
Efficiency Analysis in Content Based Image Retrieval

Using RDF Annotations

Carlos Alvez1, Aldo Vecchietti2

 1 Facultad de Ciencias de la Administración, Universidad Nacional de Entre Ríos

Concordia, 3200, Argentina
2 INGAR – UTN, Facultad Regional Santa Fe

Santa Fe, S3002GJC, Argentina

Abstract. Nowadays it is common to combine low-level and semantic data for

image retrieval. The images are stored in databases and computer graphics

algorithms are employed to get the pictures. Most of the works consider both

aspects separately. In this work, using the capabilities of a commercial

ORDBMS a reference architecture was implemented for recovering images, and

then a performance analysis is realized using several index types to search some

specific semantic data stored in the database via RDF triples. The experiments

analyzed the mean recovery time of triples in tables having a hundred of

thousands to millions of triples. The performance obtained using Bitmap, B-

Tree and Hash Partitioned indexes are analyzed. The results obtained with the

experiences performed are implemented in the reference architecture in order to

speed up the pattern search.

Keywords: Image retrieval, Semantic data, RDF triples, Object-Relational

Database.

1 Introducción

Recovering images by content in a database requires the use of metadata which can be

of several types: low-level describing physical properties like color, texture, shape,

etc.; or high level metadata describing the image: the people on it, the geographic

place or the action pictured, e.g. a car race.

Most of the works dealing with image recovering are limited by the difference

between the low-level information and the high level semantic annotations. This

difference is due to the diverse perception between the low-level data extracted by the

programs, and the interpretation the user has for the image [1]. To cover this

limitations the actual tendency is to combine in the same approach the low-level and

semantic data. On other hand most of the articles in the open literature treat separately

the database management aspects of the image retrieval from the computer vision

issues [2]; however, in the commercial nowadays Data Base Management Systems

(DBMS) it is possible to get sophisticated tools to handle and process high level data,

having the capacity to formulate ontology assisted queries and/or semantic inferences.

In this sense, Alvez y Vecchietti [3] presented a software architecture to recover

images from an Object Relational Database Management System (ORDBMS) [4]

using physical and semantic information. This architecture behaves as an extension of

the SQL language in order to facilitate the usability of the approach. The low-level

and high level information are combined maximizing the use of the tools provided by

the DBMS. The architecture is based on several User Defined Types (UDT)

containing attributes and methods needed to recover images based on both data types.

The semantic information is added by means of the RDF (Resource Description

Framework) language and RDF Schema. In this work it was shown that, although the

RDF language was created for data representation in the Word Wide Web, it can be

perfectly used to recover images in the database. The main advantages of using

RDF/RDFS are its simplicity and flexibility, since by means of a triple of the form

(subject property object) it is possible to represent a complete reference ontology or

classes and concepts of that ontology and to make inferences among the instances. In

this work an extension of that architecture is presented for the case where millions of

triplets are stored to represent the images semantic data. The idea behind this work is

to speed up the search of the triples involved in pattern search. In order to fulfill this

objective, several experiments are driven in Oracle 11g ORDBMS analyzing the

behavior of several indices: Bitmap, B-Tree and Hash Partitioned Indexes. The

conclusions obtained in this analysis are then implemented in the reference

architecture.

The article is outlined as follows: in section 2 the related work is introduced, in

section 3 the ORDBMS architecture is described, in section 4 the performance

analysis made is presented: the indexes used, the experiments performed and the

results obtained; and finally in section 5 the conclusions are included.

2 Related Work

In the last years it is possible to find in the open literature articles dealing with the

integration of low-level and semantic data and also improving the efficiency

recovering images by means of RDF triplets. RETIN is a search engine developed by

Gony et al. [5] with the objective of diminishing the semantic gap. The approach is

based on the communication with the user which is continuously asked to refine the

query. The interaction with the user is composed of several binary levels used to

indicate if a document belongs to a category or not.

SemRetriev by Popescu et al. [6] is a system prototype which uses an ontology in

combination with CBIR (Content Based Image Retrieval) techniques to structure a

repository of images from the Internet. Two methods are employed for recovering

pictures: a) based on keywords and b) in visual similarities; in both cases the

algorithm is used together with the proposed ontology.

Döller y Kosch [7] proposed and extension of an Object-Relational database to

retrieve multimedia data by physical and semantic content based on the MPEG-7

standard. The main contributions of this system are: a metadata model based on

MPEG-7 standard for multimedia content, a new indexation method, a query system

for MPEG-7, a query optimizer and a set of libraries for internal and external

applications.

The main drawbacks of the works cited before are that they are difficult to

implement, they are not flexible to introduce modifications, requires certain expertise

in computer graphics and the learning curve is steep.

In the work of Fletcher y Beck [8] the authors present a new indexation method to

increase the joins efficiency using RDF triplets. The novelty consists on generating

the index using the triple atom as an index key instead of the whole triplet. In order to

access the triple they use a bucket containing pointers to them having the

corresponding atom value. For example, if K is the atom value of a triple, then three

buckets can be created, the first one has pointers to the triplets having the form (K P

O), the second with those with the form (S K O) y the third (S P K), where S, P and O

are Subject, Property and Object respectively. The problem with this approach is that

does not take into account issues like the key or the join selectivity, which can

increase the cost of recovering images in the occurrence of a high key or join

selectivity.

Atre et. al. [9] introduced BitMat, which consists of a compressed bit matrix

structure to store big RDF graphs. They also proposed a new method to process the

joins in the query language RDF SPARQL [10]. This method employs an initial prune

technique followed by a linked variable algorithm to produce the results. This allows

performing bit to bit operations in queries having joins.

In the approach presented in this paper in Section 4, similar structures to the one

proposed in [8] and [9] are analyzed where its implementation is performed in a

simple manner using the components provided by the ORDBMS adopted.

3 Reference Architecture

The reference architecture was implemented in Oracle 11g ORDBMS, it allows the

image retrieval using CBIR techniques, semantic data and the combination of both. It

has a three level structure: physical (low-level), semantic (high-level) and an interface

linking them.

The semantic annotations of the images are stored in triples together a reference

ontology. In Fig. 1 it is shown a graph with three classes related with the property

subClassOf. The graph and the references to the image are stored in a table. Besides,

the inferred instances can be also stored as it is shown in Table 1.

Fig. 1. RDF graph example.

Table 1. RDF/RDFS triples with inferred triples (rows i, k).

row Subject Property Object

1 Class A Rdf:type1 Rdfs:Class2

2 Class B Rdfs:subClassOf3 Class A

3 Class C Rdfs:subClassOf Class A

4 Image 1 Rdf:type Class C

5 Image 2 Rdf:type Class B

 … … …

i Image 1 Rdf:type Class A

k Image 2 Rdf:type Class A

The references to the images stored in the database are implemented by image

OIDs (Object Identifiers), in this way Oracle assigns to each Object-Table row a

unique 16 bites long OID generated by the system that permits an unambiguous object

identification in distributed systems. The architecture details and its implementation

can be seen in [3].

The architecture was implemented in the database by means of several UDTs (User

Defined Types) composed of attributes and operations. These methods plays a

fundamental role in recovering images, they consist of set operations allowing the

combination of semantic and low-level data. The physical content and the high-level

information are managed separately and then they are related using the OID obtained

in the queries and the set operations: union, intersection and difference, as it is shown

in Fig. 2.

In Fig. 2, similar is an operation defined to recovery image OIDs with some

physical properties. Basically, the method is defined as follows: similar(d, t): SetRef,

where d is the physical property to employ in the search and t is the threshold or

distance allowed respect to a reference image. This function returns the OIDs of the

images having a lower threshold respect to the image used as a reference. The

function semResultSet(p, o): SetRef is defined for the semantic level, where p is a

property and o an object. The function returns references to images having a matching

with the property an object specified. Both functions returns a set of OIDs (SetRef

type) referencing images stored in an Typed-Table. Having the sets of OIDs is now

very simple to combine and operate with them by means of the set operations:

union(SetRef, SetRef): SetRef
intersection(SetRef, SetRef): SetRef
difference(SetRef, SetRef): SetRef

Since both similar and semResultSet methods return a SetRef type, then any

combinations of the results set is valid and can be combined in the following form:

1 Rdf:type, is a short name of: http://www.w3.org/1999/02/22-rdf-syntax-ns#type.
2 Rdfs:Class, is a short name of: http://www.w3.org/2000/01/rdf-schema#Class.
3 Rdfs:subClassOf, is a short name of: http://www.w3.org/2000/01/rdf-schema#subClassOf.

Op(similar (di, ti), similar(dj, tj)): SetRef
Op(semResultSet(pn, on), similar(dk, tk)): SetRef
Op(semResultSet(pm, om), semResultSet(pq, oq)): SetRef

where (di, ti) represent descriptors and threshold respectively and (pn, on) are property

and object. With these operators it is possible also to pose low-level queries with

different descriptors and also semantic queries having diverse patterns. Note that the

functions can be used recursively and their return can be used as an input parameter to

other method. In the following example, the function intersection receives as an input

the results obtained in the union between semResultSet and similar, and also the result

obtained in the difference of two calls to the function semResultSet.

intersection(union(semResultSet(pn, on), similar(di, ti)),
diference(semResultSet(pm, om), semResultSet(pq, oq)))

In the next section, it is presented the study about the alternatives to improve the

efficiency in the queries invoking the function semResultSet.

Fig. 2. Physical and Semantic data representation and its relation using the OID.

4 Performance analysis using different indexation methods

4.1 Issues about efficiency

The purpose of this work is to improve the efficiency of the reference architecture

when the number of triples stored in the database is large. First it must be considered

that the subject (S) is the value to find, it means that every query has the following

form (? P O) where P and O are property and object respectively. For queries where

the subject (image to recover) is the value to find are three possible search pattern

options:

a. (?s P ?o)
b. (?s ?p O)
c. (?s P O)

and for composed patterns the set operations are used.

The property attribute is employed in patterns (?s P ?o) and an index is created to

improve the speed of the search, for patterns (?s ?p O) the object attribute is employed

and for (?s P O) the index can be generated using the attributes object and property

together, or a combination of the previous individual indexes.

4.2 Tests performed

For the efficiency analysis several index types are generated: Bitmap, B-Tree and

Hash partitioned indexes; all of them provided in Oracle 11g DBMS. The Bitmap

index was selected because it is appropriated for cases similar to the one analyzed in

this article: the key has a low cardinality (high selectivity). In this structure, a bit map

is constructed for each key value pointing to the block where a database register

contains the data associated to the key. Other advantages of this index type are that

needs lower space than traditional B-Tree indexes and some comparison operations

using bits are executed faster in computer memory.

The traditional B-Tree index structure is in the opposite site of the Bitmap, so it is

not appropriated for low cardinality attribute, it is used in this paper just for

comparison reasons. In section 5, the results of the test show that the behavior of this

structure was not so bad as was expected.

The Hash Partitioned Index is an intermediate structure where a database Table is

partitioned according to an attribute selected, and a regular B-Tree index is created for

each partition. The number of partition to be generated must be selected; in our case 4

partitions were created.

For the test performed, the database was loaded with different amount of triples

extracted from UniProt [11]: 500,000, 2,000,000 and 10,000,000; and the average

recovery time was determined using the indexes constructed. The experiments were

executed on a PC CPU-INTEL CORE 2 Duo Processor 3.0 GHz, with 8 GB RAM

and a 7200 rpm disk, running in Windows 2003. One hundred (100) queries were

executed over the three set of triples using different selectivity values for the

properties. As was explained before, selectivity counts for the number of times that

the property value is repeated over the triples. The average execution times (in

seconds) obtained for search pattern a, b and c are shown in Fig. 3.

Fig. 3. Average recovery time for pattern a, b and c.

From Fig. 3 can be seen that the bitmap index has the better performance when the

number of triplets increases. However, note that the results obtained without using an

index are in the order of those employing it. In order to have an insight about this

issue, a performance comparison was made between the Bitmap index and without it

using triples attribute values of diverse selectivity. The results obtained can be seen in

Fig. 4. From Fig. 4 it is clear that the advantage of the index diminishes when the

number of triples and/or the attribute selectivity increases. This situation is very

common when using a RDF graph particularly considering a property attribute. In the

same direction another test was performed using Oracle hints, by means of this

capability (hints) the query optimizer is instructed to execute the query using a

specific pathway. In this case for pattern a) the average execution time was improved

using the following hint:

/*+ INDEX (tripet_t ix_p) CACHE(t) */.

The first part of the hint indicates to the optimizer what index type to use and the

second instructs the optimizer to place the blocks retrieved for the table at the most

recently used end of the LRU (Last Recently Used) list in the buffer cache. This is

particularly important for this search pattern since it is likely to make several search

for the same property, for example Rdf:type. In Fig. 4 the results with the hint are

shown with a green line that compared with the red one (Bitmap index without hints)

can be observed the improvement in the average execution time.

Fig. 4. Average recovery time for pattern a.

Similar results can be obtained for pattern b.

In the case of pattern c, no improvement was obtained using the previous hints

using the index generated for the composed attributes; so a test was made using the

combination of the individual indexes (for property and object attributes)using the

following hint:

/*+ INDEX_COMBINE(t ixp ixo) CACHE(t) */

The hints INDEX_COMBINE explicitly chooses a bitmap access path for the

table. If no indexes are given as arguments for the INDEX_COMBINE hint, the

optimizer uses whatever Boolean combination of bitmap indexes has the best cost

estimate for the Table. If certain indexes are given as arguments, the optimizer tries to

use some Boolean combination of those particular bitmap indexes by using a

conjunctive (AND) bitwise operation. The results obtained are shown in Fig. 5, where

again the use of the hint improves the performance.

Fig. 5. Average recovery time for pattern c.

4.3 Index Implementation in the Reference Architecture

Based on the results obtained, the implementation of a User Defined Function

(UDF) is proposed to execute the pattern search of triples using Bitmap indexes. The

function is called search_subject(p, o). This UDF is employed by the method

semResultSet described in Section 3. For this purpose, an UDF similar to

SEM_MATCH [12] is created but in this case this function takes the subject as a

default value to search. The parameters p and o represents the property and object of

the triples respectively; when the function receives a parameter with a question mark

this one becomes the value to search, for example a call like search_subject (´?p´,

´car´) means that triples having the property ´car´ must be get.

 The function parameter p it is just used to get the triples matching with that criteria,

once having the triple, the next step is to find the subjects (OIDs) related to that

search pattern pointing at the images stored in the database. In this sense, the pattern

(´?s´, ´rdf:type´, ´oidImage´) must be implicitly satisfied to get the OIDs of the

images.

In Fig. 6 it is shown an example about the use of the Bitmap indexes to find the

triples matching with the search pattern.

Fig. 6. The triples specification using car taxonomy and its instances are shown in the top of the

figure; below, the Bitmap indexes generated with those triples.

Using a query search_subject (´?p´, O) the Bitmap index created for object is

employed. For example the query search_subject (´?p´, ‘Car’) retrieves the rows 10-

13, 16 and 18, then only the subjects of those rows must be taken into account; but not

all of them are included in the final results only those satisfying the pattern (´?s´,

´rdf:type´, ´oidImage´) because they have OIDs values referencing images in the

database.

For a query of type search_subject(P, ´?o´) it is used the index created for the

property column. For example the query search_subject(´Rdf:type´, ´?o´) get the rows

1, 2, 16-23, then these rows must be intersected with subjects having the pattern (´?s´,

´rdf:type´, ´oidImage´).

Finally, when the query has the form search_subject (P, O) the intersection of the

Bitmap indexes over the columns property and object must be used. For example, the

query search_subject (´Rdf:type´, ‘Car’)having the map property recovers the rows 1,

2, 16-23 and with the bitmap index object rows 10-13, 16,18 are obtained. The

intersection are the rows 16 and 18; the subject of those rows are intersected with the

subject of the pattern (´?s´, ´rdf:type´, ´oidImage´) to get the images in the final result.

5 Conclusions

In this work it is presented a performance analysis for recovering semantic data stored

in an Object-Relational database in the form of RDF triples. Different indexation

methods are selected to perform the analysis. The triples are used to relate images

with its semantic information via the OIDs created by the ORDBMS when the image

is stored in a Typed-Table. The goal pursued with the use different indexation

methods is to improve the efficiency in recovering the image via a faster retrieve of

the OIDs. A Reference Architecture was employed to drive the test and also to

implement the results obtained.

One conclusion arrived in this work indicates that the Bitmap index has a better

performance compared to the B-tree and Hash Partitioned indexes when the RDF

graph is composed of thousands and millions of triples. All the experiments were

executed using Oracle 11g ORDBMS. Another conclusion verified was that the

combination of two individual Bitmap indexes has a better performance than the

composed one over property and object columns. The use of hints may improve the

efficiency when used appropriately.

Based on the previous conclusions, the Bitmap index together with the

search_subject UDF function were implemented to speed up the RDF triples search

and as a consequence the image recovery. It is important to note that the architecture,

the index and functions used, are all implemented using tools that are provided by

most of the nowadays commercial ORDBMS, which facilitates its realization.

Referencias

1. Neumamm D. and Gegenfurtner K. “Image Retrieval and Perceptual Similarity” ACM

Transactions on Applied Perception, Vol. 3, No. 1, January 2006, Pages 31–47.

2. Carlos Alvez, Aldo Vecchietti. A model for similarity image search based on object-

relational database. IV Congresso da Academia Trinacional de Ciências, 7 a 9 de Outubro

de 2009 - Foz do Iguaçu - Paraná / Brasil (2009).

3. Carlos E. Alvez, Aldo R. Vecchietti. Combining Semantic and Content Based Image

Retrieval in ORDBMS. Knowledge-Based and Intelligent Information and Engineering

Systems Lecture Notes in Computer Science, 2010, Volume 6277/2010, pp. 44-53.

Springer-Verlag Berlin Heidelberg (2010).

4. Melton Jim, “(ISO-ANSI Working Draft) Foundation (SQL/Foundation)”, ISO/IEC 9075-

2:2003 (E), United States of America (ANSI), 2003.

5. Gony J., Cord M., Philipp-Foliguet S. and Philippe H. “RETIN: a Smart Interactive Digital

Media Retrieval System”. ACM Sixth International Conference on Image and Video

Retrieval – CIVR 2007 - July 9-11, 2007, Amsterdam, The Netherlands, pp. 93-96,

(2007).

6. Popescu A., Moellic P.A. and Millet C. “SemRetriev – an Ontology Driven Image

Retrieval System”. ACM Sixth International Conference on Image and Video Retrieval –

CIVR 2007 - July 9-11, Amsterdam, The Netherlands, pp. 113-116, (2007).

7. Mario Döller, Harald Kosch. The MPEG-7 Multimedia Database System (MPEG-7

MMDB). The Journal of Systems and Software 81, pp. 1559–1580. Elsevier (2008).

8. George H. L. Fletcher, Peter W. Beck: Scalable indexing of RDF graphs for efficient join

processing. ACM Conference on Information and Knowledge Management CIKM 2009:

1513-1516. (2009).

9. Medha Atre, Vineet Chaoji, Mohammed J. Zaki, and James A. Hendler. Matrix

"Bit"loaded: A Scalable Lightweight Join Query Processor for RDF Data International

World Wide Web Conference Committee (IW3C2). April 26–30, 2010, Raleigh, North

Carolina, USA. ACM (2010).

10. Eric Prud'hommeaux and Andy Seaborne. SPARQL Query Language for RDF. W3C

Recommendation, 15 January 2008.

11. UniProt RDF. http://dev.isb-sib.ch/projects/uniprot-rdf/.

12. Eugene Inseok Chong, Souripriya Das, George Eadon and Srinivasan, Jagannathan. An

efficient SQL-based RDF querying scheme. Proceedings of the 31st international

conference on Very large data bases, VLDB '05, pp. 1216—1227. Trondheim, Norway.

(2005).

