
Behavior Alignment and Control Flow Verification of

Process and Service Choreographies

Jorge Roa, Pablo Villarreal

(Universidad Tecnológica Nacional, Santa Fe, Argentina

{jroa, pvillarr}@frsf.utn.edu.ar)

Omar Chiotti

(INGAR-CONICET, Santa Fe, Argentina

chiotti@santafe-conicet.gov.ar)

Abstract: The representation of process and service choreographies has been recog-
nized as an important requirement in service-oriented methodologies. The guarantee
of alignment between process and service choreographies and the verification of the
behavior of choreographies represent an important improvement for such methodolo-
gies, since they enable the automatic generation of choreography service specifications
from well-defined choreography process models. To deal with these issues, we propose
a transformation pattern that guarantees behavior alignment between process and ser-
vice choreographies, and a verification method for the control flow of choreographies,
which can be applied to any choreography language. These approaches make use of the
Global Interaction Nets (GI-Nets) language to formalize the behavior of process and
service choreographies. This formal representation can then be used to conclude on the
behavioral aspects of choreographies. In addition, we present a tool for the modeling,
automatic generation and verification of GI-Nets, and apply the proposed approaches
to the UP-ColBPIP and WS-CDL choreography languages.
Key Words: Verification, Choreography, Web Service, Business Process
Category: D.2.2, D.2.10

1 Introduction

Today, services play a major role in business-to-business and cross-organizational

collaboration scenarios. The Service-Oriented Computing has emerged as a new

software development paradigm which enables organizations to implement cross-

organizational business processes by means of distributed services that interact

with each other via the exchange of messages [Salaün 2010]. Interactions be-

tween organizations and services can be described from a global viewpoint by

choreographies [Decker et al. 2008,Salaün 2010].

A process choreography refers to a cross-organizational business process (or

collaborative business process) that is defined at the business level and estab-

lishes a sequence of interactions between organizations from a global perspective

to achieve a common goal [Decker et al. 2008, Issarny et al. 2011]. A service

choreography refers to a service composition that is defined at the Information

Technology (IT) level and establishes a sequence of interactions between services

of information systems from a global perspective [Decker et al. 2008].

Journal of Universal Computer Science, vol. 18, no. 17 (2012), 2383-2406
submitted: 16/1/12, accepted: 29/8/12, appeared: 1/9/12  J.UCS

In a service-oriented methodology, a model of a process choreography evolves

into a specification of a service choreography through different development

phases. Each of this phases may imply the use of diverse languages which enable

the definition of choreographies at different abstraction levels. Hence, by apply-

ing transformation processes, it is possible to go from technology-independent to

technology-dependent choreographies. In line with this idea, the application of

the Model-Driven Development principles to service-oriented methodologies has

been identified as a key enabler to automatically generate technology-dependent

service choreographies from technology-independent process choreographies [Vil-

larreal et al. 2006,Hofreiter and Huemer 2008,Lazarte et al. 2010].

However, to improve the benefits of these methodologies, it is necessary to

face two important challenges in the development of service solutions. First, pro-

vide a mechanism to guarantee behavior alignment between choreographies, i.e.

the behavior of a process choreography should remain in the service choreography

after applying a transformation process. Second, provide a verification method to

guarantee that the behavior of both the process and the service choreographies

is free of errors, such as deadlocks or lack of synchronization.

Currently, there are several approaches to verify behavior alignment [Varró

and Pataricza 2003,Dijkman et al. 2004,Danylevych et al. 2010,Weidlich et al.

2010], and to verify the behavior of choreographies [Diaz et al. 2005,Yang et al.

2006,Breugel and Koshkina 2006,Stuit and Szirbik 2009,Norta and Eshuis 2010].

However, most of these approaches are highly coupled to specific languages,

making their reuse through the different phases of service-oriented methodolo-

gies a difficult task. Furthermore, although behavior alignment and control flow

verification are both concerned with the behavior of choreographies, existing

approaches are focused on solving these problems separately.

In this work, we address these challenges as a whole. The idea is that if

both the process and the service choreographies have exactly the same formal

representation of their behavioral semantics, then there would be a behavior

alignment between such choreographies. Based on this assumption, it is also

possible to make use of such formal representation to conclude on the correctness

of the control flow of choreographies defined at different development phases.

To this aim, we propose a transformation pattern that enables the automatic

transformation of process choreographies into service choreographies guarantee-

ing behavior alignment, and a verification method for the control flow of process

and service choreographies. These approaches make use of the Global Interaction

Nets (GI- Nets) formal language [Roa et al. 2012] to formalize the behavior of

choreographies. In this work, we extend GI-Nets to enable the graphical formal

definition of the constructs of choreography languages. In addition, we define a

transformation pattern for GI-Nets that enables the generation of choreography

formal models based on GI-Nets from process and service choreographies.

2384 Roa J., Villarreal P., Chiotti O.: Behavior Alignment ...

This work is structured as follows. [Section 2] describes the generation of GI-

Nets formal models. [Section 3] describes the generation of behaviorally aligned

process and service choreographies. [Section 4] presents the control flow veri-

fication method for choreographies. [Section 5] describes an Eclipse-based tool

for GI-Nets that supports the proposed approaches. [Section 6] presents a case

study based on the UP-ColBPIP [Villarreal et al. 2007, Villarreal et al. 2010]

and WS-CDL [WS-CDL 2005] choreography languages. [Section 7] establishes a

discussion. Finally, [Section 8] presents conclusions and future work.

2 Generation of Formal Process and Service Choreographies

This section describes the generation of formal choreography models from pro-

cess and service choreographies. To this aim, we introduce the Global Interac-

tion Nets (GI-Nets) formal language, which is used to formalize the behavior of

choreographies. Then, we present a transformation pattern, which enables the

generation of GI-Nets formal choreography models.

2.1 The Global Interaction Nets (GI-Nets) Formal Language

In order to provide a formal language that enables the formalization of different

choreography languages, we identified the following requirements: (1) formaliza-

tion of different types of interactions, since at present, there is no agreement on

the proper construct to represent interactions in choreographies. For example,

BPMN uses interaction activities [OMG, BPMN 2.0], UP-ColBPIP uses mes-

sages [Villarreal et al. 2010], and WS-CDL uses interactions [WS-CDL 2005];

(2) formalization of the behavior of advanced control flow constructs of choreog-

raphy languages, since choreographies require the definition of the control flow of

interactions, which may be simple such as parallelism, exclusive decisions, etc.,

or advanced such as cancellation, multiple instances, etc.; (3) modularity, since

it enables the reuse of formal models of constructs in different choreography

languages; and (4) the formalization should enable the verification of behavioral

properties of formal models with advanced control flow constructs.

To support these requirements, we propose the use of the Global Interaction

Nets (GI-Nets) formal language, which is based on Hierarchical and Colored

Petri nets (HCP-Nets), and enables the definition of GI-Nets to formalize chore-

ographies. A GI-Net is hierarchically composed of Global Interaction modules.

A Global Interaction module (GI module) is the element used to formalize inter-

actions and control flow constructs, and is used to abstract the GI-Nets formal

language from the aforementioned differences between choreography languages,

as well as to support a modular and hierarchical representation of GI-Nets. Fol-

lowing, we first make a brief introduction of some basic Petri-Net concepts and

then we define GI-Net and GI module.

2385Roa J., Villarreal P., Chiotti O.: Behavior Alignment ...

2.1.1 Petri Net Concepts

A Colored Petri Net (CP-Net) [Jensen and Kristensen 2009] is a nine-tuple

CPN = (P, T,A,Σ, V, C,G,E, I), where P is a finite set of places, T is a finite

set of transitions, and A is a finite set of directed arcs that connects places to

transitions (and vice versa). A CP-Net has a finite set of color sets Σ, a finite set

of variables V of one type (color) of Σ, and a color set function C that assigns a

color set to each place. Transitions may have a guard function G, and arcs may

have an arc expression function E. I is an initialization function of the CP-Net.

•p and p• are the sets of input and output transitions t ∈ T of the place p

respectively. | •p | and | p• | are the number of input and output transitions of

place p respectively. | •t | and | t• | are the number of input and output places of

transition t respectively. | P | and | T | are the number of places and transitions

of the sets of places and transitions P and T respectively. For any two markings

M1 and M2, M1 ≥ M2 iff for each p ∈ P : M1(p) ≥ M2(p). M1 > M2 iff

M1 ≥ M2 and M1 6= M2. For a place p and marking M , | M(p) | is the number

of tokens on p in marking M . We use (PN,M) to denote a Petri net PN with a

initial state M . A state M ′ is a reachable state of (PN,M) iff M
∗
→ M ′. A Petri

net (PN,M) is live iff, for every reachable state M ′ and transition t there is a

state M ′′ reachable from M ′ which enables t. A Petri net (PN,M) is bounded

iff, for every reachable state and place p the number of tokens in p is bounded.

A CP-Net module [Jensen and Kristensen 2009] is a tuple CPNM = (CPN ,

Tsub, Pport, PT), where CPN is a CP-Net with a set of port places Pport, which

have a port type PT . It may also have a set of substitution transitions Tsub.

A Hierarchical and Colored Petri Net (HCP-Net) [Jensen and Kristensen

2009] is a four-tuple CPNH = (S, SM,PS, FS), where S is a finite set of CP-

Net modules. Each substitution transition have its corresponding CP-Net module

by means of the submodule function SM . The input and output places of a CP-

Net module are associated with their corresponding places of the substitution

transition by means of a port-socket relation function PS. FS is a set of fusion

sets of places. P s is the set of places of the module s ∈ S. T s is the set of

transitions of the module s ∈ S. PT (p) is the port type of a place p. Type[v] is

the type (color) of a variable v.

2.1.2 GI-Nets

Definition 1. Given a HCP-Net GIN = (S, SM,PS, FS) and a CP-Net module

r ∈ S, GIN is a GI-Net iff the following restrictions hold:

1. S is an ordered finite set of GI modules which is structured as an ordered

tree, such that the root of the tree is the module r ∈ S,

2. For each transition t ∈ T r, t is associated with a GI module by means of the

submodule function SM ,

2386 Roa J., Villarreal P., Chiotti O.: Behavior Alignment ...

3. For each GI module s ∈ S such that s 6= r, there is a direct path from r to s,

4. PI ⊂ P r is a non-empty set of interaction places such that for each p ∈ PI

the color set of p is GINT,

5. PC ⊂ P r is a set of control places such that for each p ∈ PC the color set of

p is CTRL,

6. There is only one input place ip ∈ PI such that •ip = ∅,

7. There is only one output place op ∈ PI such that op• = ∅, and op is a

member of the fusion set End ⊂ FS,

8. For each element n ∈ (P ∪ T), n is on a directed path from ip to op,

9. For each place p ∈ P r and t ∈ T r such that p 6= ip ∧ p 6= op, | p• |=| •p |=|

t• |=| •t |= 1,

10. For each s1, s2 ∈ S and each p1 ∈ P s1, p2 ∈ P s2 such that s1 6= s2, if p1, p2

are members of the fusion set f ⊂ FS, then Type[p1] = Type[p2] = CTRL.

By [Definition 1], an HCP-Net is a GI-Net iff: (1) A GI-Net is composed of

an ordered tree of GI modules, (2) each transition defined in the root of the

tree must be associated with a GI module, (3) every GI module is connected to

the root of the tree, (4 and 5) a GI-Net can be composed at least by two types

of places: an interaction place, represented by the color set GINT and used to

model the expected state of interactions, and a control place, represented by the

color set CTRL and used to restrict and control interactions in a GI module.

Tokens in control places represent restrictions in the net rather than the flow

of interactions, and are useful to formalize advanced control flow constructs.

In addition, (6 and 7) the root of the tree must have one input place and one

output place, (8) there must be a directed path from the input place to any other

transition/place of the GI-Net, (9) the root of the GI-Net must be a sequence of

places and transitions, and (10) a place that connects two or more GI modules,

and is neither an input nor an output place, must be a control place.

Definition 2. A CP-Net module GIM=(CPN,Tsub,Pport,PT) is a GI module iff:

1. PI ⊂ P is a non-empty set of interaction places such that for each p ∈ PI

the color set of p is GINT,

2. PC ⊂ P is a set of control places such that for each p ∈ PC the color set of

p is CTRL,

3. There is only one input place ip ∈ PI such that PT (ip) = IN ∧ •ip = ∅,

2387Roa J., Villarreal P., Chiotti O.: Behavior Alignment ...

4. There is only one output place op ∈ PI such that PT (op) = OUT ∧ op• = ∅,

5. For each element n ∈ (P ∪ T) ∧ n 6= op, there is a direct path from ip to n.

Since GI-Nets can be used to formalize different choreography languages, it is

important to keep a GI-Net as structured as possible to make their reuse easier,

and also to improve the analysis performance [Vanhatalo et al. 2007]. To this

aim, we define a structured GI-Net as follows.

Definition 3. A GI-Net GIN=(S,SM,PS,FS) is a Structured GI-Net iff each GI

module GIM ∈ S represents a sequence, a loop, a split/join, or a decision/merge.

2.1.3 Abstract and Concrete Global Interaction Modules

When formalizing a choreography language, an important task is to provide

formal semantics for each construct of the language. A construct of a language

is an abstract element, defined in a general way by attributes and relations, and is

used to instantiate an element of a model or specification. The formal definition

of a construct should be made as general as possible, and should enable the

formal representation of all the possible infinite instances of such construct.

In [Roa et al. 2012], we proposed the use of abstract GI modules to formalize

constructs of a choreography language and concrete GI modules to formalize the

instances of constructs. An abstract GI module enables the formal definition

of a construct in a general way, and represents the infinite set of concrete GI

modules that formalizes the instances of such construct. To formalize constructs

with abstract GI modules, it is important to support the definition of expressions

like p•, which represents the whole set of outgoing transitions of the place p.

However, such type of definitions are not supported by the graphical notation of

Petri nets, and it is necessary to use the algebraic notation.

To overcome this limitation, we propose abstract places and transitions, which

are graphically defined with a double border line [see Fig. 1], and represent an

undetermined number of places and transitions. GI modules composed of at least

one abstract place or one abstract transition are called abstract GI modules.

A concrete GI module is neither composed of abstract places nor abstract

transitions, and is derived from an abstract GI module. A GI-Net is composed

only of concrete GI modules, since it formalizes an instance of a choreography

language. [Fig. 1a] shows how abstract places and transitions can be used to

derive classical places and transitions, and [Fig. 1b] shows an example where

a concrete GI module with three parallel paths is derived from an abstract GI

module that combines classical places and transitions with abstract places and

transitions representing an undetermined number of parallel paths. We define

this concepts as follows.

2388 Roa J., Villarreal P., Chiotti O.: Behavior Alignment ...

(a) Abstract places and transitions (b) Abstract and concrete GI module

Figure 1: Semantics of abstract places and transitions

Definition 4. (Abstract places and transitions) An abstract place represents a

set of places Pa ⊂ P for which it is not possible to determine its number of

elements |Pa|. Analogously, an abstract transition represents a set of transitions

Ta ⊂ T for which it is not possible to determine its number of elements |Ta|.

Definition 5. (Abstract GI Module) An Abstract Global Interaction Module is

a Global Interaction Module GIaM = (CPN, Tsub, Pport, PT), where CPN =

(P, T,A,Σ, V, C,G, E, I) and there is a set of abstract places Pa ⊂ P , a set of

abstract transitions Ta ⊂ T , and a set of places and transitions Ec ⊂ (P ∪ T).

Definition 6. (Concrete GI Module) A Concrete Global Interaction Module is

a Global Interaction Module GIcM = (CPN, Tsub, Pport, PT), where CPN =

(P, T,A,Σ, V, C,G, E, I), and for each place p ∈ P and transition t ∈ T , p is

not an abstract place, and t is not an abstract transition.

2.2 Generation of Formal Models for Choreographies

To support the automatic generation of the formal behavior of choreographies

we defined a transformation pattern for GI-Nets (based on [Kurtev 2005]), which

enables the definition of model transformations [see Fig. 2]. A model transfor-

mation is the process of converting an input model that conforms to a source

metamodel into an output model that conforms to a target metamodel, using

an existing transformation specification [Iacob et al. 2008].

The transformation pattern for GI-Nets [see Figure 2] provides a transfor-

mation engine represented by function t, whose input is a choreography φ and

whose output is a choreography formal model represented by the structured GI-

Net GIN . The function t is composed of the internal functions ec, cc, and ce that

enable the transformation process. Function ec associates each element of the

choreography φ with its corresponding language construct in the source meta-

model. The transformation specification for GI-Nets [see Definition 7] uses a

source metamodel corresponding to the source choreography language and a

2389Roa J., Villarreal P., Chiotti O.: Behavior Alignment ...

target metamodel that is represented by the set of abstract GI modules that for-

malizes the constructs of the source language. The transformation specification

is composed of transformation rules defined by the function cc, which associates

a construct of the source metamodel with an abstract GI-Module that defines

the formal representation of such construct. Finally, function ce defines an asso-

ciation between each abstract GI module defined in the target metamodel with

a set of concrete GI modules of the GI-Net formal model GIN .

The fact that function t generates a structured GI-Net implies that: (1) to

satisfy [Definition 3], the abstract GI modules that formalize the constructs of

a choreography language must be structured; and (2) the input choreography

φ of the function t must be structured as well. To see the difference between

structured and non-structured processes readers may refer to [Kopp et al. 2009].

Following, we provide the formal definition of Transformation Specification,

which is generic, since it enables the definition of a transformation specification

for GI-Nets as well as a transformation specification for any other language.

Then, we define a Transformation Pattern for GI-Nets.

Figure 2: Transformation Pattern for GI-Nets.

Definition 7. A Transformation Specification is a tuple TE=(λs, λt, cc), where:

(1) λs is a finite set of constructs that defines the metamodel of the source

language; (2) λt is a finite set of constructs that defines the metamodel of the

target language; and (3) cc : λs → λt is a bijective relation function that defines

an association from a set of constructs Cs ⊂ λs to a set of constructs Ct ⊂ λt.

Definition 8. Given a transformation specification TE=(λ, GIaM , cc), a Trans-

formation Pattern for GI-Nets is a tuple T=(TE, Φ, φ, GIcM ,GI∗N , ec, ce, GIN ,

t), where:

1. λ is a finite set of constructs that defines the metamodel of a choreography

language,

2. GIaM is a finite set of abstract GI Modules where each abstract GI module

AM ∈ GIaM formalizes a construct c ∈ λ,

3. Φ is the set of all possible choreographies that can be defined with the chore-

ography metamodel λ,

2390 Roa J., Villarreal P., Chiotti O.: Behavior Alignment ...

4. φ is a choreography defined by a finite set of elements such that φ ∈ Φ,

5. GIcM is the set of all possible concrete GI Modules that can be generated

from each abstract GI module AM ∈ GIaM ,

6. GI∗N is the set of all possible GI-Nets that formalize the set of choreogra-

phies Φ such that for each choreography φ ∈ Φ there is exactly one GI-Net

GIN ∈ GI∗N , and each GI-Net GIN ∈ GI∗N is associated with exactly one

choreography φ ∈ Φ,

7. ec : φ → λ is a surjective relation function that defines an association be-

tween an element e ∈ φ and a construct c ∈ λ,

8. cc : λ → GIaM is a bijective relation function that defines an association from

a set of constructs C ⊂ λ to an abstract GI module AM ∈ GIaM ,

9. ce : GIaM ×φ → GIcM is an injective relation function that defines an associ-

ation between an abstract GI module AM ∈ GIaM and a concrete GI module

CM ∈ GIcM ,

10. GIN is a Structured GI-Net such that GIN ∈ GI∗N , and is composed of a set

of concrete GI Modules CM ⊂ GIcM ,

11. t : Φ → GI∗N is a bijective mapping function that defines a transformation

from a choreography φ ∈ Φ to a GI-Net GIN ∈ GI∗N by means of the function

composition ce ◦ cc ◦ ec.

3 Generation of Behaviorally Aligned Choreographies

This section presents a transformation pattern for choreographies which en-

ables the generation of a service choreography from a process choreography,

and viceversa, guaranteeing behavior alignment. To achieve alignment between

both choreographies the transformation process generates an intermediate formal

model based on GI-Nets of the choreography defined with the source language.

Following, we define behavior alignment between choreographies, and then we

describe the transformation pattern for choreographies.

3.1 Behavior Alignment between Process and Service

Choreographies

In a service-oriented methodology it is expected that the behavior defined in

a process choreography remains in the service choreography, which is usually

known as behavior alignment. In this work, we define strict behavior alignment,

which means that both the process choreography and the service choreography

have exactly the same behavior, and is formally defined as follows.

2391Roa J., Villarreal P., Chiotti O.: Behavior Alignment ...

Definition 9. (Strict behavior alignment between a process and a service chore-

ography) Let φi and φo be a process and a service choreographies respectively.

In addition, let GINi and GINo be the formal representations based on GI-Nets

of the choreographies φi and φo respectively. If GINi = GINo, then there is a

strict behavior alignment between the choreographies φi and φo.

To enable the generation of service choreographies from process choreogra-

phies it is necessary the definition of a transformation specification (according to

[Definition 7]), where the source and target languages are a process and a service

choreography languages respectively. This transformation specification defines a

mapping between the constructs of such choreography languages determining

an informal alignment between their constructs. Usually, only a subset of the

constructs of both languages can be aligned. The problem with this approach is

that there is no formal proof of such behavior alignment, since it is merely based

on the believes and perceptions of the designer that defines the transformation

specification. This may lead to the generation of unaligned choreographies.

Hence, to support the generation of behaviorally aligned process and ser-

vice choreographies the transformation specification for choreographies should

be formalized, such that, for each pair of constructs defined in the transformation

specification, the formal representation of the construct of the source language

must be equal to the formal representation of its associated construct of the

target language. This implies a behavior alignment between a set of constructs

of two choreography languages, and hence, a behavior alignment between both

choreography languages, which is formally defined as follows.

Definition 10. (Behavior alignment between choreography languages)

Let TEs−t = (λs, λt, ccs−t) be a transformation specification for the chore-

ography languages λs and λt (based on [Definition 7]). In addition, let TEs =

(λs, GIaMs, ccs) and TEt = (λt, GIaMt, cct) be two transformation specifications

for GI-Nets, where GIaMs and GIaMt are two finite sets of abstract GI Mod-

ules of the transformation specifications TEs and TEt such that each element

AMs ∈ GIaMs and AMt ∈ GIaMt formalizes a construct Cs ∈ λs and Ct ∈ λt

respectively. We state that there is a behavior alignment between the choreog-

raphy languages λs and λt if for each construct Cs ∈ λs and Ct ∈ λt where

ccs−t(Cs) = Ct there is an abstract GI module AMs ∈ GIaMs
and an abstract

GI module AMt ∈ GIaMt
such that ccs(Cs) = AMs and cct(Ct) = AMt, and

AMs = AMt.

3.2 A Transformation Pattern that Guarantees Behavior Alignment

In order to guarantee the generation of behaviorally aligned process and service

choreographies from behaviorally aligned choreography languages, we propose a

2392 Roa J., Villarreal P., Chiotti O.: Behavior Alignment ...

transformation pattern for choreographies. In this transformation pattern, GI-

Nets are used as an intermediate formal representations of choreographies from

which it is possible to generate service and process choreographies. [Fig. 3a]

shows the approach, in which the transformation specifications TEs and TEt

are used to generate a unique GI-Net GINs−t that formalizes both the process

and service choreographies, as well as to generate the process and the service

choreographies from such formal model.

(a) Process to guarantee behavior
alignment

(b) Transformation Pattern to guarantee be-
havior alignment

Figure 3: Behavior alignment between process and service choreographies

This transformation pattern is composed of two transformation patterns for

GI-Nets that share the transformation engine and the GI-Nets metamodel with

each other [see Fig. 3b]. In addition, the transformation engine is composed of

two transformation components (CCP and CCS), which enable the reading and

generation of process and service choreographies, and a GI-Net transformation

component (GC), which enables the reading and generation of GI-Nets.

When reading the transformation pattern from left to right, the input is a

process choreography. The choreography component CCP and the GI-Net com-

ponent GC of the transformation engine generate a GI-Net formal model of the

process choreography. This GI-Net is used as the input of the choreography com-

ponent CCS which generates the service choreography that is the output of the

transformation pattern. Reading from right to left, we have the inverse situation,

where a service choreography is the input of the transformation pattern, and the

choreography component CCS and the GI-Net component GC of the transfor-

mation engine generate a GI-Net formal model of the service choreography. This

GI-Net is used as the input of the choreography component CCP which generates

the process choreography. Following, we formally define transformation pattern

for choreographies, where functions eci and ccs are part of the choreography

component CCs, functions eco and cct are part of the choreography component

CCt, and the function ce is part of the choreography component GC.

Definition 11. A Transformation Pattern for choreographies is a tuple T =

2393Roa J., Villarreal P., Chiotti O.: Behavior Alignment ...

(λs, λt, Ts, Tt, t), where:

1. λs and λt is a pair of behaviorally aligned process and service choreography

languages respectively, according to [Definition 10],

2. Ts = (TEs, Φi, φi, GIcMi, GI∗N , eci, ce,GINi, ts) is a transformation pattern

for GI-Nets, where TEs = (λs, GIaM , ccs) is the GI-Net transformation spec-

ification of Ts and φi is the input process choreography of Ts,

3. Tt = (TEt, Φo, φo, GIcMo, GI∗N , eco, ce,GINo, tt) is a transformation pattern

for GI-Nets, where TEt = (λt, GIaM , cct) is the GI-Net transformation spec-

ification of Tt and φo is the output service choreography of Tt,

4. t : Φi → Φo is a bijective mapping function that defines a transformation

from a process choreography φi ∈ Φi to a service choreography φo ∈ Φo such

that t = t−1

t ◦ ts,

5. t−1 is the inverse function of t, which defines a transformation from a service

choreography φo ∈ Φo to a process choreography φi ∈ Φi such that t−1 =

(t−1

t ◦ ts)−1.

3.2.1 Sufficient Condition for Strict Behavior Alignment

Given a transformation pattern for choreographies T = (λs, λt, Ts, Tt, t), and two

transformation patterns for GI-Nets Ts = (TEs, Φi, φi, GIcMi, GI∗N , eci, ce,GINi, ts)

and Tt = (TEt, Φo, φo, GIcMo, GI∗N , eco, ce,GINo, tt), we want to decide whether

the choreographies φi and φo have a strict behavior alignment.

Lemma12. If a given choreography φo is generated from a choreography φi by

means of T , then the choreographies φi and φo have a strict behavior alignment.

Proof. Assume that the choreography φo is generated from the choreography

φi by means of the transformation pattern for choreographies T . Hence, by

[Definition 11] we know there are two transformation patterns for GI-Nets Ts ∈ T

and Tt ∈ T , a bijective function t ∈ T which generates the choreography φo

from the choreography φi where t = t−1

t ◦ ts and t−1 = t−1

s ◦ tt, and ts ∈ Ts

and tt ∈ Tt are two bijective functions which generate the formal representation

based on GI-Nets of φi and φo respectively such that ts(φi) = GINi and tt(φo) =

GINo. Hence, if the choreography φo is generated from the choreography φi by

means of function t, we know that t(φi) = t−1

t (ts(φi)) = φo and t−1(φo) =

t−1

s (tt(φo)) = φi. Since we initially assumed that ts(φi) = GINi, and tt(φo) =

GINo, then we have that t(φi) = t−1

t (GINi) = φo and t−1(φo) = t−1

s (GINo) = φi.

But, if we assumed that ts(φi) = GINi and tt(φo) = GINo, then the following

equalities must hold: t−1

s (GINi) = φi and t−1

t (GINo) = φo. Hence, since ts

2394 Roa J., Villarreal P., Chiotti O.: Behavior Alignment ...

and tt are bijective functions, the GI-Nets GINi and GINo that formalize the

choreographies φi and φo must be equal, i.e. GINi = GINo, which, by [Definition

9], implies a strict behavior alignment between φi and φo.

The use of a transformation pattern for choreographies according to [Def-

inition 11] is a sufficient condition but not necessary to generate behaviorally

aligned choreographies, since it is possible to reach this by relaxing some con-

ditions of the transformation pattern. For example, the transformation pattern

for choreographies proposed in [Definition 11] is based on the idea that both

choreography languages must have the same formal definition of the their con-

structs according to [Definition 10]. However, suppose we relax the restriction 1

of [Definition 11] by establishing that only a subset of the constructs defined in

the transformation specification of both choreography languages have the same

formal representation. Suppose we also have two choreography languages λ1 and

λ2 composed each one of four constructs: Message, Xor, And, and Or, whereas

the first three constructs have the same formal representation with GI-Nets, and

the formal representation of the Or construct of language λ1 differ from that

one of λ2. Now suppose there is a choreography φ1 defined with the language λ1

whose elements are instances only of the constructs Message, Xor, and And. If

we use the transformation pattern for choreographies to generate a choreography

φo, which is instance of λ2, from φi, both φi and φo will have a strict behav-

ior alignment. This occurs even though the choreography languages λ1 and λ2

are not behaviorally aligned according to [Definition 10]. The reason is that the

choreography φi only have elements with the same formal representation. But if

we add an instance of the Or construct to the choreography φi, then φi and the

resulting choreography φo will not have a strict behavior alignment. This means

that relaxing the definition of the transformation pattern for choreographies

could also lead to choreographies which do not have a strict behavior alignment.

With this example we show that relaxing the restriction of the transformation

pattern could lead to choreographies with or without a strict behavior align-

ment. Therefore, although it is not necessary to use the transformation pattern

proposed in [Definition 11] to generate two choreographies with a strict behavior

alignment, by [Lemma 12], we know that the use of such transformation pattern

guarantees that both choreographies will have a strict behavior alignment.

4 Verification of the Control Flow of Choreographies

In this section we define a verification method for the control flow of process and

service choreographies. The method is based on the GI-Nets language and the

transformation pattern for GI-Nets proposed in [Section 2.2].

2395Roa J., Villarreal P., Chiotti O.: Behavior Alignment ...

4.1 Verification Method for Process and Service Choreographies

Definition 13. The verification method for process and service choreographies

is a tuple V = (φi, T, P,RGIN , v, e), where:

1. φi is a choreography,

2. T = (TE,Φ, φi, GIcM , GI∗N , ec, ce, GIN , t) is a transformation pattern for

GI-Nets, where TE = (λ, GIaM , cc) is the transformation specification of T ,

3. P is a finite set of correctness properties,

4. RGIN is a set of verification results such that each r ∈ RGIN is a pair {p,E}

where p ∈ P is a correctness property, and E ⊂ φ is a set of choreography

elements where the property p holds,

5. v : GI∗N → RGIN is a bijective function that maps a GI-Net GIN ∈ GI∗N
with a verification result r ∈ RGIN ,

6. e : GIcM → φi is a relation function that associates each concrete GI module

CM ∈ GIcM with a set of choreography elements E ⊂ φi.

The aim of the proposed method is to verify models and specifications of

a choreography φi, defined with a language λ. A set of constructs of λ can be

formalized with an abstract GI Module AM ∈ GIaM , whereas a set of elements of

the choreography φi can be formalized with a concrete GI Module CM ∈ GIcM .

To apply this method and verify processes or services defined with a given chore-

ography language, the abstract GI module of each construct must be defined.

The GI-Net GIN is composed of a set of concrete GI Modules CM , and is gen-

erated by applying the function t ∈ T to the choreography φi. Retrieving the

set of elements E ⊂ φi, which is the source of an error in a choreography φi,

is possible by means of the function e, which establishes a direct association

between each concrete GI module and its corresponding choreography element.

The output of this method is the set of elements of φi that do not hold the

correctness properties P . If no error is found, an empty set is returned.

4.2 Correctness Properties for Global Interactions

Formalizing advanced control flow constructs with Petri nets may imply tokens in

different places in the final marking of a net. The classical soundness definition

[van der Aalst et al. 2010] is too restrictive and does not support this. Other

variants of soundness relax this restriction [van der Aalst et al. 2010], but they

do not guarantee that places (different from the final place) have a proper state

in the final marking. In a GI-Net, we want to be sure that, in the final marking,

2396 Roa J., Villarreal P., Chiotti O.: Behavior Alignment ...

all the interaction places (PI), except the final place, are in the empty state, and

control places (PC) are in a predefined state (may be different from empty). To

deal with these issues, we propose the Global Interaction soundness as follows.

Definition 14. (GI soundness) Let GIN = (S, SM,PS, FS) be a GI-Net. Let

ME ,M0 be the empty and initial markings respectively of GIN , such that ∀p∈Pc
|

ME(p) |≥ 0 ∧ ∀p∈PI
| ME(p) |= 0 ∧ M0 = ME + M(ip). Furthermore, let MF

be the final marking of GIN , such that MF = ME +M(op). Then, GIN is GI

sound iff the following requirements hold: (1) there is an option to complete:

∀M (M0

∗
→ M) ⇒ (M → MF); (2) a proper completion: ∀M (M0

∗
→ M ∧ M ≥

MF) ⇒ (M = MF); and (3) no dead transitions: ∀t∈T∃M,M ′M0

∗
→ M

t
→ M ′.

4.2.1 Necessary and Sufficient Conditions for GI soundness

In order to determine if a given GI-Net GIN is GI sound, we define the extended

net GIN by adding a transition t∗ which connects op and ip to GIN . For an

arbitrary GI-Net GIN and the corresponding extended net GIN we will prove

that GIN is sound iff (GIN ,M0) is live and bounded.

Lemma15. If (GIN ,M0) is live and bounded, then GIN is GI sound.

Proof. (GIN ,M0) is live. Since op is the input place of t∗, for any marking

M reachable from marking M0, it is possible to reach a marking with at least

one token in place op. Consider an arbitrary reachable state M ′+M(op), i.e. a

marking with one token in place op. In this marking t∗ is enabled. If t∗ fires,

the marking M ′+M(ip) is reached. Since (GIN ,M0) is also bounded, M ′ should

be equal to ME. Hence requirements 1 and 2 hold and proper termination is

guaranteed. Requirement 3 holds since (GIN ,M0) is live. Hence, GIN is GI

sound.

Lemma16. If GIN is GI sound, then (GIN ,M0) is bounded.

Proof. Assume that GIN is GI sound and (GIN ,M0) is not bounded. Since

GIN is not bounded there are two states Mi and Mj such that M0

∗
→ Mi,

Mi
∗
→ Mj , and Mj > Mi. However, since GIN is sound we know that there is a

firing sequence σ such that Mi
σ
→ MF . Therefore, there is a state M such that

Mj
σ
→ M and M > MF . Hence, it is not possible that GIN is both sound and

not bounded. So if GIN is sound, then (GIN ,M0) is bounded. From the fact

that GIN is sound and (GIN ,M0) is bounded, we can deduce that (GIN ,M0)

is bounded. If transition t∗ in GIN fires, the net returns to the initial state M0.

Lemma17. If GIN is GI sound, then (GIN ,M0) is live.

2397Roa J., Villarreal P., Chiotti O.: Behavior Alignment ...

Proof. AssumeGIN is sound. By [Lemma 16] we know that (GIN ,M0)isbounded.

Because GIN is sound we know that M0 is a home-marking of GIN . Hence, for

every state M ′ reachable from (GIN ,M0) it is possible to return to a state M0.

In the original net (GIN ,M0), it is possible to fire an arbitrary transition t (re-

quirement (3)). This is also the case in (GIN ,M0). Therefore, (GIN ,M0) is live

because for every state M ′ reachable from (GIN ,M0) it is possible to reach a

state which enables an arbitrary transition t.

Theorem 18. A GI-Net GIN is sound iff (GIN ,M0) is live and bounded.

Proof. It follows directly from [Lemma 15, 16, and 17].

4.3 Retrieving the Source of Errors in Choreographies

For a sound GI-Net GIN the following rules hold: 1) There must be exactly one

dead marking and one home marking [Jensen and Kristensen 2009] MD and MH

respectively, such that both markings are the same, and they are also the final

marking MF of GIN , i.e. MD = MH = MF , 2) For each transition t ∈ T , t

is not dead. If the first rule does not hold, then there is at least one deadlock

different from the final marking MF in the GI-Net. The location of the deadlock

is determined by checking each marking M ′ which is part of the set of deadlock

markings Mdl, such that M ′ 6= MF . For each place p ∈ P s and module s ∈ S,

if M ′(p) 6= MF (p) there is a deadlock originated in module s, and at least one

of the transitions p• is the source of the deadlock. If the second rule does not

hold, it means that there is at least one interaction that will not be carried out.

The GI module causing the unexpected behavior is determined by checking the

set of dead transitions Td of the GI-Net. The verification method provides the

function e : GIcM → φ to retrieve the source of errors.

If the control flow verification method is applied to a process and a ser-

vice choreography languages for which there is a transformation pattern for

choreographies, by [Definition 11], such verification method guarantees that if a

process choreography is correct (incorrect), then its corresponding service spec-

ification will also be correct (incorrect), and vice versa. Furthermore, all the

properties returned by the verification method are valid for both the process

and the service choreographies.

5 Tool Support for the Formalization and Verification of
Choreographies

To support the approaches proposed in [Sections 3 and 4], we developed a proto-

type tool1 for the modeling, automatic generation, and verification of GI-Nets.

1 Global Interaction Nets Tool. http://code.google.com/p/gi-nets/

2398 Roa J., Villarreal P., Chiotti O.: Behavior Alignment ...

The tool is composed of a project explorer, which contains the functionality to

manipulate choreography language metamodels, GI-Net formal models, transfor-

mation specification for GI-Nets and choreographies, and choreography models

or specifications. The tool also has a GI-Net and a GI module editor to formalize

the behavior of constructs by means of abstract GI modules.

The architecture of the tool [see Fig. 4] is based on the Eclipse Platform,

which enables the reuse of many existing applications. The tool makes use of

the Eclipse Modeling Framework (EMF) [Steinberg et al. 2008], which is used

to persist GI-Net formal models and to get data interoperability among appli-

cations of the Eclipse platform. ePNK2 enables the definition of new Petri Net

types based on the Petri Net Markup Language (PNML) [PNML Standard] and

provides an infrastructure for developing graphical editors for Petri nets. Ac-

cess/CPN3 provides the necessary mechanisms to manipulate models based on

CPN Tools. CPN tools and Access/CPN support the definition of formal models

with the necessary modularity to define GI-Nets, and provides a wide range of

features to enable the automatic verification of GI-Nets.

The graphical editor for GI-Nets is an Eclipse plug-in that supports the

modeling of GI-Nets, and is based on the ePNK framework. This editor supports

the formalization of modeling constructs of choreography languages by means of

abstract GI modules. The transformation machine for GI-Nets implements the

transformation pattern proposed in [Section 2.2], and enables the generation of

GI-Nets from any choreography model or specification. This machine is divided

into a transformation engine for PNML and a transformation engine for CPN

Tools. The transformation process consists in generating a GI-Net based on the

PNML standard, and then from such PNML-based GI-Net, generating a GI-Net

based on CPN Tools. The input of this transformation machine is an EMF-based

choreography and a transformation specification for GI-Nets. The output can be

a PNML-based GI-Net or a GI-Net based on CPN Tools.

Figure 4: Architecture of the Eclipse-based tool for GI-Nets

2 ePNK. http://www2.imm.dtu.dk/ eki/projects/ePNK/
3 Access/CPN. http://cpntools.org/accesscpn/

2399Roa J., Villarreal P., Chiotti O.: Behavior Alignment ...

The transformation machine for choreographies implements the transforma-

tion pattern proposed in [Section 3.2], and enables the generation of service

choreographies from process choreographies, and vice versa. The input of this

machine is an EMF-based process choreography. The output is an EMF-based

service choreography. The verification engine makes use of the Access/CPN

framework and CPN Tools to verify GI-Nets. The Result Interpreter retrieves

the elements that are the source of errors in a choreography by making use of

the properties returned by CPN Tools.

6 Supporting Verification and Behavior Alignment of
UP-ColBPIP and WS-CDL Choreographies

This section describes the application of the approaches proposed in [Sections

3 and 4] to a case study based on UP-ColBPIP (UML Profile for Collaborative

Business Processes based on Interaction Protocols) and WS-CDL (Web Services

Choreography Description Language). UP-ColBPIP [Villarreal et al. 2010] en-

ables the modeling of process choreographies in terms of interaction protocols

that define the speech-act based messages exchanged between organizations.WS-

CDL [WS-CDL 2005] enables the specification of Web Services choreographies

in an XML format that can be interpreted by information systems to execute

Web service choreographies. The purpose of this case study is to show the ap-

plicability of the proposed verification approach and transformation patterns

to a service-oriented development process were these choreography languages

are used. First, we describe the formalization of the constructs of UP-ColBPIP

and WS-CDL, and then the control flow verification of a UP-ColBIPIP process

choreography model.

Table 1: Transformation specification for UP-ColBPIP and WS-CDL

UP-ColBPIP WS-CDL
Business Message Interaction
Xor (data-driven) A Choice and a Sequence activity for each interaction path
Xor (event-driven) A Choice and a WorkUnit activity for each interaction path
And Parallel activity
Loop While WorkUnit. Guard=“Repetition condition”. Repeat=“True”
Loop Until WorkUnit. Guard=“True”. Repeat=“Repetition condition”
If WorkUnit. If it contains two paths, it is mapped as an Xor
Cancel Exception WorkUnit
Termination Condition in the “complete” attribute of the choreography

6.1 Formalizing UP-ColBPIP and WS-CDL

In order to apply the transformation pattern for choreographies proposed in

[Section 3.2] to UP-ColBPIP models and WS-CDL specifications, the constructs

2400 Roa J., Villarreal P., Chiotti O.: Behavior Alignment ...

of both languages were mapped according to the similarity of their semantics and

formalized with the same abstract GI modules. Thus, it is possible to generate

GI-Nets that provide a unified formal representation of choreographies defined

with both languages. [Tab. 1] shows the transformation specification that defines

the mapping of the constructs of these languages, which is based on the informal

choreography transformation specification proposed in [Villarreal et al. 2006].

We refer readers to [Villarreal et al. 2007,Villarreal et al. 2010] and [WS-CDL

2005] to get details about the semantics of the constructs of these languages.

To formalize the constructs, we defined an abstract GI module [see Fig. 5]

for each pair of associated constructs of UP-ColBPIP and WS-CDL shown in

[Tab. 1]. These abstract GI modules are used by the transformation patterns for

generating formal models of UP-ColBPIP and WS-CDL choreographies. The GI

module And has the abstract places ipp and opp and an abstract transition t,

which are used to represent all the possible instances of the And construct. [Fig.

1b] shows an example of a concrete GI module of the And construct with exactly

three parallel paths. Similarly, the GI module Xor has an abstract transition t

which represents all the possible exclusive paths of the Xor construct. The GI

module Cancel has a transition cancelct which represents the normal execution

when no exceptions are raised, and also determines the scope of Cancel. This GI

module also has the abstract transitions trigt and handt which represent all the

possible triggers and handlers of the Cancel construct. A concrete GI module

of Cancel will have classical places and transitions for each possible trigger and

handler. Transition trigt references to the Exception Trigger module, which has

the logic of the trigger. The abstract place ep represents places making a reference

to every exception point within the scope of the Cancel construct. The execution

of the transition et determines the execution of the trigger. Once the exception

is raised the transition ct clears all the remaining tokens in the scope of the

Cancel construct. Place ctrlp blocks the execution of the choreography until the

exception handler finishes its execution. The GI modules of the constructs Loop

While, Loop Until, Termination, and BusinessMessage are neither composed of

abstract transitions nor abstract places, since the formal representation of all

their instances have the same structure.

6.2 Verifying the Control Flow of a Process Choreography Model

We applied the verification method to a choreography that represents a Collabo-

rative Demand Forecast process, which is based on a real word case study of the

application of a collaborative model for the supply chain management of desktop

computers and notebooks. [Fig. 6a] shows the choreography for this process de-

fined with UP-ColBPIP, where there are two organizations collaborating to agree

on a demand forecast of final products. The customer sends a forecast request,

which the supplier may agree or refuse. In case of agreement the customer must

2401Roa J., Villarreal P., Chiotti O.: Behavior Alignment ...

Figure 5: Abstract GI modules for UP-ColBPIP and WS-CDL

send some information to the supplier. With this information, the supplier can

generate the demand forecast and send it to the customer. The whole process

cannot take more than five days, otherwise the process is cancelled.

(a) UP-ColBPIP choreography (b) GI-Net of the process choreography

Figure 6: Collaborative Demand Forecast process choreography and its GI-Net

In order to formalize this choreography, the transformation machine for GI-

Nets makes use of the abstract GI modules defined for the UP-ColBPIP con-

structs [see Fig. 5]. [Fig. 6b] shows part of the GI-Net generated with the tool for

GI-Nets. The application of the control flow verification process with CPN Tools

2402 Roa J., Villarreal P., Chiotti O.: Behavior Alignment ...

determined that this GI-Net has three dead markings (final states). One of them

represents the appropriate termination of the choreography, whereas the other

two represent a deadlock caused by the definition of an explicit termination “suc-

cess” in one of the interaction paths of the And construct. The formal behavioral

defined for the And construct establishes that both paths must be synchronized.

In this situation, the synchronization will never take place, since the termination

construct “Success” finishes the collaboration before the synchronization can be

realized. Furthermore, since both paths in the And construct are concurrent,

some interactions may be occurring even though the collaboration had already

finished with the “success” termination.

From the UP-ColBPIPmodel we generated its correspondingWS-CDL chore-

ography by means of the transformation pattern for choreographies [see Defini-

tion 11]. Since this pattern guarantees that both choreographies have a strict

behavior alignment, the verification method returns the same results for both

choreographies.

7 Discussion

Currently, there are many approaches to check behavior alignment [Varró and

Pataricza 2003,Dijkman et al. 2004,Danylevych et al. 2010,Weidlich et al. 2010],

but they are mainly based on bisimulation, trace equivalence, or model checking

techniques, which may be exponential in computation. There are also several

approaches to verify the behavior of choreographies [Diaz et al. 2005,Yang et al.

2006,Breugel and Koshkina 2006,Stuit and Szirbik 2009,Norta and Eshuis 2010],

but many of them do not support the verification of advanced control flow or

verify technology-dependent choreographies at late stages of the development

when most of the fundamental decisions have already been made. Most of these

approaches are also highly coupled to specific languages, making their reuse a

difficult task. Furthermore, although behavior alignment and control flow veri-

fication are both concerned with the behavior of process and service choreogra-

phies, existing approaches are focused on solving these problems separately.

In order to deal with these issues, we make use of GI-Nets. GI-Nets can be

used to formalize different choreography languages, and enable the definition

of both a transformation pattern for process and service choreographies that

guarantees behavior alignment, and a verification method for the control flow of

process and service choreographies. Both approaches can be used with different

choreography languages, and hence, in different service-oriented methodologies

and at different development stages.

To enable the formalization and verification of choreographies with advanced

control flow, we showed that the combination of modularity with the definition

of abstract GI modules enables the definition of complex constructs, such as

2403Roa J., Villarreal P., Chiotti O.: Behavior Alignment ...

cancellation, in a completely structured and general way. This is important,

since structuredness may imply a performance improvement in the verification

process [Vanhatalo et al. 2007], and it may also lead to a reduction of errors.

The guarantee of behavior alignment between two choreographies defined

with two different languages is achieved by generating a unified formal represen-

tation based on GI-Nets of the behavior of constructs of languages. Such formal

representation is possible and is expected since in the context of service-oriented

methodologies. The behavioral semantics defined in process choreographies at

the earliest development phases should remain in the service choreographies.

In the definition of formal models, two contradictory requirements are present:

expressiveness vs. decidability of properties [Haddad and Poitrenaud 2007]. On

the one hand, GI-Nets do not compromise the decidability of properties of HCP-

Nets, such as liveness or boundedness, since a GI-Net is a type of HCP-Net and

inherits all the decidability issues of HCP-Nets. On the other hand, the use of

abstract GI modules enhance the expressiveness of HCP-Nets and enables the

formalization of constructs of different languages. In addition, the modularity of

structured GI-Nets is a key issue to improve the formalization of constructs of

different languages, since it makes the reuse of formal models easier.

8 Conclusions and Future Work

In this work, we addressed the problem of behavior alignment and control flow

verification of process and service choreographies in service-oriented method-

ologies. To this aim, we proposed a transformation pattern and a verification

method for process and service choreographies. These approaches make use of

the GI-Nets formal language and a transformation pattern for GI-Nets to gener-

ate the formal behavior of choreographies. By using GI-Nets, these approaches

are independent of the semantics of any specific choreography language, which

make them flexible and adaptable to be used with different choreography lan-

guages, and in different service-oriented methodologies and development stages.

The transformation pattern for choreographies guarantees behavior align-

ment between process and service choreographies, and provides a bidirectional

transformation process that enables the generation of a process choreography

from a service choreography, and vice versa. This is possible since the transfor-

mation pattern makes use of GI-Nets to provide a unified formal representation

of both choreographies.

The verification method enables the detection of deadlocks and lack of syn-

chronization in choreographies. To this aim, it makes use of GI-Nets and the

GI soundness property, which enable the verification of choreographies with ad-

vanced control flow, such as cancellation or exceptions. In addition, the modu-

larity of GI-Nets through GI modules that represents the elements of a chore-

2404 Roa J., Villarreal P., Chiotti O.: Behavior Alignment ...

ography, leads to a more accurate response to return the location of errors of a

choreography by delimiting the scope of a problem to a GI module.

By means of the transformation pattern for choreographies, the verification

method guarantees that if a process choreography is well-defined, then its cor-

responding service specification will also be well-defined, and vice versa. This

is specially important at the earliest phases of the development process, when

business analysts and system designers make most of the fundamental decisions.

In order to validate the proposed approaches, we developed a tool for GI-Nets

which supports the modeling, automatic generation, and verification of GI-Nets,

and contributes to the application of the approaches proposed in this work.

Furthermore, as a case study, we applied these approaches to the UP-ColBPIP

and WS-CDL languages. To this aim, we defined the formal representation of

the constructs of both languages, and used it to verify a choreography modeled

with UP-ColBPIP and to guarantee behavior alignment between UP-ColBPIP

models and WS-CDL specifications.

As future work, the concepts and ideas applied to this work can be ex-

tended to improve other development phases of service-oriented methodologies,

e.g. the guarantee of alignment between process/service choreographies and pro-

cess/service orchestrations and their verification.

References

[Breugel and Koshkina 2006] Breugel, F., Koshkina, M.: Models and Verification of

BPEL, http://www.cse.yorku.ca/̃franck/research/drafts/tutorial.pdf.
[Danylevych et al. 2010] Danylevych, O., Karastoyanova, D., Leymann, F.: Service

networks modelling: An soa & bpm standpoint: Journal of Universal Computer
Science, 16, 13, (2010), 1668–1693.

[Decker et al. 2008] Decker, G., Kopp, O., Barros, A.: An introduction to service chore-
ographies: Information Technology, 50, 2, (2008), 122–127.

[Diaz et al. 2005] Diaz, G., Pardo, J., Cambronero, M., Valero, V., Cuartero, F.: Auto-
matic translation of ws-cdl choreographies to timed automata: Formal Techniques
for Computer Systems and Business Processes, (2005), 230–242.

[Dijkman et al. 2004] Dijkman, R., Quartel, D., Pires, L., van Sinderen, M.: A rigorous
approach to relate enterprise and computational viewpoints, in: Proceedings of the
Eighth Enterprise Distributed Object Computing Conference, 2004, IEEE, 187–200.

[Haddad and Poitrenaud 2007] Haddad, S., Poitrenaud, D.: Recursive petri nets: Acta
Informatica, 44, 7, (2007), 463–508.

[Hofreiter and Huemer 2008] Hofreiter, B., Huemer, C.: A model-driven top-down ap-
proach to inter-organizational systems: From global choreography models to ex-
ecutable bpel, in: Joint Conference on E-Commerce Technology (CEC’08) and
Enterprise Computing, E-Commerce, and E-Services (EEE’008), IEEE.

[Iacob et al. 2008] Iacob, M.E., Steen, M.W.A., Heerink, L.: Reusable model transfor-
mation patterns, in: Proc. of the 12th Enterprise Distributed Object Computing
Conference Workshops, IEEE Computer Society, Washington, DC, USA, 1–10.

[Issarny et al. 2011] Issarny, V., Georgantas, N., Hachem, S., Zarras, A., Vassiliadis,
P., Autili, M., Gerosa, M.A., Ben Hamida, A.: Service-Oriented middleware for
the future internet: State of the art and research directions: Journal of Internet
Services and Applications.

2405Roa J., Villarreal P., Chiotti O.: Behavior Alignment ...

[Jensen and Kristensen 2009] Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Mod-
elling and Validation of Concurrent Systems, Springer, 1st ed. (2009).

[Kopp et al. 2009] Kopp, O., Martin, D., Wutke, D., Leymann, F.: The difference be-
tween Graph-Based and Block-Structured business process modelling languages:
Enterprise Modeling and Information systems, 4, 1, (2009), 3–13.

[Kurtev 2005] Kurtev, I.: Adaptability of model transformations, Ph.D. thesis, Univer-
sity of Twente, Enschede (2005).

[Lazarte et al. 2010] Lazarte, I., Tello-Leal, E., Roa, J., Chiotti, O., Villarreal, P.:
Model-Driven Development Methodology for B2B Collaborations, in: Proc. of 14th
Enterprise Distributed Object Computing Conference Workshops, IEEE, 69–78.

[Norta and Eshuis 2010] Norta, A., Eshuis, R.: Specification and verification of harmo-
nized business-process collaborations: Information Systems Frontiers, 12, (2010),
457-479.

[OMG, BPMN 2.0] OMG, BPMN 2.0: http://www.omg.org/spec/BPMN/2.0/.
[PNML Standard] PNML Standard, ISO/IEC 15909-1:2004: http://www.pnml.org/.
[Roa et al. 2012] Roa, J., Chiotti, O., Villarreal, P.: A verification method for collab-

orative business processes, in: BPM 2011 Workshops, Part I, Springer, Lecture
Notes in Business Information Processing, vol. 099, (2012), 293–305.

[Salaün 2010] Salaün, G.: Analysis and verification of service interaction protocols: a
brief survey, in: G. Salaün, X. Fu, S. Hallé, eds., TAV-WEB, EPTCS, 35, 75–86.

[Steinberg et al. 2008] Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF:
Eclipse Modeling Framework, Addison-Wesley Professional, 2nd revised ed. (2008).

[Stuit and Szirbik 2009] Stuit, M., Szirbik, N.: Towards Agent-Based Modeling and
Verification of Collaborative Business Processes: an Approach Centered on Inter-
actions and Behaviors: Int. Journal of Cooperative Information Systems (IJCIS),
18, (2009), 423–479.

[van der Aalst et al. 2010] van der Aalst, W., van Hee, K., ter Hofstede, A., Sidorova,
N., Verbeek, H., Voorhoeve, M., Wynn, M.: Soundness of workflow nets: classifi-
cation, decidability, and analysis: Formal Aspects of Computing, (2010), 1–31.

[Vanhatalo et al. 2007] Vanhatalo, J., Völzer, H., Leymann, F.: “Faster and more Fo-
cused Control-Flow Analysis for Business Process Models through SESE Decom-
position”: Proc. ICSOC 2007, Springer, (2007), 43–55

[Varró and Pataricza 2003] Varró, D., Pataricza, A.: Automated formal verification of
model transformations: CSDUML, (2003), 63–78.

[Villarreal et al. 2006] Villarreal, P., Salomone, E., Chiotti, O.: Transforming collabo-
rative business process models into web services choreography specifications: Data
Engineering Issues in E-Commerce and Services, (2006), 50–65.

[Villarreal et al. 2007] Villarreal, P., Salomone, H., Chiotti, O.: Modeling and speci-
fications of collaborative business processes using a MDA approach and a UML
profile: Enterprise modeling and computing with UML. Idea Group Inc, (2007),
13–45.

[Villarreal et al. 2010] Villarreal, P.D., Lazarte, I., Roa, J., Chiotti, O.: A Modeling
Approach for Collaborative Business Processes Based on the UP-ColBPIP Lan-
guage, in: Business Process Management Workshops, Springer, 43, (2010) 318–329.

[WS-CDL 2005] Web Services Choreography Description Language Version 1.0
(W3C): http://www.w3.org/TR/ws-cdl-10/ (2005).

[Weidlich et al. 2010] Weidlich, M., Dijkman, R., Weske, M.: Deciding behaviour com-
patibility of complex correspondences between process models: Business Process
Management, (2010), 78–94.

[Yang et al. 2006] Yang, H., Zhao, X., Qiu, Z., Pu, G., Wang, S.: A Formal Model
for Web Service Choreography Description Language (WS-CDL), in: Proc. of the
IEEE Int. Conf. on Web Services, IEEE Computer Society, 893–894.

2406 Roa J., Villarreal P., Chiotti O.: Behavior Alignment ...

