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’ INTRODUCTION

The simplest, and still often used model for the interpretation
of dielectric and electrokinetic phenomena in colloidal suspen-
sions is the standard electrokinetic model.1 It considers that the
colloidal suspension is made of hard, insulating, perfectly smooth
particles bearing a uniform fixed surface charge and immersed in
the electrolyte solution solely characterized by its macroscopic
properties. No specific interactions between ions in the electro-
lyte solution and the particle surface are considered so that the
surface conductivity corresponds exclusively to the diffuse part of
the electric double layer.

It was later realized, however, that this model can strongly
oversimplify the system in the close vicinity of the solid�liquid
interface.2 Due to different factors such as surface roughness, gel-like
surface properties, or specific behavior of water molecules in contact
with a solid, a thin layer of immobilized water close to the surface can
exist, forming the so-called “stagnant layer”. On the contrary, ions in
this layer can still move tangentially behind the surface of zero fluid
velocity, originating the “anomalous”, “Stern layer”, or “stagnant
layer” surface conductivity. Two main nonstandard models were
formulated for the free ion density in the stagnant layer, which
determines its conductivity value.3�5 In thefirst, this density is simply
considered to be equal to the diffuse ion density in the region
between the particle surface and the zero fluid velocity surface. In the
second, specific adsorption of ions to the particle surface is con-
sidered, so that the ion density in the stagnant layer is determined by
ion adsorption isotherms and the ion density in the diffuse double
layer just outside the slipping plane.

While the classic Dukhin�Shilov thin double layer polarization
theory6 was developed on the basis of the standard electrokinetic
model, the first nonstandardmodel was considered in the theories of
the electrophoretic mobility7 and of the low frequency dielectric
dispersion.8,9

As for the second nonstandard model, the effect of the
stagnant layer conductivity of adsorbed ions on the dielectric

and electrokinetic DC10,11 and AC12,13 properties was exten-
sively studied numerically. However, no rigorous analytical
studies are available to date. In ref 14 the thin double layer
polarization theory6 was extended without specifying any details
about the structure of the double layer, only considering the
movement of ions of a single sign in the stagnant layer, and totally
disregarding convective effects in the whole system. In ref 15 the
Fixman model16 was extended to include the anomalous surface
conductivity in an approximate fashion, neglecting the contribu-
tion of co-ions and without specifying any adsorption isotherms.
Similarly, in ref 17 the Shilov�Dukhin low frequency dielectric
dispersion theory8 was extended, neglecting, furthermore, the
existence of the capillary osmotic flow.

The purpose of the present work is to provide a rigorous
extensionof the classicDukhin�Shilov thindouble layer polarization
theory6 including the stagnant layer conductivity. We maintain
precisely the same assumptions as in the original theory and use
the same adsorption isotherms as in most of the existing numerical
calculations.11�13 We finally compare the obtained analytical results
with existing approximate expressions14,17 andwith numerical data.11

’EQUATION SET

We consider a suspended particle represented by an insulating
sphere of radius a, with a uniform fixed surface charge density σ0.
The electrolyte solution is characterized by its viscosity ηe, absolute
permittivity εe, the unsigned valences of its ions z( = z, their diffu-
sion coefficients D(, and their concentrations far from the particle
C((∞) = C(∞). We furthermore consider that the particle is
surrounded by a surface layer of adsorbed ions that can move
tangentially with diffusion coefficients Ds

( while the fluid remains
immobile. Their equilibrium (lower index 0) surface densities are

Received: April 5, 2011
Revised: May 20, 2011

ABSTRACT: A rigorous extension of the classic Dukhin�Shilov thin double layer
polarization theory including the stagnant layer conductivity is presented. Precisely the
same assumptions and approximations made in the original theory are maintained, and the
same adsorption isotherms are used as in most of the existing numerical calculations. The
obtained analytical results improve upon existing approximate extensions, mainly for low
surface conductivities and high surface potentials and for high surface conductivities and low
surface potentials. Moreover, they avoid the assumption that all the adsorbed ions in the
stagnant layer must have a single sign. Finally, they present a very good agreement with
numerical calculations specifically made using the same system parameters.



8997 dx.doi.org/10.1021/jp203156w |J. Phys. Chem. B 2011, 115, 8996–9004

The Journal of Physical Chemistry B ARTICLE

determined by the following adsorption isotherms:

C(
s0 ¼ N(

s C
(
0 ðaÞ=K(

s

1 + C+
0ðaÞ=K+

s + C
�
0 ðaÞ=K�

s

ð1Þ

that were chosen in order to be able to compare the obtained
results with numerical calculations11 and with existing theo-
ries.14,17 In this equation, Ns

( are the maximum values of the
surface concentrations of adsorbed ions, and Ks

( are their
dissociation constants.

The Dukhin�Shilov thin double layer polarization theory was
reviewed in detail in ref 18, where an extension to different co-ion
and counterion valences was presented. While, for sake of
simplicity, this extension is not included in the present work,
we will base our presentation on that reference in order to avoid
unnecessary repetitions.

Under steady state conditions, the ion concentrations C((rB),
electric potential Φ(rB), fluid velocity VB(rB), and pressure P(rB)
outside the stagnant layer are determined by the usual set of
Nernst�Planck, continuity, Poisson, Navier�Stokes, and in-
compressibility equations:

jB
( ¼ �D(∇C( - C(zD(∇ ~Φ + C( VB ð2Þ

∇ 3 jB
( ¼ 0 ð3Þ

∇2Φ ¼ � ðC+ � C�Þ ze
εe

ð4Þ

ηe∇
2 VB�∇P ¼ ðC+ � C�Þze∇Φ ð5Þ

∇ 3 VB ¼ 0 ð6Þ
where the symbol ∼ denotes a dimensionless magnitude
(Φ~ = eΦ/kT).

’EQUILIBRIUM EQUATIONS

In equilibrium, both the ion and the fluid flows vanish, so that
eqs 2 and 5 can be integrated to obtain

C(
0 ¼ zNe-z ~Φ0 ð7Þ

P0 � Pð∞Þ ¼ zNkTðe�z ~Φ0 + ez
~Φ0 � 2Þ ð8Þ

where

N ¼ Cð∞Þ=z
and P(∞) is the pressure far away from the particle. Combining
eq 7with the equilibrium Poisson equation leads to the Poisson�
Boltzmann equation for the electric potential:

∇2 ~Φ0 ¼ � z2e2N
εekT

ðe�z ~Φ0 � ez
~Φ0Þ

While this equation can only be solved analytically in spherical
coordinates for low values of the electric potential, a general
solution exists in the case of plane geometry:

d2 ~Φ0

dx2
¼ z2e2N

εekT
ðez ~Φ0 � e�z ~Φ0Þ

where x is the distance to the particle surface. This equation
can be integrated one time from a generic point (x, Φ0) to

infinity (x f ∞, Φ0 = 0):

d ~Φ0

dx
¼ � signð ~Φ0Þkz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ez ~Φ0 + e�z ~Φ0 � 2

p
ð9Þ

and a second time from the surface (x = 0, Φ~0 = ζ~) to a generic
point (x, Φ~):

ez ~Φ0=2 � 1

ez ~Φ0=2 + 1
¼ e�kx e

z~ζ=2 � 1

ez~ζ=2 + 1

In this expression, ζ~ is the equilibrium surface potential, while

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z3e2N
εekT

s
ð10Þ

is the reciprocal Debye length. The equilibrium surface potential
is a function of the fixed surface charge density σ0, the stagnant
layer surface charge density σs0

+ + σs0
�, and the electrolyte con-

centration. The explicit form of this dependence can be obtained
combining the Gauss law at the surface

d ~Φ0

dx

�����
x¼ 0

¼ � e
kT

σ0 + σ+
s0 + σ

�
s0

εe
ð11Þ

with eqs 9 and 10, which leads to

σ0 + σ
+
s0 + σ

�
s0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2εekT

p ðez~ζ � 1Þ ffiffiffiffiffiffi
zN

p

ez~ζ=2
ð12Þ

where σs0
( = ( zeCs0

(

Figure 1 shows the dependence of the total (squares 0), cation
(blue line 0), and anion (red line 0) excess surface densities of the
diffuse double layer on the surface potential. Lines 1�4 show the
corresponding dependences for the surface ion densities of the
stagnant layer. The system parameters taken from ref 11 and used
in this and all the following figures (except Figures 3 and 4) are
given in Table 1. These parameters roughly correspond to a
suspension of 100 nm particles in an aqueous 10 mM/L KCl
solution, which leads to a ka = 32.9 value. The maximum
adsorbed ion concentrations Ns

( correspond to a maximum
surface charge density of 0.8 Cm�2. The last two columns in
Table 1 determine the dissociation constant values written as

K(
s ¼ 1000NA10

�pK(
m�3

so that Ks
+ = 6.02 � 1025 m �3 while 6.02 � 1024 m�3 e Ks

� e
6.02 � 1027 m�3.

As can be seen, for the chosen parameters, the total ion density
of the stagnant layer (squares 1�4) is always higher than the total
excess ion density of the diffuse layer (squares 0), except for
extreme ζ~ potential values for which the stagnant layer fully
saturates. Squares 3 are fully symmetrical with respect to positive
and negative ions because their minimum, which corresponds to
equal anion and cation densities, is located at ζ~ = 0. For squares 2
(4), the dissociation constant of negative ions is higher (lower)
than for positive ones so that the minimum is attained for a
positive (negative) ζ~ potential value. The stagnant layer ion
densities strongly differ from one another for positive ζ~ poten-
tials because the chosen dissociation constants of counterions
(anions) strongly differ. On the contrary, all the stagnant
layer ion density lines converge to a single one for negative ζ~
potentials because the dissociation constants of counterions
(cations) have then a single value.
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Figure 2 shows the dependence of the fixed surface charge
density σ0 on the surface potential both without and with the
stagnant layer (lines 0 and 1�4, respectively). As can be seen, the
presence of the adsorbed ions, mostly counterions, strongly
increases the fixed surface charge value needed to maintain a
given value of the surface potential. Since line 3 is symmetrical
with respect to the surface potential sign, the counterion and co-
ion charge densities in the stagnant layer compensate each other
for ζ~ = 0 so that the corresponding value of the fixed surface
charge is zero. On the contrary, for line 2 (4) the dissociation
constant of negative ions is larger (smaller) than for positive ones

so that for ζ~ = 0 the stagnant layer charge is positive (negative),
which leads to a negative (positive) fixed surface charge.

’SOLUTION WITH AN APPLIED DC ELECTRIC FIELD

When a macroscopic DC electric field with amplitude E is
applied to the system, ion flows appear in the diffuse double layer, the
surrounding electrolyte solution, and the stagnant layer. The former
two are determined by electrodiffusion and convection, while the
latter is determined only by electrodiffusion. The equation set 2�6,
valid outside the stagnant layer, is first simplifiedwriting the ion flows
in terms of the dimensionless electrochemical potentials:

jB
( ¼ � C(D(∇~μ( + C( VB

~μ( ¼ ln
C(

zN
( z ~Φ ð13Þ

A further simplification consists in using the principle of local
equilibrium and expressing the system parameters in terms of the
parameters of a virtual system (defined by the conditions that each of
its volumeelements is in equilibriumwith the corresponding element
of the real system and by being electroneutral in its entire volume).
The virtual system parameters are its electric potential j~, ion
concentrations c( = zn, and pressure p, so that its electrochemical
potentials are

~μ( ¼ ln
n
N

( z~j ð14Þ
Equating eqs 13 and 14 leads to

C( ¼ zne-zð ~Φ � ~jÞ ð15Þ

P� p ¼ znkT½e�zð ~Φ � ~jÞ + ezð ~Φ � ~jÞ � 2�
which relate the local equilibrium values of the electric potential, ion
concentrations, and pressure of the real and virtual systems, and are
analogous to the equilibrium eqs 7 and 8.

The equation set is then linearized, writing all the field-
dependent magnitudes as expansions in successive powers of
the applied field strength:

~Φ ¼ ~Φ0 + δ ~Φ + :::

jB
( ¼ δ jB

(
+ :::

and dropping all the terms that are higher than first order in the
applied field while using the equilibrium equations. Finally, the
ion flow, continuity, and incompressibility equations are com-
bined, leading to

∇2δ~n ¼ z2 ∇δ~j � D� �D+

2zD+D� δVB
� �

3∇ ~Φ0

∇2δ~j ¼ ∇δ~n� D� + D+

2D+D� δ VB
� �

3∇ ~Φ0

Table 1. System Parameters Used All in the Figures except When Stated Otherwise

T = 298.16 K D( = Ds
( = 2 � 10�9 m2 s�1 1: pK+ = 1 1: pK� = �1

εe = 78.54 ε0 C (∞) = 0.01 � 1000 NA m
�3 2: pK+ = 1 2: pK� = 0

ηe = 8.904 � 10�4 N s m�2 a = 10�7 m 3: pK+ = 1 3: pK� = 1

z = 1 Ns
( = 4.99 � 10�18 m�2 4: pK+ = 1 4: pK� = 2

Figure 2. Fixed surface charge density σ0 and its dependence on the
surface potential. Without (0) and with the stagnant layer (1�4).
System parameters given in Table 1.

Figure 1. Total (squares 0), cation (blue line 0), and anion (red line 0)
excess densities of the diffuse double layer and their dependence on the
surface potential. Corresponding dependences of the stagnant layer ion
densities: lines 1�4. System parameters given in Table 1.
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∇2δ ~Φ ¼ ½z2ðC+
0 + C

�
0 Þðδ ~Φ � δ~jÞ � zðC+

0 � C�
0 Þδ~n�

e2

εekT

ηe∇
2δVB�∇δp ¼ kTzðC+

0 � C�
0 Þ∇δ~j

+ kTðC+
0 + C

�
0 � 2zNÞ∇δ~n ð16Þ

where ~n = n/N and δ~n = δn/N.
These equations greatly simplify in the electrolyte solution

outside the equilibrium diffuse double layer, where the equilib-
rium potential and the equilibrium charge density vanish (Φ~0 = 0,
C0

( = zN):

∇2δ~n ¼ 0

∇2δ~j ¼ 0

∇2δ~F ¼ k2δ~F

where

δ~F ¼ e
k2εekT

δF ¼ � ðδ ~Φ � δ~jÞ

is the dimensionless field induced charge density. The solutions
of these Laplace and Helmholtz equations are

δ~n ¼ Kca2

r2
eEa
kT

cos θ ð17Þ

δ~j ¼ Kda2

r2
� r
a

 !
eEa
kT

cos θ ð18Þ

δ~F ¼ KFe
kða � rÞ a

r

� �2 1 + kr
1 + ka

� �
eEa
kT

cos θ

where Kc, Kd, and KF are integration constants.

’BOUNDARY CONDITIONS

The constants Kc and Kd can be determined integrating the
continuity equations written for the differences between the
actual ion flows δjB( and the long-range ion flows δjBl

( that are
only valid outside the diffuse double layer:Z ∞

a

1
r2

∂

∂r
½r2ðδj(r � δj(lr Þ� +

1
r sin θ

∂

∂θ
½sin θðδj(θ � δj(lθÞ�

� �
dr ¼ 0

ð19Þ
where

δ jB
( ¼ � C(

0 D
(∇δ~μ( + C(

0 δVB ð20Þ

δ jB
(
l ¼ � zND(∇δ~μ( + zNδVB ð21Þ

δ~μ( ¼ δ~n ( zδ~j ð22Þ
The integrals can be analytically evaluated in the case when the

double layer is thin as compared to the radius of the particle:

ka . 1 ð23Þ
considering that (a) the curvature of the surface needs only
be taken into account outside the double layer, while the
equations inside it are solved assuming a locally flat surface,

and (b) each portion of the diffuse double layer is in a state
of local equilibrium, so that the electrochemical potentials
and their tangential derivatives do not change across its
width.

Outside the double layer, δjB( = δjBl
( so that the integrand

of eq 19 vanishes. Therefore, in view of eq 23, this equation
reduces to

1
a2

Z ∞

a

∂

∂r
½r2ðδj(r � δj(lr Þ� dr

+
1

a sin θ
∂

∂θ
½sin θ

Z ∞

a
ðδj(θ � δj(lθÞ dr� ¼ 0

where the first integral further simplifies to

1
a2

Z ∞

a

∂

∂r
½r2ðδj(r � δj(lr Þ� dr ¼ � δj(r ðaÞ + δj(lr ðaÞ

The first addend on the right-hand side of this equation (equal to
zero in the classical formulation) corresponds to the radial ion
flows entering the stagnant layer. As for the second addend
(which corresponds to the radial ion flows leaving the diffuse
double layer toward the solution), it can be transformed using
eq 21 into

δj(lr ¼ ð�zND(∇δ~μ( + zNδ VBÞrja ¼ �zND(∇rδ~μ
(ja

since δVr|a = 0. Equation 19 so becomes

�δj(r ðaÞ � zND(∇rδ~μ
(ja

¼ � 1
a sin θ

∂

∂θ

�
sin θ

Z ∞

a
ðδj(θ � δj(lθÞ dr

	
ð24Þ

The integrand is evaluated using eqs 20�22:

δj(θ � δj(lθ ¼ � ðC(
0 � zNÞD(∇θδ~μ

( + ðC(
0 � zNÞδVθ

which transforms eq 24 into

�δj(r ðaÞ � zND(∇rδ~μ
(ja

¼ D(

a sin θ
∂

∂θ
ðsin θ∇θδ~μ

(jaÞ
Z ∞

a
ðC(

0 � zNÞ dr

� 1
a sin θ

∂

∂θ
½sin θ

Z ∞

a
ðC(

0 � zNÞδVθ dr� ð25Þ

This equation coincides with the classical result (eq 36 in ref 18),
except for the first addend in the left-hand side that depends on
the presence of the stagnant layer.

Proceeding just as in the classical formulation, the right-hand
side of this equation is evaluated considering a flat charged
surface in contact with the electrolyte solution. The first integral
is so replaced by the non specific adsorption coefficients:
equilibrium surface ion densities in the diffuse double layer:

G(
0 ¼

Z ∞

a
ðC(

0 � zNÞ dr ¼ zN
Z ∞

0
ðe-z ~Φ0 � 1Þ dx

¼ kεekT
z2e2

ðe-z~ζ=2 � 1Þ ð26Þ

The second integral in eq 25 is evaluated considering that,
outside the diffuse double layer, the electric potential and the
electrolyte concentration vary in the tangential y direction,
and solving the tangential component of the Navier�Stokes
eq 16. The resulting expression is classically integrated,
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neglecting the tangential derivative of the pressure in view of
eqs 8, 9, and 11

P0ð0Þ � Pð∞Þ ¼ ðσ0 + σ+
s0 + σ

�
s0Þ2

2εe

This equation shows that with no stagnant layer (σs0
+ + σs0

� =
0), the pressure has a constant value that does not depend on
the electrolyte concentration and, therefore, on the y coordi-
nate. In the considered case, however, the stagnant layer
charge is not constant in the presence of a concentration
gradient so that a tangential pressure gradient appears in the
diffuse double layer:

dPð0Þ
dy

¼ σ0 + σ+
s0 + σ

�
s0

εe

dðδσ+
s + δσ

�
s Þ

dy
ð27Þ

On the other hand, combining eqs 9 and 11 and differentiating
leads to

� zeðzNe�z~ζ � zNez
~ζÞ dδΦð0Þ

dy

¼ σ0 + σ+
s0 + σ

�
s0

εe

dðδσ+
s + δσ

�
s Þ

dy
ð28Þ

Equations 27 and 28 show that the pressure gradient is
equal to the equilibrium charge density multiplied by the
tangential electric field, so that that the pressure and potential
gradient terms in the Navier�Stokes equation exactly com-
pensate each other. Therefore, the dependence of the total
surface charge density on the y coordinate does not lead to
any additional fluid flow (otherwise, a suspended particle
with a nonuniform surface charge would spontaneously
move).

In view of the above, the second integral in eq 25 can be
calculated in terms of the electroosmotic and the capillary
osmotic fluid velocities, just as in the classical formulation:

δV eo
θ ¼ εe

ηe

kT
e

� �2

ð~ζ � ~Φ0Þ∇θδ~jja ð29Þ

δV co
θ ¼ 4εe

ηe

kT
ze

� �2

ln
ez ~Φ0=4 + e�z ~Φ0=4

ez~ζ=4 + e�z~ζ=4

 !
∇θδ~nja ð30Þ

which lead toZ ∞

a
ðC(

0 � zNÞδVθdr ¼ � εeN
kηe

kT
e

� �2

ðI(eo∇θδ~jja + I(co∇θδ~njaÞ

where

I(eo ¼ ( 4ðe-z~ζ=2 � 1Þ + 2z~ζ ð31Þ

I(co ¼ 1
z

4ðe-z~ζ=2 � 1Þ + ð4 ( 2Þz~ζ � 16 ln
1 + ez

~ζ=2

2

 !" #

ð32Þ
Finally, the first addend in eq 25 can be expressed in terms of

the stagnant layer parameters using the continuity equation:

∇θ 3 δj
(
s + δj(r ðaÞ cos θ ¼ 0

where

δj(s ¼ D(
s C

(
s0

a
δC(

s

C(
s0

( zδ ~ΦðaÞ
" #

sin θ

so that

δj(r ðaÞ ¼ � 2D(
s C

(
s0

a2
δC(

s

C(
s0

( zδ ~ΦðaÞ
" #

Combining these results and using eq 22 transforms eq 25 into

�zND(∇rδ~μ
(ja ¼ � 2D(G(

0

a2
½δ~n ðaÞ ( zδ~jðaÞ�

� 2D(
s C

(
s0

a2
δC(

s

C(
s0

( zδ ~ΦðaÞ
" #

+
εeN
kηe

kT
e

� �2 1
a sin θ

∂

∂θ
½sin θðI(eo∇θδ~jja + I(co∇θδ~njaÞ�

ð33Þ
As can be seen, the diffuse and the stagnant layer electro-
diffusive flow terms have exactly the same form except for the
electrochemical potentials involved.

In order to proceed, it is necessary to determine the
expression for the field-induced changes of the stagnant layer
ion concentrations δCs

(. Just as in ref 11, we assume that the
equilibrium adsorption isotherms (eq 1) are also valid out of
equilibrium:

C(
s ¼ N(

s C
(ðaÞ=K(

s

1 + C+ðaÞ=K+
s + C

�ðaÞ=K�
s

so that

δC(
s

C(
s0

¼ δC(ðaÞ
C(
0 ðaÞ

� C+
s0δC

+ðaÞ
N+
s C

+
0ðaÞ

� C�
s0δC

�ðaÞ
N�
s C

�
0 ðaÞ

where the field-induced ion concentration changes at the
inner boundary of the diffuse double layer δC((a) are
determined by the local equilibrium condition, eq 15:

δC(ðaÞ
C(
0 ðaÞ

¼ δ~nðaÞ - z½δ ~ΦðaÞ � δ~jðaÞ�

The stagnant layer electrochemical potentials in eq 33 so
become:

δC(
s

C(
s0

( zδ ~ΦðaÞ ¼ 1� C+
s0

N+
s
� C�

s0

N�
s

 !
δ~nðaÞ

( 1 -
C+
s0

N+
s
(

C�
s0

N�
s

 !
zδ~jðaÞ + C+

s0

N+
s
� C�

s0

N�
s

 !
zδ ~ΦðaÞ

Next, an expression for the field-induced potential change at
the inner boundary of the diffuse double layer δΦ~(a) is
needed. Note that inside the diffuse double layer δΦ~ depends
on the distance to the particle, unlike δj~ and δn~ that are
classically considered to remain constant across the thin
double layer in view of the local equilibrium condition. The
potential change δΦ~(a) can be expressed as the sum of δj~(a)
plus a contribution dependent on the concentration change.
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This contribution can be determined combining eqs 1, 7,
and 12:

σ0 + ze
N+
s zNe

�z~ζ=K+
s �N�

s zNe
+z~ζ=K�

s

1 + zNe�z~ζ=K+
s + zNe

+z~ζ=K�
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2εekT

p ðez~ζ � 1Þ ffiffiffiffiffiffi
zN

p

ez~ζ=2

which leads to

zδ ~ΦðaÞ ¼ zδ~jðaÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffi
2εekT

p ffiffiffiffiffiffi
zN

p

2ez~ζ=2
ðez~ζ � 1Þ � zeðC+

s0 � C�
s0Þ 1� C+

s0

N+
s

� C�
s0

N�
s

 !" #(

=

ffiffiffiffiffiffiffiffiffiffiffiffi
2εekT

p ffiffiffiffiffiffi
zN

p

2ez~ζ=2
ðez~ζ + 1Þ + zeC+

s0 1� C+
s0

N+
s
+
C�
s0

N�
s

 !"

+ zeC�
s0 1 +

C+
s0

N+
s

� C�
s0
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Writing this equation as

zδ ~ΦðaÞ ¼ zδ~jðaÞ � Sδ~n ð34Þ
transforms the expression for the stagnant layer electroche-
mical potential appearing in eq 33 into

δC(
s

C(
s0

( zδ ~ΦðaÞ ¼ Mδ~nðaÞ ( zδ~jðaÞ

where

M ¼ 1� C+
s0

N+
s
ð1 + SÞ � C�

s0

N�
s
ð1� SÞ

Thus eq 33 becomes

a∇rδ~μ
(ja ¼ 2G(

0

zNa
½δ~nðaÞ ( zδ~jðaÞ� + 2D

(
s C

(
s0

D(zNa
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(

ka
½I(eozδ~jðaÞ + zI(coδ~nðaÞ�

where

m( ¼ 2εe
3ηeD(

kT
ze

� �2

Using eqs 17, 18, and 22 and factoring with respect to the
coefficients, leads to the final equations:

KcðR( + R(
s M�U( + 2Þ ( zKdðR( + R(

s + 2Þ
¼ ( zðR( + R(

s � 1Þ
where

R( ¼ 2G(
0

zNa
(

3m(

ka
I(eo ð35Þ

R(
s ¼ 2D(

s C
(
s0

D(zNa
ð36Þ

U( ¼ 3m(

ka
ð(I(eo � zI(coÞ

The resulting expressions for the dipolar and concentration
coefficients are

Kd ¼

ðR+ + R+
s � 1ÞðR� + R�

s M + 2�U�Þ
+ðR� + R�

s � 1ÞðR+ + R+
s M + 2�U+Þ

" #

ðR+ + R+
s + 2ÞðR� + R�

s M + 2�U�Þ
+ðR� + R�

s + 2ÞðR+ + R+
s M + 2�U+Þ

" # ð37Þ

Kc ¼ 3zðR+ + R+
s � R� � R�

s Þ
ðR+ + R+

s + 2ÞðR� + R�
s M + 2�U�Þ

+ðR� + R�
s + 2ÞðR+ + R+

s M + 2�U+Þ

" # ð38Þ

It should be noted that the form of these equations is not
trivial: the stagnant layer surface conductivities (proportional
to Rs

() are not simply added to the corresponding diffuse
double layer surface conductivities (proportional to R() since
in some instances, but not always, they are multiplied by the
coefficient M.

’DISCUSSION

Figures 3 and 4 show a comparison of the obtained results with
existing approximate extensions of the classic theory. Extension14

incorporates the stagnant layer conductivity but neglects all
convective effects and assumes, furthermore, that the stagnant
layer contains ions of a single sign. In the case that these ions are
negative, the obtained results are

Kd ¼ ðR+
nc � 1ÞðR�

nc + R
�
s + 2Þ + ðR�

nc + R
�
s � 1ÞðR+

nc + 2Þ
2ðR+

nc + 2ÞðR�
nc + R

�
s + 2Þ

ð39Þ

Kc ¼ 3zðR+
nc � R�

nc � R�
s Þ

2ðR+
nc + 2ÞðR�

nc + R
�
s + 2Þ ð40Þ

where the diffuse double layer surface conductivity coefficients
with no convection are

R(
nc ¼

2G(
0

zNa
ð41Þ

The extension17 of the classic theory incorporates the stagnant
layer conductivity but neglects all the contribution of co-ions and
of the capillary osmosis and assumes, furthermore, that the
stagnant layer only contains counterions. In the case that the
counterions are negative, the obtained results are:

Kd ¼ R� + R�
s � 4

4ðR� + R�
s + 2Þ ð42Þ

Kc ¼ �3zðR� + R�
s Þ

4ðR� + R�
s + 2Þ ð43Þ

Figure 3 represents the dipolar coefficient Kd as a function
of the ζ~ potential. The black line 0 corresponds to the classic
solution with no stagnant layer, while black lines 1�4 corre-
spond to different values of the stagnant layer parameters
(eq 37). The blue lines correspond to the existing extension14



9002 dx.doi.org/10.1021/jp203156w |J. Phys. Chem. B 2011, 115, 8996–9004

The Journal of Physical Chemistry B ARTICLE

eq 39, while the red lines correspond to the existing
extension17 eq 42. In order to satisfy the above-mentioned
hypothesis of the existing extensions regarding the sign of the
ions in the stagnant layer, eq 37 was evaluated considering that
Ns
+ = 0 in eq 1. This implies that the blue 1�4 lines are no

longer present in Figure 1 so that the squares coincide with the
red lines.

Figure 3 shows that eq 42 generally works better than eq 39
because the influence of co-ions in the diffuse double layer is
much smaller than that of convection (except for very small |ζ~|
values). This behavior is clearly seen in lines 0 that do not include
any stagnant layer conductivity. For increasing stagnant layer
conductivity values, the agreement between the three expres-
sions improves since the relative contribution of the diffuse
double layer conductivity to the total surface conductivity
diminishes. Note that the results of both existing extensions
coincide for ζ~ = 0 since, in this case, there is no convection
(Ieo

( = Ico
( = 0, eqs 31 and 32) and no nonspecific adsorp-

tion (G0
( = 0, eq 26, so that the surface conductivity of the

diffuse double layer vanishes (R( = Rnc
( = 0, eqs 35,41)).

Equations 39,42 and 40,43 therefore become

Kdj~ζ¼ 0 ¼ R�
s � 4

4ðR�
s + 2Þ

Kcj~ζ¼ 0 ¼ �3zR�
s

4ðR�
s + 2Þ

However, these expressions do not coincide with the correspond-
ing results of the present theory since, under these conditions, eqs 37
and 38 reduce to

Kdj~ζ¼ 0, R+
s ¼ 0 ¼ R�

s ð2�MÞ � 4
2R�

s ð1 +MÞ + 8

Kcj~ζ¼ 0, R+
s ¼ 0 ¼ �3zR�

s

2R�
s ð1 +MÞ + 8

The presence of the coefficient M in the above equations is
responsible for the strong discrepancy between the present theory
and the existing ones for the highest stagnant layer conductivity:
lines 4 in Figure 3 (M = 0.728 for ζ~ = 0).

Figure 4 represents the concentration coefficient Kc as a
function of the ζ~ potential. The black lines correspond to the
present theory, eq 38 with Ns

+ = 0 in eq 1, while the blue and red
lines represent the existing approximate results (eqs 40 and 43,
respectively). As can be seen for ζ~ > 0, the presence of the
stagnant layer made of counterions strongly increases the con-
centration polarization: the 1�4 lines are always lower than the 0
lines. This happens because the counterions in the stagnant layer
increase the difference between the counterion and co-ion
transfer numbers of the whole double layer. Note that even for
ζ~ = 0 the concentration polarization persists due entirely to the
stagnant layer conductivity. For ζ~ < 0, an unusual behavior is
apparent since the surface conductivity due to co-ions in the stagnant
layer surpasses the counterion conductivity in the diffuse double layer,
leading to negative values of the concentration coefficient (2�
4 lines). Only for sufficiently small ζ~ potential values the diffuse
double layer conductivity surpasses the stagnant layer conductivity
and the concentration polarization becomes positive as usual for a
negative ζ~ potential. As in Figure 3, the agreement between the
present and the existing results is fairly good except for very high
stagnant layer conductivity values: lines 4 and small |ζ~| values.

Figure 5 represents the conductivity incrementΔK = 3Kd as a
function of the ζ~ potential. As before, the black lines correspond
to the present theory, but considering now that Ns

+ have the
values given in Table 1 (blue 1�4 lines in Figure 1). However,
the red lines correspond now to numerical results calculated
using the Mangelsdorf�White11 program. As can be seen, the
theoretical results of the present work are in very good agreement
with the numerical ones, except for high |ζ~| values. However, these
deviations appear to originate in the classical (no stagnant layer)
model, as can be seen comparing the 0 black and red lines.While this
behavior is well-known,19 the reason why the classical model
predicts lower conductivity increment values than numerical calcu-
lations at high |ζ~|, even when the requirement ka.1 is fulfilled, is
still unclear. At low |ζ~| values, the agreement between the theoretical
and numerical results is quite good and it should be noted that for
the highest stagnant layer conductivity (lines 4), the theoretical
maximum is solely due to the presence of the coefficientM in eq 37.

Figure 6 represents the dimensionless electrophoretic mobi-
lity as a function of the ζ~ potential. As in Figure 5, the black lines

Figure 4. Concentration coefficient Kc and its dependence on the
surface potential. Present theory: eq 38, black lines. Existing approximate
theories: eq 40, blue lines; eq 43, red lines. System parameters given in
Table 1 except for Ns

+ = 0.

Figure 3. Dipolar coefficient Kd and its dependence on the surface
potential. Present theory: eq 37, black lines. Existing approximate
theories: eq 39, blue lines; eq 42, red lines. System parameters given
in Table 1 except for Ns

+ = 0.
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correspond to the present theory, while the red lines correspond
to numerical results calculated using the Mangelsdorf�White11

program. In order to better visualize the different results, the
mobility values corresponding to negative (positive) ζ~ potentials
are given on the left (right) ordinate axis. The theoretical values
were calculated from the sum of the electroosmotic and the
capillary osmotic velocities on the particle equator just outside
the diffuse double layer.20 These velocities can be obtained from
eqs 29 and 30 setting Φ~0 = 0 (outer boundary of the diffuse
double layer) and using eqs 17 and 18 to evaluate the tangential
components of the electrolyte concentration and of the electric
potential gradients. The resulting dimensionless electrophoretic
mobility expression is

~u ¼ ~ζð1� KdÞ + 4
z2

ln
ez
~ζ=4 + e�z~ζ=4

2

 !
Kc ð44Þ

As can be seen, the theoretical results are in good agreement with
the numerical results obtained using the program of ref 11 over
the whole ζ~ potential range.

’CONCLUSION

This work presents a rigorous extension of the classic
Dukhin�Shilov double layer polarization theory to include the
stagnant layer conductivity. This was made maintaining all the
assumptions and approximations of the original theory and
without any additional simplifications, such as neglecting the
contribution of co-ions to the conductivity of the double layer or
neglecting the diffusive ion flow inside the surface layer.

The stagnant layer properties were characterized by the
adsorption isotherms usually used in numerical calculations.11,12

However, the use of other isotherms is possible, since it only
requires the recalculation of a single coefficient S (eq 34).

The obtained expressions for the dipolar and concentration
coefficients are not trivial for the following reasons. First, the
electrodiffusive ion flows in the diffuse double layer are deter-
mined by the electrochemical potentials that are assumed to be
constant across the double layer in the classical theory. On the
contrary, the conductive flows in the stagnant layer are deter-
mined by the tangential electric field at the particle surface, while
the tangential concentration gradients inside the stagnant layer
determine the diffusive flows. Thesemagnitudes depend not only
on the dipolar and concentration coefficients but also on the
adsorption isotherm parameters. The end result is that the
expressions for the dipolar and concentration coefficients can
not be written in terms of the sum of the surface conductivities of
the diffuse and the stagnant layers.

A comparison of the obtained results with those correspond-
ing to existing approximate theories,14,17 while using adsorption
isotherms compatible with the hypothesis used in these theories,
shows a fairly good agreement except for two extreme cases: (a)
no surface conductivity and high |ζ~|, when the omission of all
convective effects in14 leads to dipolar coefficient values that are
too small, and (b) high surface conductivity and low |ζ~|, when
both approximate theories lead to large deviations due to the
absence of the coefficient M in their results. Therefore, existing
approximate theories might be useful for the interpretation of
experimental data, but only in those cases when there is reason to
believe that the stagnant layer conductivity is only due to ions of a
single sign. In the general case, however, the influence of the
adsorbed ions can not be described by means of a single
parameter, the stagnant layer conductivity, so that full theoretical
results as those presented here should be used.

A comparison of the obtained conductivity increment and
electrophoretic mobility results with numerical calculations
performed using the Mangelsdorf�While computer program11

and precisely the same system parameters shows a very good
agreement, at least for low or moderate |ζ~| values. At extreme
surface potentials, the classical theory leads to dipolar coefficient
values that are systematically lower than those obtained numeri-
cally. The extended results maintain these same deviations, which
do not seem to be affected by the inclusion of the stagnant layer
conductivity.
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