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Abstract
We address the problem of selecting the best linear unbiased predictor (BLUP) of the latent value
(e.g., serum glucose fasting level) of sample subjects with heteroskedastic measurement errors.
Using a simple example, we compare the usual mixed model BLUP to a similar predictor based on
a mixed model framed in a finite population (FPMM) setup with two sources of variability, the
first of which corresponds to simple random sampling and the second, to heteroskedastic
measurement errors. Under this last approach, we show that when measurement errors are subject-
specific, the BLUP shrinkage constants are based on a pooled measurement error variance as
opposed to the individual ones generally considered for the usual mixed model BLUP. In contrast,
when the heteroskedastic measurement errors are measurement condition-specific, the FPMM
BLUP involves different shrinkage constants. We also show that in this setup, when measurement
errors are subject-specific, the usual mixed model predictor is biased but has a smaller mean
squared error than the FPMM BLUP which point to some difficulties in the interpretation of such
predictors.
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1 Introduction
Mixed models have a long history in the statistical literature and have been used to analyze
data from many fields, like Agriculture, Genetics, Medicine etc. They are not only extremely
exible and useful to model the covariance structure of correlated data but also allow both
subject-specific and population-averaged analyses as indicated in Verbeke and Molenberghs
(2001), for example. The importance of mixed models is clearly demonstrated by the variety
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of texts that have been recently published on the subject. Verbeke and Molenberghs (2001),
Diggle et al. (2002), Demidenko (2004), Fitzmaurice et al. (2008) are excellent examples.

The linear mixed model may be expressed as

(1)

where Y is an n × 1 response vector, X and Z are, respectively, n × p and n × q known
model specification matrices, α is a p × 1 vector of unknown parameters (fixed effects), B is
a q × 1 vector of random elements (random effects) such that (B) = 0 and (B) = Γ, E is
an n×1 vector of random errors such that (E) = 0 and (E) = Σ and is not correlated with
B. This implies that

(2)

In many practical situations, we are interested not only in estimating α but also in predicting
B. The best linear unbiased estimator (BLUE) of α and the best linear unbiased predictor
(BLUP) of B are respectively given by

(3)

which is the solution to the well-known Henderson equations [see Verbeke and
Molenberghs (2001), for example]

(4)

It follows that the BLUP of

(5)

where k1 and k2 are known p × 1 and q × 1 vectors is . Although many
derivations of these results are available, it is possible, as indicated in Harville (1990), to
obtain the BLUP assuming only the existence of the first and second moments as considered
above. An outline of this derivation is given in Appendix A. The reader is also referred to
Robinson (1991) for an excellent account on the subject.

Linear mixed models may be used to predict latent values in the presence of heteroskedastic
measurement errors, as seen in Stanek et al. (1999), for example. Specification of the
appropriate mixed model for such purposes may be tricky, as we show by the following
example.
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With the objective of evaluating the impact of physical activity on gestational diabetes,
suppose that a single measurement of fasting serum glucose (sg) level is made on each of n
pregnant women sampled from a hospital practice. Women with sufficiently elevated fasting
sg-levels are to be referred to a physician for further evaluation. The accuracy of the
prediction is important to ensure high sensitivity and specificity of the referrals. However,
since fasting sg-levels may vary from day to day, and the variance may differ among
women, we plan to predict latent fasting sg-levels for women in the sample appropriately
accounting for this heterogeneous subject-specific measurement variability.

A model usually employed for this problem is

(6)

where Yi is the observed fasting sg-level for the i-th selected woman, μ is the population
mean, Bi, assumed to have null mean and variance γ2, represents the random effect of the i-
th selected woman and Ei, assumed to have null mean and variance , denotes the
corresponding measurement error; we also assume that Bi and Ei are uncorrelated. This
model may be expressed as (1) by letting X = 1n, where 1n denotes an n×1 vector with all
elements equal to 1, α = μ, Z = In, with In denoting the identity matrix of order n, B = (B1,

…,Bn)⊤, Γ = γ2In and  where  denotes an n × n diagonal matrix with the
 along the main diagonal, i.e,

(7)

Under this setup, the BLUP for the latent fasting sg-level of the i-th selected woman,
namely, μ+Bi, which corresponds to (5) with k1 = 1 and k2 = ei where ei denotes an n×1
vector with a single nonnull element equal to 1 in the i-th position, may be obtained from (3)
and simplifies to

(8)

where  is a weighted mean with  and  is
the corresponding shrinkage constant. Details are presented in Appendix A.

For simplicity, to see how the mixed model is used in the context of our finite population
example, suppose that a physician has N = 3 pregnant women in her practice and that we
plan to take a simple random sample of n = 2 women, and make a single measurement of
fasting sg-level on each woman. Normal fasting sg-levels are 4–8 mmoles/l; levels above
11.1 mmoles/l indicate a diagnosis of diabetes. We assume that the population parameters
(latent fasting sg-levels and subject-specific measurement error variances) are those
summarized in Table 1.

We assume further that the variances are known and that the subject-specific measurement
error can take on only two possible equally likely values given by plus or minus the subject-
specific standard deviation. We wish to predict the latent fasting sg-level of each woman in
the sample and use the subject-specific variance components to define the shrinkage
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constants. The observed response, Yi and the values of the predictor (8) are listed in Table 2
for all 24 possible samples corresponding to the 4 possible combinations of response for
each of the 6 possible sample sequences. We also tabulate the squared difference between
the value of each predictor and the corresponding latent value; the averages over all samples
are presented in the bottom row.

The average value of predictor (8) is 5.8 and surprisingly it is not equal to the population
mean (5.0) although it was presumably derived under an unbiasedness assumption. Clearly,
in the setting where there is subject-specific measurement error, this predictor is not a BLUP
since the unbiasedness property does not hold. Our objective is to clarify such apparent
inconsistency.

In Section 2 we discuss the nature of measurement errors and show that in this context, (8) is
a BLUP when measurement errors are heterogeneous, but not subject-specific. In Section 3,
we introduce a finite population mixed model that may be formulated as (1) but with a
different covariance structure depending on the nature of the measurement errors. We also
show that for heteroskedastic subject-specific measurement errors, the corresponding BLUP
is not given by (8). We conclude with a discussion in Section 4.

2 Sources of measurement errors
In many situations, the actual measurement of a latent value is not possible because it may
be affected by many sources of variability. Such variability is termed measurement error by
Cochran (1977) or observation error by Sukhatme (1984). Measurement errors may arise in
different ways which can be classified into two types of sources. The first is subject-specific
and is associated to the natural variability of the response around a fixed value (the latent
value); it is called inherent variability by Buonaccorsi (2006). The second is associated with
the measurement process, i.e., measurement instruments or interviewers. With the same
spirit generally employed in the Econometric literature [see Kennedy (2008), for example],
where variables may be classified as endogenous or exogenous, we refer to the first type of
measurement errors as endogenous measurement errors and the second, exogenous
measurement errors. Using this terminology, the measurement errors considered in Table 2
are endogenous.

Now suppose that in our example, the measurement errors are exogenous, i.e., related to the
measurement condition associated with the position (i = 1 or i = 2) in the sample, instead of
endogenous (subject-specific). Let us also assume that the exogenous measurement error
variance is 1 when i = 1 or 4 when i = 2 and for simplicity, that the measurement error may
take only two possible values, given by plus or minus the corresponding standard error. The
results are presented in Table 3.

Since the average value of predictor (8) is 5.0 (the true value), it is clearly unbiased and the
results indicate that the specification of the measurement errors in model (1) may help in
deciding whether (8) is or is not the BLUP and consequently in choosing the covariance
structure. Although we considered only a simple example, the conclusion holds in general as
shown in Appendix B.

To better understand this result, we follow the lines given in Stanek, Singer and Lencina
(2004) and Stanek and Singer (2004), and consider a finite population mixed model
(FPMM) that is directly connected to the physical problem it represents and show that it is
useful in identifying the appropriate model specification.
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3 The finite population mixed model with measurement error
Let a population consist of N labeled subjects and let the latent value for subject s
correspond to a fixed (but unknown) constant, ys. We assume that the potentially observable
response for subject s is Ys = ys + Ws and that it differs from the latent response ys by the

endogenous measurement error Ws. Defining , we express the latent value in
terms of a subject effect βs as

(9)

Adding endogenous measurement error to (9) we obtain the measurement error model for
subject s, namely

(10)

We assume that (Ws) = 0 and  for s = s′ and (WsWs′) = 0 otherwise. The
subscript R indicates expectation with respect to the distribution of the endogenous

measurement error. We also define .

To formalize the selection of a simple random sample (without replacement) we first
represent a permutation of subjects by a set of random variables, and assume that each
permutation is equally likely. Without loss of generality we may assume that the sample
corresponds to the set of the first n random variables in a permutation, with each random
variable identified by its position. Each of these is defined via a set of N indicator random
variables Uis that take on a value of one with probability 1/N if subject s is selected in
position i, i = 1,…,N and zero otherwise. For the response in position i, we specify the
model that includes both sampling and endogenous measurement error by

(11)

where  and . The assumption that sampling
is without replacement implies that (UisUi′s′) = 0 if i = i′, s ≠ s′ or i ≠ i′, s = s′ but 
(UisUi′s′) = 1/[N(N − 1)] if i ≠ i′, s ≠ s′ where the subscript S indicates expectation with
respect to sampling. The random variables , i = 1,…,N, represent the permutations of the N
subjects in the population. The latent value for the subject selected in position i in a sample
is

(12)

Although model (11) has the same form as model (6), it explicitly accounts for random
sampling with indicator random variables that underlie the definition of the random
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variables Bi and . When endogenous measurement error variances differ between
subjects, the term corresponding to Ei in (6), namely , is such that

In other words, taking the expectation over sampling effectively averages the measurement
error variances over subjects in the population.

We can represent the FPMM for the sample as (7) with  in lieu of Y and
 in lieu of E. The variances of B and W* emerge directly from the finite

population mixed model development and are respectively given by Γ = γ2(In − N−1Jn)
where Jn = 11⊤ and Σ = σ ̄2In.

The corresponding BLUP for the latent fasting sg-level of the i-th selected woman, (12),
may be computed as in the mixed model setup and simplifies to

(13)

where  is the sample mean and k = γ2/(γ2 + σ ̄2). Details are given in
Appendix B.

The inclusion of the additional finite population term in the variance of B has no impact on
the expression for the predictor and even though the endogenous measurement error
variances  are heterogeneous, the BLUP is based on the average endogenous measurement
error variance σ ̄2. In the setup of Table 1, it follows that the predictor (13) is unbiased, and
therefore, it is the BLUP, as expected.

In Table 4, we show the results for the FPMM BLUP with heteroskedastic endogenous
measurement errors applied to the same setup considered in Table 2. Differently from the
mixed model predictor, the average value of the FPMM predictor is equal to the population
mean.

Now we consider situations where there are only exogenous measurement errors. We begin
with (9) and use a simple random sampling argument to obtain (12). Using the position in
the sample sequence, i = 1,…, n, to index the measurement conditions, we assume that the
exogenous measurement error for condition i is given by  with  and

 when i = i′ and is zero otherwise. The model that accounts for sampling
when there is only exogenous measurement error is defined by adding  to (12), i.e.,

(14)

This model may also be expressed as (7) with Y replaced by  and E
replaced by . Once again, the variance of B is given by Γ = γ2(In −
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N−1Jn), but now, . The heterogeneous variance is associated with the
measurement condition, i.e., position in the sample sequence, not with the realized subject.
Proceeding as in the previous cases, we obtain the BLUP of (12) which simplifies to (8) with
the Yi replaced by  and the results of Table 3 are reproduced. Once again, there is no
impact of including the additional finite population term in the variance of B on the
expression for the predictor. Details are given in Appendix B.

4 Discussion
At a first sight, it may appear that predictor (8) is the most appropriate when endogenous
measurement error variances differ among subjects since its expression accounts for the
different variances. This problem has been recently examined by Buonaccorsi (2006) in the
context of estimating the population mean in a two-stage heteroskedastic model. He
concludes that when the endogenous measurement error variance (which he terms inherent
variability) is heterogeneous, the best linear unbiased estimator should be constructed using
an average variance instead of subject-specific variances. He also notes that a weighted
estimator may have smaller mean squared error (MSE), commenting that this result deserves
further study since the weighted estimator is not justified by the context of the problem. We
face a similar situation when predicting the latent value of a randomly selected subject. Our
results are consistent with the conclusions of Buonaccorsi (2006) and illustrate additional
problems generated by a weighted estimator. We strengthen the foundation for our
conclusions by explicitly linking the finite population to the sample via a mixed model that
arises directly from the incorporation of sampling and measurement errors.

Both the predictors given by (8) and (13) can be derived under the standard mixed model (7)
through the specification of the variance components. If there is heteroskedastic endogenous
measurement error, then (E) = σ ̄2In; otherwise, if there is heteroskedastic exogenous
measurement error, . In the first case, the BLUP will be (13) and in the second,
it will be (8). The basic problem is that in a standard mixed model, response for the set of
labelled subjects in the data could be assigned in n! different orders (or sequences) to
represent realizations of the vector Y in (7). The index i for for the random variable Yi does
not identify the realized subject, but rather simply its position in the vector Y. It is easy to
mistake interpretation of this index and to consider it to be the realized subject’s label as
outlined in Stanek, Singer and Lencina (2004). If misinterpreted, the heterogeneous
position-specific (exogenous) variances in (7) will be falsely attributed to heterogeneous
subject-specific (endogenous) variances. Since the step that links a subject’s label to the
position of the subject in a response vector is omitted in the usual mixed model (unlike the
models developed in Section 3), this mistake is easily made. The models developed in
Section 3 prevent such erroneous switch of concepts. This is aggravated by the fact that (13)
corresponds to the BLUP obtained when exogenous heteroskedastic measurement errors are
considered.

Harville (1978) shows that the mixed model may be formulated in different ways. In
particular, model (1) may also be viewed as arising from the first n of N superpopulation
random variables as in Voss (1999). In fact, if N is very large, the covariance terms divided
by N may be taken as zero and the simple mixed model (7) with appropriate covariance
matrices can be used to approximate the FPMM for the simple settings considered. The
FPMM framework is able to capture different physical situations corresponding to
endogenous or exogenous measurement error even for very large (essentially infinite)
populations.
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In many practical situations, both endogenous measurement error that is associated with
labeled subjects and exogenous measurement error that is associated with positions in the
sample sequence can occur concurrently. For example, in a typical nutritional epidemiologic
study, information on study participants’ daily dietary intake is collected using 24 hour
recalls through telephone interviews. The accuracy of the collected information depends on
the accuracy of a participant’s memory (endogenous, subject-specific, measurement error)
as well as the experience of the staff assigned to conduct the interview (i.e., exogenous
measurement error). Extensions to such settings involve additional investigation which are
currently being conducted.

Our development was limited to settings where a single measure was made on each sample
subject. Buonaccorsi (2006) introduced the idea of variability in sampling effort to describe
situations where a different number of measures are made on a subject, limiting
consideration to settings where a single random variable represented response for each
sample subject. He discussed the possibility of the sampling effort being fixed or random,
but stopped short of characterizing the problem via subject labels and measurement
conditions associated with positions in a sample sequence. Settings where the number of
measures on a subject differ are more complex. This problem has been discussed by Stanek
and Singer (2008) in clustered population settings where sampling effort is part of the study
design, but they included neither endogenous nor exogenous measurement errors. Equal size
clustered populations with balanced two stage sampling and endogenous measurement error
have been discussed by Stanek and Singer (2004), and yield predictors similar to (8). Since
in practice, variance components are rarely known, empirical predictors based on method of
moment estimates of variance components are commonly used. Simulation studies were
reported in San Martino, Singer, and Stanek (2008) to evaluate the performance of the
resulting empirical predictors and indicated some loss in the expected MSE reduction,
especially when variance component estimates have low reliability. However, they still
outperform the weighted least squares competitor in the majority of cases.

An intriguing feature of the analysis in Table 2 is that the MSE (= 9.1) for the biased
predictor (8) is smaller than the MSE (= 23.7) for the FPMM BLUP (13) applied in the same
setting. A similar result occurred when other examples were investigated, and in each case,
the MSE of (8) was smaller, even though it is based on an inappropriate model. This
counter-intuitive result may be explained by the fact that the miss-specified model-based
predictor falls outside the class of linear unbiased predictors that are defined for the
correctly specified problem, a result alluded to by Buonaccorsi (2006). Given that the MSE
may be a more important property than (average) unbiasedness when prediction of latent
values of realized subjects is in perspective, it seems that the search for best predictors in
broader classes may be an important avenue for research.
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Appendix A
In the context of the mixed model (1), we follow the development of Goldberger (1962) as
reviewed by Robinson (1991) to obtain a predictor of  where k1 and k2 are
respectively p × 1 and q × 1 known vectors. We require the predictor to be the unbiased
linear function of Y that has minimum expected MSE within this class. We first note that

Then we consider linear predictors of the form q = c⊤Y and note that i) the unbiasedness
constraint implies  and ii) the variance of the predictor is
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. Minimizing the variance with respect to c subject to the
unbiasedness constraint results in

(15)

where α ̂ = (X⊤Ω−1X)−1X⊤Ω−1Y.

For the special case (7) with Γ = γ2In and , it follows that  so
that using (15), we obtain (8).

Appendix B
The predictor of a sample subject’s latent value in the FPMM may be obtained from the
results in Appendix A. We first consider the setting with heteroskedastic endogenous
measurement errors. In such a case, Γ = γ2(In − N−1Jn) and Σ = σ ̄2In and it follows that Ω−1

= (γ2 + σ ̄2)−1[In + k/(N − nk)Jn] where k = γ2/(γ2 + σ ̄2). Again, using (15), we obtain (13).

Next we consider the heteroskedastic exogenous measurement error case. Here, Γ = γ2(In −

N−1Jn) and , so that  where k = (k1,…, kn)⊤

with  and . Then (8) follows directly from (15).
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Table 1

Fasting serum glucose levels, subject-specific measurement error variances and shrinkage constants for a
population of 3 women

Subject Latent sg-level Measurement error variance Shrinkage constant

Daisy 10 1 0.950

Lily 3 100 0.160

Rose 2 4 0.826

Average μ = 5 σ ̄2 = 35

Variance γ2 = 19
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