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This work deals with the inventory, purchase and delivery optimization problem in the supply chain.
The formulation of two problems is presented involving several decision levels. The first one optimizes
the company inventory and purchase tasks in a medium-term horizon planning, assuming that the total
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amount purchased is delivered at the beginning of each period. Then, in a more detailed formulation, the
purchased amount is distributed among several deliveries giving rise to a non-linear non-convex problem.
Some transformation techniques are evaluated to overcome the non-convexities in order to find a global
solution in a reasonable execution time. Finally, the results obtained considering some possible scenarios
are analyzed and compared.

© 2010 Elsevier Ltd. All rights reserved.

upply chain management

. Introduction

Global market conditions promote an increasing interest in inte-
rating strategic, tactical and operational decision-making in order
o achieve enterprise-wide optimization. An important number of
emarkable research works supports this idea (Grossmann, 2005;
arma, Reklaitis, Blau, & Pekny, 2007). Models and methods have
een developed to solve enterprise optimization problems from
ifferent points of view (Sarker & Diponegoro, 2009; Sousa, Shah,

Papageorgiou, 2008; You & Grossmann, 2008). Some articles
ropose the integration of purchase decisions with inventory man-
gement and stress the relevance of these issues in the global
nterprise optimization (Al-Ameri, Shah, & Papageorgiou, 2008;
ohebbi & Hao, 2006).
The significance of inventory management in the company

rofits is given by the trade-off between customer satisfaction
nd capital invested. From an inventory cost perspective, the
est condition would be a response-based supply chain where a
ero inventory strategy is handled (Bowersox, Closs, & Cooper,
007). Many companies have realized that inventory cost can be
educed by implementing Just-In-Time (JIT) methodology in their
roduction-distribution channel (Chen & Chang, 2007; Gjerdrum,

hah, & Papageorgiou, 2002). Unfortunately, it is not always pos-
ible to achieve that target. Effective inventory management is
ostly conditioned by the production system as well as by the

emand uncertainties.

∗ Corresponding author. Tel.: +54 342 453 5568; fax: +54 342 455 3439.
E-mail address: aldovec@santafe-conicet.gov.ar (A. Vecchietti).

098-1354/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compchemeng.2010.02.009
From the demand point of view, when products are made-to-
stock planning the material inventory strategy depends on the
production plan. Even though demands can be predicted with some
degree of certainty, the purchase of materials becomes more com-
plex when products are made-to-order. In this case, some other
issues must be negotiated with suppliers and formulated in the
model, such as the number of deliveries and their deadlines, or
order size, to mention just a few of them.

Suppliers could have insufficient capacity to provide the appro-
priate materials or deliver them in time. This is especially true
when the demand pattern is seasonal. Despite the challenging
characteristics of inventory planning and optimizing under this
seasonal context, the literature on the topic is not so profuse.
Chen and Chang (2007) propose two methods for solving a sea-
sonal demand problem with variable lead time and resource
constraints. The variable lead time is solved using a linear
programming relaxation. Then, a mixed integer program with
linearization techniques is constructed for a seasonal demand prob-
lem.

As regards production conditions, this work addresses the prob-
lem of deciding which materials must be processed so as to satisfy
customer orders. In several industries, such as the production of
paper, furniture, textiles and food among others, the use of material
family is a regular practice (Rodriguez & Vecchietti, 2009). The term
“material family” is used in this paper to refer to a set of alternative
raw materials to manufacture the same product. Companies use a

set of possible raw materials (material family), in order to satisfy
product demand. This production policy gives flexibility to pur-
chase decisions, allowing a set of possible formulations for the same
final product. In this situation, if there is no stock of the requested
material according to the customer order, this is satisfied by using a

http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:aldovec@santafe-conicet.gov.ar
dx.doi.org/10.1016/j.compchemeng.2010.02.009
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aterial of better quality from the family, thus increasing the pro-
uction cost, commonly called upgrade cost. This opens two main
lternatives to analyze. The first one is to anticipate the demand
uying the corresponding raw material which increases inventory
osts. The second one is to use better quality and expensive mate-
ials to satisfy the demand, thus increasing production costs. For
hese reasons, decisions concerning material purchase and inven-
ory management are really relevant and should not be considered
s decoupled subjects.

Many authors stress the importance of considering supply
ontracts to optimize purchase decisions. Naraharisetti, Adhitya,
arimi, and Srinivasan (2008) highlight the need for rigorous quan-

itative models that take this issue into account. As explained by
ansal, Karimi, and Srinivasan (2007) these contracts are agree-
ents between the company and a supplier for a fixed period of

ime, stipulating certain terms, conditions and commitments. Park,
ark, Mele, and Grossmann (2006) agree that the signing of pro-
ision contracts with suppliers is a common practice in industry
nd design a disjunctive model to select the best contract type.
ne motivation for a supply contract is to share risks related to
emand, supply, delivery, inventory and price uncertainties (Bansal
t al., 2007). Actually, including a supply contract in the purchase
ptimization model could provide an important background when
egotiating the best supply policy with the right suppliers. Though
urchase commitments tend to increase order size, the decision of
hen and how much material to distribute should also be consid-

red as an optimization target. This is motivated by the existence
f market competitive conditions forcing the producers to look
or new ways of reducing the inventory (Björk & Carlsson, 2007).
n this sense, delivery decisions, inventory and purchase planning
resent different conflicting objectives to achieve. However, it is not
ossible to optimize all these aspects simultaneously. In fact, any
olution must handle a trade-off among them and, consequently,
t should be treated as a multi-objective optimization problem.
everal articles dealing with the context of multi-objective opti-
ization have been published. Some authors propose different

lgorithms to solve this type of problems, e.g. the weighting method
eported by Zadeh (1963), or the �-constraint method reported by
aimes (1973). More recently, Jia and Ierapetritou (2007) present
multi-objective optimization framework to solve a short-term

cheduling under uncertainty. You and Grossmann (2008) design
responsive supply chain optimizing net present value as the eco-
omic criterion and lead time as the responsive one. They also use
he �-constraint technique to treat this problem. Guillén, Mele,
agajewicz, Espuña, and Puigjaner (2005) formulate the prob-

em of designing the supply chain as a multi-objective stochastic
ILP model, which is solved using the �-constraint method. They

ropose not only the maximization of the supply chain profits
nd customer satisfaction but also the financial risk minimization.
ao and Tang (2003) develop a multi-criteria linear programming
odel to solve the purchasing problem with minimum cost, scrap

atio and delivery tardiness. They use a weighting algorithm to
olve the problem. This method has also been selected to be applied
n our formulation to optimize the conflicting targets: purchase,

Max
∑

t

∑
p

Demandpt · pricept −

⎛
⎝∑

j

∑
c

∑
k

(1 + R
nventory and delivery costs.
The model formulation presents non-linearities due to some

elivery decisions such as variable order size and number of ship-
ents. A linearization transformation is proposed in order to

uarantee an optimal global solution. The results obtained with this
emical Engineering 34 (2010) 1705–1718

procedure are then compared to those obtained from Harjunkoski’s
method (Harjunkoski, Westerlund, & Pörn, 1999).

In this paper made-to-order products are studied with a very
short lead time expected by the customers. The problem deals
with the trade-off decision between increasing stock and upgrading
production. This context is even more complicated because prod-
uct demand is influenced by seasonal variations. An optimization
approach to solve material purchase; inventory management and
delivery problems for the supply chain is presented. Diverse mate-
rials are purchased from various manufacturers signing different
contract types. The contract models used in this work represent
different situations in terms of prices, minimum quantities to order
and payment conditions. Materials can be provided by various sup-
pliers with diverse costs. The main target of this work is to optimize
the inventory and delivery management integrated with material
purchase decisions and handling different contract types with sup-
pliers.

This article is outlined as follows: in the next section the prob-
lem is formulated as a non-linear disjunctive model considering
several relevant decision levels. A discrete time representation
determines a number of periods in the horizon planning while a
continuous time representation is used within those periods. In
the third section, results show a sensitivity analysis to emphasize
the importance of the approach presented in this work. Finally, the
conclusions underline the main contributions of this work.

2. Problem formulations

In this section, the formulation of two different problems is
presented. The first one consists in the inventory and purchase
optimization in a medium-term horizon planning. In the second,
new variables and constraints are added in order to include deliv-
ery decisions. These changes in the original formulation make this
problem non-linear and non-convex.

2.1. Inventory and purchase optimization

The very first problem considered in this work (PI problem) is the
inventory and material purchase planning over a seasonal demand
environment. It deals with several decision levels such as selec-
tion of suppliers, materials, purchase contract and inventory levels
over a discrete horizon plan. The main constraints restrict demand
satisfaction, define inventory levels, calculate the average stock, etc.

2.1.1. Objective function
The objective function defines the maximization of the actual-

ized profits over the time horizon (Eq. (1))

t +
∑

f

savgft · COSTavgft · MS

⎞
⎠

(1)

Revenues are calculated multiplying product demand
(Demandpt) by the product price (pricept). The costs involved
are the corresponding material purchase costs and the inventory
costs. The money outflow due to the purchase of materials is
determined as the positive variable mjckt. It is calculated consid-
ering material k purchased from supplier j to be paid in period
t according to payment policy of contract c. This variable also
includes the fixed cost assumed when selecting the corresponding

contract c for supplier j. In the next term, the inventory carrying
cost is calculated. For this purpose, savgft is a positive variable
representing the average material stock of family f in period t,
calculated in (7). Parameter COSTavgf corresponds to the average
cost of family f and parameter MS indicates a percentage of the
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aw material average costs. This percentage estimates the average
tock costs including the following major components: capital
ost, storage cost, obsolescence cost, quality cost. As a general
ractice, these costs are considered as a single inventory cost rate,
epresented as a percentage of the material price per time unit
van Ryzin, 2001). The difference between the revenues and the
otal costs gives the total profits. In order to discount this projected
rofits, a return rate RR is used, corresponding to the capital cost
hich is calculated with the Capital Asset Pricing Model (Sharpe,

964).

.1.2. Model constraints
Material stock constraints are given by Eqs. (2)–(7)

ft = sf (t−1) +
∑

j

∑
k ∈ FKfk

qjk(t−1) − df (t−1) ∀f ∈ F, ∀t ≥ t2 ∈ T (2)

he initial stock expected of family f in period t, sft, is calculated by
2) as the initial stock of family f in period t − 1 plus the amount
rdered, qjk(t − 1), of materials k of family f from all suppliers minus
he material family consumption in the previous period df(t−1), cal-
ulated by Eq. (3)

ft =
∑

p ∈ PLplf

∑
l ∈ PLplf

Demandpt · ˛plf (3)

A product p is formed by several components l each of which
onsumes one material family. It is possible that more than one
omponent uses a certain family f. Parameter ˛plf indicates the
mount of family f corresponding to component l for product p.
he set PLplf relates each component l of product p with material
amily f. Material consumption dft is calculated in Eq. (3) taking
nto account the product demand (Demandpt) and the individual
onsumption of material of each product and component (˛plf)

f

sft ≤ SC ∀t ∈ T (4)

Capacity availability for keeping materials in stock is actually
nite; Eq. (4) limits the amount in stock according to stock capacity
C parameter

ft1
= ISf ∀f ∈ F (5)

When considering plants that are already operating, material
tock in the first period planned is not null. For that reason, Eq.
5) defines the initial stock of family f in period t1 equal to ISf, a
arameter in the model

ft ≥ SS ∀f ∈ F, ∀t ∈ T (6)

q. (6) defines that the material family stored must be bigger than
minimum amount given as a safety stock SS.

Inventory handling costs must be calculated considering mate-
ial average stocks. Constraint (7) is formulated to calculate the
verage stock savgft of family f in period t, used in the objective func-
ion. Assuming a constant demand rate and that the whole material
rder is delivered at the beginning of period t, the average stock of
amily f is given by:

avgft =
sft +

∑
j

∑
k ∈ FKfk

qjkt + sf (t+1) ∀f ∈ F, ∀t ∈ T (7)

2

.1.3. Modeling purchase decisions
The decision process includes several levels. Each level is

odeled by disjunctions which are then associated using logic
emical Engineering 34 (2010) 1705–1718 1707

equations and discrete variables⎡
⎣ y1jft∑

k ∈ FKfk

qjkt ≤
∑

k ∈ FKfk

Qmaxjkt

⎤
⎦ ∨

⎡
⎣ ¬y1jft∑

k ∈ FKfk

qjkt = 0

⎤
⎦

∀j ∈ J, ∀f ∈ F, ∀t ∈ T (8)

Disjunction (8) expresses the selection of which material families
f is bought from each supplier j in period t. This choice represents
the first level in the decision process using Boolean variable y1jft. If
this variable is false then family f is not ordered from supplier j in
period t. If it is true, the total quantity ordered must be lower than
the maximum capacity of supplier j. In general, this upper limit
decreases in high season periods; however, the reduction is not
the same for all materials in the family. As presented in the results
section, the availability of the least expensive materials tends to
decrease more than the most expensive ones[

y2jkt

qjkt ≤ Qmaxjkt

]
∨

[
¬y2jkt

qjkt = 0

]
∀j ∈ J, ∀k ∈ FKfk, ∀t ∈ T (9)

In the following level given by disjunction (9), variable y2jkt indi-
cates if material k is selected from family f, according to FKfk, in
period t. Set FKfk defines which materials correspond to each fam-
ily f. In this term, the quantity ordered of material k (qjkt) in period
t cannot be greater than the supplier capacity for that material and
period. If a material k is not selected from family f then amount to
order is zero from supplier j in t. Note that more than one material
could be selected for each family. This situation will occur when
the most convenient material presents lower availability (Qmaxjkt)
than required

∨
c ∈ C

(c,t,t′) ∈ TPctt′

⎡
⎢⎢⎣

y3jckt

qjkt ≥ Qmincj

wjckt = qjkt · PCjkt ·
(

1 − ıjc

)
+ FCc

wjckt = mjckt′

⎤
⎥⎥⎦

∀j ∈ J, ∀k ∈ K, ∀t ∈ T (10)

where c ∈ {c1, c2, c3, c4}; ıjc1
= 0; ıjc2

> 0; ıjc3
> ıjc2

and ıjc4
< 0.

Disjunction (10) selects contract type c using variable y3jckt for
each material k, supplier j in period t. Qmincj is a parameter rep-
resenting the minimum quantity of material to be ordered to the
supplier j for contract c. Set TPctt′ establishes that the purchase
ordered in period t must be paid in period t′ according to contract
c.

The second constraint calculates the costs wjckt of purchasing
material k according to the amount bought qjkt, price PCjkt and
corresponding contract discount (ıjc > 0) or interest rate (ıjc < 0).
This cost also includes the fixed cost FCc to be paid whenever con-
tract c is signed.

In the third constraint, positive variable mjckt′ determines the
amount paid for buying material k to supplier j in period t′ according
to the payment policy of contract c. In this case, according to TPctt′ ,
when t = t′ there is no financial benefit. On the contrary, when t < t′

the payment term is given by the difference between t and t′. In
the first three contracts, period t is equal to t′; however, the fourth
one has a longer payment term. Two different variables are used
in disjunction (10), mjckt′ and wjckt , in order to distinguish the cost
concept given by variable wjckt from the effective money outflows
calculated as mjckt′ .

The first contract models the purchase with no requirements

or benefits. For this reason, the cost is calculated using the regu-
lar price and the discount is null. The second presents a minimum
order size given by Qminc2j . It also has a discount applied to the
total amount ordered. The third one has a bigger amount to order,
Qminc3j , and a bigger discount, too. In order to achieve longer
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Fig. 1. Inventory evolution when the whole purchase is delivered at the beginning of the period.
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In the same direction, constraint (16) determines that if a mate-
rial k of any family is selected for supplier j in period t then one
contract type c must also be selected for that material, supplier and
Fig. 2. Inventory evolution consid

usiness relationships with the suppliers, Eq. (11) constrains the
election of this contract type only if material k has been already
rdered to the same supplier in the previous period. In the latter
ontract type Qminc4j has the highest value and, due to the payment
erm offered the second equation considers an interest rate.

Decisions in the purchase process must satisfy some contract
ules shown in Eqs. (11) and (12). Additionally, decisions presented
n disjunctions (8)–(10) are related by a hierarchical structure
mplemented through Eqs. (13)–(16). So as to express these logical
elations by means of mathematical formulation, binary vari-
bles are introduced replacing the Boolean variables. For instance,
oolean variable y3jckt is now reformulated as binary variable Y3jckt,
ariable y2jkt is represented as Y2jkt and y1jft is now presented as
inary variable Y1jft.

Eq. (11) represents the fact that contract c3 can be chosen for
aterial k of supplier j only if one of the contract types (except

1) has been selected in the previous period for same material and
upplier. On the contrary contract c3 is not selected

∑
c
∀c /= c1

Y3jck t−1 ≥ Y3jc3kt ∀j ∈ J, ∀k ∈ K, ∀t ∈ T (11)

For the same reason, in (12) contract c3 cannot be chosen for
nitial period t1 since it is the first period in the planning horizon

3jc k t = 0 ∀j ∈ J, ∀k ∈ K (12)

3 1

∑
/∈FKfk

Y2jkt = 0 ∀j ∈ J, ∀f ∈ F, ∀t ∈ T (13)
three deliveries in a time period.

Eq. (13) determines that material k cannot be selected for family f
if this material k does not belong to family f of set FKfk∑
k ∈ FKfk

Y2jkt ≥ Y1jft ∀j ∈ J, ∀f ∈ F, ∀t ∈ T (14)

Eq. (14) establishes that if family f is selected, then at least one
material k must be selected for this family

Y2jkt ≤ Y1jft ∀j ∈ J, ∀k ∈ FKfk, ∀t ∈ T (15)

If the corresponding family f is not selected for supplier j in
period t, then no material k is selected from that family. This con-
straint is given by (15)

Y2jkt =
∑

Y3jckt ∀j ∈ J, ∀k ∈ K, ∀t ∈ T (16)
Fig. 3. Inventory differences between multiple deliveries and one delivery in each
period.
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number of deliveries in each period.
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Fig. 4. Variable quantities and

eriod. On the contrary, if material k is not selected then no contract
is chosen for that material, supplier and period.

The linear disjunctive model for inventory and purchase prob-
ems (PI problem) in a medium-term horizon planning is defined
y (1)–(16). The model was implemented in GAMS and the main
esults obtained are presented in Section 3.

.2. The delivery problem

Buying materials by means of medium-term commitments pro-
otes the purchasing of large orders. However, the limitations

n storage capacity make it difficult to receive the whole pur-
hase at once. In fact, it is usually necessary and convenient to
equest several partial deliveries in order to complete one purchase
rder. This gives the opportunity to complement the purchase
iscounts from the contracts and the optimal delivery quantities
ccording to the two representative costs: delivery and inventory
andling costs. This is called the inventory and delivery problem,
ID.

Fig. 1 shows the evolution of the material stock when the whole
rder is delivered at the beginning of each period. On the con-
rary, Fig. 2 shows the inventory fluctuation when several deliveries
re planned for each period. In this latter case, the average stock
ecreases and the delivery cost rises.

The difference in the average material in stock is clarified by
verlapping the previous two figures. This is presented in Fig. 3.

Due to seasonal variations in purchase decisions, it is not suit-
ble to define only one delivery size for every period. For this
eason, the optimal shipment size must be determined for a certain
eriod, supplier and material family. Then, different configurations

n terms of deliveries size (eoqjft) and number (n) can be taken into
ccount in each period for a given material family. This situation is
epresented in Fig. 4.

The delivery decisions can be then included in the previous
ormulation as presented in this section. In order to guarantee
oherence between the purchase and the delivery problems, Eq.
17) determines that the total amount delivered of family f from
upplier j during period t must be equal to the family amount
ought from that supplier and period∑
∈ FKfk

qjkt = njft · eoqjft ∀j ∈ J, ∀f ∈ F, ∀t ∈ T (17)

Integer variable njft represents the number of deliveries of mate-
ial family f from supplier j in period t and eoqjft means the delivery
rder size. There is a correspondence between the definition of this
elivery quantity and the traditional economic order quantity given
n inventory management. Similarly, an increase in eoqjft means
hat average stocks rises and so inventory handling costs. On the
ontrary, an increase in the number of deliveries diminishes eoqjft
ize but gives rise to delivery costs.

Max
∑

t

∑
pDemandpt · pricept −

(∑
j

∑
c

∑
kmjckt +

(1 +
Fig. 5. Piece wise fixed delivery cost.

Fig. 5 shows that fixed delivery cost (dcjft) depends on both the
size and number of shipments. For example, if the quantity ordered
is smaller than EOQ1 the unit cost for each delivery is DC1 but if the
order is larger than EOQ1 and smaller than EOQ2, the corresponding
cost is DC2 which is greater than DC1. A disjunctive representation
is used to model this situation, (18)⎡
⎣ v1jft

eoqjft ≤ EOQ1

dcjft = DC1

⎤
⎦ ∨

⎡
⎣ v2jft

eoqjft ≤ EOQ2

dcjft = DC2

⎤
⎦ ∨

⎡
⎣ v3jft

eoqjft ≤ EOQ3

dcjft = DC3

⎤
⎦

∀j ∈ J, ∀f ∈ F, ∀t ∈ T (18)

Disjunction (18) calculates the fixed cost of each shipment accord-
ing to the amount delivered.

Then, the total delivery costs for a given supplier j, material
family f in period t is determined by (19)

tdcjft = njft · dcjft ∀j ∈ J, ∀f ∈ F, ∀t ∈ T (19)

As shown in Figs. 1–4, the average stock must be recalculated
considering the possibility of several deliveries. In this case, it is not
the amount purchased in a given period which directly affects the
average material stock but the size of the delivery orders. The aver-
age stock variable is then used to estimate the inventory holding
costs in the objective function (21)

savgft =
sft +

∑
jeoqjft + sf (t+1)

2
∀j ∈ J, ∀f ∈ F, ∀t ∈ T (20)

Eq. (20) determines the average stock of family f in period t as half
of the sum of the initial stock sft, the delivered amount from all
suppliers j, and the initial stock in the following period, sf(t+1). See
Fig. 6 for more details.

Then, the objective function for the purchase, inventory and

delivery problem can be redefined in (21):∑

f savgft · COSTavgft · MS +
∑

f

∑
jtdcjft

)
RR)t

(21)
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Fig. 6. Determination of the average stock for the PID model.

As presented in Eqs. (17) and (19), the delivery problem intro-
uces certain non-linearities in the formulation. These bilinear
erms make the problem non-convex preventing the global opti-

um. Thus, it is necessary to find a suitable transformation
rocedure in order to overcome this issue and find the global solu-
ion in a short execution time.

.2.1. Model transformation
Both bilinear terms mentioned in the previous paragraph con-

ist of the product of one integer variable by a continuous one.
raditionally, transformation techniques imply the increase of the

odel size in terms of constraints and equations. One known tech-
ique applied by Harjunkoski et al. (1999), Pörn, Harjunkoski, and
esterlund (1999), Rodriguez and Vecchietti (2008) uses a binary

ormulation for the integer variable. This procedure determines the
alue of the integer variable njft as presented in Eq. (22)

jft =
∑

i

i · ˇijft ∀j ∈ J, ∀f ∈ F, ∀t ∈ T (22)

here i ∈ I = {1, 2, . . ., N} and N is the maximum number of deliver-
es, upper bound of variable njkt

i

ˇijft ≤ 1 ∀j ∈ J, ∀f ∈ F, ∀t ∈ T (23)

A slack variable is introduced in Eqs. (24)–(26) for the redefini-
ion of the bilinear term njft · eoqjft . Note that when ˇijft is equal to
, meaning that a certain number of periods is selected, then vari-
ble slack1ijft is equal to eoqjft but when ˇijft is equal to 0, the slack
ariable is also 0

lack1ijft − eoqjft ≤ 0 ∀i ∈ I, ∀j ∈ J, ∀f ∈ F, ∀t ∈ T (24)

−slack1ijft + eoqjft − SC ·
(

1 − ˇijft

)
≤ 0 ∀i ∈ I, ∀j ∈ J,

∀f ∈ F, ∀t ∈ T (25)

lack1ijft − SC · ˇijft ≤ 0 ∀i ∈ I, ∀j ∈ J, ∀f ∈ F, ∀t ∈ T (26)

⎡
⎢⎢⎢⎣

z1

njft = 1∑
k ∈ FKfk

qjkt = eoqjft

tdcjft = dcjft

⎤
⎥⎥⎥⎦ ∨

⎡
⎢⎢⎢⎣

z2

njft = 2∑
k ∈ FKfk

qjkt = 2 · eoqjft

tdcjft = 2 · dcjft

⎤
⎥⎥⎥⎦
Then, Eq. (17) can be replaced by (27):∑
∈ FKfk

qjkt =
∑

i

i · slack1ijft ∀i ∈ I, ∀j ∈ J, ∀f ∈ F, ∀t ∈ T (27)
emical Engineering 34 (2010) 1705–1718

Applying the same procedure, it is possible to find a new repre-
sentation for the bilinear term njft · dcjft .

slack2ijft − dcjft ≤ 0 ∀i ∈ I, ∀j ∈ J, ∀f ∈ F, ∀t ∈ T (28)

−slack2ijft + dcjft − DC3 ·
(

1 − ˇijft

)
≤ 0 ∀i ∈ I, ∀j ∈ J,

∀f ∈ F, ∀t ∈ T (29)

slack2ijft − DC3 · ˇijft ≤ 0 ∀i ∈ I, ∀j ∈ J, ∀f ∈ F, ∀t ∈ T (30)

Now, Eq. (19) is rewritten as (31):

tdcjft =
∑

i

i · slack2ijft ∀j ∈ J, ∀f ∈ F, ∀t ∈ T (31)

In general, traditional linearization techniques solve the prob-
lem finding a global solution but worsening model performance
due to the number of binary and continuous variables and con-
straints added to the formulation. Note that the number of binary
variables introduced by this method is (i · j · f · t) while the total
number of slack variables is 2 · (i · j · f · t). The number of constraints
involved in the transformation is 6 · (i · j · f · t).

In order to solve the problem avoiding an excessive number
of variables and constraints, a different linearization procedure is
introduced. In this case, Boolean variables and disjunctions are used
to overcome the bilinear terms (32)

· · ∨

⎡
⎢⎢⎢⎣

zN

njft = N∑
k ∈ FKfk

qjkt = N · eoqjft

tdcjft = N · dcjft

⎤
⎥⎥⎥⎦ ∀j ∈ J, ∀f ∈ F, ∀t ∈ T (32)

This simple change in the formulation guarantees the global
optimization and adds only (i · j · f · t) Boolean variables to the for-
mulation with neither change in the continuous variables nor in the
number of constraints. The bilinear constraints in (17) and (19) are
now included in the disjunctions avoiding the non-convex terms.

Then, according to the methods proposed, two formulations
are presented for the purchase, inventory and delivery problem
(PID problem). The first one considering Harjunkoski’s (Harjunkoski
et al., 1999) transformation technique is given by (2)–(16), (18),
(20)–(31). The second one, using the disjunctive transformation
is represented by (2)–(16), (18), (20)–(21), (32). In order to ana-
lyze which linearization is the most convenient, it is important to
compare the solution performance under both alternatives.

3. Model results

The formulations were posed in the GAMS system with the aim
of showing the main results and model performances. A compari-
son between the linearization alternatives for the delivery problem
was also made. These formulations were executed over a PC having
an Intel Pentium D 2.8 GHz processor and 3.5 GB of RAM. Dis-
junctions were modeled using LogMIP (Grossmann, Meeraus, &
Vecchietti, 2005).

3.1. Purchase and inventory (PI) problem results

In this section, the results obtained from PI problem are shown
and analyzed. The data used to solve it are presented in Appendix
A.
3.1.1. Model results
3.1.1.1. Decision variables. The amount purchased of selected
materials from suppliers in each time period t is presented in
Table 1. In the last column, the total amount is calculated. At
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Table 1
Material purchased for the PI problem.

qjkt j1k1 j1k2 j1k3 j1k4 j1k5 j1k8 j2k4 Total quantity ordered

261 1161
300 85 200 1873
200 175 140 1265
110 120 815
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Fig. 7. Material average costs.

Fig. 8. Suppliers availability for f1.

Fig. 9. Suppliers availability for f2.
t1 500 400
t2 200 300 588 200
t3 600 150
t4 400 185

his point it is worth mentioning that materials k1, k2 and k3
elong to family f1, materials k4, k5, k6 and k7 belong to family f2
hile family f3 is formed by materials k8, k9 and k10. In Table 2,

he contract selection is shown for each supplier, material and
eriod.

.1.1.2. Performance. Table 3 summarizes execution performance
or the case study. The objective value was 4353.41, representing
otal profits.

.1.2. Analyses of results
Several analyses are carried out in order to highlight the model

esults. For the sake of clarity, this section is organized in two parts:
urchase decisions analysis and financial impact of purchase deci-
ions.

.1.2.1. Purchase decisions analysis. In this section, it is analyzed the
mpact of the limited provision capacity and material costs on the
aw material purchased. Then, the study is focused on the purchase
ontracts and the convenience of signing them.

From Table 1 one important point to consider involves the active
onstraints in the optimal solution. The amounts underlined in bold
n Table 1 are those where restriction in the first term of disjunction
9) is active. This limitation is a characteristic of the supplier and
ndependent of the contract signed with him. On the other hand, the
mounts in italic-bold in Table 1 indicate that the first constraint in
isjunction (10) is active where the amount purchased is limited by
minimum (Qmincj). Looking at these results, constraint in disjunc-

ion (9) restricts the solution several times while in just two cases
he first constraint of disjunction (10) is also active. Stock capacity
s not a limitation since the upper bound SC is equal to 5000 and
he maximum ordered is 1873.

From Table 2, contract c3 is the most selected one due to its
pecial big discount. So as to choose c3, another contract must be
elected in a previous period for the same material. In the case of
his example, it was always contract c2.

In order to understand the model decisions, some of the data
andled in the problem are presented in Figs. 7–10. In Fig. 7 the
aterial cost fluctuation over the time periods is shown. The pur-

hase costs continuously rise from period t1 to period t3 for all
aterials, falling down in period t4. This situation affects the model

olution. On the other hand, Figs. 8–10 present the suppliers’ capac-
ty for each material family in the periods analyzed. The availability
f the cheapest materials availability goes down from period t1

o t3, while the availability of most expensive ones remains con-
tant. These figures clearly show the seasonal behavior of the case
nalyzed in this work.

With the aim of showing how these costs and the suppliers lim-
tation affect the decision variables, material ordered in each time

able 2
ontract selection.

y3
jckt j1k1 j1k2 j1k3 j1k4 j1k5 j1k8 j2k4

t1 c2 c2 c2

t2 c4 c2 c3 c2 c2 c3

t3 c3 c3 c3 c3

t4 c3 c3 c3 Fig. 10. Suppliers availability for f3.
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Table 3
Solution performance for the purchase and inventory problem (PI).

Number of equations Number of positive varia

Solution performance (gap = 0%) 2239 1408

Fig. 11. Demand and material purchase for family f1.
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Fig. 12. Demand and material purchase for family f2.

eriod is compared to material consumption required to satisfy
roduct demand.

The solution for family f1 is presented in Fig. 11 showing that the
argest quantities ordered are placed in the second period while the
ighest consumption is actually in the third one. The main reason

s that the availability of the least expensive materials (k1 and k2) is
imited in the third period and purchase costs for all materials are
ncremented.

The solution for family f2 is shown in Fig. 12 where a softer
urve is observed for materials k4 and k5. However, there is still
tendency to buy and store cheaper materials in advance rather

han buy expensive ones in the period of peak demand. For this
eason, only the least expensive materials are bought, k4 and k5,
hile materials k6 and k7 are not ordered at all.

Fig. 13 shows a different situation for family f3. In this case, the

nitial stock is sufficient for several periods and, consequently, only
small quantity is required. In fact, only one material is ordered,
hich is the one with the lowest price (material k8). In this case,

ecause the inventory handling costs are higher than the purchase

Fig. 13. Demand and material purchase for family f3.
bles Number of discrete variables Execution time (s) Objective value

822 11.01 4353.41

costs, it is better to buy the material in the periods required.
It must be noted that, in general, the solution prioritizes the

use of cheaper materials from each family because of the limited
suppliers’ capacity and the fluctuation of the purchase costs, even
when buying materials in advance increases the financial and stock
cost. This fact is analyzed in the following section.

3.1.2.2. Financial impact of purchase decisions. In this section, three
different financial analyses are presented. First, it is estimated the
financial cost of buying a greater amount of material than the actual
needs. Second, the problem is solved without provision restrictions.
The results and objective value obtained in this case are compared
to the first solution. Finally, in the third analysis, no minimum
amount is required for any contract. So, the Qmincj parameter of
the problem is set to 0 and the model is solved again. The results
obtained and the comparisons between the objective values are
presented at the end of this section.

3.1.2.2.1. Cost of materials bought in advance. The first strategy
to analyze the impact of the supplier availability on the company
performance is to estimate the financial cost of materials ordered
in advance. This is calculated considering the costs of the materials
purchased, minus the corresponding cost of the material required
by the demand in that period. The total expenditure is determined
by the sum of these costs for each period using a discount rate
(ir = 8%).

Table 4 shows the demand and the quantity bought from each
supplier in the horizon planning for family f1. It also shows the
cost of each material according to the supplier and period. The last
column (Cost in advance) of the first row in Table 4 is determined
by:

(500 + 350 − 383) × 0.5 = 233.5 (33)

The first term in the parentheses in (33) corresponds to material k1
purchased from supplier j1, the second term is the initial stock of
family f1 and the third one corresponds to the demand, multiplied
by the material cost from supplier j1 which is 0.5.

In the second period, given by the second row in Table 4, the cost
of material bought in advance is estimated by applying a similar
procedure given by the following equation:

(200 × 0.6 + 300 × 0.72 + 588 × 0.86) − 580 × 0.6 = 496.0 (34)

In this case, more terms are included in (34) compared to (33),
since different materials are bought to satisfy family f1 consump-
tion. The first one represents the amount of material k1 bought
from supplier j1 multiplied by its cost (0.6), the following term cor-
responds to material k2 ordered from supplier j1 multiplied by its
cost (0.72), and the third term in the parenthesis is material k3
from supplier j1 and the cost is 0.86. Finally, the cost of material
consumption for that period, 580 units, is estimated considering
the cheapest cost, which is 0.6.

The actualized total cost for family f1 is calculated in Eq. (35)
where the discount rate is taken into account. All these results are
presented in Table 4

233.5 496.0
(1 + 0.08)1
+

(1 + 0.08)2
+ 0 + 0 = 641.5 (35)

The financial cost of the materials bought in advance for family
f1 is given by the total actualized cost in the last column and row
of Table 4.
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Table 4
Material purchased in advance and the corresponding actualized costs for family f1.

Family f1 Demand Suppler j1 Initial
stock

Total quantity
ordered

Quantity in
advance

Cost in
advance

k1 k2 k3

Quantity
purchased

Cost Quantity
purchased

Cost Quantity
purchased

Cost

383 500 0.50 0.6 0.72 350 500 117 233.5
t2 580 200 0.60 300 0.72 588 0.86 1088 508 496.0
t3 1575 0.85 1.02 600 1.22 600 0 0
t4 400 0.60 0.72 400 0.86 400 0 0

Actualized total cost 641.5

ir = 0.08.

Table 5
Material purchased in advance and the corresponding actualized costs for family f2.

Family f2 Demand Suppler j1 Suppler j2 Initial
stock

Total quantity
ordered

Quantity in
advance

Cost in
advance

k4 k4

Quantity
purchased

Cost Quantity
purchased

Cost Quantity
purchased

Cost

t1 326 400 0.86 1.04 261 0.95 400 661 335 657.5
t2 540 200 1.04 300 1.24 200 1.21 700 160 262.6
t3 1385 150 1.47 200 1.76 140 1.56 490 0 0
t4 295 185 1.04 110 1.24 1.31 295 0 0

Actualized total cost 833.9

ir = 0.08.

Table 6
Material purchased in advance and the corresponding actualized costs for family f3.

Family Demand Suppler j1 Inital stock Total quantity ordered Quantity in advance Cost in advance

k8

Quantity purchased Cost

t1 100 440 0 0 0
t2 160 85 85 0 0
t3 440 175 175 0 0

i

s
o
(
p

m

a
a
i
M
t

p
p

T
M

shown in italics and bold type.
3.1.2.2.3. No minimum order size in the contract selection. In

this section, the results obtained solving the problem without a
minimum order size in the suppliers’ contracts is analyzed. This
t4 120 120

Actualized total cost

r = 0.08.

Similarly to what Table 4 presents for the first family, Table 5
hows that material from family f2 is ordered in excess in peri-
ds t1 and t2. As a consequence, an important amount of money
833.9) is invested in stock that cannot be used for other pur-
oses.

Regarding family f3, shown in Table 6, it is not necessary to buy
aterials in advance so in this case the financial cost is 0.
3.1.2.2.2. Unrestricted capacity from suppliers. The second

pproach is to analyze the case where the supplier provision avail-
bility is unrestricted for all periods. In this case, a new model
s executed with a high value on parameters Qmaxjkt (Qmaxjkt 	

∀j, ∀k, ∀t). This problem is called UPCP. The model is run and

he results for variable qjkt are presented in Table 7.

Table 7 shows that only one material is ordered in the first
eriod, and some in the second one. The largest amount is now
resented in the third period. The difference between the objective

able 7
aterial purchased for UPCP problem.

qjkt j1k1 j1k4 j1k8 j2k1 j2k4

t1 170
t2 618 376 90
t3 700 700 260 700 685
t4 400 295 120
120 0 0

0.0

value in the original case study (4353.41) and the objective value in
UPCP (5746.53) gives an approximate idea about the profit lost due
to the supplier restricted capacity (Fig. 14). The quantities where
constraint Qmin is active (first constraint in disjunction (10)) are
Fig. 14. Objective value comparison.
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Table 8
Material purchased for NMQP.

qjkt j1k1 j1k2 j1k3 j1k4 j1k5 j1k8 j2k4 j2k5 Total quantity ordered

t1 500 51 420 971
t2 200 300 588 200 300 80 200 1868
t3 600 150 200 175 140 190 1455
t4 400 185 110 120 815

Table 9
Material purchased for the PID problem.

qjkt j1k1 j1k2 j1k3 j1k4 j1k5 j1k8 j2k4 j2k5 Quantity ordered

t1 500 170 670
t2 200 300 588 200 300 85 200 301 2174
t3 600 150 200
t4 400 185 110

Table 10
Contract selection for the PID problem.

y3jckt j1k1 j1k2 j1k3 j1k4 j1k5 j1k8 j2k4 j2k5

t1 c2 c4

t2 c4 c2 c3 c2 c2 c2 c2

t3 c3 c3 c3 c3 c3 c3

t4 c3 c3 c3 c3

Table 11
Delivery quantities for the PID problem.

eoqjft j1f1 j1f2 j1f3 j2f2

t1 125 85

c
e
a
4
P

(
s
f
t

t
t
t
a

-
-

mulation.

T
S

T
S

t2 362.67 125 42.5 125.25
t3 150 116.67 58.33 110
t4 133.33 147.5 60

ase is modeled by setting the value of the parameter Qminjc
qual to 0. Then, this problem (called NMQP) is solved and results
re shown in Table 8. The value of the objective function is
522.89 having an extra benefit of 169.48 compared to problem
I.

The values in bold in Table 8 are different from those in Table 1
problem PI) showing the influence of parameter Qmincj in the deci-
ion process. For instance, 190 units of material k5 are now bought
rom supplier j2 in the third period, while in the original problem
hat material was not selected at all.

To sum up, in this section several considerations have been
aken into account in order to analyze the solution obtained for
he PI problem. The information presented helps the managers
o understand the behavior of the variables and the interactions

mong them. So the manager can decide:

which contracts are the most suitable,
how suppliers should be ranked,

able 12
olution performance for the inventory, purchase and delivery problem considering Harj

Number of equations Number of po

Solution performance (gap = 1.3%) 3499 1858

able 13
olution performance for the inventory, purchase and delivery problem considering the d

Number of equations Number of pos

Solution performance (gap = 0%) 2816 1534
175 140 190 1455
120 815

- which materials are the most requested ones,
- how much capital should be invested in material stock,
- how material purchase fluctuates during the planning horizon,
- which are the limitations to material acquisition, and
- how material stocked changes along the periods.

3.2. Purchase, inventory and delivery (PID) problem results

This section shows the results obtained in the solution of the PID
problem, where several deliveries are proposed for the purchased
material. A comparison is presented between the two linearization
strategies proposed for the bilinear terms.

Data used for this problem are those in Appendices A and B.

3.2.1. Model results
3.2.1.1. Decision variables. Table 9 shows the amount of material
ordered in each period t from suppliers j; in the last column the
total amount is presented. Table 10 shows the contracts selected
in the solution. Finally, Table 11 includes the size of the deliv-
ery orders. For example, the materials belonging to family f1
bought from supplier j1 in period t1 are delivered in orders of
125 units. This means that 4 deliveries are needed to provide 500
units of material k1 purchased in the first period from supplier j1
(Table 9).

3.2.1.2. Performance. The PID problem is solved using the two
approaches presented in Section 2.2.1. In this section, the model
performances are presented and compared. Table 12 shows the
results of the PID problem using the Harjunkoski’s linearization,
while Table 13 illustrates the performance of the disjunctive refor-
The execution time in Tables 12 and 13 shows a remarkable
difference in model performances. Although the number of dis-
crete variables is the same, the size of the first model is bigger
due to the number of constraints and positive variables. Addition-

unkoski’s reformulation.

sitive variables Number of discrete variables Execution time (s)

1110 10,000

isjunctive reformulation.

itive variables Number of discrete variables Execution time (s)

1110 56
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Fig. 15. Inventory fluctuation for family f1 considering PI and PID problems.

Fig. 16. Inventory fluctuation for family f2 considering PI and PID problems.
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Fig. 17. Inventory fluctuation for fa

lly, the second approach presents a much more straightforward
epresentation of the transformed bilinear terms. Indeed, the first
ormulation obtains a sub-optimal result with a gap of 1.3% in
0,000 s while the second one finds the global optimum in just
6 s. The objective function value is 4475.19, representing the total
rofits in the horizon modeled.

.2.2. Analyses of results
Table 9 shows that only two suppliers, j1 and j2, are selected.

rom provider j1 several materials are bought while from the sec-
nd one, only two types of material (k4 and k5) are chosen.

From Table 10 it can be seen that there is still a tendency to select
ontract c3 whenever possible. Similar considerations for the PI case
re also applicable to this problem.

Table 11 presents the quantities delivered in each period from
he providers, represented by variable eoqjft. This information is
lso depicted in Figs. 15–17 showing the number of deliveries in
ach case.

Since the difference between PID and PI problems lies in the
hipment, the inventory fluctuation produced by this issue is ana-
yzed below.

Figs. 15–17 compare inventory levels in problem PI, with one

elivery per period, and problem PID, which allows several deliv-
ries.

Fig. 15 shows the solution for material family f1. The number of
eliveries in the PID problem varies from three to four according to
he period.
3 considering PI and PID problems.

Fig. 16 shows the material storage for material family f2. In this
case, the number of deliveries in the PID problem varies from two
to four.

The storage fluctuation for family f3 is presented in Fig. 17. As
shown in the figure, there is no much difference between both solu-
tions since the size of the purchase orders is small and the number
of deliveries fluctuates from one to three.

From Figs. 15–17 it can be seen that the stock level is much
lower when several deliveries of smaller size are ordered. In fact,
comparing the results of Tables 1 and 9, the values are the same in
many cases, but receiving material with several deliveries makes
the inventory management much more efficient.

4. Conclusions

The problem discussed in this paper shows how several impor-
tant decisions can be handled together so as to optimize the
company global operation. With the aim of presenting a compre-
hensive representation, the complete problem is analyzed in two
stages. In the first approach, inventory optimization is considered
jointly with purchase planning decisions. A new disjunctive model
is proposed for solving the integration of inventory management

and material purchase also including the selection of providers,
specific materials and contract policies. Seasonal demand and
material availability make this problem even more interesting since
purchase and inventory decisions play an important role in the
company profits.
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The first formulation is then completed by adding the delivery
roblem. This consideration makes the model much more real but
lso more difficult to solve. The non-linearities introduced trans-
orm the problem into a non-convex formulation. With the aim
f guaranteeing a global solution, two transformation procedures
re presented. In the first one, a traditional linearization is used
or redefining the corresponding variables and bilinear terms. This
ransformation adds an important number of constraints as well
s binary and continuous variables. A second procedure is devel-
ped to overcome the non-linear terms by using disjunctions and
oolean variables. This original alternative is much simpler than
he first one and solves the problem efficiently since only Boolean
ariables are added to the formulation.

With the intention of showing the solution to the problem,
esults are presented and analyzed in Section 3. Considering the
rst model, this analysis shows that the amount purchased is
estricted by supplier availability on several occasions. In fact, there
s a trend towards buying cheaper materials in advance and stock
hem until they are needed. For that reason, financial costs are
stimated using two different techniques showing the impact of
hese decisions on the company profits. The case study presented
nd the results obtained strengthen the relevance of the approach
roposed.

When including the delivery decisions, results show that the
nventory management is greatly improved. Although the total
mount of material bought is approximately the same, the purchase
rder distribution in the horizon planning changes, which high-
ights the importance of considering all the decisions as a whole.
he short execution time gives the possibility of analyzing several
cenarios and accomplishing a global optimum from the production
erspective.

otation

ndices
contracts
material families
index used in the transformation for redefining the bilin-
ear terms, i ∈ {1, 2, . . ., N)
suppliers
materials
product components
products
periods

ets
Kfk duple for which materials k correspond to family f
Lplf triplet for which component l of product p correspond to

family f
Pctt′ triplet for which contract c signed in period t must be paid

in t′

ariables
cjft delivery fixed cost for material family f bought from sup-

plier j in period t

ft consumption of material family f in period t
oqjft optimal delivery quantity for family f bought from sup-

plier j in period t

jckt purchase cost of material k bought from supplier j with

contract c in period t

jft number of deliveries of family f bought from supplier j in
period t

jkt quantity purchased of material k from supplier j in period
t

emical Engineering 34 (2010) 1705–1718

savgft average stock of family f in period t
sft initial stock of family f in period t
slack1ijft slack variable used in the transformation for redefining

the bilinear term njft × eoqjft
slack2ijft slack variable used in the transformation for redefining

the bilinear term njft × dcjft
tdcjft total delivery fixed cost for material family f bought from

supplier j in period t
v1jft Boolean variable indicating the selection of the smallest

delivery order size for family f, supplier j and period t
v2jft Boolean variable indicating the selection of the medium

delivery order size for family f, supplier j and period t
v3jft Boolean variable indicating the selection of the biggest

delivery order size for family f, supplier j and period t
wjckt purchase payment of material k bought from supplier j

with contract c in period t
y1jft Boolean variable indicating the selection of material fam-

ily f bought from supplier j in period t
Y1jft binary variable indicating the selection of material family

f bought from supplier j in period t
y2jkt Boolean variable indicating the selection of material k

from family f bought from supplier j in period t
Y2jkt binary variable indicating the selection of material k from

family f bought from supplier j in period t
y3jckt Boolean variable indicating the selection of contract c for

purchasing material k from supplier j in period t
Y3jckt binary variable indicating the selection of contract c for

purchasing material k from supplier j in period t
zi

jft Boolean variable indicating the selection of the number
of deliveries for family f, supplier j and period t

ˇijft binary variable used in the transformation for redefining
the integer variable njft

Parameters
COSTavgft average cost of material family f in stock in period t
DC1 unit shipment cost for delivery quantities lower than or

equal to eoq1
DC2 unit shipment cost for delivery quantities lower than or

equal to eoq2
DC3 unit shipment cost for delivery quantities lower than or

equal to eoq3
Demandpt demand of product p in period t
EOQ1 maximum amount for the delivery order which corre-

sponds to unit shipment cost DC1
EOQ2 maximum amount for the delivery order which corre-

sponds to unit shipment cost DC2
EOQ3 maximum amount for the delivery order which corre-

sponds to unit shipment cost DC3
FCc fixed cost of contract c signed
ISf initial stock of family f in period t1
MS percentage of the raw material average costs to calculate

stock costs
PCjkt unit cost of material k bought from supplier j in period t
pricept price of product p in period t
Qmaxjkt maximum quantity available of material k of supplier j in

period t
Qmincj minimum quantity to order signing contract c with sup-

plier j
RR discount rate used in the objective function to actualize

future costs and incomes
SC stock capacity

SS safety stock
˛plf consumption of material family f in component l of prod-

uct p
ıjc discount or interest rate according to contract c signed

with supplier j
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Table 14
Material costs in each period t according to suppliers j.

PCjkt j1 j3 j3

t1 t2 t3 t4 t1 t2 t3 t4 t1 t2 t3 t4

k1 0.50 0.60 0.85 0.60 0.55 0.70 0.90 0.76 0.60 0.75 0.92 0.70
k2 0.60 0.72 1.02 0.72 0.66 0.84 1.08 0.91 0.72 0.90 1.10 0.84
k3 0.72 0.86 1.22 0.86 0.79 1.01 1.30 1.09 0.86 1.08 1.33 1.01
k4 0.86 1.04 1.47 1.04 0.95 1.21 1.56 1.31 1.04 1.30 1.59 1.21
k5 1.04 1.24 1.76 1.24 1.14 1.45 1.87 1.58 1.24 1.56 1.91 1.45
k6 1.24 1.49 2.12 1.49 1.37 1.74 2.24 1.89 1.49 1.87 2.29 1.74
k7 1.49 1.79 2.54 1.79 1.64 2.09 2.69 2.27 1.79 2.24 2.75 2.09
k8 1.79 2.15 3.05 2.15 1.97 2.51 3.23 2.72 2.15 2.69 3.30 2.51
k9 2.15 2.58 3.66 2.58 2.37 3.01 3.87 3.27 2.58 3.23 3.96 3.01
k10 2.58 3.10 4.39 3.10 2.84 3.61 4.64 3.92 3.10 3.87 4.75 3.61

Table 15
Requirement of material family f to satisfy demand in period t.

dft t1 t2 t3 t4

f1 383 580 1575 400
f2 326 540 1385 295
f3 100 160 440 120

Table 16
Initial stock of family f in period t1.

ISf

f1 350
f2 400
f3 440

Table 17
Fixed cost paid for signing contract c.

FCc

c1 90

A

r
0
s

A

Table 19
Demand of product p in period t.

Demandpt t1 t2 t3 t4

p1 50 75 200 65
p2 60 85 255 50
p3 63 100 225 50
p4 45 85 220 45
p5 50 85 240 55

Table 20
Price of product p in period t.

pricept t1 t2 t3 t4

p1 3 3.5 4 3.1
p2 3.7 4.8 5.8 4.9
p3 4.7 5.8 7.2 5.5
p4 7 1 8 8 11 8.4
p5 6.5 7.7 9 7.4

Table 21
Minimum amount to order from each supplier j signing contract c.

Qmincj j1 j2 j3

c1 0 0 0
c2 85 90 87
c3 110 125 120
c4 170 180 170

Table 22
Average cost of material family f in period t.

COSTavgft t1 t2 t3 t4

f1 0.667 0.829 1.08 0.833
f2 1.275 1.585 2.064 1.592
f3 2.391 2.971 3.869 2.985

T
M

c2 70
c3 50
c4 40

ppendix A.

Tables 14–23.
Some other parameters are considered. The percentage of the

aw material average costs to calculate stock costs, MS, is given as
.25. The discount rate, RR, is 0.08 and the stock capacity, SC, to
torage all materials in any period is 5000.
ppendix B.

Tables 24 and 25.

able 18
aterial provision capacity in each period t from each supplier j.

Qmaxjkt j1 j2 j3

t1 t2 t3 t4 t1 t2 t3 t4 t1 t2 t3 t4

k1 500 200 100 150 450 200 100 200 440 150 50 200
k2 550 300 100 200 490 280 120 200 500 300 150 180
k3 600 600 600 600 550 550 550 550 555 555 555 555
k4 400 200 150 200 420 200 140 210 380 180 90 200
k5 460 300 200 250 470 310 190 240 466 290 185 250
k6 550 400 300 350 560 410 290 345 555 400 280 350
k7 600 600 600 600 600 600 600 600 570 570 570 570
k8 350 200 180 250 360 200 155 260 340 180 150 250
k9 500 350 250 300 520 345 200 250 510 355 180 250
k10 600 600 600 600 550 550 550 550 520 520 520 520
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Table 23
Discount or interest rate offered by supplier j signing contract c.

ıjc c1 c2 c3 c4

j1 0 0.1 0.2 −0.23
j2 0 0.15 0.22 −0.35
j3 0 0.13 0.23 −0.35

Table 24
Unit shipment costs.

DC1 10
DC2 20
DC3 30

Table 25
Maximum amount for the delivery
orders.

R

A

B

B

B

C

G

G

G

EOQ1 150
EOQ2 400
EOQ3 5000
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