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Abstract 
 

Numerous efforts have addressed the problem of defining the fundamental 
architectural building blocks and methods for modelling software architectures in 
dynamic mobile environments. However, there is a lack of tools for documenting 
the evolution of the products generated during the design of software architectures 
for mobile systems. Based on a generic versioning administration scheme, a 
model to capture and manage the products of a software architecture design 
process is proposed placing the focus on mobility concerns. This model follows an 
operational approach, where design decisions are represented as architectural 
operations that are captured when they are applied during a design project. The 
capture of this information enables the tracing of such a design process and its 
resulting products. 
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1 Introduction 

During the last few years, we have witnessed an exceptional technological revolution. This technological 
explosion has made it possible the development of complex mobile applications, which have evolved faster 
and faster (Roman et al., 2000). These new applications must be adaptable to technological changes, so they 
need to be flexible and extensible enough to support new features or to change the existing ones. As a means 
of controlling such a complexity in systems construction and evolution, software architecture has emerged 
(Medvidovic et al., 2003; Mikic-Rakic et al., 2008). Mainly, mobility constitutes an additional factor of 
complexity because in a mobile computing system, components may move across a network of locations, 
changing the environment in which computations need to be performed. Numerous efforts have addressed the 
problem of defining the fundamental architectural building blocks and methods for modelling software 
architectures in dynamic mobile environments (Ali et al., 2008; Lopes et al., 2002; Medvidovic and Mikic-
Rakic, 2001; Schäfer, 2006). However, there is a lack of systematic methods and techniques to assist the 
designer in developing, documenting and evolving mobile software architectures. Important contributions 
recognize that software architecture is the result of architectural design decisions made over time (Tyree and 
Akerman, 2005; Kruchten et al., 2006; Jansen et al., 2007) and its documentation should not only describe the 
architecture of a system, but also “why” that architecture looks the way it does (Jansen et al., 2008). 
Therefore, the software architecture design decisions underlying the architecture provide that “why” (Jansen 
et al., 2008). If the knowledge concerning the domain analysis, the patterns used, the design options 
evaluated, and the decisions made, is not captured, it is lost and thus unavailable to support subsequent 
decisions (Ali Babar and Gorton, 2007). The design decisions captured and traced can be used as a memory 
aid for those who participate in making decisions and as a source of information for stakeholders when they 
need it (Burge et al., 2008). All these concepts about software architecture design rationale are strictly 
applicable and necessary when the architectural design is focused on mobile systems.  

Regarding the administration of the products of a design process and their evolution, software configuration 
management systems (SCM) may provide such assistance (Westfechtel and Conradi, 2003). As Westfechtel 
(1999) has pointed out, SCM systems have proved to be an indispensable aid in organizing the products 
generated along big development efforts. However, their underlying data models to represent versions are 
very simple. But, more importantly, SCM systems have been created just to focus on the products of 
development processes, neglecting the representation of the activities that have generated them, the decisions 
that have been taken, the people and computerized tools that have performed such activities and the rationale 
underlying the adopted decisions, etc. Thus, they do not satisfy the need to capture the design knowledge. 
Once a design stage is complete, what remains is mainly the mobile software architecture but there is no 
explicit representation of how this product was obtained. Consequently, to overcome such troubles, it is 
necessary to recognize the design activities that are carried out to evolve from the initial design specifications 
to the final architecture; at the same time, it is crucial to identify the design decisions associated with each 
activity, along with their corresponding assumptions, simplifications, and underlying rationale. In fact, it is 
this design experts’ knowledge that has to become explicit. Particularly, given that software architectures are 
centred on non-functional requirements of a complex system, new tools are needed, which allow the designers 
to set the correspondences between such requirements and the proposed architecture of a mobile system. 
Therefore, the key issue this contribution addresses is a model to capture and trace a whole software 
architecture design process of a mobile application, from the requirements stage to the last version of the 
designed architecture. The representation of evolution in architectural configurations during system runtime, 
as it is considered by Georgas et al. (2005), is not within the scope of this paper. 

The proposed approach follows an operational perspective, where the design decisions are represented as 
design operations applied to the several versions of the products generated during the design process. The 
proposal constitutes a means of documenting the design process, by capturing each executed operation when 
the design is carried out, and maintaining the design history. This feature establishes a distinction from the 
proposal of Jansen et al. (2008), which considers capturing the design decisions after completing (part of) the 
design process. Additionally, the model is flexible enough to be fitted into mobile applications domain. It can 
easily incorporate mobility related concepts, such as stationary or mobile, and logical or physical components. 
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This article is organized as follows: Section 2 outlines the generic versioning scheme on which the model is 
based. It is not intended for a specific domain; on the contrary, it could be applied to different domains such 
as software (Roldan et al., 2006) and chemical engineering (Gonnet et al., 2007). Then, that section defines 
suitable extensions to make it applicable to the software architecture design process of mobile systems. 
Therefore, the model is outlined in an object-oriented approach to provide the foundations for the 
development of a computational tool that enables the capture and tracing of a design process; particularly, the 
definition of the specific concepts and operations for mobility domain are included. The concepts and 
operations applicable to this kind of systems are derived from ADLs for mobility and a software architecture 
method. Afterwards, Section 3 presents a case study of a mobile sales system and Section 4 introduces a 
prototype to validate our approach. Finally, this paper ends in Section 5 emphasizing the main contributions 
of the proposed model. 

2 A model to capture and trace design processes 

The underlying versioning scheme of our proposal considers a design process as a sequence of activities that 
operate on the products of the design process, called design objects. In particular, this contribution focused on 
the software architecture design process (SADP). Therefore, design objects can be the building blocks of the 
artefact being designed (i.e. the physical components and connectors on which the logical components and 
connectors are deployed), and the specifications to be met (i.e. quality requirements such as availability or 
performance). Consequently, these objects evolve as the SADP takes place, giving rise to several versions that 
must be kept. They are represented in two levels, the repository and the versions level. The repository level 
keeps a unique entity for each design object that has been created and/or modified due to the model evolution 
during a design project. This object is called versionable object (Fig. 1). Furthermore, relationships among the 
different versionable objects are maintained in the repository (Association, Fig. 1). On the other hand, the 
versions level keeps the different versions of each design object. These are called object versions (Fig. 1). The 
relationship between a versionable object and its object versions is represented by the version association.  

 
Fig. 1. Process version administration model (PVAM). 
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Therefore, a given design object keeps a unique instance in the repository and all the versions it assumes in 
the different model versions belong to the versions level. At a given stage on the execution of a design project, 
the states assumed by the set of relevant design objects supply a snapshot of the state of SADP, which are 
denominated model version. According to the proposed model, a new model version is generated by applying 
a sequence of operations (φ) on a predecessor model version. Therefore, the representation scheme of model 
versions has a tree structure, where each model version is a node and the root is the initial model version. 
Given the fact that the model evolution is posed as a history made up of discrete situations, Gonnet et al. 
(2007) adopt the situation calculus for modelling such version generation process. They define a belong(v,m) 
predicate using the format of successor state axioms, which allows to know the object versions (v) that belong 
to a model version (m). This makes the reconstruction of a model version mi+1 possible by applying all 
operation sequences from the initial model version m0. The whole formal representation of this scheme is not 
within the scope of this paper and is available in Gonnet et al. (2007). The primitive operations that were 
proposed in such a versioning scheme to represent the transformation of model versions are add, delete, and 
modify. By using the add(v) operation, an object version v that did not exist in a previous model version can 
be incorporated into a successor model version. Conversely, the delete(v) operation eliminates an object 
version v that existed in the previous model version. In addition, if a design object has a version vp, the 
modify(vp, vs) operation creates a new version vs of it. 

Each operation applied to a model version is captured by means of VersionHistory relationships (Fig. 1). They 
keep references among the object versions on which the operation was applied and the ones arising as result 
of its execution. Additionally, VersionHistory instances are aggregated in a ModelHistory instance, to 
represent the sequence of operations that caused a model evolution. 

Fig. 2 illustrates the described schema for representing the evolution of model versions, regarding a fragment 
of a software architecture design process for a mobile application. Further details of the design process of a 
similar mobile system will be provided in Section 3. The example presents two model versions where the 
model version mq is generated from the model version mk by the application of a sequence of operations φq. In 
this case, design objects represent instances of concepts obtained from architectural description languages 
such as Con Moto (Schäfer, 2006); and the primitive operations have been extended by operations like 
applyThreeLayers (explained in Section 2.2). This operation applies a particular case of Layers pattern 
(Buschmann et al., 1996), which refines a logical component into three logical components arranged in layers. 
In this case, an applyThreeLayers operation belongs to the sequence of operations φq. The intention of the 
architect is to split the original component responsibilities into three groups, following a configuration where 
the lower layers offer services to the upper ones. Therefore, the ServerSideApp component is refined in 
ServerApplicationLayer, ServerMiddlewareLayer, and ServerDataAccessLayer components, with their ports 
and connections. Fig. 2 presents a partial view of repository, versions, and inferred model levels. The inferred 
models level is obtained from views produced by the versions level on the repository. A SalesSytem system 
and an ApplicationServer physical stationary component belong to both inferred model versions. At 
repository level, ApplicationServer is represented by ApplicationServervo, an instance of versionable object 
(the instances of SalesSystem are not shown for simplicity). ApplicationServervo is linked with the versionable 
objects that represent ServerSideApp, ServerApplicationLayer, ServerMiddlewareLayer, and 
ServerDataAccessLayer components (ServerSideAppvo, ServerApplicationLayervo, ServerMiddlewareLayervo, 
and ServerDataAccessLayervo versionable objects, respectively). As Fig. 2 shows, ApplicationServervo has an 
object version ApplicationServerv1 that belongs to the model version mk and mq. In addition, ServerSideApp 
component only belongs to the k inferred model version. At versions level, this logical stationary component 
has an object version ServerSideAppv1, which belongs to the model version mk but it does not belong to mq. As 
a consequence of applyThreeLayers execution, ServerSideAppv1 was deleted from the successor model 
version (mq) and the new object versions representing the three layers were added to mq 
(ServerApplicationLayerv1, ServerMiddlewareLayerv1, and ServerDataAccessLayerv1). 

The versioning scheme captures the applied sequence of operations, by means of an instance of ModelHistory. 
This instance links the previous model version (mk in Fig. 2) with the successor model version (mq in Fig. 2). 
Furthermore, the VersionHistory instances, that represent each applied individual operation, are part of the 
ModelHistory instance. Each VersionHistory instance keeps not only what the executed operation was, but 
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also what the predecessor object versions (ServerSideAppv1 in Fig. 2) and the successor object versions 
(results) were. 

 

Fig. 2. A fragment of a design process captured using PVAM. 

2.1 The Domain Model 

The Domain Package (Fig. 1) enables the definition of concepts of software architectures domain of mobile 
systems, whose instances are going to be captured (such as logical stationary component and logical 
connector in Fig. 2). Therefore, for each design object type, an instance of ModellingConcept must be 
generated. Additionally, its properties are specified by a set of instances of Property class. Furthermore, the 
relationships among those concepts are instantiated from DomainRelationship. In Fig. 3, we illustrate a 
software architecture domain model, which includes all the concepts the architect manages. A first set of 
modelling concepts that defines the domain model proposed in this paper arises from the software architecture 
design method that the architect adopts. In this case, it is assumed that the architect prefers the ADD method 
(Bass et al., 2003). The ADD method is based on a decomposition process where architectural patterns (or 
styles) are chosen at each stage to fulfil a set of quality scenarios. Then, component and connector types 
provided by architectural patterns are instantiated and functionality (responsibilities) is allocated to them. 
ADD’s input is a set of requirements (functional and quality requirements). Quality requirements are 
expressed as a set of system specific quality scenarios, whereas functional requirements are translated into a 
set of responsibilities. Quality scenarios and responsibilities can be delegated to other components when the 
original component is refined. When a method iteration is finished, the designer verifies how well the 
architectural design achieves the scenarios and sets an assessment. Given that ADD proposes various types of 
views to represent the software architecture under design, the architect chooses Con Moto (Schäfer, 2006) as 
the architectural description language that provides the notation to represent the software architecture of an 
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application with mobility features using a behavioural view, together with a structural and deployment view. 
In this way, regarding such an ADL, a new set of concepts are identified and included in the domain model.  

 

Fig. 3. A Domain Model. 

Con Moto provides the building blocks to create an architectural model that reflex the physical structure of a 
mobile system. They are physical components (such as devices, servers and workstations) and physical 
connectors (meaning the communication links that form the network topology). Physical components act as 
the execution environment for logical components. Their computational resources such as cpu and, memory 
can be expressed as properties. Also, regarding physical connectors, properties like bandwidth and protocol 
can be indicated. In addition, Con Moto provides the elements to model in detail the logical structure of a 
system, which comprises information about software components (represented by logical components), and 
their dependencies or interactions (represented by logical connectors). The deployment of a logical 
component on a physical component is expressed in Fig. 3 by the relationship hostedByRel. Physical or logical 
components which are able to change their location need to be represented in the domain model; therefore, the 
domain model defines a second hierarchy level of components type. Regarding physical components, the 
domain includes physicalStationaryComponent and physicalMobileComponent modelling concepts. The first 
one comprises physical units such as servers and workstations, while the second one comprises mobile 
devices (such as handhelds and cellular telephones). Considering logical components, new modelling 
concepts are proposed: logicalStationaryComponent and logicalMobileComponent. The first one represents 
classical software components that run in a given physical host, and the second one comprises components 
like mobile agents and components replicated in more than one host; these ones are capable of passing the 
control of an execution to a replica situated in another physical location, and resuming the execution in the 
last point. To represent this potential behaviour in an architectural design, the domain model includes a 
transientExecutionLocationRel modelling concept, which sets a link between a given logical mobile 
component and another component. This could express two situations: i) the first component is able to 
migrate to the second one in order to run there, or ii) a replica of the first component might exist on the 
second one, which could take the control of an execution. Mode and order properties indicate which kind of 
mobility is represented and the order in a list of possible locations to which a component could move (Field et 
al., 2006; Lima et al., 2004). 

In order to allow communication, physical as well as logical components have ports, which permit the 
communication of processes through connectors. Con Moto makes possible to describe an architecture where 
a logical connector is embedded in a given physical connector. In other words, it makes possible to represent 
that two logical components deployed on different physical components can communicate between 
themselves using a logical connector. This logical connector is canalized by a physical connector set between 
the two physical components. This architectural representation is achieved by canalizedByRel concept, which 
is included in the domain model (Fig. 3). In spite of not being considered by Con Moto, we have included the 
role modelling concept in order to make consistent the domain model with other ADLs that are not specific 
for mobility, like ACME (Garlan et al., 2000). A role is simply an interface of a connector. Thus, the way of 
linking components and connectors is by attaching a port with a role (attachment association in Fig. 3). 
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It should be noted that hostedByRel, transientExecutionLocationRel, and canalizedByRel could be modelled 
as domain relationships, as it was done in Fig. 2, where hostedByRel-type links between components were 
represented as associations (instances of domain relationships). However, in Fig. 3, they have been reified as 
modelling concepts to enable the capture of their versions.  

The defined domain model provides enough concepts to model the artefacts of a software architecture design 
process of a mobile system, since it covers the main techniques or paradigms of code mobility (also called as 
code migration). It is straightforward to represent a potential case of “remote evaluation” (Schäfer, 2006; 
Bieszczad and White, 2007), where a program (a logicalMobileComponent-type object, lmc1) could be 
transferred from a node (physicalStationaryComponent-type object, psc1) to another (psc2) to be executed 
there. In this case of mobility, the first node is in control of the operation and the results are returned to it. 
This fact can be represented in an architectural design by means of a hostedByRel-type object between the 
component psc1 and lmc1, which indicates that lmc1 has been originally deployed to be executed in psc1. 
Depending on several factors (such as processing constraints), lmc1 is able to move to another location. This 
possible situation could be represented in a model version by adding a transientExecutionLocation-type 
object, tel1, to link lmc1 with a different physicalStationaryComponent-type object, psc2. In this particular 
case, the mode property value of tel1 object must indicate that it is a “remote evaluation” case of mobility, and 
the order is 1. If the mobile component is intended to migrate to more than one component, additional 
transientExecutionLocation-type objects must be added to link each possible destination component, 
indicating the order (order property) to follow during the migration process (with consecutive numbers).  

Additionally, the proposed design domain (Fig. 3) supports the representation of “code-on-demand”. In this 
case, a program and its necessary data (a logicalMobileComponent-type object, lmc1) is transferred to a node 
(a physicalStationaryComponent-type object, psc1), which is the component that controls the operation. 
Similar to the previous case, an explicit transientExecutionLocation-type relationship object, tel1, links psc1 
with lmc1. In this particular case, the value of mode property of tel1 version must indicate that it is a “code-
on-demand” case of mobility. 

Another kind of mobility that can be represented using the concepts included in the design domain (Fig. 3) is 
“mobile agents”. By means of this technique, a mobile agent or program (logicalMobileComponent-type 
object) is transferred to a new node (physicalStationaryComponent-type object) to be executed there, being 
the results returned to the former location of the agent. In this case, given the agent autonomy, the agent itself 
controls the operation. In this situation, the value of mode property of the transientExecutionLocation object 
version indicates that “mobile agent” is the case of mobility employed. Additionally, some responsibility-type 
object versions could be linked to the logicalMobileComponent-type object that represents the mobile agent. 
Examples of responsibilities might be learning, cooperating, moving to a new location, and modifying its 
behaviour. 

The proposed domain model (domain package, Fig. 1) is flexible enough to define a design domain suitable 
for the architect’s needs and preferences. The domain package is understood as a language that allows us to 
define the various design object types with the properties and relationships between them. In this section, the 
domain model is instantiated with concepts of ADD and Con Moto. However, it could be instantiated with the 
concepts defined by any method and/or ADL. For example, if Ambient-PRISMA (Ali et al., 2006; Ali et al., 
2005) is considered, the ModellingConcept class must be instantiated to represent the Ambient-PRISMA 
concepts defined in Ali et al. (2005), such as “Ambient” and “Aspect”. Also, specific relationships defined by  
Ambient-PRISMA can be instantiated from DomainRelationship class. An example is “is-located-in” 
relationship, which allows linking concepts like Component and Ambient. 
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2.2 The Operations Model 

The primitive operations add, delete, and modify provided by the versioning scheme to represent the 
transformation of model versions are not enough for representing the complex activities of designing the 
architecture of mobile systems. To make possible the extension of the available set of operations with 
operations suitable for such design domain, an operations model is proposed. To provide the foundations for 
computational tools, an object-oriented operations model is proposed, which is flexible enough to specify the 
domain operations to be used by the architects. 

Therefore, a Command abstract class is introduced in the Operations package illustrated in Fig. 4. An 
operation is defined as a macro command that simply executes a sequence of commands (see in Fig. 4 
Operation class represented as subclass of MacroCommand abstract class). The arguments and body of an 
operation must be defined to specify it. The commands of the body can be primitives (such as add, delete, or 
modify), iteration commands, variable assignment commands, or other existent operations. Iteration is a 
predefined command with a repetitive behaviour. It is specialized in Loop command, which executes a body 
(a sequence of ordered commands) for each element in a collection, and in Next command, which accesses 
sequentially to each element of a collection. Another predefined command is VariableAssignment, which 
represents the assignment of certain value to a variable with a given type. It should be noted that the 
modelling concept over which an operation is applied must be explicitly indicated. 

 

Fig. 4. Operations Package. 

Furthermore, every command has one or more data typed arguments, which are a kind of variable. Also, a 
variable has a type and can be declared and used in the body of an operation. DataType class generalizes the 
available types: PrimitiveDataType, CollectionType, and ModellingConcept. The interface RunTimeValue 
represents the run-time values assumed by a variable or argument during the execution of an operation, which 
can be realized by literals, object versions, modelling concepts, or property values (Literal, ObjectVersion, 
ModellingConcept, PropertyValue in Fig. 4). 

Many possible operations can be instantiated from the operations model. In a previous work (Roldán et al., 
2006) several operations have been specified. They range from basic ones, like addComponent, 
deleteComponent, and addScenario, to operations that apply a style or tactic, like applyClientServer and 
applyMVC. Although these operations are valid for any architectural domain, this contribution focuses on 
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specific operations to design the software architecture of mobile applications. Table 1 classifies a set of 
operations related to structural concepts in three different levels of complexity:  

i) Basic Operations: operations that allow to create and delete basic design objects (like physical or 
logical components and connectors);  

ii) Special Operations: more complex operations that involve object refinement or delegation;  

iii) ApplyPattern Operations: high level operations that generate a new set of design objects, which have 
a configuration based on an architectural pattern; in some cases, they do not modify the structure of the 
architectural model, but affect some properties of design objects. 

Table 1. Basic, Special, and ApplyPatterns Operations 

Basic Operations 
addPhysicalStationaryComponent deletePhysicalStationaryComponent  
addPhysicalMobileComponent deletePhysicalMobileComponent  
addLogicalStationaryComponent deleteLogicalStationaryComponent  
addLogicalMobileComponent deleteLogicalMobileComponent  
addPhysicalConnector deletePhysicalConnector  
addLogicalConnector deleteLogicalConnector  
addHostedByRel deleteHostedByRel  
addTransientExecutionLocationRel deleteTransientExecutionLocationRel  
addCanalisedRel deleteCanalisedRel  
addQualityRequirement deleteQualityRequirement  
addFunctionalRequirement deleteFunctionalRequirement  
addPort deletePort  
addRole deleteRole  
addProperty deleteProperty  
addResponsibility deleteResponsibility  
addScenario deleteScenario  
   
Special Operations 
setPhysicalConnector delegateResponsibility 

setLogicalConnector delegateScenario 

refineComponent verifyScenario 

refineResponsibility setAttachment  

   

ApplyPatterns Operations 
applyClientServer applySynchronization  
applyMVC applyInformationBroker  
applyThreeLayers applyLogicalMobility  
   

Fig. 5 presents functional specifications for some of the basic operations defined in Table 1. The rest of the 
operations are defined in a similar way, as they are defined in terms of primitive operations like add(c), and 
non-primitive ones, like addPort(c, p). For example, the addPhysicalMobileComponent(s, pc, lports, lresps, 
attr) operation allows adding a physical mobile component pc to a system s. As it can be seen in Fig. 5, this 
operation is carried out by a series of commands. First, a version of a physical mobile component c is added 
(add(c)). After that, a set of responsibilities (specified by the lresp list argument) and ports (detailed by the 
lports list argument) are inserted. The last argument of the addPhysicalMobileComponent operation is an 
ordered list of attribute values, such as processor, available memory, maximum available storage and a 
number of instances in the system. It should be taken into account that the addition of a new element into a 
model version means the instantiation of a given modelling concept (which is part of the domain model in 
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Fig. 3). Thus, this fact implies the creation of a versionable object at repository level and an object version at 
version level. Also, these design objects are associated to others at repository level, by including an instance 
of association (Fig. 1) between them. In functional specifications of operations addRelationship command 
express how these associations have to be accomplished. 

As it can be observed, functional specifications give an outline of how the operations may be defined using a 
computational tool. The employed syntax should be recognized by a computational tool based on the 
proposed operations model (Fig. 4). Section 4 introduces an example of how TracED, a prototype that 
implements the proposed operations model, allows the definition of these operations likeway. 

addQualityRequirement(s, qr) 
add(qr) 
addRelationship(s, qr) 
 
addScenario(qr, sce) 
add(sce) 
addRelationship(qr, sce) 
 
addPhysicalMobileComponent(s, pc, lports, 
lresps, {cpu-val, mem-val, storage-val, 
instantes-val}) 
add(pc, {cpu-val, mem-val, storage-val, 
instances-val}) 
for each p in lports 
   addPort(pc, p) 
end for 
for each r in lresps 
   addResponsibility(c,r) 
end for 
addRelationship(s, pc) 
 
 
addPhysicalStationaryComponent(s, pc, lports, 
lresps, {cpu-val, mem-val, storage-val}) 
add(pc, {cpu-val, mem-val, storage-val}) 
for each p in lports 
   addPort(pc, p) 
end for 
for each r in lresps 
   addResponsibility(c,r) 
end for 
addRelationship(s, pc) 
 
 
 
addLogicalStationaryComponent(cont, c, lports, 
lresps) 
add(c) 
for each p in lports 
   addPort(pc, p) 
end for 
for each r in lresps 
   addResponsibility(c,r) 
end for 
addHostedByRel(cont,  c) 
 
 
 

addLogicalMobileComponent(cont, c, lports, 
lresps, type) 
add(c) 
for each p in lports 
   addPort(pc, p) 
end for 
for each r in lresps 
   addResponsibility(c,r) 
end for 
addTransientExecutionLocationRel(cont-c, cont,  
c , {type, 0}) 
 
addPhysicalConnector(pc, role1, role2) 
add(pc) 
addRole(role1) 
addRole(role2) 
addRelationship(pc, role1) 
addRelationship(pc, role2) 
 
addLogicalConnector(lc, role1, role2, pcList) 
add(lc) 
addRole(role1) 
addRole(role2) 
addRelationship(lc, role1) 
addRelationship(lc, role2) 
for each pc in pcList 
   addChannelRel(rel, lc, pc) 
end for 
 
addHostedByRel(c1, c2) 
add(c1c2) 
addRelationship(c1c2, c1) 
addRelationship(c1c2, c2) 
 
addTransientExecutionLocationRel(tel, cont,  c, 
attributes) 
add(tel, attributes) // attributes order: type, 
locationOrder 
addRelationship(tel, cont) 
addRelationship(tel, c) 
 
addCanalisedByRel(r, lcnn, pcnn) 
add(r) 
addRelationship(r, lcnn) 
addRelationship(r, pcnn) 
 

 

Fig. 5. Specification of some basic operations. 

Similarly, it is possible the definition of special operations (some examples are shown in Fig. 6). These 
operations increase their abstraction level, so they need auxiliary functions to be specified. Functions do not 
constitute architectural operations. They are mainly interactive functions that require the intervention of the 
architect. For example the operation selectPort(c) asks the user to choose one port of a ports list, to do some 
action with the selected one. Another sort of auxiliary functions are “get” functions. An example is 
getResponsibilities(c), which collects all the responsibility-type object versions associated with a component c 
in a specific model version. Such a function is part of an special operation called delegateResponsibility(c1, 
c2). It enables to delegate a responsibility of component c1 to component c2. In a similar way, the operation 
delegateScenario proceeds. As part of this group, the architect has also defined setLogicalConnector and 
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setPhysicalConnector, which permit not only to create a (physical or logical) connector object version, but 
also to set the attachment with the components communicated by it. In addition, setLogicalConnector 
includes a list of physical connectors as the last argument (pcnnList), which will act as the physical channels 
for the logical connections. 

 
setPhysicalConnector(pc, comp1, comp2) 
addPhysicalConnector(pc, pc-role1, pc-role2) 
p1 := selectPort(comp1) 
p2 := selectPort(comp2) 
setAttachment(att1, pc-role1, p1) 
setAttachment(att2, pc-role2, p2) 
 
setLogicalConnector(cnn, c1, c2, pcnnList) 
addLogicalConnector(cnn, [cnn-r1, cnn-r2], 
pcnnList) 
c1-p := selectPort(c1) 
c2-p := selectPort(c2) 
setAttachment(cnn-r1, c1-p) 
setAttachment(cnn-r2, c2-p) 
 
setAttachment(role, port) 
addRelationship(role, port) 
 

delegateResponsibility(c1, c2) 
lResps = getResponsibility(c1) 
for each r in lResps 
  if (delegate?(c2, r)) 
      addRelationship(c2, r) 
  end if    
end for 
 
 
 

delegateScenario(c1, c2) 
lScens = getScenario(c1) 
for each s in lScens 
  if (delegate?(c2, s)) 
    addRelationship(c2, s) 
  end if    
end for 
 
 

Fig. 6. Specification of some special operations. 

ApplyPattern operations encapsulate well known solutions for recurring design problems that arises in 
specific design situations. Given that patterns are a means of documenting software architectures, the 
execution of an applyPattern operation describes the vision the architect has in mind when designing a 
software system (Buschmann et al., 1996). These operations apply an architectural pattern either refining a 
component object version (and therefore, deleting this original component) into a new set of components and 
connectors that are instantiated from a pre-existing style, or just adding a set of elements (i.e.: component and 
connectors with their ports, responsibilities and roles) in order to create a new architectural configuration. Due 
to the very high level of abstraction of applyPattern operations, they need to interact with the designer asking 
about responsibilities and scenarios delegation, as well as how to attach connectors between external and new 
components.  

In Fig. 7, some operations that involve the application of architectural pattern are specified. The first one, 
named applyThreeLayers, contains the semantic of the Layers pattern (Buschmann et al., 1996). It 
decomposes an application into groups of subtasks in which each group of subtasks is at a particular level of 
abstraction. In this case the operation is specified for three layers. This operation can be executed by an 
architect during a software architecture design process, when his / her design decision is to create different 
layers to deal with a specific aspect of the application and uses the services of the next lower layer. This 
operation specified in Fig. 7 requires four arguments: the first argument is the component to be split in the 
proposed layers; the following three arguments are the name of the layers to be added, which should be 
ordered from the highest level to the lowest level layer. Each component layer object version is added by 
means of an addLogicalStationaryComponent operation (which also creates and assigns a pair of ports) and 
indicates in one argument which the host component is. In addition, the responsibilities of the original 
component are delegated to new components using delegateResponsibilites operations, which interact with 
the actor who executed the operation. Finally, applyThreeLayers asks the designer how to attach connectors 
between external and refined components by means of a predefined interactive function (PortMap?).  

ApplySynchronization operation (Fig. 7) encloses the semantic of a pattern suitable for mobile applications 
(Roth, 2002), which deals with the problem of keeping synchronized two databases located on different 
devices or computers, which are weakly connected. In this context, several users change some of the data on 
different devices, often simultaneously; thus, data tends to be out of sync. This architectural pattern provides a 
solution by including in the architecture a logical component that acts as a synch engine, in each device or 
computer. As it is observed in Fig.7, arguments must be provided to indicate the logical stationary 
components where both synch engines components are going to be located. As this kind of software 
components do not concern directly to business logic, they can be included as part of a middleware layer. 
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Therefore, the operation adds two logicalStationaryComponent objects and assigns to them a pair of 
predefined ports and responsibilities. The responsibilities include exchanging the modifications or differences 
occurred since the last synchronization (rDifferenceExchange), detection of potential conflicts 
(rConflictDetection), and resolution of conflicts (rConflictResolution). 

ApplyConnectionBroker (which is also specified in Fig. 7) encloses the semantic of the Information Broker 
architectural pattern identified by Risi and Rossi (2004), who proposed a catalogue of architectural patterns 
for mobility. The aim of the Connection Broker pattern is to manage and select the more suitable of two 
possible connections from a component application to a database. A possibility is enabling the connection to 
the main database that resides in a server, and the other is establishing a connection with a replica of such a 
database. The replicated data base is a reduced version of the main data base and possibly is out of date. To 
provide this decision capability to an architecture, an intermediary component (the Connection Broker) is 
included by the applyConnectionBroker operation. This component is in charge of setting a suitable 
connection to any of the databases for inserting/updating/recovering data, based on a set of rules that indicates 
when a connection is convenient and when not. 

applyThreeLayers(c1, l1, l2, l3) 
host := getHostComponent(c1) 
addLogicalStationaryComponent(host, l1, [p1, 
p2]) 
addLogicalStationaryComponent(host, l2, [p3, 
p4]) 
addLogicalStationaryComponent(host, l3, [p5, 
p6]) 
addLogicalConnector(l1l2, [r1, r2]) 
addLogicalConnector(l2l3, [r3, r4]) 
setAttachment(p2,r1) 
setAttachment(p3,r2) 
setAttachment(p4,r3) 
setAttachment(p5,r4) 
delegateResponsibility(c1, l1) 
delegateResponsibility(c1, l2) 
delegateResponsibility(c1, l3) 
lp = getPorts(c1) 
for each p in lp 
  np = PortMap?(p) // Ask the user the port to 
map  
  r = getRol(p) 
  addRelationship(np, r) 
end for 
delete(c1) 
 
applyConnectionBroker(c, appComp, [dest1, 
dest2]) 
addLogicalStationaryComponent(c, broker, [b-p1, 
b-p2, b-p3]) 
setLogicalConnector(b-lc1, broker, appComp) 
setLogicalConnector(b-lc2, broker, dest1) 
setLogicalConnector(b-lc3, broker, dest2) 
 
applySynchronization(c1, c2,  db1, db2) 
addLogicalStationaryComponent(c1, syncEngine1, 
[se1-p1, se1-p2]) 
addResponsibility(syncEngine1, 
rDifferenceExchange) 
addResponsibility(syncEngine1, 
rConflictDetection) 
addResponsibility(syncEngine1, 
rConflictResolution) 
addLogicalStationaryComponent(c2, syncEngine2, 
[se2-p1, se2-p2]) 
addResponsibility(syncEngine2, 
rDifferenceExchange) 
addResponsibility(syncEngine2, 
rConflictDetection) 
addResponsibility(syncEngine2, 
rConflictResolution) 
setLogicalConnection(se1-db1, syncEngine1, db1) 
setLogicalConnection(se2-db2, syncEngine2, db2) 
setLogicalConnection(se1-se2, syncEngine1, 
syncEngine2) 
 

 
applyLogicalMobility(mComp, cont, {order}) 
addTransientExecutionLocationRel(mComp-cont, 
cont,  mComp,{“logical-mobility”, order}) 
 
 
applyPhysicalMobility(mComp, cont, {type, 
order}) 
addTransientExecutionLocationRel(mComp-cont, 
cont,  mComp, {type, order}) 
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Fig. 7. Specification of operations that apply architectural patterns. 

Another architectural pattern is materialized in applyLogicalMobility operation (Fig. 7). The mechanism of 
“logical code mobility” (Bieszczad and White, 2007; Fuggetta et al., 1998) should be applied in a situation 
where replicas of certain computational unit are available in the local code repositories of two different 
execution environments (physical components or hosts). This pattern incorporates in an architectural model 
the behaviour that makes possible moving the execution of a code unit from one machine to other. In this 
way, a replica of the executing unit running on the first machine is loaded from a local repository and 
initialized with the transferred state to resume its execution. The arguments of applyLogicalMobility operation 
are the unit code (logical mobile component) that will change its execution location, the next physical 
component where this component will run, and the properties values that indicate the execution location order 
assigned to this new location. 

The specification of applyLogicalMobility operation comprises an addTransientExecutionLocationRel 
operation. As a consequence, an object whose type is transientExecutionLocationRel is added. This object 
relates the mobile component with the physical component that will temporally host it. Particularly, the type 
property of the added object will receive the value of “Logical Mobility”. In this way, applyLogicalMobility 
operation allows the designer to express in the architectural model the kind of code mobility that the future 
system will support, as well as the locations in which a logical mobile component will be executed. 

Similar operations for physical code mobility (Fuggetta et al., 1998) such as Remote Evaluation, Code on 
demand, and Mobile Agent could be specified by assigning suitable property values. It should be noted that 
the operation and domain packages (Fig. 4 and 1, respectively) allow us to define a particular design domain 
suitable for the architect’s necessities and preferences. During the domain definition, the operations that the 
architect will be able to use in the mobile architecture design process should be defined. The proposed model 
is a first step towards the development of computational tools to support the design process.  

3 Case Study 

The case study describes the design process of the software architecture of a Sales Force Management 
System. The system is intended to improve the efficiency of the sales representatives of an enterprise in the 
field. They meet clients to promote and sell the company products making use of a local database suited in 
their mobile devices and entering new orders. However, when connectivity with the company database server 
is possible, the information must be gathered (sent) from (to) it. Obviously, the company database must 
periodically be synchronized with the databases in each mobile device. 

Functional requirements for such a system are the following: 

i) Salespeople can place orders from different locations using their mobile devices, preferably in 
real time (FunctionalRequirement_1).  

ii) An order need to be validated. The application running in the salesperson mobile device has 
features for checking the inventory levels of the ordered products and the client credit situation 
(that controls if the clients have no debts with the company, their credit limits, and the possible 
means of payment). To accomplish the order validation process, the mobile device needs to 
connect to the company server, to get the client credit information and up-to-date inventory 
information (FunctionalRequirement_2).  

iii) Once an order has been validated and confirmed, it is incorporated to the company server 
(FunctionalRequirement_3), in order to update the inventory levels and start its processing. A 
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new order in the system may imply the generation of a manufacturing order or the acquisition of 
raw materials.   

The software architecture of this mobile system must satisfy the aforementioned functional requirements and 
some non-functional or quality requirements (Bass et al., 2003), which are described as follows: 

i) It is possible to place an order even if there is no connectivity with the company server 
(Availability_QR1). If the application that runs in a salesperson’s mobile device is not able of 
reaching the company database, the order cannot be validated. Therefore, it is saved on the 
database located at the mobile device, in “awaiting confirmation” state. This quality requirement 
is known as Availability (Bass et al., 2003) or Reliability (ISO, 2001).  

ii) When connectivity is re-established, the company database is synchronized with the mobile 
databases to keep data updated, and, if it is possible, to change the status of orders from 
“awaiting confirmation” to “confirmed” (DataFreshness_QR2).  

iii) The system supports different sorts of mobile devices, which means that the processing 
capability of the devices is not homogenous. Consequently, when the processing power and the 
required memory of a device is not enough for executing some application features (such as the 
ones related to order validation) it is possible run them on the company application server 
(Performance_QR3). This quality requirement is called Performance (Bass et al. 2003) or 
Efficiency (ISO, 2001). 

The design process of the architecture for the introduced mobile system will be conducted by following the 
ADD method; thus, it will be presented as a decomposition process, guided by architectural drivers. The 
design decisions made by the architect (or designer) at each point of the design process are captured by a 
sequence of operations, which is applied to a previous model version and generates a new software 
architecture model version. In the present case study, the architect employs the design domain for mobile 
architectures defined in the previous section.  

The designer (an architect) begins with an empty root model version (Root Model Version), where he/she adds 
the first object version that represents the system whose architecture is going to be built. Thus, the first model 
version ModelVersion1 is obtained after applying the sequence of operations φ1 = {addSystem(SalesSystem)}.  

Sequence of Operations φ1 for achieving ModelVersion1 
addSystem(SalesSystem) 

Then, the architect continues by identifying the requirements for the intended system. This means the 
execution of a sequence of operations φ2, which comprises a series of addQualiyRequirement and 
addFunctionalRequirement operations. As a consequence, functionalRequirement-type and 
qualityRequirement-type objects are included giving rise to a new model version (ModelVersion2). 

Sequence of Operations φ2 for achieving ModelVersion2 
addQualityRequirement(SalesSystem, Availability_QR1) 
addQualityRequirement(SalesSystem, DataFreshness_QR2) 
addQualityRequirement(SalesSystem, Performance_QR3) 
addFunctionalRequirement(SalesSystem, FunctionalRequirement_1) 
addFunctionalRequirement(SalesSystem, FunctionalRequirement_2) 
addFunctionalRequirement(SalesSystem, FunctionalRequirement_3) 

During the design process the architecture is represented combining structural, behavioural and deployment 
elements from different architectural views (Bass et al., 2003; ISO, 2008). The architect begins by adding the 
object versions that represent the physical (stationary or mobile) components involved in the architecture, 
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which are going to act as the hosts of logical components.  On the company main office, the system is 
deployed on an application server and a database server. So, the architect adds two physical stationary 
components: ApplicationServer and DataBaseServer. The software components responsible of the main 
business logic will run on the first component (ApplicationServer), and the second will host the database and 
data access services. As salespeople will carry their own mobile devices (SalesForceMobileClient) to query 
the system and to generate orders, the architect includes instances of such devices in the new model version. 
The φ3 sequence of operations is given in the next listing, which generates ModelVersion3.  

Sequence of Operations φ3 for achieving ModelVersion3 
addPhysicalStationaryComponent(SalesSystem, ApplicationServer, {‘Core2 T5200 1.60GHz’,’2Gb’,’160Gb’},  
       [p1, p2,p3], []) 
addPhysicalStationaryComponent(SalesSystem, DataBaseServer, {‘Xeon 3.20GHz’, ‘2Gb’, ‘120Gb’}, [p4], []) 
addPhysicalMobileComponent(SalesSystem, SalesForceMobileClient, {‘Intel 312MHz 300Mhz’,’128Mb’,’2GB’, 20},  
       [p5, p6], []) 

Above sequence of operations includes addPhysicalStationaryComponent and addPhysicalMobileComponent 
operations. Some argument values have to be provided to set the property values for created object versions. 
These physical components are not isolated; they have to communicate with each other by means of different 
physical connections. Thus, the architect decides that an Ethernet connection is suitable between the 
ApplicationServer and DataBaseServer components. This decision is materialized by a setPhysicalConnector 
operation execution. Another decision is to set two alternative and redundant physical connections between 
the SalesForceMobileClient and the ApplicationServer. Both connections are wireless, but differ in the 
communication protocol they use, 3G and WiFi. As a result of applying the φ4 sequence of operations, 
ModelVersion4 is obtained. 

Sequence of Operations φ4 for achieving ModelVersion4 
setPhysicalConnector(WiFi, ApplicationServer,  SalesForceMobileClient) 
setPhysicalConnector(3G, ApplicationServer,  SalesForceMobileClient) 
setPhysicalConnector(Ethernet, ApplicationServer,  DataBaseServer) 

Fig. 8 illustrates the model evolution that takes place from applying the sequence of operations φ4 on 
ModelVersion3, which adds the physical connectors between the mobile devices and the stationary 
components. There, a series of setPhysicalConnector operations forms the sequence of operations φ4. The 
intention of the architect is setting up the physical connections between the physical components in 
ModelVersion3. As it was specified in Fig. 6, setPhysicalConnector implies both the addition of a new 
connector-type object and its role-type objects, and the attachments to link the respective port-type objects.   
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Fig. 8. Obtaining ModelVersion4 from ModelVersion3 

At the top of Fig. 8, the inferred model is visualized, which is obtained from views of the versions level on the 
repository. At versions level (Fig. 8), SalesSystemv1 (system-type object version) SalesForceMobileClient v1, 
ApplicationServer v1 and DataBaseServer v1 (component-type object versions) belong both to ModelVersion3 
and ModelVersion4 (ports are not shown for simplicity). At repository level, these design objects are 
represented by SalesSystemvo, SalesForceMobileClientvo, ApplicationServervo, DataBaseServervo, respectively. 
These objects are instances of versionable object (Fig. 1). As a consequence of the execution of 
setPhysicalConnector operation, object versions for representing three physical connectors are added to 
ModelVersion4 (3Gv1, WiFiv1, and Ethernetv1). Such object versions maintain a versionable object instance at 
repository level. Moreover, associations between the included objects are maintained at repository level, like 
the attachment associations between components (Fig. 8).   

Afterwards, the software architecture continues evolving in a series of model versions, which arise as a result 
of adding all the object versions necessary to represent the logical components involved in the software 
architecture, their responsibilities and properties, and the connector-type objects that provide the 
communication between them. Having laid out the physical configuration of the system in terms of the 
physical components and connectors, logical components with a high level of abstraction that represent the 
application to be developed are created and deployed in each physical component. On the one hand, a 
ServerSideApp logicalStationaryComponent-type is added to ApplicationServer. On the other hand, a 
MobileClientSideApp is created and deployed on the SalesForceMobileClient physical component. Then, a 
logical component responsible of providing data services (DataServicesApp) is incorporated in 
DataBaseServer physical component. These three components are added to the architecture providing 
information about responsibilities, and leaving information about connection between them for a next step in 
the design process. Therefore, the sequence of operation for achieving ModelVersion5 is detailed as follows. 

Sequence of Operations φ5 for achieving ModelVersion5 
addLogicalStationaryComponent(ApplicationServer, ServerSideApp,  
        [SSA_UIResp, SSA_OrderAcceptResp, SSA_OrderValidationResp, SSA_DataQueryResp,  
         SSA_SynchResp, SSA_CreditVerificationResp, SSA_InventoryManagementResp]) 
addLogicalStationaryComponent(SalesForceMobileClient, MobileClientSideApp,  
                                                     [MCSA_UIResp, MCSA_OrderAcceptResp, MCSA_OrderValidationResp,  
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                                                      MCSA_DataQueryResp, MCSA_SynchResp]) 
addLogicalStationaryComponent(DataBaseServer, DataServicesApp, 
                                                      [DSA_ConnectionResp, DSA_UserValidationResp, DSA_DataBaseManagementResp]) 

At this point in the design process, the architect wants to add further decomposition to the system. The logical 
components that will compose the architecture belong to different levels, where the high level elements rely 
on the lower-level ones. Therefore, since a layered architecture is suitable to the intended architecture model, 
the designer identifies three levels of abstraction. The higher layer contains logical components related to the 
application itself. The next layer contains the middleware, which provides services transparently like database 
synchronization and data routing through the most convenient connection. The lowest layer deals with data 
access features. These decisions are materialized by the applying of a Layers pattern on two logical 
components of the ModelVersion5 (ServerSideApp and MobileClientSideApp). Thus, the sequence of 
operations φ6 reachs ModelVersion6, where logical components (layers) such as ServerApplicationLayer, 
ServerMiddlewareLayer, ServerDataAccessLayer, MobileApplicationLayer, MobileMiddlewareLayer, and 
MobileDataAccessLayer are created (Fig.9). As it can be observed from specification in Fig. 7, 
ApplyThreeLayers is a refining operation as the original component is deleted from the resulting model 
version. The current model version (ModelVersion6) is shown in Fig. 9 by using a deployment view. 

Sequence of Operations φ6 for achieving ModelVersion6 
applyThreeLayers(ServerSideApp, [ServerApplicationLayer, ServerMiddlewareLayer, ServerDataAccessLayer]) 
applyThreeLayers(MobileClientSideApp, [MobileApplicationLayer, MobileMiddlewareLayer, MobileDataAccessLayer]) 

Having organized the logical arrangement of logical components, the architect includes a set of component-
type objects. In the application layer of the mobile side of the architecture (Fig. 11), the designer includes: 
UIManager, OrderReceiver, and OrderValidator logical components (and their ports).  UIManager is in 
charge of the user interface and accepting the user requests. OrderReceiver has responsibilities of processing 
orders and queries of the user, and OrderValidator has responsibilities of checking order correctness, credit 
situation and product inventory levels. Particularly, the responsibilities of the last component are CPU and 
memory intensive. Therefore, given the constraints on these mobile devices resources, the architect foresees 
the necessity of adding the component object version as an instance of LogicalMobileComponent design 
object type. In this way, the applied sequence of operations φ7 on ModelVersion6, which generates 
ModelVersion7, includes some addLogicalStationaryComponent and addLogicalMobileComponent 
operations. Afterwards, to allow the interaction between these components logical connections are set to 
achieve the functional requirements of the system.  

 

Fig. 9. Deployment view of ModelVersion6 

Sequence of Operations φ7 for achieving ModelVersion7 
addLogicalStationaryComponent(MobileApplicationLayer, UIManager, [UI-p1],[]) 
addLogicalStationaryComponent(MobileApplicationLayer, OrderReceiver, [OR-p1, OR-p2, OR-p3, OR-p4, OR-p5],[]) 
addLogicalMobileComponent(MobileApplicationLayer, OrderValidator,[OV-p1, OV-p2, OV-p3],[]) 
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Sequence of Operations φ8 for achieving ModelVersion8 
setLogicalConnector(LC1, UIManager, OrderReceiver,[]) 
setLogicalConnector(LC2, OrderReceiver, OrderValidator,[]) 

Then, in a similar way, the architect adds analogous components in the application layer of the 
ApplicationServer. This is made by using a series of addLogicalStationaryComponent, which forms the 
sequence of operations φ9. As a result ModelVersion9 arises including three new 
logicalStationaryComponent-type objects named OrderBusinessLogic, InventoryBusinessLogic, and 
CreditBusinessLogic (Fig. 10). The first one is in charge of saving all coming orders and recovering existent 
orders requested from devices and other applications. The second one has the responsibility of managing 
products and stock (inventory) information. Some of the mentioned responsibilities could be delegated from 
the container layer, whereas others could be passed as an argument. To simplify the case study, lresps 
argument is left empty and it is assumed that the architect will carry out responsibility delegations in later 
model versions. The next step is setting the logical connection between them (given a sequence of operations 
φ10, which includes a series of setLogicalConnector operations). Fig. 11 shows the architecture layout at 
application layer (client and server) by means of a C&C view. 

Sequence of Operations φ9  for achieving ModelVersion9 
addLogicalStationaryComponent(ServerApplicationLayer, OrderBusinessLogic, [OBL-p1, OBL-p2], []) 
addLogicalStationaryComponent(ServerApplicationLayer, InventoryBusinessLogic, IBL-p1, []) 
addLogicalStationaryComponent(ServerApplicationLayer, CreditBusinessLogic, CBL-p1, []) 
 
Sequence of Operations φ10 for achieving ModelVersion10 
setLogicalConnector(LC3, OrderReceiver, OrderBusinessLogic, [WiFi, 3G]) 
setLogicalConnector(LC4, OrderValidator, InventoryBusinessLogic, [WiFi, 3G]) 
setLogicalConnector(LC5, OrderValidator, CreditBusinessLogic, [WiFi, 3G]) 
 
Afterwards, ServerDataBaseManager is added to provide data access from components of the 
ApplicationServer to the DataBaseServer, in a transparent way. Therefore, the architect executes an 
addLogicalStationaryComponent indicating the component that hosts the new component (see sequence of 
operations φ11). The resulting model version is ModelVersion11. 
 

 

Sequence of Operations φ11 for achieving ModelVersion11 
addLogicalStationaryComponent(ServerDataAccessLayer, ServerDataBaseManager, SDB-p1,[])  
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Fig. 10. Deployment view of ModelVersion11 
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Fig. 11. Logical connections between logical components 

At this point in the design process, the architecture achieves part of the intended functional requirements 
(FunctionalRequirement_1, FunctionalRequirement_2, FunctionalRequirement_3). Now, the architect 
focuses on the needed quality requirements. Firstly, the Availability_QR1 requirement is regarded. This 
requirement demands to the application to keep on working despite no connectivity with the main database. 
Therefore, the solution is to include a temporal o minimal database located at the mobile device, to save 
application data even whether connection with the remote server application is not possible. Additionally, the 
mobile application should be able to decide how to route the generated orders (controlling the flow of the 
application business logic). On the other hand, the database redundancy makes it necessary some 
synchronization mechanism to maintain updated the company database.  

Therefore, the architect’s design decision is to provide further granularity to mobile-side application by 
adding two new component object versions. At application layer, a component responsible for a limited 
business logic (named MinimalOrderBussinessLogic), and at data access layer, a component to manage the 
access to a reduced local database (named LocalDataBaseManager). This is materialized in the sequence of 
operations φ12, which applied on ModelVersion11 generates ModelVersion12.  

Sequence of Operations φ12 for achieving ModelVersion12 
addLogicalStationaryComponent(MobileApplicationLayer, MinimalOrderBusinessLogic, [MOB-p1, MOB-p2, MOB-p3], []) 
addLogicalStationaryComponent(MobileDataAccessLayer, LocalDataBaseManager, [LDB-p1], []) 

Fig. 12 shows a partial view of ModelVersion12 and its inferred model. This figure illustrates a fragment of 
the design process. At the top of it, partial views of the inferred model versions are represented, making use of 
a mix of structural and deployment view. There, three consecutive model versions are presented 
(ModelVersion12, ModelVersion13 and ModelVersion14). In ModelVersion12, two object versions of 
components can be observed (MinimalOrderBusinesLogic v1 and LocalDataBaseManager v1) as well as the 
hostedByRel-type objects that indicate where they are located (MDBA_LDDBMv1, MAL_MOBL v1). 
ModelVersion13 is generated from ModelVersion12 by applying the sequence of operations φ13. The applied 
operations set the logical connections among logical components situated at SalesForceMobileClient. LC6 
(between OrderReceiver and MinimalOrderBusinesLogic) is an internal communication between components 
belonging to the same layer. LC7 logical connector (between MinimalOrderBusinesLogic and 
LocalDataBaseManager) represents the communication between components belonging to adjacent layers. 
These new connectors also have a double representation at repository level (given by LC6vo and LC7vo 
versionable objects) and at versions level (given by LC6v1 and LC7v1 object versions).  

Sequence of Operations φ13 for achieving ModelVersion13 
setLogicalConnector(LC6, OrderReceiver, MinimalOrderBusinessLogic, []) 
setLogicalConnector(LC7, MinimalOrderBusinessLogic, LocalDataBaseManager, []) 

<<logicalStationaryComponent>> 
UIManager 

<<logicalStationaryComponent>> 
OrderReceiver 

<<logicalMobileComponent>> 
OrderValidator 

<<logicalStationaryComponent>> 
OrderBusinessLogic 

<<logicalStationaryComponent>> 
InventoryBusinessLogic 

<<logicalStationaryComponent>> 
CreditBusinessLogic 
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B_MOBL 

LC7 

 
Fig. 12. Model evolution from ModelVersion12 to ModelVersion14 

The next step in the design process is to apply the ConnectionBroker pattern to include elements of the logic 
of the application. ApplyConnectionBroker operation (Fig. 7) pursues Availability_QR1 requirement. The 
operation arguments are OrderReceiver component (Fig. 12) and the two alternative components with it could 
communicate: MinimalOrderBusinessLogic (a local component) or OrderBusinessLogic (a remote 
component). The first argument is the component that hosts the broker component. Particularly, in this 
software architecture model, the broker is located in the MobileMiddlewareLayer component object. The 
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Broker component and a set of responsibilities that enable it to determine the logical path to follow, based on 
a set of policies or rules, are added. 

Sequence of Operations φ14 for achieving ModelVersion14 
applyConnectionBroker(MobileMiddlewareLayer, OrderReceiver, [MinimalOrderBusinessLogic, OrderBusinessLogic]) 

The applyConnectionBroker operation specifies that the Broker object is going to be located at the 
MobileMiddlewareLayer by including a hostedByRel-type object that relates them (MML_Bv1 at versions level 
and MML_Bvo at repository level, Fig. 12). Additionally, a set of logicalConnector-type object is present in 
ModelVersion14 in order to communicate the broker component with the application layer components that 
require its services (located both at the mobile client and at the application server). They are B-MOBL, B-OR, 
B-OBL. As it can be observed, the versioning scheme represents all incorporated objects at repository level 
(given by Broker vo, MML_Bvo, B-MOBLvo, B-ORvo, B-OBLvo  objects) and at versions level (given by Broker 

v1, MML_B v1, B-MOBL v1, B-OR v1, B-OBL v1 object versions).  

As it was mentioned previously, some mechanisms are necessary to synchronize the databases, in order to 
satisfy the DataFreshness_QR2 quality requirement. Therefore, the architect considers applying the 
Synchronization pattern (Fig. 7). The first two arguments of this operation are the component-type object 
versions where both synchronizing engines (logical components) are going to be located. Also, the two last 
argument values are the component-type objects that represent the databases to synchronize 
(ServerDataBaseManager and LocalDataBaseManager). The sequence of operations φ15 comprises an 
applySynchronization operation as follows. 

Sequence of Operations φ15 for achieving ModelVersion15 
applySynchronization(ServerMiddlewareLayer, MobileMiddlewareLayer, ServerDataBaseManager, 
       LocalDataBaseManager) 

An unachieved quality requirement is Performance_QR3. The designer decides that the way of achieving it is 
allowing the mobile devices to delegate the execution of CPU and memory consuming tasks on the company 
server. OrderValidator (logical mobile component) is identified as a component that develops processing 
intensive activities, which it is hosted in SalesForceMobileClient, more specifically in the 
ServerApplicationLayer. Even though OrderValidator runs on SalesForceMobileClient another possible 
physical location where the OrderValidator may run should be provided. By executing the 
applyLogicalMobility operation a new possible executing location is assigned, thus obtaining ModelVersion16 
Fig. 13 shows the ModelVersion16, wich employs a deployment view (Fig. 13 - a) and a C&C view (Fig. 13 - 
b) to illustrate the architectural model. It explains the logical connections among logical components situated 
at adjacent layers. 

Sequence of Operations φ16 for achieving ModelVersion16 
applyLogicalMobility(OrderValidator, ServerApplicationLayer, 1) 

At this point in the design process, the architect should analyse and evaluate if all the main requirements of 
the architecture have been considered.  

4 TracED  

TracED is a research prototype that implements the proposed model to capture and trace software 
architectural designs. It has been developed using Java language, MySQL database, and Hibernate 
framework. The major tools are Domain Editor and Versions Manager (Roldán et al., 2008). Both tools were 
developed based on the object-oriented models proposed in previous sections. 
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Fig. 13. a) Deployment view of ModelVersion16. b) C&C view of ModelVersion16. 

The Domain Editor enables the definition of a design domain. A partial view of a software architecture 
domain for mobile systems defined by using TracED, is visualized in Fig. 14. Modelling concepts are 
organized hierarchically in a tree structure (upper-left corner of Fig. 15). Each concept can have zero or more 
descendents and a unique parent. This structure is obtained by specializing modelling concept (Fig. 1) in 
abstract and concrete modelling concepts. Abstract concepts generalize common properties and relationships 
used by a set of design objects. For example, Requirement generalizes Quality and Functional Requirement 
modelling concepts, and Connector generalizes PhysicalConnector  and LogicalConnector (Fig. 14). Also, 
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Component is specialized in a hierarchy of special components, defining four concrete modelling concepts: 
LogicalMobileComponent, LogicalStationaryComponent, PhysicalMobileComponent and 
PhysicalStationaryComponent. Domain Editor allows the user to set binary relationships between modelling 
concepts, which are instances of DomainRelationship (Fig. 1). 

 

Fig. 14. Partial view of Domain Model for Mobile Software architectures in TracED 

Fig. 15 shows the specification window of the LogicalMobileComponent. In Properties tab, a concept 
description can be assigned, and properties (like name and type) can be created and modified. In Fig 15,  
Operations tab is active, where a set of operations applicable to the current modelling concept can be 
specified. In the case of LogicalMobileComponent, the architect has defined addLogicalMobileComponent 
and deleteLogicalMobileComponent operations. The definition of a new operation means the instantiation of 
the Operations Model (Fig. 4). As LogicalMobileComponent has been defined as a subconcept of Component, 
it inherits the operations defined by this abstract concept, such as delegateResponsibility. 

The window in Fig. 16 shows the definition of addLogicalMobileComponent that is similar to the functional 
specification presented in Fig. 5. To define it, the architect selects some of the available operations from the 
combo box situated on the right. The VariableAssignment between an input argument value or a previous 
result and the argument of another operation sub-command is carried out by matching them one to one (Match 
Arguments button). In this way, VariableAssignment instances are created, which bind input argument values 
or previous results and arguments of other sub-commands. The binding of arguments (variables) and their 
values (which are unknown at the moment of the specification) are set beforehand for the execution of the 
macrocommand. Also, addLogicalMobileComponent has a loop command as part of its body, which is 
defined over a ports collection. It allows assigning the ports to the new component one by one by using the 
addPort operation (see the window at the bottom of Fig. 16). 

The other main component of TracED, Versions Manager, enables the execution of design projects. When a 
new design project is created, an existent domain is selected for it. A project is carried out working with the 
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Version Manager window, by executing the available domain operations, which include new design objects 
as instances of the modelling concepts defined in the selected design domain.  

 

Fig. 15. Specification of Logical Mobile Component Modelling Concept 

 

Fig. 16. Specification of the addPhysicalMobileComponent MacroCommand 

To show how TracED is used to develop and capture a design process, part of the presented case study is 
carried out. The new project is called SalesForceManagementProject. An instance of DesignProject (Fig. 1) 
is created and associated with the domain for mobile software architecture, which it was described in sections 
2.1 and 2.2 and was specified in TracED by using Domain Editor. By doing that, the initial model version 
(Root Model Version) is generated. Root Model Version is the root of the tree structure of the version 
management scheme and it does not have object versions and cannot be edited. Fig. 17 shows the Version 
Manager window, with the first model version of SalesForceManagementProject project, named SalesSystem, 
which was added by an addSystem execution (sequence of operations φ1, as it was described in the case study 
of the previous section). On the upper-left of this window appears the “model versions tree” navigator. To 
create a new model version, the predecessor model version must be selected. The model version that arises 
from applying a sequence of operations φ2 is shown as in the snapshot in Fig. 17, which includes the 
functional and quality requirements for SalesSystem.   
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Fig. 17. First two model versions of  SalesForceManagementProject 

Following in this way, the rest of the case study is developed with the support provided by TracED. This 
prototype allows users to systematize the capture of each new model version, the object versions that belong 
to them, and the architectural operations that originated them.  

Moreover, TracED allows the architect to recover the history of a given model version. He/she can query, for 
example, which is the predecessor model version of a given model version, and all its object versions. By 
selecting a model version from the model version navigator panel, it is possible to see what happened over 
time. Fig. 18 shows fragments of the History Window, which informs all operations that have been applied 
from the root (initial model version) to a selected model version. In this window, it is also possible to see 
detailed information about each applied operation. For instance, the moment when an operation was applied, 
who the actor involved was and the names assigned to new object versions (successor object versions). In this 
case, the architect queries about how ModelVersion15 was obtained. At the bottom of Fig. 18, it is informed 
that an addSystem operation has been applied on Root Model Version to generate ModelVersion1.  At the top 
of ModelVersion1, the sequence of operations that generates ModelVersion2 is depicted. In a similar way, the 
window informs all the model versions generated to reach the requested one. Thus, moving the focus to the 
top of Fig. 18, it is observed that the operation executed on ModelVersion14 was applySynchronization, 
which gave rise to ModelVersion15. 

Due to its prototypical status, TracED currently has some limitations. On the one hand, TracED just provides 
some predefined queries for asking the model about the history of a design project, like the one presented in 
Fig. 18. However, the incorporation of new features for creating and executing queries is easy, as the 
information on which the queries find the answers has already been captured by the model and no additional 
extension is needed in that direction. On the other hand, TracED lacks of appropriated views to present an 
architectural model through different view points of view types (IEEE, 2000; Clements et al., 2002). Further 
work is necessary to achieve this goal. Despite its limitations, TracED has allowed us to verify the viability of 
the proposed models. 

φ2 
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Fig. 18. A history window of ModelVersion15. 

To improve the usability of TracED, it should work in an integrated way with CASE tools that support other 
design activities. In this way, TracED would perform the capture of all applied operations, by working in 
background mode, without designer noticing it. By using the features of the Operations Model (Fig. 4), new 
and higher level of abstraction operations could be specified for the CASE tool, which will be available for 
being included in the CASE tool menus. 
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5 Related Works 

Recently, there has been proposed several approaches for representing architectural design decisions. They 
aim to assist software architects in their decision-making activities by capturing and characterizing 
architectural knowledge. Most of these tools are based on conceptual o semi-formal models, which provides a 
characterization and interpretation of SADP, and what their authors considers that is important to capture.  

Tyree and Akerman (2005) have proposed a template of attributes to represent architectural design decisions, 
which extends the documentation of design decisions described in Clements et al. (2002). Such an approach 
allows the designers documenting some critical evolutions of SADP. The approach discussed in Capilla et al. 
(2007) is similar, but instead of providing a complete list of attributes to describe a design decision, they 
propose the use of mandatory and optional attributes that can be tailored according to different needs for 
making more agile the efforts of capturing a design decision. In addition, they include specific attributes and 
relationships aimed to support the evolution of design decisions. Archium is a tool that models design 
decisions and their relationships with resulting components (Jansen et al., 2007). It is based on a conceptual 
model for representing architectural design decisions and their context, which allows keeping the evolution of 
an architecture design by keeping architectural deltas (changes). The perspective employed in this approach is 
different from ours since the design decisions are not explicitly captured; they remain as tacit knowledge. 
Hence, the tacit knowledge embedded in the captured design is used to trace back from the changes to the 
decisions they originated from (Jansen et al. 2008). Contrary to this perspective, our approach captures the 
design decisions by materialising them in a sequence of operations that is applied on the current model 
version. In this way, the design decisions are captured “during” the SADP and not “after”. The Architecture 
Rationale and Elements Linkage (AREL) approach, models architecture design as causal relationships 
between design concerns, decisions and outcomes (Tang et al., 2007). Ali Babar and Gorton (2007) propose 
another framework for the capture and recover of architecture knowledge called Process-centric Architecture 
Knowledge Management Environment (PAKME). PAKME uses a data model for characterising architectural 
constructs (such as design decisions, alternatives, rationale, and quality attributes), their attributes and 
relationships. Each design decision is captured as a case along with rationale and contextual information using 
a template.  

In spite of the fact that most of them support the notion of design decisions, none of the aforementioned 
approaches represent design decisions as concrete executions of design operations as our approach does. In 
addition the proposed versioning administration model provides the elements to capture the operations 
together with their results (successor object versions). This integrated capture of products and operations 
avoids the designer the need of setting explicitly the relation among architectural elements and architectural 
decisions. Moreover, none of the existent proposals for representing architectural design decisions address the 
particularities of software architecture design of mobile systems. In general, they are intended for generic 
domains and are hard to extend to more specific design domains. Although some contributions (Ali et al., 
2008; Lopes et al., 2002; Medvidovic and Mikic-Rakic, 2001; Schäfer, 2006) propose the fundamental 
architectural building blocks and methods for modelling software architectures for dynamic mobile 
environments, they hardly support the designers in developing, documenting and evolving mobile software 
architectures. 

6 Conclusions 

Software architectures for mobile systems demand tools for managing the different versions generated during 
their design process. Many ADLs support the static description of a system, but most of them provide no 
facilities for specifying architectural changes. Mobility-specific ADLs are not the exception. These factors 
lead to problems like knowledge vaporization, given that just the final artefact is kept and the design decisions 
made by the involved architects are lost. Consequently, there is an urgent need of tools able to capture and 
manage this process. In this contribution, we propose a model that employs an operational approach, which 
allows expressing and capturing each architectural decision as a design operation. Therefore, designs are 
captured by introducing a minimal impact on the design activities performed by architects. This feature 
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establishes a distinction from contributions that propose documenting the architectural design process after 
completing (part of) it. 

The proposed model supports mobility concerns and it is flexible enough to make it possible the definition of 
the fundamental architectural building blocks and particular operations suitable for the architect’s necessities 
and preferences. This definition allows to represent the several methods for modelling software architectures 
in dynamic mobile environments and to capture processes that follow the defined methods. Furthermore, our 
proposed model allows to specify operations in a goal-oriented way, indicating which is the pursued goal by a 
given operation execution. In such a way, explicit associations between the applied operations, their results, 
and the achieved architectural requirements could be captured and recovered. 
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