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’ INTRODUCTION

When charged objects (colloidal particles, interfaces, mem-
branes, proteins, etc.) are placed in contact with an ionic solution,
spatial distributions of charge and electric potential, known as the
electrical double layer, appear close to the interface. This struc-
ture plays a crucial role in colloid and polymer science, biophysics,
medicine, and numerous separation technologies (e.g., water and
wastewater filtration, membrane filtration, protein and cell sepa-
ration, immobilization of enzymes, etc.).1�3 This is the reason for
the great importance of and interest in theoretical models of the
electrical double layer structure.

The most acknowledged and widely used theory of the
electrical double layer is that of Gouy4 and Chapman.5 They
described this system by means of a Poisson�Boltzmann (PB)
equation for the charge distribution close to the interface.
Considering plane geometry, the PB expression is
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where zi and ci
∞ are, respectively, the valence and the bulk

concentration (in mol/m3) of ionic species i ∈ {1, 2, ...m}, Ψ is
the electric potential, e is the elementary charge,NA is Avogadro's
number, k is the Boltzmann constant, T is the absolute tempera-
ture of the system, and εe is the macroscopic permittivity of the
solution. Equation 1 follows from the Poisson equation

∇ 3 ðεe∇ΨÞ ¼ � eNA ∑
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where ci is the local concentration (in mol/m3) of ionic species i,
assuming that
(i) the only macroscopic average forces acting over the ions

are the thermal force FBi
T

FB
T

i ¼ � kT∇ lnðciÞ ð3Þ
and the electric force FBi

E

FB
E

i ¼ � zie∇Ψ ð4Þ

(ii) at equilibrium, the total average force must be zero, so
the ionic concentrations must satisfy the Boltzmann
distribution

ci ¼ c∞i exp � zieΨ
kT

� �
ð5Þ

(iii) the permittivity of the solution has a constant value
throughout the system.

The PB equation is, therefore, a continuum mean-field
approach assuming pointlike ions in thermodynamic equilibrium
and neglecting statistical correlations; it has been successful in
predicting ionic profiles close to planar and curved surfaces and
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ABSTRACT: The electrical double layer is examined using a generalized
Poisson�Boltzmann equation that takes into account the finite ion size by
modeling the aqueous electrolyte solution as a suspension of polarizable insulating
spheres in water. We find that this model greatly amplifies the steric effects
predicted by the usual modified Poisson�Boltzmann equation, which imposes
only a restriction on the ability of ions to approach one another. This amplification
should allow for an interpretation of the experimental results using reasonable
effective ionic radii (close to their well-known hydrated values).
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the resulting forces. However, it is also known to strongly over-
estimate ionic concentrations close to highly charged surfaces and for
multivalent ions: close to the surface, theoretical ion concentrations
can easily exceed the maximal allowed coverage by several orders of
magnitude. Stern was the first who tried to overcome this short-
coming of the PB theory by introducing the notion of what is now
called the Stern layer.6 Since then, several attempts have been
proposed to overcome these well-understood drawbacks and limita-
tions of the PB equation. Roughly, two types of methods have been
used: microscopic descriptions of the system with different approxi-
mation levels7�9 and phenomenological theories using macroscopic
differential equations to describe the average behavior of the system
(e.g., lattice-based models,10�14 different modifications of the stan-
dard Poisson�Boltzmann theory,15�20 hypernetted chain integral
equations,21 exact contact value theorems,22 and density functional
theory23). Microscopy descriptions have the advantage of precisely
representing the interactions responsible for the macroscopic beha-
vior of the system, but only in equilibrium. On the contrary,
phenomenological theories, less strict in the description of the
interactions, make it possible to analyze the system behavior both
in equilibrium and perturbed by an external signal.24,25

In all phenomenological theories, a new average force acting
over the ions and responsible for the interactions related to the
finite ion size, FBi

S, is added to the theoretical model. Most of the
work in this field, treating solely steric effects, use a Bikerman-
type expression for this force:10,24
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where ci
max is the maximum local concentration that ionic species

i can attain, which is related to the effective ionic radius, Ri, by
means of the expression

cmaxi ¼ p
4
3
πRi

3NA

ð7Þ

where p is the packing coefficient (p = 1 for perfect packing, p =
π/3(2)1/2 ≈ 0.74 for close packing, p ≈ 0.64 for random close
packing, and p = π/6 ≈ 0.52 for simple cubic packing).

Using this additional force term, the equilibrium condition
that the total average force acting over the ionsmust be zero leads
to a Langmuir-type equation for the local ionic concentrations
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instead of eq 5. Combining this result with eq 2 gives a modified
Poisson�Boltzmann (MPB) equation
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that takes into account steric effects due to the finite ion size. As
noted above, in this modified theory the local ionic concentrations

cannot exceed ci
max in improving on the results predicted by the

PB equation. Comparison with theories based on Monte Carlo
(MC) simulations shows that this MPB equation works very well
for a wide range of situations.9 However, it still presents two
important shortcomings: the correction of the MPB over the PB
equation appears only at high surface charges and small values of
cmax so that in order to fit the experimental data it is necessary to
consider effective ionic radii that are much larger than the
hydrated ionic radii, which is physically objectionable.25,26 It
should be noted, moreover, that eq 8 does not necessarily imply
that ions have a finite size: there is only a restriction on their
ability to approach one another. On the contrary, a finite ion size
implies that ions have a finite volume that can no longer be
occupied by the suspending medium.

In this letter, we propose a simple way to include the finite size
of the ions in the MPB equation by extending the hydrated ion
model to that of an insulating sphere with effective radius Ri,
charge zie, and permittivity εi. This modification implies that the
presence of ions in the suspending medium should modify its
macroscopic permittivity and that two new average forces acting
over ions should be taken into account: a force, FBi

B, tending to
move ions into regions of higher permittivity (a consequence of
the so-called Born energy) and a dielectrophoretic force, FBi

D,
acting on a dipole that appears wherever the local field is nonuni-
form. These considerations considerably amplify the deviations
predicted by the MPB equation, leading to appreciable differences
with respect to the PB equation even for relatively low surface
charges and effective ionic radii close to their hydrated values.

We thus consider the electrolyte solution as a suspension
made of insulating spheres with radius Ri and permittivity εi and
water with permittivity εw. The resulting permittivity εe of this
suspension can be determined using the Maxwell mixture
formula,27 which is quite accurate over the whole concentration
range when the dispersions have a lower permittivity than the
suspending medium:

εe ¼ εw
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However, the electrostatic energy of an ion with radius Ri and
charge zie can be obtained by integrating the energy density
corresponding to its electric field:

W ¼ εe
2

Z
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This energy depends on the permittivity of the surrounding
medium. Therefore, if the permittivity is position-dependent
(eq 10), then the ion will tend to move to regions of higher
permittivity in order to lower its energy. The resulting force, FBi

B,
is

FB
B

i ¼ �∇W ¼ �∇
zi2e2
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¼ � zi2e2

8πRi
∇

1
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� �
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Finally, if hydrated ions behave as dielectric spheres, then they
should be polarized by an external field. If this field is nonuni-
form, then the dielectrophoretic force will attract an ion toward
regions of a stronger (weaker) field if its equivalent permittivity is
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higher (lower) than that of the surrounding medium. Generally,
the ion permittivity is lower than that of the electrolyte solution
so that the dielectrophoretic force tends to diminish the con-
centration both of counterions and coions close to charged
surfaces. The magnitude of the dielectrophoretic force is28

FB
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i ¼ ð mBi 3∇Þ EB

¼ 4πεeRi
3 εi � εe
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EB 3∇
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∇ðE2Þ ð13Þ

where mBi is the induced dipole moment of an ion.
In equilibrium, the total force acting over the ionsmust be zero

FB
T

i þ FB
E

i þ FB
S

i þ FB
B

i þ FB
D

i ¼ 0 ð14Þ

so that the equilibrium concentrations become
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for plane geometry. The two addends in this expression represent
ion energy changes when the ion is moved from far away from the
particle to its final position. The first corresponds to the change
in the Born energy, and the second represents the work required
to move the ion against the dielectrophoretic force.

Combining eqs 2 and 15 leads to the new modification of the
Poisson�Boltzmann (NMPB) equation proposed in this letter
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which can be solved numerically to yield the electrostatic
potential, ion concentration, and permittivity of the solution as
functions of the distance to the surface.29 Note that for εi = εw
eq 17 reduces to the MPB equation used in previous work by
taking into account only steric effects because then εe = εw in eq
10 so thatWi = 0 in eq 16. Moreover, if it is also considered that
ci
max f∞ "i∈ {1, 2 ,..m}, then eq 17 simplifies to the classic PB
equation.

Note also that although a verification of the NMPB equation
by means of MC simulations would be highly desirable this is not
possible in practice because the inclusion of the polarization
properties of ions into the MC procedure can only be done at
great computational cost because of the fact that interaction
forces between polarized dielectric spheres of hydrated ions are
not pairwise additive.

’RESULTS AND DISCUSSION

To illustrate the quantitative impact of the present theory, we
consider a single plane surface with charge density σ > 0 in
contact with a binary aqueous electrolyte solution and use
hydrated ion relative permittivity values of 40, 20, and 10
(typical values for monovalent and divalent ions are 25 and 8,
respectively32) and close packing (p = 0.74). The remaining
system parameters are given in Table 1. Note that for the sake of
simplicity we did not take into account the existence of a
minimum approach distance of ions to the charged surface. In
the considered case when all the ionic species have the same
effective size, this would add only a constant to the surface
potential value.30

Figure 1 represents the counterion concentration (Figure 1a),
the permittivity of the solution (Figure 1b), and the electric
potential (Figure 1c) profiles. The numerical solutions of the
MPB and PB equations are included for comparison. As can be
observed, in all cases both theNMPB andMPB equations predict
that the concentration of counterions attains its maximum
concentration, cmax, in the vicinity of the surface where a
saturation layer appears (which contrasts with the standard PB
equation where the ion concentration can be arbitrarily high).
Because of this, the dielectric permittivity of the electrolyte
solution changes from values close to εw far away from the
surface to

εsate ¼ ð1 þ 2pÞεi þ ð1� pÞ2εw
ð1� pÞεi þ ð2 þ pÞεw εw ð18Þ

in the saturated layer whereas in the PB and MPB equations the
dielectric permittivity value is a constant equal to εw throughout
the system (Figure 1b). However, the Born and dielectrophoretic
forces contribute to increase the double layer thickness because
they are both repulsive for a hydrated ion permittivity lower than
that of water (Figure 1a). The increment of the electrical double
layer thickness together with the decrement of the solution
permittivity strongly increases the potential drop across the
electrical double layer, as can be observed in Figure 1c. Note
that in the considered example the surface potential increases by
roughly a factor of 2 solely because of steric effects (MPB) and by
an additional factor of 2 due to a local change in the solution
permittivity (NMPB). This behavior is qualitatively similar to
that of the Ben-Yaakov et al. model.20

Figure 2 represents the surface potential as a function of the
surface charge density for z1 =�z2 = 1 (Figure 2a) and z1 =�z2 =
2 (Figure 2b) and the remaining parameter values indicated in
the figure. This relationship is crucial to the interpretation of the
double layer capacity as well as the impedance, dielectric proper-
ties, and electrokinetic phenomena in colloidal systems. Results
predicted by the PB equation (point lines) and the MPB
equation (dashed lines) are included for comparison. (A com-
parison with existing simulation data is not included because it
would mainly show the ability of the Bikerman model to
represent the excluded volume effect.) As can be observed and

Table 1. Parameter Values Used in the Simulation except
When Indicated Otherwise

e = 1.602 � 10�19 C NA = 6.022 � 1023mol�1 k = 1.381 � 10�23 J/K

T = 298 K εw = 80ε0 σ = 0.75 C/m2

z1 = 2 c1
∞ = 100 mol/m3 R1 = 3Å

z2 = �2 c2
∞ = 100 mol/m3 R2 = 3Å
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as already noted in previous work dealing with this subject, steric
effects included in the MPB equation only increase the potential
drop across the electric double layer for medium and high surface
charge densities. However, this increase is greatly amplified when
the variation of the solution permittivity is taken into account and
important differences appear even for relatively weak values of
the surface charge density, most notably in Figure 2b. Note that
in this figure, for example, for a surface charge of 0.4 C/m2 the PB
equation predicts a surface potential of 75 mV (eΨ/kT = 3), a
value that increases to roughly 100 mV and to nearly 200 mV
according to the MPB and NMPB equations, respectively.

It was shown in ref 31 that the relationship between the surface
charge density and the surface potential can be analytically
deduced in the framework of the MPB equation (eq 9), provided
that all of the ionic species have the same maximum concentration

values. This is no longer true in the considered NMPB case
because of the variation of the electrolyte solution permittivitywith
the distance to the interface. However, an approximate result can
still be obtained by assuming that the solution permittivity value is
everywhere equal to εe (x = 0) and neglecting the dielectrophore-
tic contribution in eq 16:

σ2 ¼ 2NAkTc
maxεeðx ¼ 0Þ ln 1 þ ∑

m

i¼ 1

c∞i
cmax

exp � zieΨðx ¼ 0Þ
kT

� �
� 1

� �( )

ð19Þ
In this expression, εe(x = 0) is determined by eq 10 with ci(x = 0)
expressed as a function of the surface potential by means of eq 15
considering thatWi= 0 (in view of the considered approximation).
As can be seen in Figure 2, this expression reproduces the
numerical results fairly well, therefore providing a rough estimate
of the magnitude of the deviations between the predictions of the
NMPB and the MPB equations.

In summary, we derived a new modified Poisson�Boltzmann
(NMPB) equation that includes ion size effects by modeling the
aqueous electrolyte solution as a suspension of polarizable
insulating spheres in water. This model should allow for the
interpretation of experimental data in electrochemical systems
with relatively weak values of the surface charge density using
reasonable effective ionic radii (similar to their hydrated values).

Figure 2. Surface potential as a function of the surface charge density for
the indicated values of the hydrated ion permittivity and for z1 = �z2 = 1
(a) and z1 = �z2 = 2 (b). The remaining parameters are given in
Table 1. Results predicted by the NMPB, MPB, and PB equations are
represented by solid, dashed, and dotted lines, respectively, and
dashed�dotted lines represent the approximate analytical expression
(eq 19).

Figure 1. Ionic concentration (a), permittivity of the solution (b), and
the electric potential (c) profiles for the indicated values of the hydrated
ion permittivity. The remaining parameters are given in Table 1. The
numerical solutions of the PB and the MPB equations are included for
comparison.
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This improves over previous theoretical models that include
steric effects, which can be used only for experiments involving
large multivalent ions and high surface charges and requires, even
then, excessively large effective ionic radii. An approximate
equation for the surface charge density�surface electric potential
relationship, valid for a wide range of system parameter values, is
also reported.
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