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a b s t r a c t

This article presents a proposal, based on the model-free learning control (MFLC) approach, for the control
of the advanced oxidation process in wastewater plants. This is prompted by the fact that many organic
pollutants in industrial wastewaters are resistant to conventional biological treatments, and the fact that
advanced oxidation processes, controlled with learning controllers measuring the oxidation–reduction
potential (ORP), give a cost-effective solution. The proposed automation strategy denoted MFLC-MSA
is based on the integration of reinforcement learning with multiple step actions. This enables the most
adequate control strategy to be learned directly from the process response to selected control inputs.
Thus, the proposed methodology is satisfactory for oxidation processes of wastewater treatment plants,
where the development of an adequate model for control design is usually too costly. The algorithm
proposed has been tested in a lab pilot plant, where phenolic wastewater is oxidized to carboxylic acids
and carbon dioxide. The obtained experimental results show that the proposed MFLC-MSA strategy can
achieve good performance to guarantee on-specification discharge at maximum degradation rate using
readily available measurements such as pH and ORP, inferential measurements of oxidation kinetics and
peroxide consumption, respectively.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In many industrial wastewaters there are important organic pol-
lutants (such as phenols) which are resistant to biodegradation
and other conventional methods. Increasing concern about envi-
ronmental and health risks demands a more rigorous control of
wastewaters, promoting the development of new treatment tech-
nologies that are capable of dealing with toxic organic pollutants.
These technologies depend on a rigorous control of the operating
conditions to guarantee on-specifications discharge, so automa-
tion of wastewater treatment plants is an important issue when
introducing these advanced treatment technologies.

This paper focuses on model-free control of advanced oxidation
processes (AOPs), specifically the so-called Fenton process [1], as
they set challenging problems that need to be carefully addressed
from a control point of view in order to adequately eliminate a
variety of biocide and refractory organic pollutants. In particular,
AOPs are an interesting treatment option for phenolic wastewaters
because of their potential to oxidize recalcitrant organic molecules.

∗ Corresponding author. Tel.: +34 983423276.
E-mail addresses: syafiie@eng.upm.edu.my (S. Syafiie), fernando@autom.uva.es

(F. Tadeo), ecmarti@ceride.gov.ar (E. Martinez), tere@autom.uva.es (T. Alvarez).

These processes are based on the in situ generation of a powerful
oxidant: hydroxyl radicals (OH•). Although there are many efficient
methods to generate this radical: Fenton, photo-Fenton, O3/UV,
O3/H2O2, etc. [29], in this study, Fenton’s reagent is used to gener-
ate the hydroxyl radicals as it is the most cost-effective approach.
In this process, hydroxyls are generated from the decomposition
of hydrogen peroxide (H2O2) using iron as the catalyst [19]; these
hydroxyl radicals then attack the phenol molecule to form catechol
and hydroquinone.

Fenton’s set of reaction steps is quite complex, involving crossed
reactions between hydrogen peroxide, hydroxyl radicals, iron
complexes, etc. In fact, ignoring the effect of organic materials com-
pletely, there are at least a dozen chemical reactions involved, with
intermediate products impossible to measure in practice [4], so
using a model for the development of controllers is not feasible. For
example, although the main reaction, from the hydroxyl production
point of view, is the decomposition of H2O2 using Fe2+:

Fe2+ +H2O2→ Fe3+ +OH− +OH• (k= 76 M−1 s−1), (1)

in the presence of Fe3+, the hydroxide peroxide decomposes: this
reaction must be inhibited by limiting the amount of H2O2 in the
reaction medium, by introducing it as it is consumed, through
careful control of the amount of hydroxide peroxide added [8].
Moreover, the pH of the reaction mixture must always be kept
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between 2 and 6 to avoid the formation of iron complexes that
decrease the efficiency of the catalyst, and to favor the formation of
a stable, electrophilic structure via the solvation of a proton by the
H2O2 molecule [4] (this pH range depends on the refractory nature
of intermediate oxidation compounds such as carboxylic acids, so
usually a tighter bound is used for control). Moreover, when organic
compounds are introduced (in this study phenol [16]), other reac-
tions will be involved, which makes it extremely difficult to develop
a precise mathematical model of Fenton’s oxidation kinetics for
control purposes. The consideration of each organic component
greatly increases the number of reactions and compounds: for
example, it has been reported by [6] that adding monochlorophe-
nol gives at least 28 additional reactions. Thus, it is impossible in
practice to use model-based approaches for Fenton processes, and
the system is too complex and subject to many uncertainties and
variations to include expert knowledge in the controller.

Moreover, the level of automation of this kind of process in
wastewater plants remains low, as sensors for specific chemical
species are extremely expensive and inadequate for wastewa-
ter problems [3,12,15]. In this paper, ORP sensors are used: an
ORP sensor is nearly identical to a pH sensor, estimating the
oxidation–reduction potential (ORP), which is related to the con-
centration, activity and strength of oxidizers and reducers in a
solution [5]. Thus, it provides an indication of the solution’s abil-
ity to oxidize or reduce another material: the addition of oxidizers
raises the ORP value, while the addition of reducers lowers the ORP
value. Unfortunately, from a control point of view, it means that
the oxidation capacity of the reactor content is being monitored,
rather than the concentration of a given chemical species [11].

The literature on advanced control applications of ORP control
in the Fenton process is rather scarce: some researchers used ORP
readings as a key measurement to monitor redox reactions during
process operation [3] and to manage the aeration in nitrification
and denitrification of aerobic–anoxic activated sludge [12]. The
sharp drop in the ORP curve in the denitrification reactor before
the reactor reaches the nitrate “knee” point was maintained for
phosphorus removal by [15]. Finally, [13,30] proposed a fuzzy logic
controller based on ORP to determine the time of denitrification in
a sequencing batch reactor (SBR).

To deal with the issue of modeling difficulties and costs, a control
approach based on learning would be more adequate: as men-
tioned above, the problem at hand is not suitable for model-based
approaches. Moreover, in wastewater processes, the characteristics
change with time, depending on the chemical compounds, their
concentration, temperature, pH, etc, of the inlet flow to be treated
(see, for example, [28]). Thus, a learning approach is very adequate
for this kind of problems, which require some kind of continuous
on-line learning.

Different model-free learning control approaches adequate for
process control problems have been proposed in the literature. Of
these we would like to mention the approximate dynamic pro-
gramming approach proposed by Lee and Lee [9,10], which uses
a priori input–output data to develop a controller. Instead of the
above, reinforcement learning [21] has been selected, as it provides
a rigorous methodology for designing learning control systems
without resorting to a priori modeling while using a simple con-
trol logic suitable for industrial implementation using conventional
hardware.

An alternative methodology is based on replacing the table with
a function approximation [9,10]. This methodology has been quite
successful in many practical cases, and does not need to use explic-
itly the table of Q-values. However, it has been discarded in the
approach presented in this paper, as the convergence guarantees
for Q-learning algorithms do not generally hold when using a func-
tion approximator [2,27], which might make it difficult to promote
its extended application in the area of process control, where only

well-tested approaches are incorporated. This comes from the fact
that, as the agent iteratively approximates the value function, each
successive approximation depends on the previous one. Thus, a
slight approximation error can quickly be incorporated into the
“correct” model. As time goes on, the error can become large enough
to make the learned approximation worthless. Another reason for
not using function approximation is that the state-action space
does not often have a straight forward distance metric that make
sense in process control problems [20].

In particular, the model-free learning control (MFLC) approach,
previously proposed by some of the authors [24,25], will be used.
These MFLC controllers are based on reinforcement learning algo-
rithms, so the control objective is the optimization of a desired
performance index by learning to create appropriate control actions
through continuous interaction with the plant. Thus, learning
is performed without requiring an explicit model of the plant:
instead, the system’s dynamics is implicitly learned and repre-
sented in the control feedback laws and value function.

This article is organized as follows: first, a short presentation of
MFLC is given in Section 2. The proposed technique to control the
oxidation process by using MFLC is given in Section 3. Experimental
results obtained from the application of the proposed technique to
a laboratory plant are given in Section 4. Finally, some conclusions
are given.

2. MFLC-MSA for process control

2.1. MFLC

Model-free learning control is a control design methodology,
based on reinforcement learning [17,21], that was proposed [23]
because of the difficulty of applying reinforcement learning directly
to practical process control problems: even if most RL algorithms
are memory-linear on the number of actions n, polynomial in the
feature space and not worse than O(n log n) in time [7], the space of
actions and states would be huge and the transition probabilities
are unknown in advance. On the other hand, designing a controller
should take into account the fact that the system usually has input
and output constraints. The proposed MFLC satisfies this issue by
bounding the incremental control signal, and including hierarchical
input and output limitations. It was presented in detail in [24,25],
so only a brief presentation is given here.

2.1.1. Motivation for MFLC
MFLC is a promising control approach for wastewater treatment

processes: MFLC-based controllers can be considered a “smart”
control, as this kind of controller fulfills the usual requirements in
this kind of process with little input from the designer or operator.

A summary of the characteristics of MFLC is as follows:

• General purpose approach.
• Adaptive capability to handle environmental uncertainty.
• Modeling is not required.
• Easy integration of a priori knowledge.
• Few and easy-to-understand tuning parameters.
• Convergence of the algorithm is ensured.

2.1.2. MFLC architecture
The generic architecture for model-free learning control is

depicted in Fig. 1; it is a modular strategy, based on a simple selec-
tion of states, actions and control signals, with the objective of
being easily understood by the final user. At each sample time, the
controller resorts to the “Policy” to select one action from those
available in the current plant state. Then, the chosen action is con-
verted to an analogical control signal in the “Calculation U” block.
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Fig. 1. MFLC architecture based on Q-learning.

Based on the measured output, the “Situation” block categorizes the
resulting state and the corresponding reward. From this reward the
so-called Q-value table is updated in the “Value Function” block to
reflect the adequacy of the selected action.

In the basic formulation of MFLC, at each time step, actions are
selected by the controller and learning is carried out by externally
criticizing them as “good” or “bad” depending on the resulting state.
Every action that drives the system into the goal state is considered
a good action and receives a positive reward. However, actions that
do not drive the system into the goal state are not rewarded. Prior
knowledge can used to define purposeful courses of actions (macro-
actions) to achieve the goal state of the system along with stopping
conditions to switch to a different behavior when the expected
results are not obtained after a number of time steps.

A central part of the learning algorithm is the discovery of the
Q-value function, which measures the cumulative benefit of apply-
ing the action at when the system is in state st. This function is
stored in a matrix Q(s, a). To incrementally learn this Q-function, it
is necessary to take into account the current and future benefits:
when action at has been selected and applied to the plant, the sys-
tem moves to a new state st+1 and the learning controller receives a
reinforcement signal rt+1. The value function for state-action pairs,
Q(st, at) is updated by the basic learning rule:

Q (st, at)← Q (st, at)+ ˛
(

rt+1 + �max
a∈A

Q (st+1, a)− Q (st, at)
)

, (2)

where:

• A is the set of possible actions in the new state.
• The learning rate ˛ is a tuning parameter that can be used to

optimize the speed of learning (large learning rates make learn-
ing faster, but might induce oscillations). In fact, in practice the
learning rate decreases with time, to represent the fact that the
system is better known as times goes by.
• The discount factor � is used as a forgetting factor to weight

near-term reinforcements more heavily than distant future rein-
forcements: If � is small, the controller learns to act only for
short-term reward; the closer � is to 1 the greater the weight
assigned to long-term reinforcements.

2.2. MFLC-MSA control algorithm

In the original MFLC formulation, the one-step learning strategy
[21] was used: a sequence of primitive actions is chosen following
a given policy by the agent in the MFLC and policy improvement is
made on-line using rewards given at each time step. However, oxi-
dation processes have slowly unfolding dynamics due to a number
of oxidation reactions, giving rise to intermediate species which
are eventually mineralized to carbon dioxide. Accordingly, we pro-
pose an approach based on temporal abstraction [14,21,22]. From
a control point of view this means that the controller executes the
selected primitive action over several time steps until a suitable ter-

mination condition is reached. Undoubtedly, when the controller
design is based on temporal abstraction, the policy will hold until
a given termination condition applies. As soon as the termination
condition is enforced, the control policy is used to explore and select
another primitive or extended action from those available. Clearly,
through temporal abstraction, the learning controller reduces the
amount of non-relevant exploration and also the calculation time
for defining the action to be implemented.

In particular, from the alternative approaches to temporal
abstraction, this paper proposes the use of the concept of multiple
step actions [18]. This makes it possible to reduce the computa-
tional cost, as the MSA method consists of several identical actions
on the primitive time scale. Roughly speaking, the idea is to select
one action (called “primitive action” in the MSA literature) that
will be applied during a given period of time. This set of successive
actions is called the “extended action”, which is applied completely
unless the system reaches the objective (in the MFLC algorithm,
when the estimated symbolic state is the goal state) or clearly
diverges from the desired objective.

Applying the same primitive action for several time steps makes
it possible to reduce control efforts and speed up learning. This
faster learning is obtained because using temporally extended
actions forces the controller to take larger actions (the effects of
primitive actions are usually small, so they have to be repeated
many times to find the effect). Moreover it increases the respon-
siveness, as the agent exploits a given action and knows the effects
clearly. This technique is suitable for process control because it
is suited to systems where no decomposition in sub problems is
known in advance [18].

Although the original MSA approach is not adequate for unsta-
ble, fast or very nonlinear systems, as it is assumed that the system
does not change significantly while the extended action is applied,
special measures are taken in MFLC-MSA if the system changes
significantly during the application of the extended action: the
extended action is interrupted if the system does not respond as
expected. The idea is that if the responses of the process drive it far
from the desired state, the extended action is interrupted and the
agent re-explores the best action in the current state [25].

Thus, the basic idea in MSA algorithms is as follows:

(1) The learning controller selects a primitive action at which is
applied during m time steps, unless the system reaches the
objective or diverges from it.

(2) Rewards are assigned not only to the implemented MSA but to
all parts of the MSA, which are actually also MSA with fewer
time steps.

It must be pointed out that while the agent is applying a given
primitive action, the agent stops exploring the other primitive
actions for m time steps. However, the agent keeps criticizing those
MSAs which are sub-sequences of the selected MSA. Although
temporal abstraction is used to define macro-actions of variable
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lengths, exploration is required to discover when is more produc-
tive to interrupt a given macro-action and switch to a different
macro-action. Clearly, the advantage is that the agent reduces the
amount of exploration for learning.

Thus, the proposed MFLC-MSA algorithm is the following:

1. Initialize m = 0 and estimate the state st.
2. Select an action at, using ε-greedy policy from the actions avail-

able in state st.
3. (MSA) Apply at during n times steps.
4. Repeat for these n time steps:

(a) Set m = m + 1 and estimate the new state st+m.
(b) If the evolution of the states deviates from the goal state, inter-

rupt the MSA and return to Step 1.
(c) Update the Q-value using

Q m(s, a)← Q m(s, a)+ ˛
(

rm
t+1 + �mmax

a∈A
Q (s, a)− Q m(s, a)

)
(3)

5. Return to Step 1.

In reinforcement learning literature, the optimal action denotes
the action that has maximum Q-value at a given time. In order to
avoid confusion with the usual terminology of optimality in control
literature, this action is now called best action. The greedy policy for
selecting the best action is

�(s) = argmax
a∈A

Q, (4)

However, as the agent’s goal is to maximize future reward, it
should then, naively, always choose the one action which leads to
maximal immediate reward. This, however, prevents exploration.
A suboptimal action performed now will perhaps lead to a much
higher cumulative reinforcement later. In other words, it can be
described as follows: the agent knows exactly neither the optimal
value function nor the correct estimation of the plant dynamics. If
the agent knows this value correctly, the policy can select a greedy
action that maximizes the value function at each state. If this esti-
mation and prediction are good enough, therefore, a good policy
would simply be to choose the greedy action; this is called exploita-
tion. However, when the learning agent does not know the correct
optimal value function, in order to discover it, the agent should exe-
cute trial actions, i.e. actions that are not optimal with respect to
the current value function; this is called exploration.

The so-called ε-greedy strategy may be used to explore appar-
ently non-optimal actions by giving a space, ε, for the agent to
search and discover better actions, that is

�(s) =
{

a∗ ≡ argmax
a∈A

Q, with probability 1− ε

a∈A, a /= argmax
a∈A

Q, with probability ε
(5)

Thus, the action that has maximum value function will be
selected with 1− ε probability, whereas any action that does not
have maximum value function will be selected with probability ε.

3. MFLC for control of oxidation of wastewater

3.1. State description

A central issue in reinforcement learning algorithms is the defi-
nition of the system states: so far, RL has been successfully used
mostly for simple problems characterized by discrete state and
action spaces. However, in process control, both state and action
spaces are a continuum, so a symbolic state characterization is now
proposed to help address the dimensionality problem with little
loss in performance. Moreover, the state definition rationale must

Fig. 2. State definition from tracking error.

be simple enough for operators to understand and must also be
based on insights concerning the process. Thus, in MFLC, the states
are defined based on the control objective and input constraints,
trying to follow simple ideas borrowed from control techniques
frequent in process control.

In a SISO implementation of the MFLC framework, the control
task is defined so as to maintain the desired output (e.g., ORP or pH)
inside the band r−d and r + d, as shown in Fig. 2. The width of this
band is defined based on the tolerance of the control task (which
depends on measurement noise, disturbances and system speci-
fications). This band is defined as the goal band, and corresponds
to the goal state, which the learning controller should achieve and
maintain (it is now assumed, without loss of generality, that this is
exactly in the middle of the working range). To ensure offset-free
control, it is important that d corresponds to the amplitude of the
expected measurement noise (which is assumed to have a mean
value of 0).

To describe the rest of the symbolic states, an approach simi-
lar to that of the gain-scheduling technique frequently used in the
process control problem is used: it is considered that the agent
has h states from the goal state to the maximum positive or neg-
ative error of the system, f (selecting h is a trade-off: this number
must be large enough to describe all the different process behav-
iors, but small enough to reduce computational time and the size
of the Q-value function matrix).

If needed, the “length” of each state can be calculated as follows:

c = f − d

h
. (6)

Thus, the positive bound parameter can be presented as:

ωi = d+ (i− 1)c, i∈ [1, . . . , h]. (7)

(For negative errors, the bound parameter is trivial by changing
signs.)

Thus, the vector of symbolic states can be presented as follows:

gj =
{

e−ωj if e ≤ ωj

ωj − e otherwise
(8)

where e is the tracking error. The symbolic current state, st is just:

st = arg max gj. (9)

3.2. Action description

In the single-input single-output version of MFLC, the control
signal ut ∈R is calculated by varying the previous control signal in
a magnitude calculated from the difference of the numerical values
of the selected best action, at ∈N, with respect to the wait action, aw

(action corresponding to maintaining the previous control signal).
That is,

ut = ut−1 + k(aw − at). (10)

This gives a PI-like structure, which simplifies initialization and
tuning for the end user (k is the tuning parameter). The gain k must
be positive if we want the control signal to increase when the output
is below the reference. This is because, for states below the goal
state, the only available actions are actions with numbers smaller
than the wait action (see Fig. 3). These actions increase the control
signal if k is positive.
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Fig. 3. Definition of the set of actions at each state.

At each state, there is only a finite set of possible actions (see
Fig. 3). These actions are selected based on the limitations on the
minimum and maximum variations of the control signal (which
appear in any practical control problem, and are known from basic
knowledge of the process), as follows: Let the incremental control
be bounded as:

�u ≤�u ≤�u. (11)

The number of total actions needed to satisfy the constraints can
be calculated as:

Na = 2h

(
round

(
�u−�u

kh

))
+ 1. (12)

To satisfy the upper bound (12), the round up function is used.
From (13), the value corresponding to the wait action aw, can be
calculated as follows:

aw = Na + 1
2

. (13)

If there is no overlapping, the number of actions in each state
can be calculated as:

na = Na − 1
2h

. (14)

However, to increase the number of available actions and rep-
resent nonlinear action-to-space relations (important in process
control), a degree of overlapping is included (see Fig. 3). As is logi-
cal, at each state, not all the control actions are available, but only
a subset. For example, if the state were a temperature, if this tem-
perature is very low, the only logical actions are those that increase
the temperature. Thus, the number of actions in each state is

nˇ
a = na(1+ ˇ), (15)

where ˇ is a parameter that gives the degree of overlapping of the
actions with neighboring states (always selected such that nˇ

a is
integer): this overlapping represents the fact that some actions are
possible in similar states.

Then, the available actions for every state go from aj
p to aj

b
(except in the goal state, where there is only one action, namely
the wait action). The idea is presented in Fig. 3. Those available
actions can be calculated as:

aj
p = aj−1

p + (j − 1)v,

aj
b
= aj

p + nˇ
a − 1,

(16)

where v = ˇ(nˇ
a /h) and aj−1

p is the first action in the state j calculated
as

aj−1
p =

{
1 if j = 1
2aw − aj−2

b
if j = h+ 2

(17)

4. Application to oxidation in wastewater plants

The oxidation of organic pollutants in industrial wastewater is
usually carried out in three phases: pre-treatment (preheating, pH
correction), oxidation in a reactor and post-treatment (pH neu-
tralization). This paper concentrates on controlling the ORP in the
oxidation reactor, as it is the most challenging problem, that will be
solved using the MFLC-MSA technique described in this paper: tem-
perature control in pre-treatment can be controlled using simple
control techniques (a thermostat is frequent in practice), whereas
control of the pH and neutralization process can be done using inde-
pendent MFLC-based controllers, as presented previously [24,25]:
a short summary will be given later.

It must be noted that, as has been mentioned before, the inter-
nal variables of this system cannot be measured on-line, as they
correspond to concentrations of complex chemical compounds,
for which standard sensors cannot be used, so all the information
regarding the symbolic states must be extracted from the measured
output: the ORP includes the information from all these chemical
compounds in a single number. This contrasts with the systems
usually solved using reinforcement learning approaches, where
measurements give a precise characterization of the state.

The application of the proposed learning control methodology
to the oxidation of phenols using Fenton’s reagent in a laboratory
plant is now presented in detail.
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Fig. 4. Phenol decomposition laboratory pilot plant.

4.1. Plant description

The experimental setup used to test the proposed algorithms,
shown in Fig. 4, consists of three processes, carried out in continu-
ous stirred tank reactors (CSTRs):

- The heating up tank is used to maintain the temperature and pH
of the phenol solution (process stream).

- The Fenton tank is used to control the phenol decomposition
(oxidation) process by manipulating the hydrogen peroxide (oxi-
dizer) and ferrous sulphate (catalyst) flow into the reactor (pump
3 in Fig. 4), at specified ORP levels (mV): this is the central control
problem that will be solved using MFLC-MSA.

- The pH neutralization reactor is used to neutralize the pH of the
yield from the second reactor (Fenton reactor) by manipulating
the titrating stream (pump 5 in Fig. 4), which is an alkaline
solution.

The objective of the experimental setup is to represent the con-
trol and instrumentation available in most industrial wastewater
installations. Thus, simple instrumentation is used and indepen-
dent controllers are used for each section of the process, as this is
usually considered to give a more flexible, robust and cost-effective
approach:

- A simple thermostat is used for control the temperature in the
“heating up” tank (the process reacts optimally in the range of
80–90 ◦C, so tight temperature control in the “heating up” tank is
seldom used).

- The proposed MFLC-MSA approach is used to control the main
process (oxidation in the Fenton reactor) by using the local vari-
ables of the Fenton reactor and acting on the peristaltic pump 3.

- The original MFLC algorithm is applied to the neutralization
process in the neutralization reactor (following [24,25]), by
acting on the peristaltic pump 5, using the local variables of the

neutralization reactor (and a binary variable that simply informs
of the state of pump 4).

The MFLC-MSA and MFLC controllers were implemented in Mat-
lab, acting on the system using the real-time toolbox for control.

The phenol synthetic wastewater, known as the process stream,
which is about 1000 ppm, is prepared with variable concentrations.
To have pH levels of the process stream in the desired range, the
phenol solution is titrated with 1% hydrochloric acid (HCl). The cat-
alytic solution, FeSO4, is prepared for about 1% concentration. The
oxidant reagent, hydrogen peroxide (H2O2), is used directly from
the commercial product concentration, 30% H2O2 (w/w), without
diluting it to a lower concentration. The phenol wastewater is
exposed to hydrogen peroxide dosage in the presence of the fer-
rous catalyst at a given temperature and pH. As partial oxidation
tends to lower the pH further, draining the treated stream to the
natural environment without any neutralization procedure is dan-
gerous and neither advisable nor prudent. So, following standard
industrial practice, the pH is adjusted to near 7 with 1% sodium
hydroxide (NaOH).

Clearly, this last operation is a pH control problem for strong
acid–strong base systems, which is known to be extremely nonlin-
ear. In this paper, the pH neutralization process is controlled using
the proposed MFLC controller [23].

To guarantee phenol destruction through oxidation processes
using Fenton’s reagent, it is necessary to control the temperature,
the pH and proper mix of the chemical species involved. Fenton’s
set of reactions must be conducted between 80 and 90 ◦C; therefore,
the temperature of the solution is maintained using a thermostat.
As mentioned in the introduction, the reaction is only efficient in a
certain pH range: in this application the objective is to keep the pH
between 2 and 4, which is achieved by titration with hydrochloric
acid. Finally, treated wastewater on-specification discharge corre-
sponds to a value of the oxidation–reduction potential of between
550 and 600 mV. This ORP goal band is standard in practice, because
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Fig. 5. Logic flow of oxidation process control.

it corresponds to a typical breakpoint in most oxidation processes
[28].

4.2. Controller design

Fig. 5 presents the control logic of the proposed learning con-
troller, showing that the first part of the control task is to regulate
the temperature and the pH of the phenol solution before it reacts
with Fenton’s reagent. In this study, the temperature is controlled
using a thermostat controller, because the range of valid temper-
atures of the process is wide, so it is not necessary to have a tight
control on this task. Meanwhile, the pH value is maintained using
the MFLC algorithms as discussed previously.

As mentioned above, apart from these main control objectives,
control logic is needed to start and stop the process pumps when
the maximum or minimum level limits are reached. The process
pump (pump 2 in Fig. 4) is working if the liquid level of the process
system has not reached the top level of the buffer tank, whereas,
when the liquid level reaches the bottom level, the process pump
(pump 4 in Fig. 4) stops.

To apply MFLC, it is assumed that the ranges of control and
output signals are known from basic knowledge of the process.
For example, the bounds on the increments on the control signal
can be obtained experimentally by studying the characteristics of
the pump, whereas the bounds on the output signal are known
from the usual range of operation of the system. If they are
not perfectly known, the best strategy is to use a worst-case
approach, increasing the number of actions and states, and as a
consequence the dimension of the Q-value. This increases the learn-
ing time and the memory requirements, so a trade-off might be
reached.

4.2.1. State selection
The main control objective is to drive and maintain ORP inside

the goal band of 550 mV < ORP < 560 mV (see Fig. 2). Thus, following
Section 3.1, the parameter d is 5 mV. To define f for this prob-
lem, it is assumed that the controller only learns when the output
is within the band 455 mV < ORP < 655 mV (outside this band the
system responses change significantly due to the different chem-
ical reactions that are active). Thus, it is immediate to obtain that



Author's personal copy

80 S. Syafiie et al. / Applied Soft Computing 11 (2011) 73–82

f = 100 mV. The number of states over the goal was selected to be
Na = 19, so the width of each state is 5 mV.

4.2.2. Control actions and reward function
To define the number of states h is a trade-off: based on previ-

ous experiences on similar process control problems, the number of
states from the goal band to the maximum ORP has been selected at
h = 20, or equivalently, following (7), each state comprises c = 5 mV
of the measured ORP. Selecting a smaller h reduces the size of the
matrix of Q-values, which gives smaller memory and computa-
tional requirements; however, this gives less precise learning, as
part of the information from the measurement is lost.

The parameter k is left to the control engineer as a tuning param-
eter (from (11) it can be seen that it is roughly equivalent to an
integral gain of a nonlinear controller). Based on previous experi-
ences with similar systems, k = 0.0001 was selected after a couple of
trials. Fixing k gives the number of total actions directly from (13),
as it is known that in this process, the control signal should vary
between samples in the range 0.0015≤�u≤0.02: thus the number
of total positive actions is Na = 400, so the dimension of the Q-table
is 39 states by 801 actions. Each state has na = 10 possible actions.
To increase the possible nonlinearity in the action-state mapping,
the degree of overlapping was selected at ˇ = 100% (lower values
are known to be adequate for linear processes and higher values
for highly nonlinear processes).

The goal of the control task is to maintain the process ORP in
its goal state, or to return it to the goal state if there has been
any disturbance or change to ORP reference values. To achieve this,
maximum reward is given to actions causing the process to achieve
or remain in the goal state. Therefore, the reward is given as: 1 for
actions causing the next state to be in the goal state and −1 for
actions not achieving the goal state in the resulting state following
a control action:

reward =
{

1 if the actions move the systems towards the goal state
−1 otherwise

(18)

Of course, more complex reward functions could be selected,
but this particular reward function has been selected following the
ideas given by [20], which recommends not to give the agent a
detailed path to achieve the goal, but only the goal, because the
path suggested as the most adequate might not really be the best
(learning takes care of finding the most adequate approach).

The ε-greedy policy is used in this application for choosing an
action at each visited state. Parameter ε, used in the ε-greedy policy,
is selected to be 0.1, to leave space for the agent to explore other
non-optimal available actions; so choosing a non-optimal action
will be selected with a probability of 1 out of 10, which represents
a good compromise for the plant, given its time-varying and non-
linear characteristic. Of course, this parameter might be selected to
decrease when the system remains in the desired steady-state, but
some space for the agent to explore must always be available.

Based on previous experience [23,24], the values of the meta-
parameters for the MFLC-MSA and MFLC(Q) agents are selected to
be constant: discounted factor � = 0.98 and learning rate ˛ = 0.1.

4.3. Experimental results and discussion

To reproduce realistic conditions, a phenol solution is prepared
with variable concentrations (at around 2000 ppm). The process
stream (phenol solution), in the pH range of 2.0–4.0, is titrated with
10% hydrochloric acid (HCl). The catalytic solution, FeSO4, is pre-
pared for about 2% (w/w) concentration. The H2O2 is used directly
from the commercial product (30%, v/v H2O2). To neutralize the
treated stream, it is titrated with an aqueous solution of 2% (w/w) pf
sodium hydroxide (NaOH). As no simulation of the process is avail-
able, the learning control strategy was carried out directly from
on-line interaction with the plant.

Fig. 6. Measured ORP using MFLC(MSA), with the objective of 550 <ORP < 560, start-
ing at ORP = 540.

4.3.1. ORP regulation
The responses of the application of the proposed MFLC-MSA to

the phenol decomposition process can be seen in Fig. 6, which
clearly shows that the proposed MFLC-MSA controller learns to
maintain the oxidation process within the desired ORP control band
(550–560 mV). The first 600 s correspond to the training phase,
where the agent learns the environment in order to keep it within
the goal band. The initial phase reaction also occurs during this
training phase, when the sequence reactions consume both oxi-
dizer and catalyst. After the balancing reactions are reached, then
the responses of the process reach and stay in the goal band. Clearly,
the controller regulates the system by increasing the control signal
and maintaining the previous control signal when the process is in
the goal band, as can be seen in Fig. 7.

The reason for selecting the set point for the oxidation process at
a 555 mV ORP reading is that the optimal decomposition of the phe-
nol contaminant using Fenton’s reagent is in the range 550–600 mV
ORP. Therefore, if this range is taken as a reference, the optimal reac-
tion is in this range, and the responses of the process are most of the
time within the optimal range of the reaction. Clearly, the process
is oxidized in the optimal region of the decomposition reaction.

The control signal (Fig. 7) shows that when the process is out-
side the goal band, the agent provides a control signal by exploring
the available actions (Fig. 8) in every visited state. The agents
are allowed to provide the action that satisfies the incremental
constraints. Due to the incremental constraints, the agent cannot
quickly provide sufficient actions to move the process quickly to
the goal band.

Fig. 7. Control signal for MFLC(MSA): hydrogen peroxide added, normalized from
0 to 1.
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Fig. 8. Index of selected actions, corresponding to Fig. 7.

Fig. 9. pH responses of the yield reaction neutralization.

4.3.2. pH regulation
The second agent, based on a standard MFLC algorithm, controls

the second part of the process, which is to neutralize the pH of the
effluent from the buffer tank, following the ideas first proposed by
[23]. This agent regulates the titrating flow to the neutralization
reactor and also interacts with the first agent to control the oxida-
tion process, as mentioned before. In this application, the second
agent has 21 symbolic states and 205 actions.

The effluent of Fenton’s reaction is known as the acid flow. As
Fenton’s reaction is optimally decomposed in an acid solution, the

Fig. 10. pH control signal of the yield reaction neutralization.

phenol solution is titrated with strong acid for 3–5 pH value. There-
fore, the effluent is a strong acid solution and is titrated with strong
base solution (NaOH). Thus, the process is a strong acid and strong
base system, which is known as a highly nonlinear process. Even
though the system is highly nonlinear, the MFLC can regulate the
process to keep it within the goal band, as shown in Figs. 9 and 10:
the responses to applying the second agent for the neutralization of
the effluent from the buffer tank are plotted in Fig. 9: the process is
maintained within the goal band. This MFLC controller regulates the
control signal by increasing or reducing the titrating flow (NaOH),
shown in Fig. 10.

5. Conclusions

A solution to the phenol destruction problem in industrial
wastewater has been presented, based on the regulation of the ORP
in a reactor, using the proposed MFLC-MSA algorithm and the Fen-
ton process, which is followed by pH neutralization in a separate
buffer tank, also controlled by the proposed algorithm.

The MFLC-MSA algorithm presented is based on a Q-learning
look-up table and multi-step actions. This automation strategy is
appealing for this kind of process, as they are time-varying, non-
linear and it is not practical to derive a precise model. The use of
multiple step actions makes it possible to eliminate unnecessary
calculation and makes learning faster.

The proposed algorithm has been applied to a real process at lab-
oratory scale: we have shown how the controller parameters can
be easily obtained from control requirements. The experimental
results obtained show that the combination of the two controllers
makes it possible to maintain the treated stream within specifica-
tions, allowing its safe discharge to the environment.

It must be pointed out that the proposed approach is quite gen-
eral, so it is very adequate to solve problems in process control
when it is not feasible to use a process model (for example, it has
already been applied by the authors to thermal food processing
[26]). In particular, it is especially adequate for other wastewater
treatment processes, as the variations in concentration and type of
products to be treated makes deriving models unfeasible.
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