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1. Introduction

Global market conditions promote an increasing interest in inte-
grating strategic, tactical and operational decision-making in order
to achieve enterprise-wide optimization. An important number of
remarkable research works supports this idea (Grossmann, 2005;
Varma, Reklaitis, Blau, & Pekny, 2007). Models and methods have
been developed to solve enterprise optimization problems from
different points of view (Sarker & Diponegoro, 2009; Sousa, Shah,
& Papageorgiou, 2008; You & Grossmann, 2008). Some articles
propose the integration of purchase decisions with inventory man-
agement and stress the relevance of these issues in the global
enterprise optimization (Al-Ameri, Shah, & Papageorgiou, 2008;
Mohebbi & Hao, 2006).

The significance of inventory management in the company
profits is given by the trade-off between customer satisfaction
and capital invested. From an inventory cost perspective, the
best condition would be a response-based supply chain where a
zero inventory strategy is handled (Bowersox, Closs, & Cooper,
2007). Many companies have realized that inventory cost can be
reduced by implementing Just-In-Time (JIT) methodology in their
production-distribution channel (Chen & Chang, 2007; Gjerdrum,
Shah, & Papageorgiou, 2002). Unfortunately, it is not always pos-
sible to achieve that target. Effective inventory management is
mostly conditioned by the production system as well as by the
demand uncertainties.
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From the demand point of view, when products are made-to-
stock planning the material inventory strategy depends on the
production plan. Even though demands can be predicted with some
degree of certainty, the purchase of materials becomes more com-
plex when products are made-to-order. In this case, some other
issues must be negotiated with suppliers and formulated in the
model, such as the number of deliveries and their deadlines, or
order size, to mention just a few of them.

Suppliers could have insufficient capacity to provide the appro-
priate materials or deliver them in time. This is especially true
when the demand pattern is seasonal. Despite the challenging
characteristics of inventory planning and optimizing under this
seasonal context, the literature on the topic is not so profuse.
Chen and Chang (2007) propose two methods for solving a sea-
sonal demand problem with variable lead time and resource
constraints. The variable lead time is solved using a linear
programming relaxation. Then, a mixed integer program with
linearization techniques is constructed for a seasonal demand prob-
lem.

As regards production conditions, this work addresses the prob-
lem of deciding which materials must be processed so as to satisfy
customer orders. In several industries, such as the production of
paper, furniture, textiles and food among others, the use of material
family is a regular practice (Rodriguez & Vecchietti, 2009). The term
“material family” is used in this paper to refer to a set of alternative
raw materials to manufacture the same product. Companies use a
set of possible raw materials (material family), in order to satisfy
product demand. This production policy gives flexibility to pur-
chase decisions, allowing a set of possible formulations for the same
final product. In this situation, if there is no stock of the requested
material according to the customer order, this is satisfied by using a
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material of better quality from the family, thus increasing the pro-
duction cost, commonly called upgrade cost. This opens two main
alternatives to analyze. The first one is to anticipate the demand
buying the corresponding raw material which increases inventory
costs. The second one is to use better quality and expensive mate-
rials to satisfy the demand, thus increasing production costs. For
these reasons, decisions concerning material purchase and inven-
tory management are really relevant and should not be considered
as decoupled subjects.

Many authors stress the importance of considering supply
contracts to optimize purchase decisions. Naraharisetti, Adhitya,
Karimi, and Srinivasan (2008) highlight the need for rigorous quan-
titative models that take this issue into account. As explained by
Bansal, Karimi, and Srinivasan (2007) these contracts are agree-
ments between the company and a supplier for a fixed period of
time, stipulating certain terms, conditions and commitments. Park,
Park, Mele, and Grossmann (2006) agree that the signing of pro-
vision contracts with suppliers is a common practice in industry
and design a disjunctive model to select the best contract type.
One motivation for a supply contract is to share risks related to
demand, supply, delivery, inventory and price uncertainties (Bansal
et al., 2007). Actually, including a supply contract in the purchase
optimization model could provide an important background when
negotiating the best supply policy with the right suppliers. Though
purchase commitments tend to increase order size, the decision of
when and how much material to distribute should also be consid-
ered as an optimization target. This is motivated by the existence
of market competitive conditions forcing the producers to look
for new ways of reducing the inventory (Bjork & Carlsson, 2007).
In this sense, delivery decisions, inventory and purchase planning
present different conflicting objectives to achieve. However, it is not
possible to optimize all these aspects simultaneously. In fact, any
solution must handle a trade-off among them and, consequently,
it should be treated as a multi-objective optimization problem.
Several articles dealing with the context of multi-objective opti-
mization have been published. Some authors propose different
algorithms to solve this type of problems, e.g. the weighting method
reported by Zadeh (1963), or the e-constraint method reported by
Haimes (1973). More recently, Jia and lerapetritou (2007) present
a multi-objective optimization framework to solve a short-term
scheduling under uncertainty. You and Grossmann (2008) design
a responsive supply chain optimizing net present value as the eco-
nomic criterion and lead time as the responsive one. They also use
the e-constraint technique to treat this problem. Guillén, Mele,
Bagajewicz, Espufia, and Puigjaner (2005) formulate the prob-
lem of designing the supply chain as a multi-objective stochastic
MILP model, which is solved using the e-constraint method. They

ZDemandpt - priceps —

procedure are then compared to those obtained from Harjunkoski’s
method (Harjunkoski, Westerlund, & Pérn, 1999).

In this paper made-to-order products are studied with a very
short lead time expected by the customers. The problem deals
with the trade-off decision between increasing stock and upgrading
production. This context is even more complicated because prod-
uct demand is influenced by seasonal variations. An optimization
approach to solve material purchase; inventory management and
delivery problems for the supply chain is presented. Diverse mate-
rials are purchased from various manufacturers signing different
contract types. The contract models used in this work represent
different situations in terms of prices, minimum quantities to order
and payment conditions. Materials can be provided by various sup-
pliers with diverse costs. The main target of this work is to optimize
the inventory and delivery management integrated with material
purchase decisions and handling different contract types with sup-
pliers.

This article is outlined as follows: in the next section the prob-
lem is formulated as a non-linear disjunctive model considering
several relevant decision levels. A discrete time representation
determines a number of periods in the horizon planning while a
continuous time representation is used within those periods. In
the third section, results show a sensitivity analysis to emphasize
the importance of the approach presented in this work. Finally, the
conclusions underline the main contributions of this work.

2. Problem formulations

In this section, the formulation of two different problems is
presented. The first one consists in the inventory and purchase
optimization in a medium-term horizon planning. In the second,
new variables and constraints are added in order to include deliv-
ery decisions. These changes in the original formulation make this
problem non-linear and non-convex.

2.1. Inventory and purchase optimization

The very first problem considered in this work (PI problem)is the
inventory and material purchase planning over a seasonal demand
environment. It deals with several decision levels such as selec-
tion of suppliers, materials, purchase contract and inventory levels
over a discrete horizon plan. The main constraints restrict demand
satisfaction, define inventory levels, calculate the average stock, etc.

2.1.1. Objective function
The objective function defines the maximization of the actual-
ized profits over the time horizon (Eq. (1))

S e Sy oSt
i ¢ k f

Maxz P
t

propose not only the maximization of the supply chain profits
and customer satisfaction but also the financial risk minimization.
Gao and Tang (2003) develop a multi-criteria linear programming
model to solve the purchasing problem with minimum cost, scrap
ratio and delivery tardiness. They use a weighting algorithm to
solve the problem. This method has also been selected to be applied
in our formulation to optimize the conflicting targets: purchase,
inventory and delivery costs.

The model formulation presents non-linearities due to some
delivery decisions such as variable order size and number of ship-
ments. A linearization transformation is proposed in order to
guarantee an optimal global solution. The results obtained with this

(1+RR)

(1)

Revenues are calculated multiplying product demand
(Demandp:) by the product price (pricep). The costs involved
are the corresponding material purchase costs and the inventory
costs. The money outflow due to the purchase of materials is
determined as the positive variable mj;. It is calculated consid-
ering material k purchased from supplier j to be paid in period
t according to payment policy of contract c. This variable also
includes the fixed cost assumed when selecting the corresponding
contract c for supplier j. In the next term, the inventory carrying
cost is calculated. For this purpose, savgs is a positive variable
representing the average material stock of family f in period ¢,
calculated in (7). Parameter COSTavgy corresponds to the average
cost of family f and parameter MS indicates a percentage of the
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raw material average costs. This percentage estimates the average
stock costs including the following major components: capital
cost, storage cost, obsolescence cost, quality cost. As a general
practice, these costs are considered as a single inventory cost rate,
represented as a percentage of the material price per time unit
(van Ryzin, 2001). The difference between the revenues and the
total costs gives the total profits. In order to discount this projected
profits, a return rate RR is used, corresponding to the capital cost
which is calculated with the Capital Asset Pricing Model (Sharpe,
1964).

2.1.2. Model constraints
Material stock constraints are given by Egs. (2)-(7)

St = Sf(e-1) + Z Z Qjke—1) — dpe—1) VfeF, Vet eT (2)
J keFKg

The initial stock expected of family fin period ¢, s, is calculated by
(2) as the initial stock of family f in period t—1 plus the amount
ordered, gj( — 1), of materials k of family f from all suppliers minus
the material family consumption in the previous period dg;_1), cal-
culated by Eq. (3)

dg = Z Z Demandp; - oty (3)

PpePlyyslePlyy

A product p is formed by several components [ each of which
consumes one material family. It is possible that more than one
component uses a certain family f. Parameter a, indicates the
amount of family f corresponding to component ! for product p.
The set PLp relates each component ! of product p with material
family f. Material consumption dp is calculated in Eq. (3) taking
into account the product demand (Demandp;) and the individual
consumption of material of each product and component (o)

Zsft <SC VteT (4)
f

Capacity availability for keeping materials in stock is actually
finite; Eq. (4) limits the amount in stock according to stock capacity
SC parameter

sp, = 1S, VfeF (5)

When considering plants that are already operating, material
stock in the first period planned is not null. For that reason, Eq.
(5) defines the initial stock of family f in period t; equal to IS;, a
parameter in the model

sp >SS VfeF, VteT (6)

Eq. (6) defines that the material family stored must be bigger than
a minimum amount given as a safety stock SS.

Inventory handling costs must be calculated considering mate-
rial average stocks. Constraint (7) is formulated to calculate the
average stock savgy; of family fin period ¢, used in the objective func-
tion. Assuming a constant demand rate and that the whole material
order is delivered at the beginning of period t, the average stock of
family fis given by:

Sfe + ZjZkeFka Gjke + Sf(e+1)
2

savgg = VfeF, VteT (7)

2.1.3. Modeling purchase decisions
The decision process includes several levels. Each level is
modeled by disjunctions which are then associated using logic

equations and discrete variables

Y “Vj
Z Qjke < Z Qmaxj, | v Z Gjke =0
ke FKp ke FKp ke Fp,
Vie], VfeF, VteT (8)

Disjunction (8) expresses the selection of which material families
fis bought from each supplier j in period t. This choice represents
the first level in the decision process using Boolean variable y1. If
this variable is false then family fis not ordered from supplier j in
period t. If it is true, the total quantity ordered must be lower than
the maximum capacity of supplier j. In general, this upper limit
decreases in high season periods; however, the reduction is not
the same for all materials in the family. As presented in the results
section, the availability of the least expensive materials tends to
decrease more than the most expensive ones

[ Y2kt

=Y 2jit :
v Vje], YkeFKg, VteT 9
Gjke < Qmaxjkt] [ } vel w ®

Qe =0

In the following level given by disjunction (9), variable y2;,, indi-
cates if material k is selected from family f, according to FKg, in
period t. Set FKp defines which materials correspond to each fam-
ily f. In this term, the quantity ordered of material k (gji,) in period
t cannot be greater than the supplier capacity for that material and
period. If a material k is not selected from family f then amount to
order is zero from supplier j in t. Note that more than one material
could be selected for each family. This situation will occur when
the most convenient material presents lower availability (Qmax;y,)
than required

Y3icke
v Gjke = Qming
(oo egpctf, Wicke = ikt - PGjie - (1= 8jc) + FCe
Wickt = Mjcky'
Vie], VkeK, VteT (10)
where ce {c1,¢2,¢3,¢4}; 8j¢, = 0; i, > 0; djc, > ¢, and Jj, < 0.

Disjunction (10) selects contract type ¢ using variable y3;, for
each material k, supplier j in period t. Qmin is a parameter rep-
resenting the minimum quantity of material to be ordered to the
supplier j for contract c. Set TP, establishes that the purchase
ordered in period t must be paid in period t' according to contract
C.

The second constraint calculates the costs wjg, of purchasing
material k according to the amount bought g, price PCy, and
corresponding contract discount (8;. > 0) or interest rate (;c < 0).
This cost also includes the fixed cost FC, to be paid whenever con-
tract c is signed.

In the third constraint, positive variable mjq,» determines the
amount paid for buying material k to supplier jin period t’ according
to the payment policy of contract c. In this case, according to TP,
when t=t' there is no financial benefit. On the contrary, when t<t'
the payment term is given by the difference between t and t'. In
the first three contracts, period t is equal to t'; however, the fourth
one has a longer payment term. Two different variables are used
in disjunction (10), M;c and Wie, in order to distinguish the cost
concept given by variable wjc, from the effective money outflows
calculated as mjgy.

The first contract models the purchase with no requirements
or benefits. For this reason, the cost is calculated using the regu-
lar price and the discount is null. The second presents a minimum
order size given by Qmin,,;. It also has a discount applied to the
total amount ordered. The third one has a bigger amount to order,
Qming,;, and a bigger discount, too. In order to achieve longer
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Fig. 1. Inventory evolution when the whole purchase is delivered at the beginning of the period.

Fig. 2. Inventory evolution considering three deliveries in a time period.

business relationships with the suppliers, Eq. (11) constrains the
selection of this contract type only if material k has been already
ordered to the same supplier in the previous period. In the latter
contract type Qminc,; has the highest value and, due to the payment
term offered the second equation considers an interest rate.

Decisions in the purchase process must satisfy some contract
rules shown in Egs. (11) and (12). Additionally, decisions presented
in disjunctions (8)-(10) are related by a hierarchical structure
implemented through Eqs. (13)-(16). So as to express these logical
relations by means of mathematical formulation, binary vari-
ables are introduced replacing the Boolean variables. For instance,
Boolean variable y3j¢, is now reformulated as binary variable Y3,
variable y2;, is represented as Y2j,; and y1;; is now presented as
binary variable Y15.

Eq. (11) represents the fact that contract c3 can be chosen for
material k of supplier j only if one of the contract types (except
c1) has been selected in the previous period for same material and
supplier. On the contrary contract c3 is not selected

Z Y3jcke 1 = Y3jeue Vi€), VkeK, VteT (11)

c
Ve + ¢

For the same reason, in (12) contract c3 cannot be chosen for
initial period t; since it is the first period in the planning horizon

Y3jkr, =0 Ve, Vkek (12)
Zyzﬂqzo VieJ, VfeF, VteT (13)
ke FKp

Eq. (13) determines that material k cannot be selected for family f
if this material k does not belong to family f of set FKg

Z Y2ji = Y1y VjeJ, VfeF, VteT (14)
ke FKg,

Eq. (14) establishes that if family f is selected, then at least one
material k must be selected for this family

Y2 <Yl VjeJ, VkeFKg, VteT (15)

If the corresponding family f is not selected for supplier j in
period t, then no material k is selected from that family. This con-
straint is given by (15)

Y2ji = Zyz,jckt VjeJ, VkeK, VteT (16)
Cc
In the same direction, constraint (16) determines that if a mate-

rial k of any family is selected for supplier j in period t then one
contract type ¢ must also be selected for that material, supplier and

Fig. 3. Inventory differences between multiple deliveries and one delivery in each
period.
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Fig. 4. Variable quantities and number of deliveries in each period.

period. On the contrary, if material k is not selected then no contract
c is chosen for that material, supplier and period.

The linear disjunctive model for inventory and purchase prob-
lems (PI problem) in a medium-term horizon planning is defined
by (1)-(16). The model was implemented in GAMS and the main
results obtained are presented in Section 3.

2.2. The delivery problem

Buying materials by means of medium-term commitments pro-
motes the purchasing of large orders. However, the limitations
in storage capacity make it difficult to receive the whole pur-
chase at once. In fact, it is usually necessary and convenient to
request several partial deliveries in order to complete one purchase
order. This gives the opportunity to complement the purchase
discounts from the contracts and the optimal delivery quantities
according to the two representative costs: delivery and inventory
handling costs. This is called the inventory and delivery problem,
PID.

Fig. 1 shows the evolution of the material stock when the whole
order is delivered at the beginning of each period. On the con-
trary, Fig. 2 shows the inventory fluctuation when several deliveries
are planned for each period. In this latter case, the average stock
decreases and the delivery cost rises.

The difference in the average material in stock is clarified by
overlapping the previous two figures. This is presented in Fig. 3.

Due to seasonal variations in purchase decisions, it is not suit-
able to define only one delivery size for every period. For this
reason, the optimal shipment size must be determined for a certain
period, supplier and material family. Then, different configurations
in terms of deliveries size (eoqj;) and number (n) can be taken into
account in each period for a given material family. This situation is
represented in Fig. 4.

The delivery decisions can be then included in the previous
formulation as presented in this section. In order to guarantee
coherence between the purchase and the delivery problems, Eq.
(17) determines that the total amount delivered of family f from
supplier j during period t must be equal to the family amount
bought from that supplier and period

> G =ny-eoqy Vie, ¥feF, VteT (17)
keFka

Integer variable nj; represents the number of deliveries of mate-
rial family ffrom supplier j in period t and eoq;s; means the delivery
order size. There is a correspondence between the definition of this
delivery quantity and the traditional economic order quantity given
in inventory management. Similarly, an increase in eoq;; means
that average stocks rises and so inventory handling costs. On the
contrary, an increase in the number of deliveries diminishes eoq;s
size but gives rise to delivery costs.

Fig. 5. Piece wise fixed delivery cost.

Fig. 5 shows that fixed delivery cost (dcj;) depends on both the
size and number of shipments. For example, if the quantity ordered
is smaller than EOQ; the unit cost for each delivery is DCy but if the
order is larger than EOQ and smaller than EOQ>, the corresponding
cost is DC, which is greater than DC;. A disjunctive representation
is used to model this situation, (18)

vl jft v2 ift v3 ift
eoqj <EOQq | \ | eogjr < EOQ2 | / | eogjr < EOQs3
dCth = DC] def[ = DCZ dC]ﬂ = DC3
YjeJ, ¥feF, VteT (18)

Disjunction (18) calculates the fixed cost of each shipment accord-
ing to the amount delivered.

Then, the total delivery costs for a given supplier j, material
family fin period t is determined by (19)

tdey = ny - dejy VjeJ, VfeF, VteT (19)

As shown in Figs. 1-4, the average stock must be recalculated
considering the possibility of several deliveries. In this case, it is not
the amount purchased in a given period which directly affects the
average material stock but the size of the delivery orders. The aver-
age stock variable is then used to estimate the inventory holding
costs in the objective function (21)

Se + D100 + Sf(e+1)
savgy = 5

Vje], VfeF, VteT (20)

Eq. (20) determines the average stock of family fin period t as half
of the sum of the initial stock Sfes the delivered amount from all
suppliers j, and the initial stock in the following period, sgs+1). See
Fig. 6 for more details.

Then, the objective function for the purchase, inventory and
delivery problem can be redefined in (21):

(21)

Maxz ZpDemandpt - pricept — (Zchkajckt + Zfsavgﬂ - COSTavgy; - MS + Zijtdeff)
(1+RR)

t
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Fig. 6. Determination of the average stock for the PID model.

As presented in Eqgs. (17) and (19), the delivery problem intro-
duces certain non-linearities in the formulation. These bilinear
terms make the problem non-convex preventing the global opti-
mum. Thus, it is necessary to find a suitable transformation
procedure in order to overcome this issue and find the global solu-
tion in a short execution time.

2.2.1. Model transformation

Both bilinear terms mentioned in the previous paragraph con-
sist of the product of one integer variable by a continuous one.
Traditionally, transformation techniques imply the increase of the

z! z2
leﬂ =1 Tlth =2
Z Jjke = €0qjse | vV Z Qjke = 2 - €0qjf

k € FKg,
dejﬁ = dCJﬁ

k € FKpg
de]ft =2 dC]ft

model size in terms of constraints and equations. One known tech-
nique applied by Harjunkoski et al. (1999), Pérn, Harjunkoski, and
Westerlund (1999), Rodriguez and Vecchietti (2008) uses a binary
formulation for the integer variable. This procedure determines the
value of the integer variable nj; as presented in Eq. (22)

g = i-Bi Viel, VfeF, VteT (22)
i
whereiel={1,2,...,N} and N is the maximum number of deliver-

ies, upper bound of variable n,

Zﬂmi] Viel, VfeF, VteT (23)
i

A slack variable is introduced in Egs. (24)-(26) for the redefini-
tion of the bilinear term njs; - eoqj;. Note that when By is equal to
1, meaning that a certain number of periods is selected, then vari-
able slack1;; is equal to eoq;; but when Bj;r; is equal to 0, the slack
variable is also 0

slack1;; —eoqjs <0 Viel, Vjej, ¥feF, VteT (24)

—slackl + eoqj — SC- (1 Byp) <0 Viel, Vje,
VfeF, VteT (25)
slacklyy —SC- By <0 Viel, Vje), VfeF, VteT (26)

Then, Eq. (17) can be replaced by (27):

Z qjkt=2i~slacklijﬂ Viel, Vje], ¥feF, VteT (27)
keFKjk i

Applying the same procedure, it is possible to find a new repre-
sentation for the bilinear term ng; - dcjs.

slack2y; —dcjr <0 Viel, Vje], VfeF, VteT (28)

—slack2; + dej — DC3 - (1= By ) <0 Viel, Vje],
VfeF, VteT (29)

slack2y —DC3 - By <0 Viel, YjeJ, VfeF, VteT (30)
Now, Eq. (19) is rewritten as (31):

tdcj = Zi -slack2 VjeJ, VfeF, VteT (31)
i

In general, traditional linearization techniques solve the prob-
lem finding a global solution but worsening model performance
due to the number of binary and continuous variables and con-
straints added to the formulation. Note that the number of binary
variables introduced by this method is (i-j-f - t) while the total
number of slack variablesis2 - (i - j - f - t). The number of constraints
involved in the transformationis 6-(i-j-f - t).

In order to solve the problem avoiding an excessive number
of variables and constraints, a different linearization procedure is
introduced. In this case, Boolean variables and disjunctions are used
to overcome the bilinear terms (32)

ZN

e =N
-V Z Qjke = N - eoqjp
ke FKp,
tdcj = N - dcjp

Vje], Y¥feF, VYteT (32)

This simple change in the formulation guarantees the global
optimization and adds only (i -j - f - t) Boolean variables to the for-
mulation with neither change in the continuous variables nor in the
number of constraints. The bilinear constraints in (17) and (19) are
now included in the disjunctions avoiding the non-convex terms.

Then, according to the methods proposed, two formulations
are presented for the purchase, inventory and delivery problem
(PID problem). The first one considering Harjunkoski’s (Harjunkoski
et al,, 1999) transformation technique is given by (2)-(16), (18),
(20)-(31). The second one, using the disjunctive transformation
is represented by (2)-(16), (18), (20)-(21), (32). In order to ana-
lyze which linearization is the most convenient, it is important to
compare the solution performance under both alternatives.

3. Model results

The formulations were posed in the GAMS system with the aim
of showing the main results and model performances. A compari-
son between the linearization alternatives for the delivery problem
was also made. These formulations were executed over a PC having
an Intel Pentium D 2.8 GHz processor and 3.5GB of RAM. Dis-
junctions were modeled using LogMIP (Grossmann, Meeraus, &
Vecchietti, 2005).

3.1. Purchase and inventory (PI) problem results

In this section, the results obtained from PI problem are shown
and analyzed. The data used to solve it are presented in Appendix
A.

3.1.1. Model results

3.1.1.1. Decision variables. The amount purchased of selected
materials from suppliers in each time period t is presented in
Table 1. In the last column, the total amount is calculated. At
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Table 1
Material purchased for the PI problem.
ikt Jjika Jika Jiks Jika Jiks Jiks Jaka Total quantity ordered
t 500 400 261 1161
& 200 300 588 200 300 85 200 1873
t3 600 150 200 175 140 1265
ts 400 185 110 120 815

this point it is worth mentioning that materials kq, k; and k3
belong to family f;, materials ky, ks, kg and k; belong to family f,
while family f3 is formed by materials kg, kg and kqg. In Table 2,
the contract selection is shown for each supplier, material and
period.

3.1.1.2. Performance. Table 3 summarizes execution performance
for the case study. The objective value was 4353.41, representing
total profits.

3.1.2. Analyses of results

Several analyses are carried out in order to highlight the model
results. For the sake of clarity, this section is organized in two parts:
purchase decisions analysis and financial impact of purchase deci-
sions.

3.1.2.1. Purchasedecisions analysis. Inthissection, itisanalyzed the
impact of the limited provision capacity and material costs on the
raw material purchased. Then, the study is focused on the purchase
contracts and the convenience of signing them.

From Table 1 one important point to consider involves the active
constraints in the optimal solution. The amounts underlined in bold
in Table 1 are those where restriction in the first term of disjunction
(9) is active. This limitation is a characteristic of the supplier and
independent of the contract signed with him. On the other hand, the
amounts in italic-bold in Table 1 indicate that the first constraint in
disjunction (10) is active where the amount purchased is limited by
aminimum (Qming;). Looking at these results, constraint in disjunc-
tion (9) restricts the solution several times while in just two cases
the first constraint of disjunction (10) is also active. Stock capacity
is not a limitation since the upper bound SC is equal to 5000 and
the maximum ordered is 1873.

From Table 2, contract c3 is the most selected one due to its
special big discount. So as to choose c3, another contract must be
selected in a previous period for the same material. In the case of
this example, it was always contract c,.

In order to understand the model decisions, some of the data
handled in the problem are presented in Figs. 7-10. In Fig. 7 the
material cost fluctuation over the time periods is shown. The pur-
chase costs continuously rise from period t; to period t3 for all
materials, falling down in period t4. This situation affects the model
solution. On the other hand, Figs. 8-10 present the suppliers’ capac-
ity for each material family in the periods analyzed. The availability
of the cheapest materials availability goes down from period t;
to t3, while the availability of most expensive ones remains con-
stant. These figures clearly show the seasonal behavior of the case
analyzed in this work.

With the aim of showing how these costs and the suppliers lim-
itation affect the decision variables, material ordered in each time

Table 2

Contract selection.
Vicke Jiki Jika Jiks Jika Jiks Jiks Joka
t C2 C2 C2
t Ca (o) C3 C2 C2 C3
t3 c3 c3 c3 c3
ta c3 c3 c3

Fig. 7. Material average costs.

Fig. 8. Suppliers availability for f;.

Fig. 9. Suppliers availability for f5.

Fig. 10. Suppliers availability for f3.
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Table 3
Solution performance for the purchase and inventory problem (PI).

Number of equations

Number of positive variables

Number of discrete variables Execution time (s) Objective value

Solution performance (gap =0%) 2239 1408

822 11.01 4353.41

Fig. 11. Demand and material purchase for family f;.

Fig. 12. Demand and material purchase for family f,.

period is compared to material consumption required to satisfy
product demand.

The solution for family f is presented in Fig. 11 showing that the
largest quantities ordered are placed in the second period while the
highest consumption is actually in the third one. The main reason
is that the availability of the least expensive materials (k; and k; ) is
limited in the third period and purchase costs for all materials are
incremented.

The solution for family f, is shown in Fig. 12 where a softer
curve is observed for materials k4 and k5. However, there is still
a tendency to buy and store cheaper materials in advance rather
than buy expensive ones in the period of peak demand. For this
reason, only the least expensive materials are bought, k4 and ks,
while materials kg and k7 are not ordered at all.

Fig. 13 shows a different situation for family f3. In this case, the
initial stock is sufficient for several periods and, consequently, only
a small quantity is required. In fact, only one material is ordered,
which is the one with the lowest price (material kg). In this case,
because the inventory handling costs are higher than the purchase

Fig. 13. Demand and material purchase for family f5.

costs, it is better to buy the material in the periods required.

It must be noted that, in general, the solution prioritizes the
use of cheaper materials from each family because of the limited
suppliers’ capacity and the fluctuation of the purchase costs, even
when buying materials in advance increases the financial and stock
cost. This fact is analyzed in the following section.

3.1.2.2. Financial impact of purchase decisions. In this section, three
different financial analyses are presented. First, it is estimated the
financial cost of buying a greater amount of material than the actual
needs. Second, the problem is solved without provision restrictions.
The results and objective value obtained in this case are compared
to the first solution. Finally, in the third analysis, no minimum
amount is required for any contract. So, the Qmin; parameter of
the problem is set to 0 and the model is solved again. The results
obtained and the comparisons between the objective values are
presented at the end of this section.

3.1.2.2.1. Cost of materials bought in advance. The first strategy
to analyze the impact of the supplier availability on the company
performance is to estimate the financial cost of materials ordered
in advance. This is calculated considering the costs of the materials
purchased, minus the corresponding cost of the material required
by the demand in that period. The total expenditure is determined
by the sum of these costs for each period using a discount rate
(ir=8%).

Table 4 shows the demand and the quantity bought from each
supplier in the horizon planning for family f;. It also shows the
cost of each material according to the supplier and period. The last
column (Cost in advance) of the first row in Table 4 is determined
by:

(500 + 350 — 383) x 0.5 =233.5 (33)

The first term in the parentheses in (33) corresponds to material k;
purchased from supplier j;, the second term is the initial stock of
family f; and the third one corresponds to the demand, multiplied
by the material cost from supplier j; which is 0.5.

In the second period, given by the second row in Table 4, the cost
of material bought in advance is estimated by applying a similar
procedure given by the following equation:

(200 x 0.6 +300 x 0.72 + 588 x 0.86) — 580 x 0.6 =496.0 (34)

In this case, more terms are included in (34) compared to (33),
since different materials are bought to satisfy family f; consump-
tion. The first one represents the amount of material k; bought
from supplier j; multiplied by its cost (0.6), the following term cor-
responds to material k, ordered from supplier j; multiplied by its
cost (0.72), and the third term in the parenthesis is material k3
from supplier j; and the cost is 0.86. Finally, the cost of material
consumption for that period, 580 units, is estimated considering
the cheapest cost, which is 0.6.

The actualized total cost for family f; is calculated in Eq. (35)
where the discount rate is taken into account. All these results are
presented in Table 4

233.5 496.0
(140.08)!  (1+0.08)

+0+0=641.5 (35)

The financial cost of the materials bought in advance for family
fi1 is given by the total actualized cost in the last column and row
of Table 4.
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Table 4
Material purchased in advance and the corresponding actualized costs for family f;.
Family f; Demand Suppler j; Initial Total quantity Quantity in Cost in
stock ordered advance advance
k1 ka ks
Quantity Cost Quantity Cost Quantity Cost
purchased purchased purchased
383 500 0.50 0.6 0.72 350 500 117 2335
t 580 200 0.60 300 0.72 588 0.86 1088 508 496.0
ts 1575 0.85 1.02 600 1.22 600 0 0
ts 400 0.60 0.72 400 0.86 400 0 0
Actualized total cost 1.5
ir=0.08.
Table 5
Material purchased in advance and the corresponding actualized costs for family f5.
Family f, Demand Suppler j; Suppler j» Initial Total quantity Quantity in Cost in
stock ordered advance advance
k4 ](4
Quantity Cost Quantity Cost Quantity Cost
purchased purchased purchased
t 326 400 0.86 1.04 261 0.95 400 661 335 657.5
t 540 200 1.04 300 1.24 200 1.21 700 160 262.6
ts 1385 150 1.47 200 1.76 140 1.56 490 0 0
ta 295 185 1.04 110 1.24 1.31 295 0 0
Actualized total cost 833.9

ir=0.08.

Table 6

Material purchased in advance and the corresponding actualized costs for family f5.

Family Demand Suppler j; Inital stock Total quantity ordered Quantity in advance Cost in advance
kg
Quantity purchased Cost

t 100 440 0 0 0

t 160 85 85 0 0

t3 440 175 175 0 0

ts 120 120 120 0 0

Actualized total cost 0.0

ir=0.08.

Similarly to what Table 4 presents for the first family, Table 5
shows that material from family f, is ordered in excess in peri-
ods t; and tp. As a consequence, an important amount of money
(833.9) is invested in stock that cannot be used for other pur-
poses.

Regarding family f3, shown in Table 6, it is not necessary to buy
materials in advance so in this case the financial cost is 0.

3.1.2.2.2. Unrestricted capacity from suppliers. The second
approach is to analyze the case where the supplier provision avail-
ability is unrestricted for all periods. In this case, a new model
is executed with a high value on parameters Qmax;,, (Qmax;y, >
MYVj, Vk, Vt). This problem is called UPCP. The model is run and
the results for variable gji, are presented in Table 7.

Table 7 shows that only one material is ordered in the first
period, and some in the second one. The largest amount is now
presented in the third period. The difference between the objective

value in the original case study (4353.41) and the objective value in
UPCP (5746.53) gives an approximate idea about the profit lost due
to the supplier restricted capacity (Fig. 14). The quantities where
constraint Qmin is active (first constraint in disjunction (10)) are
shown in italics and bold type.

3.1.2.2.3. No minimum order size in the contract selection. In
this section, the results obtained solving the problem without a
minimum order size in the suppliers’ contracts is analyzed. This

Table 7

Material purchased for UPCP problem.
ik Jiki Jika Jiks J2ka Joka
t1 170
t 618 376 90
t3 700 700 260 700 685
ta 400 295 120

Fig. 14. Objective value comparison.
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Table 8
Material purchased for NMQP.
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ikt Jjika Jika Jiks Jika Jiks Jiks Jaka Jaks Total quantity ordered
t 500 51 420 971
ts 200 300 588 200 300 80 200 1868
t3 600 150 200 175 140 190 1455
ts 400 185 110 120 815
Table 9
Material purchased for the PID problem.
Qjke Jiki Jika Jiks jika jiks Jjiks Jokg jaks Quantity ordered
t: 500 170 670
ta 200 300 588 200 300 85 200 301 2174
t3 600 150 200 175 140 190 1455
ts 400 185 110 120 815
Table 10 ‘ - which materials are the most requested ones,
Contract selection for the PID problem. - how much capital should be invested in material stock,
V3jcke jika jika jiks Jjiks Jjiks jiks jaky jaks - how material purchase fluctuates during the planning horizon,
f & - - which are the limitations to material acquisition, and
t Ca & s . G e & - how material stocked changes along the periods.
t3 C3 C3 C3 C3 C3 C3
ta G G G G 3.2. Purchase, inventory and delivery (PID) problem results
Table 11 This section shows the results obtained in the solution of the PID
Delivery quantities for the PID problem. problem, where several deliveries are proposed for the purchased
; : ; ; material. A comparison is presented between the two linearization
eoqjse Jifi Jif jifs J2f2 . .
strategies proposed for the bilinear terms.
b 25 B Data used for this problem are those in Appendices A and B.
ts 362.67 125 42,5 125.25
t3 150 116.67 58.33 110
ta 133.33 147.5 60 3.2.1. Model results

case is modeled by setting the value of the parameter Qmin;
equal to 0. Then, this problem (called NMQP) is solved and results
are shown in Table 8. The value of the objective function is
4522.89 having an extra benefit of 169.48 compared to problem
PL

The values in bold in Table 8 are different from those in Table 1
(problem PI) showing the influence of parameter Qmin,; in the deci-
sion process. For instance, 190 units of material ks are now bought
from supplier j, in the third period, while in the original problem
that material was not selected at all.

To sum up, in this section several considerations have been
taken into account in order to analyze the solution obtained for
the PI problem. The information presented helps the managers
to understand the behavior of the variables and the interactions
among them. So the manager can decide:

- which contracts are the most suitable,
- how suppliers should be ranked,

Table 12

3.2.1.1. Decision variables. Table 9 shows the amount of material
ordered in each period t from suppliers j; in the last column the
total amount is presented. Table 10 shows the contracts selected
in the solution. Finally, Table 11 includes the size of the deliv-
ery orders. For example, the materials belonging to family f;
bought from supplier j; in period t; are delivered in orders of
125 units. This means that 4 deliveries are needed to provide 500
units of material k; purchased in the first period from supplier j;
(Table 9).

3.2.1.2. Performance. The PID problem is solved using the two
approaches presented in Section 2.2.1. In this section, the model
performances are presented and compared. Table 12 shows the
results of the PID problem using the Harjunkoski’s linearization,
while Table 13 illustrates the performance of the disjunctive refor-
mulation.

The execution time in Tables 12 and 13 shows a remarkable
difference in model performances. Although the number of dis-
crete variables is the same, the size of the first model is bigger
due to the number of constraints and positive variables. Addition-

Solution performance for the inventory, purchase and delivery problem considering Harjunkoski’s reformulation.

Number of equations

Number of positive variables

Number of discrete variables Execution time (s)

Solution performance (gap=1.3%) 3499 1858

1110 10,000

Table 13

Solution performance for the inventory, purchase and delivery problem considering the disjunctive reformulation.

Number of equations

Number of positive variables

Number of discrete variables Execution time (s)

Solution performance (gap = 0%) 2816 1534

1110 56
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Fig. 15. Inventory fluctuation for family f; considering PI and PID problems.

Fig. 16. Inventory fluctuation for family f> considering PI and PID problems.

Fig. 17. Inventory fluctuation for family f5 considering PI and PID problems.

ally, the second approach presents a much more straightforward
representation of the transformed bilinear terms. Indeed, the first
formulation obtains a sub-optimal result with a gap of 1.3% in
10,000 s while the second one finds the global optimum in just
56 s. The objective function value is 4475.19, representing the total
profits in the horizon modeled.

3.2.2. Analyses of results

Table 9 shows that only two suppliers, j; and j,, are selected.
From provider j; several materials are bought while from the sec-
ond one, only two types of material (k4 and ks) are chosen.

From Table 10 it can be seen that there is still a tendency to select
contract cs whenever possible. Similar considerations for the Pl case
are also applicable to this problem.

Table 11 presents the quantities delivered in each period from
the providers, represented by variable eogj;. This information is
also depicted in Figs. 15-17 showing the number of deliveries in
each case.

Since the difference between PID and PI problems lies in the
shipment, the inventory fluctuation produced by this issue is ana-
lyzed below.

Figs. 15-17 compare inventory levels in problem PI, with one
delivery per period, and problem PID, which allows several deliv-
eries.

Fig. 15 shows the solution for material family f;. The number of
deliveries in the PID problem varies from three to four according to
the period.

Fig. 16 shows the material storage for material family f5. In this
case, the number of deliveries in the PID problem varies from two
to four.

The storage fluctuation for family f; is presented in Fig. 17. As
shown in the figure, there is no much difference between both solu-
tions since the size of the purchase orders is small and the number
of deliveries fluctuates from one to three.

From Figs. 15-17 it can be seen that the stock level is much
lower when several deliveries of smaller size are ordered. In fact,
comparing the results of Tables 1 and 9, the values are the same in
many cases, but receiving material with several deliveries makes
the inventory management much more efficient.

4. Conclusions

The problem discussed in this paper shows how several impor-
tant decisions can be handled together so as to optimize the
company global operation. With the aim of presenting a compre-
hensive representation, the complete problem is analyzed in two
stages. In the first approach, inventory optimization is considered
jointly with purchase planning decisions. A new disjunctive model
is proposed for solving the integration of inventory management
and material purchase also including the selection of providers,
specific materials and contract policies. Seasonal demand and
material availability make this problem even more interesting since
purchase and inventory decisions play an important role in the
company profits.
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The first formulation is then completed by adding the delivery
problem. This consideration makes the model much more real but
also more difficult to solve. The non-linearities introduced trans-
form the problem into a non-convex formulation. With the aim
of guaranteeing a global solution, two transformation procedures
are presented. In the first one, a traditional linearization is used
for redefining the corresponding variables and bilinear terms. This
transformation adds an important number of constraints as well
as binary and continuous variables. A second procedure is devel-
oped to overcome the non-linear terms by using disjunctions and
Boolean variables. This original alternative is much simpler than
the first one and solves the problem efficiently since only Boolean
variables are added to the formulation.

With the intention of showing the solution to the problem,
results are presented and analyzed in Section 3. Considering the
first model, this analysis shows that the amount purchased is
restricted by supplier availability on several occasions. In fact, there
is a trend towards buying cheaper materials in advance and stock
them until they are needed. For that reason, financial costs are
estimated using two different techniques showing the impact of
these decisions on the company profits. The case study presented
and the results obtained strengthen the relevance of the approach
proposed.

When including the delivery decisions, results show that the
inventory management is greatly improved. Although the total
amount of material bought is approximately the same, the purchase
order distribution in the horizon planning changes, which high-
lights the importance of considering all the decisions as a whole.
The short execution time gives the possibility of analyzing several
scenarios and accomplishing a global optimum from the production
perspective.

Notation

Indices

c contracts

f material families

i index used in the transformation for redefining the bilin-
ear terms,ie€{1,2,...,N)

j suppliers

k materials

l product components

p products

t periods

Sets

FKp duple for which materials k correspond to family f

PLy¢ triplet for which component [ of product p correspond to
family f

TPy triplet for which contract c signed in period t must be paid
int

Variables

dci delivery fixed cost for material family f bought from sup-
plierj in period t

dp consumption of material family fin period t

eoqjf optimal delivery quantity for family f bought from sup-
plierj in period t

Mjcke purchase cost of material k bought from supplier j with
contract c in period t

s number of deliveries of family f bought from supplier j in
period t

Qjke quantity purchased of material k from supplier j in period

t

savgp  average stock of family fin period ¢

Sfe initial stock of family fin period t

slack1y; slack variable used in the transformation for redefining
the bilinear term njg; x eoqjg

slack2; slack variable used in the transformation for redefining
the bilinear term njs x dcjg

tdcij total delivery fixed cost for material family f bought from
supplier j in period t

a Boolean variable indicating the selection of the smallest
delivery order size for family f, supplier j and period t

V25 Boolean variable indicating the selection of the medium
delivery order size for family f, supplier j and period t

U3jf Boolean variable indicating the selection of the biggest
delivery order size for family f, supplier j and period t

Wicke purchase payment of material k bought from supplier j
with contract c in period t

Y1 Boolean variable indicating the selection of material fam-
ily fbought from supplier j in period t

Y1 binary variable indicating the selection of material family
fbought from supplier j in period t

Y2kt Boolean variable indicating the selection of material k

from family f bought from supplier j in period t
Y2 binary variable indicating the selection of material k from
family f bought from supplier j in period t

Y3jcke Boolean variable indicating the selection of contract c for
purchasing material k from supplier j in period t

Y3jeke binary variable indicating the selection of contract c for
purchasing material k from supplier j in period t

z"jﬂ Boolean variable indicating the selection of the number
of deliveries for family f, supplier j and period t

Biift binary variable used in the transformation for redefining
the integer variable ng

Parameters

COSTavgy; average cost of material family fin stock in period t

DC, unit shipment cost for delivery quantities lower than or
equal to eoqq

DG, unit shipment cost for delivery quantities lower than or
equal to eoq,

DCs unit shipment cost for delivery quantities lower than or

equal to eoqs
Demand,: demand of product p in period t

EOQ4 maximum amount for the delivery order which corre-
sponds to unit shipment cost DCy

EOQ, maximum amount for the delivery order which corre-
sponds to unit shipment cost DC,

EOQs3 maximum amount for the delivery order which corre-
sponds to unit shipment cost DC3

FC¢ fixed cost of contract c signed

ISs initial stock of family fin period t;

MS percentage of the raw material average costs to calculate
stock costs

PCjy unit cost of material k bought from supplier j in period t

pricepe  price of product p in period t

Qmaxj,, maximum quantity available of material k of supplier j in
period t

Qming; minimum quantity to order signing contract ¢ with sup-
plier j

RR discount rate used in the objective function to actualize
future costs and incomes

Ne stock capacity

SS safety stock

Qapif consumption of material family fin component I of prod-
uctp

djc discount or interest rate according to contract c signed

with supplier j



M.A. Rodriguez, A. Vecchietti / Computers and Chemical Engineering 34 (2010) 1705-1718 1717
Table 14
Material costs in each period t according to suppliers j.
PGt i Js J3
t t t3 ta t t t3 ty t t t3 ta
ki 0.50 0.60 0.85 0.60 0.55 0.70 0.90 0.76 0.60 0.75 0.92 0.70
k> 0.60 0.72 1.02 0.72 0.66 0.84 1.08 0.91 0.72 0.90 1.10 0.84
k3 0.72 0.86 1.22 0.86 0.79 1.01 1.30 1.09 0.86 1.08 133 1.01
k4 0.86 1.04 1.47 1.04 0.95 1.21 1.56 1.31 1.04 1.30 1.59 1.21
ks 1.04 1.24 1.76 1.24 1.14 145 1.87 1.58 1.24 1.56 1.91 145
ke 1.24 1.49 2.12 1.49 1.37 1.74 2.24 1.89 1.49 1.87 2.29 1.74
k7 1.49 1.79 2.54 1.79 1.64 2.09 2.69 2.27 1.79 2.24 275 2.09
ks 1.79 2.15 3.05 2.15 1.97 2.51 3.23 2.72 2.15 2.69 3.30 2.51
ko 2.15 2.58 3.66 2.58 2.37 3.01 3.87 3.27 2.58 3.23 3.96 3.01
k1o 2.58 3.10 4.39 3.10 2.84 3.61 4.64 3.92 3.10 3.87 4.75 3.61
Table 15 Table 19
Requirement of material family f to satisfy demand in period t. Demand of product p in period t.
df[ t t t3 ta Demandp[ t t t3 ta
fi 383 580 1575 400 p1 50 75 200 65
fo 326 540 1385 295 D2 60 85 255 50
fi 100 160 440 120 D3 63 100 225 50
Da 45 85 220 45
ps 50 85 240 55
Table 16
Initial stock of family fin period t;.
Table 20
ISy Price of product p in period t.
fi 350 pricep; tq ty t3 ty
f 400
I3 440 D1 3 3.5 4 3.1
P2 3.7 4.8 5.8 4.9
D3 47 5.8 7.2 5.5
Da 71 88 11 8.4
Table17 =~ ps 6.5 7.7 9 7.4
Fixed cost paid for signing contract c.
FC.
Table 21
Ci 57)(0) Minimum amount to order from each supplier j signing contract c.
C2
&} 50 Qming; 1 J2 Js
& 40 a 0 0 0
C2 85 90 87
c3 110 125 120
. G 170 180 170
Appendix A. 4
Tables 14-23. Table 22 _ o
Some other parameters are considered. The percentage of the ~ Average costof material family fin period .
raw material average costs to calculate stock costs, MS, is given as COSTavgy t t t3 ta
0.25. The dlscou1_1t rqte, RR, is 008 and the stock capacity, SC, to i 0.667 0.829 1.08 0.833
storage all materials in any period is 5000. f 1.275 1.585 2.064 1.592
f3 2.391 2971 3.869 2.985
Appendix B.
Tables 24 and 25.
Table 18
Material provision capacity in each period t from each supplier j.
Qmaxii, J J2 J3
t t t3 ta t t t3 ta t t t3 ta
ki 500 200 100 150 450 200 100 200 440 150 50 200
k> 550 300 100 200 490 280 120 200 500 300 150 180
k3 600 600 600 600 550 550 550 550 555 555 555 555
Kka 400 200 150 200 420 200 140 210 380 180 90 200
ks 460 300 200 250 470 310 190 240 466 290 185 250
ke 550 400 300 350 560 410 290 345 555 400 280 350
k7 600 600 600 600 600 600 600 600 570 570 570 570
ks 350 200 180 250 360 200 155 260 340 180 150 250
ko 500 350 250 300 520 345 200 250 510 355 180 250
k1o 600 600 600 600 550 550 550 550 520 520 520 520
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Table 23
Discount or interest rate offered by supplier j signing contract c.
Sjc C1 C2 C3 Cq
J1 0 0.1 0.2 -0.23
J2 0 0.15 0.22 -0.35
J3 0 0.13 0.23 -0.35
Table 24
Unit shipment costs.
DGy 10
DG, 20
DG 30
Table 25
Maximum amount for the delivery
orders.
EOQ, 150
EOQ, 400
EOQ; 5000
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