog
rules. Is parsed from PlanningQ.out to Policy.pl

Act. Abs. State Actual Abstract State in relational format
Act. Abs. State-

Repair Operator
Actual Abstract State and Repair Operator applied over
it, in relational format

Consult Best Repair
Operator

Wrapper Prolog embedded in OperatorManager that
returns the best repair operator available, in a certain
abstract state

Consult Q-Value Wrapper Prolog embedded in QManager that returns
the Q-value for a certain combination of Abstract
State-Repair Operator

Abstract State
Inductor

Wrapper Prolog that returns the corresponding
abstract state for a particular concrete state

J. Palombarini, E. Martínez / Expert Systems with Applications 39 (2012) 10251–10268 10261
Ratio is G, Total CleanOutTime is H, Tardiness of Focal Task is I, the
repair operator involves the tasks A and K, the number of tasks
present in resource Res1 is greater than the number of tasks pres-
ent in resource Res2, Task K is in the last position of the resource,
Focal Task A begins before of a Task N which has a lower processing
time, E < 66.89, Focal Task A precedes a Task Q whose due date is
less, Task N has a processing time greater than Q, E < 61.72, Focal
Task A begins before than a Task V and has a lower due date, pro-
cessing time of Task K is greater than processing time of Task Q, if
the repair operator is RightJump, then Q Value is 0.84’’.

The relational regression tree contains (in relational format) the
repair policy learned from the training episodes. The mentioned
queries are actually processed by the Prolog wrappers QManag-
er.dll and OperatorManager.dll, which made up a transparent
interface between the .NET agent and the relational repair policy
and objects describing schedule states. Also, the RRTL module in-
cludes the functionality for discretizing continuous variables such
as Total Tardiness and Average Tardiness in non-uniform real-val-
ued intervals, so as to make the generated rules useful for Prolog
wrappers. The algorithm depicted in Fig. 7 is implemented in a sep-
arated dynamic library that uses the functionality of Prolog.NET to
perform the induction of abstract states.

Fig. 15 shows a component diagram for SmartGantt. In the .NET
prototype, different classes are used to model Agent, Environ-
ment, Actions and Policy concepts. Furthermore, SmartGantt is
able to access relational objects using a parser designed specifically
to transform the decision tree in Prolog rules. This parser is embed-
ded in the QManager component. The remaining components use
the files Policy.pl, ActState.pl, ActStateAction.pl and Background-
Knowledge.pl. Some of them are modified dynamically in execu-
tion time. Finally, the .NET agent is fully equipped to handle
situations where the rescheduling goal is not feasible. To this
aim, the agent may modify tasks or the goal so as to make the latter
achievable. For example, the prototype allows the user to interac-
tively revise and accept/reject changes made to task attributes to
SmartGantt

OperatorManager

QManager

AbsStateInduct

RStates

KnowledgeBaseManag

Fig. 15. SmartGantt com
insert a new order in the initial schedule without increasing the
Total Tardiness of the resulting schedule. Table 3 shows a general
description of the application components.

The prototype can show graphically the evolution of the inter-
mediate schedules in the path to the repaired schedule (and the
sequential application of repair operators over the initial schedule)
and learning results. Other information available to the user is the
evolution of the steps per episode to reach the goal state, total re-
ward obtained through the training phase, average steps per epi-
sode, and average reward, which is updated in real-time. The
second operation mode of the prototype is ‘‘consult’’, that can be
used once the agent has learned the repair policy. To this aim,
the user can define a new schedule manually using the graphical
interface, or generate it on-line in a random way, to verify the
capability of the learned policy to achieve different goals from
alternative initial schedules.
or_QRetriever

AbsStateManager

PolicyManager

BKManag er

RRTLearner

Operators

er

ponent diagram.

Table 5
Global and focal variables in the prototype.

Name Description

TotalTardiness (h) Global variable. Sum over all tardiness of each task
MaxTardiness (h) Global variable. Maximum tardiness of the

schedule
AvgTardiness (h) Global variable. Total tardiness divided the number

of tasks
TotalWIP (lb) Global variable. Total size of all the orders in the

schedule
TardinessRatio Global variable. Sum over all orders in the schedule

of the ration between tardiness of the order and its
lead time

InventoryRatio Global variable. Sum over all orders in the schedule
of the ratio between processing time of the order
and its lead time

ResNLoad (%) Global variable. Utilization ratio for resource #N in
the schedule

ResNTardiness (h) Global variable. Tardiness of resource #N in the
schedule

TotalCleanoutTime Global variable. Time spent in cleanout operations
FocalTardiness(h) Focal variable. Tardiness associated to the focal task

(order)
ProductType Focal variable. Product associated to focal task
LeftTardiness (h) Focal variable. Sum over all tardiness of each order

which is programmed before the Focal
RightTardiness (h) Focal variable. Sum over all tardiness of each order

which is programmed after the Focal
MaterialArriving (h) Focal variable. Amount of hours in which the raw

materials will arrive. It only applies if the disruptive
event is ‘‘Shortage or delay in the arrival of raw
materials’’

BreakdownInMachine
(#)

Focal variable. Id of the machine affected by
breakdown. It only applies if the disruptive event is
‘‘Machine Breakdown’’

BreakdownTimeStart
(h)

Focal variable. Hour in which the breakdown start.
It only applies if the disruptive event is ‘‘Machine
Breakdown’’

BreakdownTotalTime
(h)

Focal variable. Length of the breakdown, in hours. It
only applies if the disruptive event is ‘‘Machine
Breakdown’’

FocalRSwappability Focal variable. Binary variable to indicate if it is
feasible to swap the focal task with one to the right
in the same extruder

FocalLSwappability Focal variable. Binary variable to indicate if it is
feasible to swap the focal task with one to the left in
the same extruder

FocalAltRSwappability Focal variable. Binary variable to indicate if it is
feasible to swap the focal task with one to the right
in a different extruder

FocalAltLSwappability Focal variable. Binary variable to indicate if it is
feasible to swap the focal task with one to the left in
a different extruder

10262 J. Palombarini, E. Martínez / Expert Systems with Applications 39 (2012) 10251–10268
5. Industrial case study

An example problem proposed in (Musier & Evans, 1989) is con-
sidered to illustrate the use of SmartGantt and repair operators for
batch plant rescheduling. The plant is made up of 3 semi-continu-
ous extruders that process customer orders for four products. Each
extruder has distinctive features, so that not all the extruders can
process all products. Additionally, processing rates depend on both
the resource and the product being processed. For more detail, set-
up times required for resource cleaning have been introduced,
based on the precedence relationship between different types of fi-
nal products. Processing rates and cleanout requirements are de-
tailed in Table 4.

Order attributes correspond to product type, due date and size.
In this section, this example is used to illustrate concepts like rela-
tional definition of schedule states and repair operators, global and
focal (local) variables used in the relational model, and the overall
process of repairing a schedule bearing in mind the goals men-
tioned previously. For example, in learning to insert an order the
rescheduling scenario is described by: (i) arrival of an order with
given attributes that should be inserted in a randomly generated
schedule state, and (ii) the arriving order attributes are also ran-
domly chosen. This way of generating both the schedule and the
new order aims to expose the rescheduling agent to sensible differ-
ent situations that allow it to learn a comprehensive repair policy
to successfully face the environment uncertainty. Accordingly, the
initial schedule is generated in terms of the next values, which can
be changed using the graphical interface of the prototype.

� Number of orders: the number of initial orders is determinated
in a random way, using the uniform discrete distribution
[10,20].
� Order composition: a product type is randomly selected from

those available (A, B, C o D). The same probability of being
selected is assigned to the four types, although this feature
can be changed interactively to generate schedules containing
more or fewer orders of a certain product.
� Order size: is obtained randomly from an interval between 100

and 1000 kg.
� Due Date: is uniformly distributed and varies between 1 and

20 days after the time of arrival.

The focal and global variables used in this example are showed
in Table 5, combined with a relational representation of the
schedule that has been described in previous sections. To illustrate
the advantages of relational reinforcement learning in real time
rescheduling, four specific situations are considered, which will
be detailed in next sections. In all cases, the training is carried
out with a variable number of orders in a range of 10–15, and
the calculation of the average number of steps does not consider
Table 4
A small example problem formulation (Musier & Evans, 1989).

Processing rate (lb/day)

A B C D

Extruder #0 100 200 – –
Extruder #1 150 – 150 300
Extruder #2 100 150 100 200

Cleanout requirements (days/cleanout)

Previous operation Next operation

A B C D

A 0 0 0 2
B 1 0 1 1
C 0 1 0 0
D 0 2 0 0
those episodes in which the agent has failed to perform a repair
tasks after 1000 steps.

5.1. Arrival of a new order

In the situation considered, there exist a certain number of
orders already scheduled in the plant and a new order must be
inserted so as to meet the goal state for a repaired schedule (Sta-
bility, Balancing or Tardiness Improvement). In each training epi-
sode, a random schedule state was generated, and a random
insertion attempted for the new order (whose attributes are also
randomly chosen), which in turn serves as the focal point for
defining repair operators. Fig. 16 shows the results of the overall
learning process, for each one of the available rescheduling goals.
As can be seen, for Stability, the learning curve is flattened after
approximately 350 episodes, when a near-optimal repair policy
is obtained. For the other two more stringent situations, namely
Tardiness Improvement and Balancing, learning curves tend to
stabilize later, due to a higher number of repair operations that

Fig. 16. Learning curve for the arrival of a new order event, with three different goals.

J. Palombarini, E. Martínez / Expert Systems with Applications 39 (2012) 10251–10268 10263
are necessary to try at early stages of learning so as to guarantee
goal achievement.

As shown in Fig. 16, after 450 training episodes, only between 5
and 8 repair steps are required, on average, to insert a new order
(regardless of the number of orders previously scheduled). Fig. 17
provides an example of applying the optimal sequence of repair
operators from the schedule in Fig. 17(a), using the Consult mode
of SmartGantt, and choosing stability as the prime objective. Before
the 11th order has been included, the Total Tardiness (TT) is
19.15 h. Once the arriving order (in white) has been inserted, the
Total Tardiness has been increased to 40.93 h; orange tasks are used
to indicate cleaning operations. Based on the learned repair policy, a
RightJump operator should be applied, which gives rise to the sche-
dule in Fig. 17 (b) with a TT = 37.53 h. Then an UpLeftSwap repair
operator is applied, decreasing TT to 25.81 TT. Then a LeftMove re-
pair operator is used, which increases the TT to 29.42 h. Then, a
DownRightSwap repair operator is used, which increases the TT
to 36.25 h. After that, the applied operator is LeftSwap, decreasing
TT to 22.50. Finally, by means of an UpRightSwap the goal state is
reached with a Total Tardiness of 9.96 h, which is even lower than
the TT in the initial schedule before the 11th order was inserted. As
can be seen in the repair sequence, the policy tries to obtain an
equilibrated schedule, reducing cleanout times (e.g. the cleanout
operation initially presents at Ext.1), and swapping orders in order
to take advantage of the resources with the best processing times. It
is important to note the small number of steps that are required for
the rescheduling agent to implement the learned policy for order
insertion. As can be appreciated in Fig. 17, the number of operators
that the agent must implement to achieve the goal state is rather
small (6 steps). Also, although the curves tend to stabilize, a trend
of gradual improvement in their behavior still can be seen.

5.2. Rush order

It is also considered here that there exist a certain number of or-
ders already scheduled in the plant, and a new order must be in-
serted so as to meet the repairing goal (Balancing, Stability or
Tardiness Improvement) and as an extra condition, the due date
of the Rush Order must be enforced. Training process has been per-
formed in the same manner as for the arrival of a new order event.
For the stability goal, a near-optimal repair policy is obtained after
approximately 450 episodes. For the other two goals, the process
tends to stabilize a bit later due to the tougher constraints imposed
by the repairing goal (e.g. reduce the total tardiness, and at the
same time respect Rush Order due date).

After 500 training episodes the rescheduling policy requires be-
tween 6 and 9 repair steps, on average, to insert the new Rush Or-
der (Despite the number of orders previously scheduled). Fig. 18
provides a comprehensive picture of the optimal sequence of re-
pair operators from the schedule in Fig. 18(a) when stability goal
is pursued. Before the 15th order has been included, the Total Tar-
diness is 9.84 h. Once the arriving rush order (in white) has been
inserted, the Total Tardiness has been increased to 10.90 h. Based
on the learned repair policy, a RightJump operator is applied,
which gives rise to the schedule in Fig. 18(b) with a TT = 12.14 h.
Finally, the goal state is reached by resorting to a LeftSwap opera-
tor with a Total Tardiness of 9.77 h, which is even lower than the
TT in the initial schedule. The heuristic for repair in this particular
case can be phrased as follows: ‘‘to insert a rush order, move the
focal task to the right in the same resource, and then swapping
the position of the focal task with another located on its left.’’

5.3. Delay in the arrival or shortage in raw materials

Just as for the other events, in this case there exist a certain
number of orders already scheduled in the plant, and an unfore-
seen delay in the arrival of raw materials is generated randomly
for an order, which is in turn taken as focal point. This order must
be reprogrammed so as to complain with the new restriction, and
to meet the chosen rescheduling goal. Training has been performed
in a similar manner as for the other events. For stability, a near-
optimal repair policy is obtained after approximately 450 episodes.
For the other two goals, the process tend to converge later, due to
the restrictive conditions established by the nature of the

Fig. 17. Repairing sequence for arrival of a new order event.

10264 J. Palombarini, E. Martínez / Expert Systems with Applications 39 (2012) 10251–10268
rescheduling goals and the number of repair operations that are re-
quired to reach the goal state (e.g. balancing tardiness reduction
with the number of required steps to achieve the goal, and at the
same time reprogramming the order to accomplish with the de-
layed arrival of raw materials).
After approximately 500 training episodes, between 7 and 9 re-
pair steps are required, on average, to reschedule the affected order
(regardless of the number of orders previously scheduled). Fig. 19
provides an example of applying the optimal sequence of repair
operators from the schedule in Fig. 19(a), using the Consult mode

Fig. 18. Repairing sequence for rush order event.

Fig. 19. Repairing sequence for delay in the arrival or shortage in raw materials event.

J. Palombarini, E. Martínez / Expert Systems with Applications 39 (2012) 10251–10268 10265

Fig. 20. Repairing sequence for machine breakdown event.

10266 J. Palombarini, E. Martínez / Expert Systems with Applications 39 (2012) 10251–10268
of SmartGantt, and pursuing the stability goal. Before the delay
occurrence, there exist 11 orders already scheduled in the system,
and the Total Tardiness is 31.69 h. Then, a delay of 4 days in the ar-
rival of raw materials is produced for the order #11 related to
product A. Based on the learned repair policy, SmartGantt applies
a RightJump operator, trying to delay the start time of Order #11,
which gives rise to the schedule in Fig. 19(b) with a TT = 31.69 h.
Despite tardiness is not yet increased, the new start time for order
#11 is not satisfactory, because it still begins before the planned
arrival of raw material. So, the system applies the UpRightJump
operator, trying to change the assigned resource for the order
and at the same time, delay its start time. This operation gives rise
to the schedule shown in Fig. 19(c), with a TT = 32.84. Although
order #11 is now schedule to start after the arrival of materials,
the goal state is not yet reached, because the amount of tardiness
present in the schedule is greater than the initial. At this point, the
user must tell the system whether to continue with repairing
process, or maintain the current schedule. If the user decides to
continue, SmartGantt applies the UpRightSwap operator, changing
the position of order #11 with order #10. The goal state is then
reached with a Total Tardiness of 29.79 h, which is lower than
the TT in the initial schedule.

he relational heuristic learned through intensive simulation,
and applied by SmartGantt by means of Prolog rules, in this case
(which can be different for other schedule initial conditions and
configurations) shows vividly how the use of the relational-
deictic representation allows that the policy becomes meaningful
for the operator, and can be synthesized, for example, through the
next statement: ‘‘if the start time of the affected order is lower
than the new date for raw material availability, try to move the
order to the right in the same resource. If the goal is not reached,
try to move the order to an alternative resource so as the produce
a delayed start time of the order, but not changes are made to the
relative position of other scheduled orders. If the rescheduling
goal has not still been reached, then try a more complex operator
to produce a higher delay in the start time of the order but
involving a swap operation with a task scheduled in an alterna-
tive resource.’’

J. Palombarini, E. Martínez / Expert Systems with Applications 39 (2012) 10251–10268 10267
5.4. Machine breakdown

The last disruptive event that has been considered in this work
is machine breakdown. For simulation purposes, is assumed that
there exist a certain number of orders already scheduled in the
plant, and an unexpected breakdown for a limited amount of time
is generated randomly for a given resource. Then, the system
must select a task to take as focal point, and then beginning solv-
ing the rescheduling task. For this event, in a great number of epi-
sodes SmartGantt must relax the conditions stated for the goal
state, particularly in those cases where the user selects Tardiness
Improvement or Balancing as goals. For Stability, a near-optimal
repair policy is obtained after approximately 700 episodes. For
the other two goals, the process only converges after 800–900
training episodes, possibly due to the very restrictive conditions
established by the nature of repair schedules that are expect
and the number of operations needed to reach the chosen goal
state.

After approximately 700 training episodes, on average 10 repair
steps are required to perform the rescheduling task. Fig. 20
provides an example of applying the optimal sequence of repair
operators starting from the schedule in Fig. 20(a) and having
chosen the stability goal. Before the resource breakdown event oc-
curs, there exist 16 orders already scheduled in the system, and the
Total Tardiness is 29.66 h. Then, a breakdown of 2 days in the ex-
truder #2 is generated, which gives rise to the schedule in
Fig. 20(a) with a TT = 34.53 h. Based on the learned repair policy,
SmartGantt select as focal the order #16, and applies a LeftSwap
operator, trying to reduce the total tardiness, which is decreased
to 30.61 h. as can be seen in Fig. 20(b). Then, SmartGantt applies
a RightMove operator, increasing TT to 32.85 h. The goal state
has not been reached, so the rescheduling system applies a Batch-
Split operator -which does not increases tardiness-, and finally the
goal is reached using the DownLeftJump operator, which reduces
the TT to 22.44 h, as is shown in Fig. 20(e). It is important to high-
light the usefulness of BatchSplit operator in learning of the repair
policy for a resource breakdown, which allows the system to ex-
ploit small idle times left in all resources.
6. Concluding remarks

A novel approach and a prototype application for – called
SmartGantt – simulation-based learning of a relational policy deal-
ing with automatic repair in real time of plans and schedules based
on relational reinforcement learning has been proposed. The policy
allows generation of a sequence of deictic (local) repair operators
to achieve several rescheduling goals to handle abnormal and un-
planned events such as inserting an arriving order with minimum
tardiness based on a relational (deictic) representation of abstract
schedule states, and repair operators. Representing schedule states
using a relational (deictic) abstraction is not only efficient to profit
from, but also potentially a very natural choice to mimic the hu-
man ability to deal with rescheduling problems, where relations
between objects and focal points for defining repair strategies are
typically used. These repair policies relies on abstract states, which
are induced for generalizing and abstracting ground examples of
schedules, allowing the use of a compact representation of the
rescheduling problem. Abstract schedule states and repair actions
facilitates and accelerates learning and knowledge transferring,
which is independent of the type of event that has generated a dis-
ruption and can be used reactively in real-time. An additional
advantage provided by the relational (deictic) representation of
schedule (abstract) states and operators is that, relying in an
appropriate and well designed set of background knowledge rules,
it enables the automatic generation through inductive logic pro-
gramming of heuristics that can be naturally understood by the
end-user, and facilitates tasks like ‘‘what–if’’ analysis, interactive
rescheduling and decision support.

Scale-up reinforcement learning using relational modeling of
rescheduling situations based on simulated transitions is a very
appealing approach to compile a vast amount of knowledge about
repair policies, where different types of abnormal events (order
insertion, extruder failure, rush orders, reprocessing needed, etc.)
can be generated separately and then compiled in the relational
regression tree, regardless of the event used to generate the exam-
ples (triplets). This is another very appealing advantage of the pro-
posed approach, since the repair policy can be used online to
handle disruptive events that are even different from the ones used
to generate the Q-function; once this function is known, reactive
scheduling is straightforward. Finally, relational reinforcement
learning favors denotational concept semantics in the communica-
tion between humans and SmartGantt. This capability of phrasing
the rationale behind repair strategies so as to receive evaluative
feedback verbally from human users is obviously highly useful in
real-world applications of SmartGantt.
Acknowledgments

The authors would like to thanks Prof. Hendrik Blockeel and
‘‘Declaratieve Talen en Artificiele Intelligentie’’ (DTAI, http://
dtai.cs.kuleuven.be/). Research Group at the Katholieke Universiteit
Leuven, Belgium, for kindly providing the ACE Data Mining tool
used in part of this work.
References

Adhitya, A., Srinivasan, R., & Karimi, I. A. (2007). Heuristic rescheduling of crude oil
operations to manage abnormal supply chain events. AIChE Journal, 53(2),
397–422.

Aytug, H., Lawley, M., McKay, K., Mohan, S., & Uzsoy, R. (2005). Executing
production schedules in the face of uncertainties: A review and some future
directions. European Journal of Operational Research, 161, 86–110.

Blockeel, H., & De Raedt, L. (1998). Top-down induction of first order logical decision
trees. Artificial Intelligence, 101(1–2), 285–297.

Blockeel, H., De Raedt, L., Jacobs, N., & Demoen, B. (1999). Scaling up inductive logic
programming by learning from interpretations. Data Mining and Knowledge
Discovery, 3(1), 59–93.

Chieh-Sen, H., Yi-Chen, H., & Peng-Jen, L. (2012). Modified genetic algorithms for
solving fuzzy flow shop scheduling problems and their implementation with
CUDA. Expert Systems with Applications, 39, 4999–5005.

Croonenborghs, T. (2009). Model-assisted approaches to relational reinforcement
learning. Ph.D. Dissertation. Leuven, Belgium: Department of Computer Science,
Katholieke Universiteit Leuven.

Croonenborghs, T., Driessens, K., & Bruynooghe, M. (2008). Learning relational
options for inductive transfer in relational reinforcement learning. In
Seventeenth international conference on inductive logic programming (ILP) 2007.
LNCS (Vol. 4894, pp. 88–97). Springer.

De Raedt, L. (2008). Logical and relational learning. Berlín: Springer-Verlag.
De Raedt, L., & Džeroski, S. (1994). First order jk-clausal theories are PAC-learnable.

Artificial Intelligence, 70, 375–392.
Driessens, K. (2004). Relational reinforcement learning. Ph.D. Dissertation. Leuven,

Belgium: Department of Computer Science, Katholieke Universiteit Leuven.
Driessens, K., Ramon, J., & Blockeel, H. (2001). Speeding up relational reinforcement

learning through the use of an incremental first order decision tree learner. In
L. De Raedt, & P. Flach, (Eds.). Twelfth European conference on machine learning,
ECML 2001, Freiburg, Germany, September 5–7, LNCS (Vol. 2167, pp. 97–108).
Springer.

Džeroski, S., De Raedt, L., & Driessens, K. (2001). Relational reinforcement learning.
Machine Learning, 43(1–2), 7–52.

Gärtner, T. (2008). Kernels for structured data. Series in machine perception and
artificial intelligence (Vol. 72). Singapore: World Scientific Publishing.

Henning, G. (2009). Production scheduling in the process industries: Current trends,
emerging challenges and opportunities. Computer-Aided Chemical Engineering,
27, 23–36.

Henning, G., & Cerdá, J. (2000). Knowledge-based predictive and reactive scheduling
in industrial environments. Computers and Chemical Engineering, 24, 2315–2338.

Herroelen, W., & Leus, R. (2004). Robust and reactive project scheduling: A review
and classification of procedures. International Journal of Production Research,
42(8), 1599–1620.

Li, Z., & Ierapetritou, M. (2008). Reactive scheduling using parametric programming.
AIChE Journal, 54(10), 2610–2623.

http://dtai.cs.kuleuven.be/
http://dtai.cs.kuleuven.be/

10268 J. Palombarini, E. Martínez / Expert Systems with Applications 39 (2012) 10251–10268
Martinez, E. (1999). Solving batch process scheduling/planning tasks using
reinforcement learning. Computers and Chemical Engineering, 23, S527–S530.

McKay, K. N., & Wiers, V. C. S. (2001). Decision support for production scheduling tasks
in shops with much uncertainty and little autonomous flexibility. Human
performance in planning and scheduling. New York: Taylor and Francis.

Méndez, C., Cerdá, J., Harjunkoski, I., Grossmann, I., & Fahl, M. (2006). State-of-the-
art review of optimization methods for short-term scheduling of batch
processes. Computers and Chemical Engineering, 30, 913–946.

Mitchell, T. (1997). Machine learning. New York: MacGraw Hill.
Miyashita, K. (2000). Learning scheduling control through reinforcements.

International Transactions in Operational Research, 7(2), 125–138.
Miyashita, K., & Sycara, K. (1995). CABINS: A framework of knowledge acquisition

and iterative revision for schedule improvement and iterative repair. Artificial
Intelligence, 76(1–2), 377–426.

Morales, E. F. (2003). Scaling up reinforcement learning with a relational
representation. In Proceedings of the workshop on adaptability in multi-agent
systems at AORC’03, Sydney, Australia.

Morales, E. F. (2004). Relational state abstraction for reinforcement learning. In
Proceedings of the twenty-first international conference (ICML 2004), July 4–8,
Banff, Alberta, Canada.

Musier, R., & Evans, L. (1989). An approximate method for the production
scheduling of industrial batch processes with parallel units. Computers and
Chemical Engineering, 13, 229–238.

Palombarini, J., & Martínez, E. (2010). Learning to repair plans and schedules using a
relational (deictic) representation. Brazilian Journal of Chemical Engineering,
27(03), 413–427.

Pinedo, M. L. (2005). Planning and scheduling in manufacturing and services. New
York: Springer.

Pinedo, M. L. (2008). Scheduling: Theory, algorithms, and systems (3rd ed.). New York:
Springer.

Shapiro, D., Langley, P., & Shachter, R. (2001). Using background knowledge to speed
reinforcement learning in physical agents. In Fifth international conference on
autonomous agents (pp. 254–261). Montreal.
Sutton, R., & Barto, A. (1998). Reinforcement learning: An introduction. Boston: MIT
Press.

Torrey, L., Shavlik, J., Walker, T., & Maclin, R. (2006). Skill acquisition via transfer
learning and advice taking. In Seventeenth European conference on machine
learning (pp. 425–436).

Trentesaux, D. (2009). Distributed control of production systems. Engineering
Applications of Artificial Intelligence, 22, 971–978.

Van Otterlo, M. (2009). The logic of adaptive behavior: Knowledge representation and
algorithms for adaptive sequential decision making under uncertainty in first-order
and relational domains. Amsterdam: IOS Press.

Vieira, G., Herrmann, J., & Lin, E. (2003). Rescheduling manufacturing systems: A
framework of strategies, policies and methods. Journal of Scheduling, 6, 39–62.

Yagmahan, B., & Yenisey, M. M. (2010). A multi-objective ant colony system
algorithm for flow shop scheduling problem. Expert Systems with Applications,
37, 1361–1368.

Zaeh, M., & Ostgathe, M. (2009). A multi-agent-supported, product-based
production control. In Proceedings of the seventh IEEE international conference
on control and automation, ICCA 2009 (pp. 2376–2383).

Zaeh, M., Reinhart, G., Ostgathe, M., Geiger, F., & Lau, C. (2010). A holistic approach
for the cognitive control of production systems. Advanced Engineering
Informatics, 24, 300–307.

Zhang, W., & Dietterich, T. (1995). Value function approximations and job-shop
scheduling. In J. A. Boyan, A. W. Moore, & R. S. Sutton (Eds.), Proceedings of the
workshop on value function approximation. Report number CMU-CS-95-206.
Carnegie-Mellon University, School of Computer Science.

Zhu, G., Bard, J., & Yu, G. (2005). Disruption management for resource-
constrained project scheduling. Journal of the Operational Research Society, 56,
365–381.

Zweben, M., Davis, E., Doun, B., & Deale, M. (1993). Iterative repair of scheduling and
rescheduling. IEEE Transactions on Systems, Man, and Cybernetics, 23, 1588–1596.

	SmartGantt – An intelligent system for real time rescheduling based on relational reinforcement learning
	1 Introduction
	2 Repair-based (re)scheduling in SmartGantt
	3 Relational reinforcement learning
	3.1 Relational (deictic) representation of schedule states and repair operators
	3.2 Induction of abstract schedule states and repair policy using logical decision trees
	3.3 Background knowledge

	4 SmartGantt prototype
	5 Industrial case study
	5.1 Arrival of a new order
	5.2 Rush order
	5.3 Delay in the arrival or shortage in raw materials
	5.4 Machine breakdown

	6 Concluding remarks
	Acknowledgments
	References

