
ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING
Asia-Pac. J. Chem. Eng. 2009; 4: 858–869
Published online 7 July 2009 in Wiley InterScience
(www.interscience.wiley.com) DOI:10.1002/apj.331

Special Theme Research Article

Nonlinear parametric predictive control. Application
to a continuous stirred tank reactor

Armando Assandri,1* César de Prada,2 Smaranda Cristea2 and Ernesto Martı́nez3

1Institute of Automatics, National University of San Juan, Av. San Martı́n 1112 Oeste, J5400ARY San Juan, Argentina
2Department of Systems Engineering and Automatic Control, University of Valladolid, Faculty of Sciences, c/Real de Burgos s/n 47011, Valladolid,
Spain
3Institute of Development and Design, INGAR, CONICET, Avellaneda 3657, S3002GJC, Santa Fe, Argentina

Received 30 June 2008; Revised 10 March 2009; Accepted 13 March 2009

ABSTRACT: This paper presents a nonlinear model-based controller based on the ideas of parametric predictive
control applied to a continuous stirred tank reactor (CSTR) process unit. Controller design aims at avoiding the
complexity of implementation and long computational times associated with conventional NMPC while maintaining
the main advantage of taking into account process nonlinearities that are relevant for control. The design of the
parametric predictive controller is based on a rather simplified process model having parameters that are instrumental
in determining the required changes to the manipulated variables for error reduction. The nonlinear controller is easy
to tune and can operate successfully over a wide range of operating conditions. The use of an estimator of unmeasured
disturbances and process-model mismatch further enhances the behavior of the controller.  2009 Curtin University
of Technology and John Wiley & Sons, Ltd.
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INTRODUCTION

After its successful introduction in the petrochemical
industry in the 1980s, model-based predictive con-
trollers (MPCs) have gradually gained acceptance in
many other fields. The main reason for this success is
the ability of MPCs to optimally control multivariable
systems with constraints. In each sampling period the
MPC algorithm calculates a sequence of adjustments
of the manipulated variables that optimize the future
behavior of the plant. Then, the first value of the optimal
sequence is sent to the plant and the whole calculation
is repeated in every subsequent sampling period (refer
to Refs [1–4] among various sources on MPC funda-
mentals and history).

Even though most of the continuous processes are
inherently nonlinear, most of the predictive control
applications carried out until the present are based on
linear dynamic models based mainly on the step or
impulse response of the process. The following are
some of the main reasons for using these models.

• Linear empirical models can be easily obtained
directly from plant data.
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National University of San Juan, Av. San Martı́n 1112 Oeste,
J5400ARY San Juan, Argentina. E-mail: aassandr@inaut.unsj.edu.ar

• Most of the MPCs have been applied to the petroleum
refine industry in which linear models are accurate
enough for many purposes.

• Using a linear model and a quadratic objective func-
tion, the control algorithm is reduced to a quadratic
programming (QP) problem with constraints. There
are fast and reliable solutions for this problem using
software existing in the market and this is important
because the solution should converge to the optimal
point in a short time in order to be used in real-time
systems.

As the range of application expands, there exist
many cases where the nonlinear characteristics of the
processes must be taken into account, especially when
the process has to work over a range of operational
points or when a high performance is required. In
such cases a nonlinear model predictive controller
(NMPC) should be used. An NMPC is simply a kind
of MPC with a nonlinear internal model. There are
several alternative types of models that can be used
in NMPC, including empirical models (Volterra series,
NARX, neural network, etc.), first principles models
and a hybrid thereof (grey-box models). First principles
models are preferred as they can be reliable outside the
range of the experiments performed for identification
and tuning is very robust, which is not guaranteed with
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the black-box modeling approach.[4] The advantages of
NMPC are well known, as well as its main difficulties
in industrial implementation: complex and specialized
software demanding long computational times. The
introduction of a nonlinear model leads, in the general
case, to the lost of convexity of the cost function to
be minimized and to a considerable increase in the
calculations. This means that it is more difficult to find
a solution in a short time and once found, cannot always
be guaranteed to be globally optimum (the solution
found can be a local minimum).

In recent years, there have been important contri-
butions aimed at solving these problems. For instance
in Ref. [5] the use of multiple shooting optimization
algorithms is shown to give very good results in the
control of a pilot plant distillation column. Also in
Ref. [6] the NMPC is solved at every sampling time
as a series of linearized models by QP saving com-
putation time. Other approaches[7] consider the use of
piece-wise affine models and multiparametric optimiza-
tion methods in order to pre-compute off-line a control
law that can be applied then on-line as a function of
the current values of the state and the control signal. In
Ref. [8] there is an assessment of different strategies
for the application of sequential quadratic program-
ming (SQP) optimization algorithms to NMPC, using
an isothermal continuous stirred tank reactor (CSTR)
as a case study.

NMPC methods involve, either on-line or off-line,
a lot of computation and are not always suitable for
‘low cost’ applications. In this paper we explore an
alternative approach, based on the ideas of paramet-
ric predictive control (PPC) proposed by J. Richalet,[9]

oriented to facilitate its implementation on standard
industrial controllers, which could be a distributed con-
trol system (DCS) or a programmable logic controller
(PLC). A PPC maintains an internal model of the MPC
controller based on first principles, thus capturing the
main nonlinearities of the process while providing a
rather simple solution able to be implemented in com-
mercial DCS or PLC software modules. For this pur-
pose, instead of relying on a nonlinear programming
(NLP) optimization of a cost function for computing the
manipulated variables, it uses the ‘coincidence point’
approach. The proposed design method is intended for
processes involving a reduced number of variables in
which either a significant nonlinearity is present or the
controller has to operate over a wide range of operat-
ing conditions, as it happens with slave controllers in
cascades.

The main idea is to use a PPC as a low-level nonlin-
ear controller when no explicit constraints are required,
replacing a proportional-integral-derivative (PID) con-
troller with some advantages; the PID can get detuned
when some or all of the conditions mentioned above are
present. Another main advantage of this approach is that
the closed loop behavior of the portion of the process

controlled by the PPC is seen as if it were linear from
the upper control layer point of view. So, it is perfectly
feasible to use a cascade with a linear constrained model
predictive controller (LMPC) as the master closed loop
plant controller, as usually occurs in current MPC indus-
trial applications, operating in cascade over a PPC in
a lower layer. The upper LMPC will calculate the set
point of the PPC taking into account the cost function
(for economic optimal control) and all the constraints,
while the PPC will cope with the main nonlinearities
and parameter changes of the process.

In this paper, the PPC controller has been devel-
oped for the particular case of an exothermic contin-
uous stirred tank reactor, a common process unit that
can exhibit a strong nonlinear behavior. The topic of
temperature control using a predictive functional con-
trol (PFC) was addressed in previous works, dealing
with batch reactors with no significant reaction heat,[9]

heat exchangers,[10], or CSTR with jacket system.[11].
In Ref. [12] there is another approach to the control of
a CSTR using an observer-based NMPC, which uses an
augmented state fuzzy Kalman filter (ASFKF) as a state
estimator.

The proposed PPC is extended to any kind of
reactor considering explicitly the heat reaction which
is estimated on-line in the same context. A comparison
with a PID and a pure NMPC approach is presented
to help evaluate a PPC in terms of performance and
computational times.

The paper is organized as follows: after the introduc-
tion, the section on Operating Principles gives a brief
review of the basic ideas of parametric predictive con-
trol. Then, in the section on A Case Study: CSTR, the
case study of the CSTR is presented as well as the
derivation of the nonlinear controller. The results of
some simulated experiments are shown in the section
on Results in addition to several alternatives for remov-
ing steady-state errors, including disturbance estimation.
The paper ends with some brief conclusions.

OPERATING PRINCIPLES

The parametric predictive controller (PPC)[9,13] shares
many characteristics of the current MPC:

• The use of an internal model to predict the future
behavior of the process

• The use of a reference trajectory
• A structure of the control law
• On-line calculation of a control sequence based on a

target aim
• A receding horizon strategy

Figure 1 shows its operating principle. The aim of the
controller is finding a control sequence u(t) such that,
at time t + N in the future, the current error (w − yp) is
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Figure 1. Operating principle of the PPC.

reduced to a certain value Ed , according to the following
expression:

Ed = λN
(
w − yp(t)

)
(1)

with 0 ≤ λ < 1.
In this equation λN is the reduction factor and λ is

a tuning parameter that establishes the magnitude of
the reduction and, thus, the speed of response of the
output. Values near 1 provide smoother responses, while
values of λ near 0 give faster responses, but with a
bigger control effort. The value of N also can be used
as a tuning parameter and its value must be chosen
according to the desired closed loop response of the
system. Normally, its value will fix the closed loop
steady state time Tss. This is similar to setting up a
first order internal reference trajectory.

Notice that the change in the process output required
to reduce the error to Ed at time t + N , �p, can be
derived from Fig. 1, obtaining:

�p = (
1 − λN

) (
w − yp(t)

)
(2)

The controller makes use of a reduced order inde-
pendent model, based on first principles, in order to
compute the control signal u that would give a change
�m in its output equal to the required change in the pro-
cess �p. Then, in order to achieve the control objective,
the following equality is enforced:

�p = �m(u) (3)

Equations (1)–(3) above are the basis of the PPC design
method. In particular, notice that �p can be obtained
from process measurements, so that Eqn (3) can be used
to compute the control action u . An explicit expression
of �m(u) can be obtained under certain conditions:

• When dealing with a linear model

• When the nonlinear model can be reformulated as an
expression of a linear system with coefficients that are
function of the manipulated variable. For instance, for
a first order linear system:

ϕ(u)
dx

dt
+ ε(u) x = �(u) (4)

Equation (4) is basically nonlinear, but may become
linear when u(t) is constant. In this case, if the control
horizon is chosen as Nu = 1, for the prediction horizon
u(t) will be constant so that Eqn (4) reduces to a linear
differential equation with constant coefficients, so that
an analytical expression can be found for �m(u).

In Eqn (3) the only unknown is then the control action
u that can be computed every sampling time solving
this nonlinear algebraic equation. Extensions to other
values of Nu and higher order equations can be made
at the expense of solving additional equations similar
to Eqn 3 for every value of Nu . Obviously, the PPC
depends on the model (linear or nonlinear) and has to
be obtained for each particular process.

A CASE STUDY: CSTR

In order to solve Eqn (3) at each time step, a process
model is needed. As mentioned in the Introduction,
a CSTR has been considered as a case study. In the
reactor, a continuous flow of reactant A is converted
into product B by means of an exothermic reaction,
where H stands for the enthalpy of reaction. In order
to remove the reaction heat and help maintain the
operating temperature Tl in the reactor, a jacket filled
with a refrigerant is used.

A low-level PPC multiple-input single-output (MISO)
type controller was developed for the CSTR, as shown
in Fig. 2, where the controlled variable is the temper-
ature Tl and the manipulated variable is the refrigerant

Figure 2. Scheme of the PPC MISO controller for the CSTR.
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flow rate Fr. As measured disturbances we can men-
tion the reagent flow rate Fl, the reagent temperature
Tl0 and the refrigerant liquid input temperature Tr0. As
an unmeasured disturbance we have the input concen-
tration of the reagent A, Ca0.

Model of the plant

A mathematical model for the CSTR can be obtained
from mass and energy balances in the reactor and
the jacket assuming a homogeneous distribution of
temperatures and concentrations in the vessel. The
model can be expressed as a set of four differential
equations for the two temperatures of the reactor Tl
and jacket Tr and the two concentrations Ca and Cb
of products A and B respectively. The liquid goes
out of the reactor by overflow, so that the volume V1
can be considered as constant. An additional equation,
the Arrhenius law, gives the speed of reaction k as
a function of the temperature. The differential and
algebraic equations of the model are:

dTl

dt
=

FlρlCpl(Tl0 − Tl)

−U S (Tl − Tr) + VlkCaH
VlρlCpl

(5)

dTr

dt
= FrρrCpr(Tr0 − Tr) + U S (Tl − Tr)

VrρrCpr
(6)

dCb

dt
= VlkCa − FlCb

Vl
(7)

dCa

dt
= Fl(Ca0 − Ca) − VlkCa

Vl
(8)

with
k = Ae−Ea/R(Tl+273) (9)

Development of the nonlinear PPC controller

In order to develop a useful model for the controller,
some simplifications can be performed. Assuming that
the dynamics of the jacket is faster than the one in
the reactor, Eqn (6) can be equated to zero; Tr can be
obtained from this equation and replaced in Eqn (5).
Note that this assumption is grounded on the fact that
the tank hold-up is much bigger than the jacket volume.
Thus, a simplified model of the reactor temperature is:

dTl,m

dt
= k1(Fr)Tl,m + k2(Fr) (10)

k1(Fr) = −1

VlρlCpl

(
FlρlCpl + FrρrCprU S

FrρrCpr + U S

)
(11)

k2(Fr) =
(

FlρlCplTl0 + FrρrCprTr0U S

FrρrCpr + U S
+ �E

)

× /VlρlCpl (12)

The term �E = VlkCaH represents the heat gener-
ated by the exothermic reaction by unit time and the
index m in Tl,m is used to stress the fact that it refers
to the model temperature.

Equation (10), which can be used to compute pre-
dictions of the reactor temperature as a function of the
future values of the manipulated variable Fr, is nonlin-
ear, so that it may be difficult to integrate. Nevertheless,
it has the structure of a linear Eqn (4) with time varying
parameters k1(Fr) and k2(Fr). Note that the manipu-
lated variable Fr is included in both parameters k1(Fr)
and k2(Fr). To carry out an analytical integration of
the model, a couple of assumptions are made. First,
the control horizon of the controller is kept equal to 1
(Nu = 1) meaning that in order to make predictions Fr
is considered constant in the future. Secondly, notice
that Eqns (11), (12) depend on a set of parameters,
disturbances, and �E . In MPC, future values of the
disturbances are considered usually constant and equal
to their current values, but updated every sampling time.
Perhaps one of the few drawbacks of the PPC approach
is that it requires an analytical solution of the differ-
ential Eqn (10). Equation (12) includes the term �E ,
which is a function of Tl through the Arrhenius law.
Unfortunately, no analytical solution of Eqn (10) can
be found if we consider this term as it is. To deal with
this problem �E is also considered as a disturbance
and it is treated in the same way, that is, assumed con-
stant but its value is recalculated on each sampling time.
Accordingly, k1(Fr) and k2(Fr) are constant parameters
and the model expressed by Eqn (10), at time instant t ,
can be considered as linear and its future evolution can
be computed as the solution to Eqn (10). An analyti-
cal solution can be found integrating it between t and
t + NTs, Ts being the sampling period:

Tl,m(t + N Ts) = ek1(Fr)N TsTl,m(t) + k2(Fr)

k1(Fr)(
ek1(Fr)N Ts − 1

)
(13)

From this equation, the change in the reactor temper-
ature �Tl ,m in the time interval NTs corresponding to a
value of the manipulated variable can be derived:

�Tl,m = (
ek1(Fr)N Ts − 1

) (
k2(Fr)

k1(Fr)
+ Tl,m(t)

)
(14)

In order to realign the output of the model with the
process output at each sampling period, the following
replacement is carried out in Eqn (14), Tl,m(t) = Tl,p(t),
being Tl,p(t) the present value of the temperature in the
process. The final controller equation is obtained from
Eqns (2), (3) and (14).

(
1 − λN

) (
w − Tl,p(t)

) = (
ek1(Fr)N Ts − 1

)
(

k2(Fr)

k1(Fr)
+ Tl,p(t)

)
(15)
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This is an implicit equation in Fr, which must be
solved every sampling period by a numerical method
in order to find the value of Fr, which will reduce
by a factor λN the temperature error in N sampling
times. Notice that the solution of Eqn (15) requires the
knowledge of the model parameters as well as the flow
of product A and input temperatures of the refrigerant
and the reagent A, which can be measured easily.
The parameters of the model (ρl, Cpl, ρr, Cpr) can be
determined off-line or obtained from the literature. The
product US can be also determined with the appropriate
experiments. The more problematic value is �E ; so, a
procedure for the estimation of �E should be provided.

Notice also that Eqn (15) is valid regardless of the
particular chemical reaction A → B . Different types
of reaction kinetics will lead to the same controller
but with a different �E . Further, the assumption of a
control horizon Nu = 1 is key for analytical integration
but longer control horizons can be used if an explicit
integration formula at different future time intervals is
applied. The only penalty is a more complex controller.
For instance, for Nu = 2, the equivalent expression to
Eqn (14) is:

�Tl,m(t + N Ts) = (
ek1(Fr2)(N −1)Ts

ek1(Fr1)Ts − 1
)

Tl,m(t)

+ ek1(Fr2)(N −1)Ts k2(Fr1)

k1(Fr1)

(
ek1(Fr1)Ts − 1

) +

+ k2(Fr2)

k1(Fr2)

(
ek1(Fr2)(N −1)Ts − 1

)
(16)

It is noteworthy that now there are two unknowns:
Fr(t) and Fr(t + 1 ) so that, in order to compute both,
two coincidence points have to be provided instead
of one, which lead to a set of two implicit algebraic
equations similar to Eqn (15).

Thus, the PPC controller solves every sampling time
an algebraic equation like Eqn (15) or (16) in order
to compute the current manipulated variable, instead
of solving a dynamic optimization problem. The main
features of the PPC controller are the following:

• Nonlinear control based on first principles.
• Based on a reduced order model of the process.
• It combines the simplicity of a linear controller with

the essential nonlinearities of the process.
• It can be used as a low-level nonlinear controller,

with no optimization or restrictions treatment.
• In the case of an MISO controller with measured dis-

turbances, a feed-forward compensation is introduced
naturally by the model.

• The computation required for the PPC controller,
solving a nonlinear algebraic equation, is easy to
implement using any regular programming language,
either on a commercial DCS or PLC.

The PPC algorithm, as presented up to this point,
does not incorporate the typical mechanisms that avoid
steady-state errors in MPC. So, no explicit integral
action is included in the controller, as happens on
regular MPCs. The absence of integral action produces
steady-state errors when there is model mismatch or
unmeasured disturbances. Thus, integral action must
be added in order to cope with model inaccuracies or
unknown disturbances. The steady-state errors can be
eliminated in different ways: adding an explicit integral
term to the PPC controller, using a PI controller in a
cascade upstream the PPC controller or including in
the PPC algorithm an adequate estimator. In this case,
an estimator of �E (the exothermicity term) has been
derived from the model, as stated below.

Estimation of �E

An estimator of �E can be developed using the reduced
model of the CSTR and past measurements of Tl ,p .
The operating principle of the estimator is illustrated
in Fig. 3.

Using Eqn (14), and considering N = 1, the actual
value of k2, denoted k2r, can be computed as follows,
assuming that our model in a sampling interval starts in
Tl,p(t − 1 ) forcing it to reach Tl.p(t):

�Tl,p = Tl,p(t) − Tl,p(t − 1) = (
ek1 Ts − 1

)
(

k2r

k1
+ Tl,p(t − 1)

)
(17)

k2r = k1

ek1 Ts − 1

(
Tl,p(t) − Tl,p(t − 1) ek1 Ts

)
(18)

Here k1 is computed with the value of Fr correspond-
ing to the previous sampling period which is known at
time t . Equating Eqn (18) with Eqn (12), the estimated
value of �E can be obtained:

�Ê = Vlρl Cplk1

ek1 Ts − 1

(
Tl,p(t) − Tl,p(t − 1)ek1 Ts

)

− FlρlCplTl0 − FrρrCprTr0U S

FrρrCpr + U S
(19)

Figure 3. Operating principle of the esti-
mator.
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Again, all variables in Eqn (19) correspond to the
previous sampling period. In order to smooth the
estimation, a first order filter is applied to (19):

�Ê ∗(t) = α �Ê ∗(t − 1) + (1 − α)�Ê (20)

where �Ê ∗ is the filtered value of �Ê and 0 < α < 1
is the parameter of the filter.

RESULTS

In order to test the PPC controller, several experiments
were carried out in a simulated environment using the
nonlinear model Eqns (5)–(9) as process. The sampling
time Ts was set to 1 min. Four cases were considered:

• �E is known
• �E is assumed as a constant in the model.
• A PID controller is used in a cascade in order to

eliminate steady-state errors.
• �E is estimated with Eqns (19), (20) every sampling

time.

In each of the four cases, the response of the closed
loop system to changes in the set point covering a
rather wide range of operation conditions were com-
puted using N = 15 and λ = 0.8 as tuning values.
This particular case is a kind of continuous process
where the set point normally is not changed very often;

so, the range of temperatures used in the experiments
is considered adequate. Anyway, the PPC controller
has the nonlinear model of a generic process that is
valid in the whole range of operation, and similar
results can be obtained under other operating condi-
tions or reactions. Also, the response to disturbances
in measured and unmeasured variables, maintaining
the set point constant, was considered in the fourth
case.

Case 1 – �E known

The value of �E is calculated considering that the
concentration of the reagent A can be measured. It
is seen from Fig. 4 that the temperature Tl follows
fairly well the set point changes. Figure 5 illustrates
the evolution of the manipulated variable Fr, where the
nonlinear behavior of the controller can be seen in the
gain.

Case 2 – �E left constant

The concentration of reagent A is considered not
measurable and the value of �E is calculated with an
estimated constant value Ca0. As the controller does not
have an embedded integral action, steady-state errors
arise, as shown in Fig. 6.

Figure 4. Case 1 – �E is calculated – evolution of Tl,p with N = 15 and
λ = 0.8.

Figure 5. Case 1 – �E is calculated – evolution of the manipulated
variable Fr.
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Figure 6. Case 2 – �E is left constant – evolution of Tl,p. A steady-state
error appears.

Figure 7. Case 3 – �E is left constant – a cascaded
PID + PPC are used.

Figure 8. Case 3 – evolution of Tl,p and the set point of the
PID.

Figure 9. Case 3 – output of the PID controller (linear).

Case 3 – �E is left constant and a PID
controller is added

As a first approach to eliminate the steady-state error,
a PID controller is added in cascade with the PPC
controller, as shown in Fig. 7. It is seen from Fig. 8
that the PID controller compensates steady-state errors,
being the output of the PID linear (Fig. 9). The PPC
controller takes into account the nonlinearities of the
process, as revealed in Fig. 10. The PID controller

Figure 10. Case 3 – output of the PPC controller (nonlinear).

tuning parameters are Kp = 0.9; Ti = 6 min and Td =
1.25 min. Even though the performance of the com-
bined PID + PPC controllers is quite good, the main
drawback of this approach is the necessity of tuning
two controllers. This tuning required several tests in
order to obtain a good response.

Case 4 – �E is estimated

The value of �E is estimated using Eqns (19) and (20).
Figure 11 shows the evolution of the temperature in the
reactor in this case and Fig. 12 illustrates the evolution
of the manipulated variable. As can be seen, the process
follows the set point in a uniform manner in spite of
the changes in the operating point. Figure 13 depicts
the computation time of the PPC controller, which
has a peak value of 14.6 µs and a mean time of
6.61 µs. In addition to the set point changes, Figs 14
and 15 show the disturbance rejection of the controller
when the following disturbances are considered (the
values indicate the applied increments/decrements to the
current value and the time):

Tr0 −−→ +5 ◦C at t = 50 and Tr0

−−→ −10 ◦C at t = 100

Tl0 −−→ +5 ◦C at t = 200 and Tl0

−−→ −10 ◦C at t = 300

Fl −−→ +0.05 l/ min at t = 400 and Fl
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−−→ −0.1 l/ min at t = 500

Ca0 −−→ +0.2 kg mol/m3 at t = 600 and Ca0

−−→ −0.4 kg mol/m3 at t = 700

Figure 11. Case 4 – �E is estimated – evolution of Tl,p.

Figure 12. Case 4 – Output of the PPC controller
(nonlinear).

Again, the controller has a good response when
measured and unmeasured disturbances are applied.
Figure 16 shows how the PPC controller with an esti-
mator can compensate a model mismatch. In this case,
the heat transmission coefficient (U ) has a difference
of 15% between the value used in the PPC controller
and the value used in the simulation of the continu-
ous model. The estimator here has an implicit integral
action which not only compensates the disturbances but
also compensates a significant model mismatch.

Comparisons with other controllers

In addition, for the sake of comparison, a full nonlinear
predictive controller was applied to the same process
considering the same manipulated and controlled vari-
ables. The NMPC controller uses the process model
Eqn (5)–(9) as the internal one and computes the con-
trol action in the usual manner minimizing a quadratic
function of the prediction errors. An SQP algorithm and
a sequential approach were used in the optimization.

In order to compare the performance obtained with
the PPC nonlinear controller, some simulations results
are presented below. First, a discrete PID controller is
used to control the temperature of the reactor and then
a regular NMPC controller is used for the same task.

Figure 13. Case 4 – computation time (µs); max time = 14.6 µs, mean
time = 6.61 µs.

Figure 14. Case 4 – �E is estimated – disturbance rejection – evolution
of Tl,p.
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Figure 15. Case 4 – �E is estimated – disturbance rejection – evolution of
Fr.

Figure 16. Case 4 – compensation of a model mismatch in the heat
transmission (15%).

Figure 17. Evolution of Tl with a discrete PID controller.

Figure 18. Output of the discrete PID controller.

With a PID controller
A discrete incremental PID controller is used to control
Tl. The PID controller used has the proportional and
integral terms as a function of the error, and the
derivative term as a function of the controlled (or
process) variable. Besides, the internal calculations are
carried out in percent of the range, as industrial PID

controllers do. The parameters of the PID controller are:
Kp = −0.1, Ti = 16 s and Td = 4 s. Figure 17 displays
the time evolution of the reactor temperature Tl when
the set point of the controller changes and Fig. 18 shows
the evolution of the manipulated variable Fr in this
case. As can be observed, the PID controller is slower
than the PPC controller and it has a bigger overshoot.

 2009 Curtin University of Technology and John Wiley & Sons, Ltd. Asia-Pac. J. Chem. Eng. 2009; 4: 858–869
DOI: 10.1002/apj



Asia-Pacific Journal of Chemical Engineering NONLINEAR PARAMETRIC PREDICTIVE CONTROL 867

Figure 19. PID controller – disturbance rejection – evolution of Tl.

Figure 20. PID controller – disturbance rejection – evolution of Fr.

Besides, the manipulated variable Fr goes to saturation
in some parts of the experiment. The steady-state is
reached in 50 ∼ 60 min in this case, while the PPC
controller reaches the same point in about 20 ∼ 30 min.
Figures 19 and 20 present the PID controller response
against the same disturbances mentioned in the section
on Case 4 – �E Is Estimated.

With a NMPC controller
In this case an NMPC controller using as internal model
the nonlinear equations (5)–(9) and a prediction error
minimization criterion is used. The cost function J
penalizes deviations of the predicted controlled output
y(t) from a reference trajectory r(t), which for the SISO
case, will lead to:

J =
∫ tk+tp

tk

[ŷ(τ) − r(τ)]2dτ (21)

The manipulated variable is discretized over the pre-
diction horizon tp = Np × Ts, where Ts is the sam-
pling interval of the controller. Controls are assumed to
have a piece-wise constant form such as u(t) = u(k),
kTs ≤ t ≤ (k + 1)Ts and u(k) = u(Nu − 1), k ≥ Nu .

The dynamic optimization problem associated to the
NMPC controller is solved keeping the continuous
formulation of the model process Eqns (5)–(9) used to
calculate the predictions ŷ needed for the minimization
of Eqn (21) and the value of J , by means of a dynamic
simulator (Fig. 21).

An NLP optimization problem must be solved on-line
at each sampling period to generate the control moves.
An SQP algorithm is used for the optimization.

Figure 21. NMPC – continuous implementation framework.

The successful implementation of the mentioned
control technique requires the knowledge of the current
state of the nonlinear system at each time interval.
In order to reconstruct the present state of Ca0 from
the measured outputs, the receding horizon estimation
(RHE) approach has been adopted, maintaining the
same nonlinear model as in the controller.

Figure 22 displays the time evolution of the reactor
temperature when the set point of the controller changes
and Fig. 23 shows the evolution of the manipulated
variable Fr in this case. In order to facilitate the compar-
ison with the PPC controller, the same prediction and
control horizon were chosen. The response is similar
to the one obtained with the PPC controller in Fig. 11.
The simulation was performed in a 1.83 GHz computer
with 1 GB of RAM and the time required to solve the
predictive control problem every sampling time is repre-
sented in Fig. 24. Also, Figs 25 and 26 show the NMPC
controller response against the same disturbances men-
tioned in the section on Case 4 – �E Is Estimated.

The response is better in the NMPC case as might be
expected: The temperature reacts quicker so that most of
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Figure 22. NMPC with an internal first principles model – evolution
of Tl,p.

Figure 23. NMPC with an internal first principles model – evolution
of Fr.

Figure 24. Computation time (s); max time = 2 s, mean
time = 0.29 s.

the disturbances are reduced a bit faster. Nevertheless,
because the PPC controller incorporates a nonlinear
model of the process capturing in this way its main non-
linearities, the quality of the response of the PPC is sim-
ilar to the one obtained with the NMPC. The main dif-
ference is observed in the computation time which is in
the order of a few microseconds (mean time = 6.61 µs)
in the PPC controller versus a fraction of a second in
the conventional NMPC controller case (mean time =
0.29 s). So, the mean time used to compute the con-
ventional NMPC algorithm is 50 000 times longer than
the PPC. If we combine the simplicity of implementa-
tion, tuning, and computation speed, the PPC controller
is appealing for industrial environments, especially for
applications where a commercial PLC or DCS is used.

CONCLUSIONS

In this paper, a reduced order PPC for a CSTR was
developed. Its main characteristics are its nonlinear
nature based on a first principles model. It uses a
reduced order model of the process and combines the
simplicity of a linear controller with the essential non-
linearities of the process, providing a good alternative
for ‘low cost’ NMPC, easy to be implemented in a com-
mercial PLC or DCS.

Results for different cases obtained in a simulated
environment have been shown. The experiments were
carried out modifying the set point and introducing
changes in different variables in order to simulate
measured and unmeasured disturbances. Due to the lack
of integral action in the controller, steady-state errors
that are not compensated arose. Two of the possible
solutions to this problem were shown: a cascaded PID
controller and an estimator for the reaction heat. In both
cases steady-state errors and model mismatch could be
compensated efficiently.

The controller demonstrates a remarkable capacity to
deal with the process nonlinearities. As an advantage,
besides its simplicity and speed, the tuning is easy to
achieve and it does not need retuning after the desired
response is obtained, adapting itself to the different
operating points. The tuning parameters (N , λ) and the
filter parameter (α) are used to set the response behavior
of the system.

As a disadvantage, this kind of controllers needs a
special formulation for each case. The controller takes
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Figure 25. NMPC with an internal first principles model – disturbance
rejection – evolution of Tl,p.

Figure 26. NMPC with an internal first principles model – disturbance
rejection – evolution of Fr.

advantage of the structure of the first principles model
of this kind of processes. Extensions to other typical
process systems will be investigated in the future, as
well as a MIMO controller of this process, in order
to control Tl and the concentration of Ca in the final
product, if good measurements of Ca could be obtained
on-line.

NOMENCLATURE

ρl Density of the liquid in the tank
Cpl Specific heat of the liquid in the tank
ρr Density of the refrigerant liquid

Cpr Specific heat of the refrigerant liquid
U Heat transmission global coefficient
S Heat interchange surface
Vl Tank volume
Vr Jacket volume
Ca A concentration
Cb B concentration
Ea Activation energy
R Universal constant of the gases
H Reaction heat
A Reaction rate coefficient

Tr0 Input temperature of the refrigerant liquid
Tl0 Input temperature of the reagent
Ca0 Input concentration of the reagent
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