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Features of spin-charge separation in the equilibrium conductance through finite rings
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We calculate the conductance through rings with few sites L described by the t − J model,
threaded by a magnetic flux Φ and weakly coupled to conducting leads at two arbitrary sites. The
model can describe a circular array of quantum dots with large charging energy U in comparison
with the nearest-neighbor hopping t. We determine analytically the particular values of Φ for
which a depression of the transmittance is expected as a consequence of spin-charge separation.
We show numerically that the equilibrium conductance at zero temperature is depressed at those
particular values of Φ for most systems, in particular at half filling, which might be easier to realize
experimentally.

PACS numbers: 75.40.Gb, 75.10.Jm, 76.60.Es

I. INTRODUCTION

Recent advances in nanotechnology allow the fabrica-
tion of different nanostructures, motivated either by tech-
nological interest or the possibility of testing theories for
strongly correlated electrons. One example is the realiza-
tion of the Kondo effect in systems with one quantum dot
(QD).1–4 Another one is a study of the metal-insulator
transition in a chain of 15 QD’s.5 Systems of a few QD’s
have been proposed theoretically as realizations of the
two-channel Kondo model,6,7 the so called ionic Hubbard
model,8 and the double exchange mechanism.9 Recently
it has been studied how the Kondo resonance splits in two
in a system of two QD’s, one of them non-interacting.10,11

It is known that strong correlation effects invalidate
the conventional quasiparticle description of Fermi liq-
uids and in one dimension lead to a fractionalization
of the electronic excitations into pure charge and spin
modes, as it has been shown using bosonization.12–16 In
this field theory, it becomes clear that in general (except
in some particular models17) the Hamiltonian at low en-
ergies can be separated into independent charge and spin
parts. While this separation is an asymptotic low-energy
property in an infinite chain, exact Bethe ansatz results
for the Hubbard model in the limit of infinite Coulomb
repulsion U have shown that the wave function factor-
izes into a charge part and a spin part for any size of the
system.18

Several experiments were reported that find indi-
rect evidences of spin-charge separation19–23, and it
could also be potentially observed16 in systems such as
cuprate chains and ladder compounds,24 and carbon nan-
otubes.25

From the theoretical point of view, several calculations
involving rings have been made. The real-time evolution
of electronic wave packets in Hubbard rings has shown a
splitting in the dispersion of the spin and charge densi-
ties as a consequence of the different charge and spin ve-
locities.26,27 Pseudospin-charge separation has also been
studied theoretically in quasi-one-dimensional quantum
gases of fermionic atoms.28,29

The transmittance through Aharonov-Bohm rings of
length L modeled by a Tomonaga-Luttinger liquid and
connected to conducting leads at 0 and L/2 has been
studied by analytical methods.30,31 It is found that
the transmittance integrated over an energy window
shows dips when the threaded magnetic flux Φ corre-
sponds to particular fractional values of the flux quan-
tum Φ0 = hc/e. This is rather striking because in the
non-interacting case, one has a dip in the transmittance
only when the applied flux Φ = Φ0/2, for which the con-
ductance vanishes due to a negative interference of the
waves traveling through both arms of the interferometer.
Jagla and Balseiro obtained that the values of the flux
at the dips are multiples of Φ0vs/vc, where vc (vs) is the
charge (spin) velocity, when vs/vc is a simple fraction.
This allows an appealing simple “classical” interpreta-
tion of the phenomenon: the electrons enter the ring at
position 0, splitting into charge and spin components,
which travel independently inside the ring, until they re-
combine at L/2 before leaving the ring. When the dif-
ference between the Aharonov-Bohm phases captured by
the charges traveling in both possible senses of rotation
is an odd multiple of π, the transmittance is depressed.
More recent work, however, indicates that the relevant
ratio for the dips is in general vs/vJ , where vJ is the
current velocity.31

Numerical calculations of the transmittance through
finite rings described by the t−J model, integrated over
an energy window also show clear dips for fractional ap-
plied fluxes.32 This model is expected to be a realistic
description for a ring of quantum dots if the charging en-
ergy U is large in comparison with the nearest-neighbor
hopping t. Recently we have discussed the extension of
these results to ladders of two legs as a first step to higher
dimensions.33

All the above calculations used a formalism valid at
equilibrium and zero temperature, and an integration
over a finite energy window to obtain the dips. In par-
ticular in Ref. 32 this window contained all low-energy
spin excitations with the same charge quantum numbers
nl (see Section III)). In principle, this integration can
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FIG. 1: Scheme of the systems studied numerically. (a) L = 6,
(b) L = 7. In both cases M = 3.

be justified invoking a finite voltage bias or temperature.
However, in the interacting case, under an applied bias, it
is not clear that the total current through the device can
be obtained integrating the equilibrium transmittance.
In particular, it might happen that a particle injected to
the ring leaves it in an excited spin state after leaving
it. This process is not taken into account in the calcu-
lations. The effect of temperatures of the order of the
spin excitation energy is also difficult to predict. These
shortcomings raise the question of whether the dips can
be really observed in an experimental setup.
In this work, we analyze the origin of the dips in the

transmittance as a function of applied flux in finite rings
described by a strongly correlated model and in particu-
lar, the t−J model. We discuss the conditions for which
the intensity of the first peak in the equilibrium con-
ductance at zero temperature as a function of the gate
voltage has a flux dependence with characteristic dips as
a consequence of spin-charge separation.
In Section II we present the model, the formalism used

to calculate the conductance, and some general state-
ments on the conditions for which dips or reduced con-
ductances are expected. In Section III we discuss the
model with J = 0 (equivalent to the Hubbard model
with infinite U), for which definite conclusions can be
drawn on the basis of its exactly known energy spectrum.
Section IV contains numerical results for some particu-
lar systems at which dips in the conductance at certain
fluxes are expected at equilibrium and small tempera-
tures. Section V is a summary and discussion.

II. MODEL AND RELEVANT EQUATIONS

A. Hamiltonian

We consider a ring of L sites, weakly connected to non-
interacting leads at sites 0 and M (Fig. 1). Usually M =
L/2 was taken,30–32 but we will see that L odd and/or
M 6= L/2 lead to interesting new results.
The Hamiltonian can be written as

H = Hring +Hleads +Hlinks. (1)

The first term describes the isolated ring, with on-site
energy modified by a gate voltage Vg, and hoppings mod-
ified by the phase exp(iφ/L) due to the circulation of the
vector potential. For most of the results of this paper we
use the t− J model to describe the ring,

Hring = −eVg

∑

iσ

c†iσciσ − t
(
c†i+1σciσe

iφ/L +H.c.
)

+J
∑

i

(
Si · Si+1 −

1

4

)
. (2)

where φ = 2πΦ/Φ0, Si is the spin operator at site i and
double occupancy is not allowed at any site of the ring.
The second term corresponds to two tight-binding semi-
infinite chains for the left and right leads

Hleads=−t

−1∑

i=−∞,σ

a†i−1,σai,σ− t

∞∑

i=1,σ

a†i,σai+1,σ+H.c.. (3)

The third term in Eq. (1) describes the coupling of the
left (right) lead with site 0 (M) of the ring

Hlinks = −t′
∑

σ

(a†−1,σc0σ + a†1,σcMσ +H.c.). (4)

B. Conductance

To calculate the conductance through the ring, one
needs, in principle, to know some Green’s functions of
the complete system.35 However, when the ground state
of the isolated ring is non-degenerate, and the coupling t′

between the leads and ring is weak, the equilibrium con-
ductance at zero temperature can be expressed to second
order in t′ in terms of the retarded Green’s function for
the isolated ring between sites i and j: GR

i,j(ω).
8,30 For

an incident particle with energy ω = −2t cosk and mo-
mentum ±k, the transmittance reads

T (ω, Vg, φ) =
4t2 sin2 k|t̃(ω)|2

∣∣[ω − ǫ(ω) + teik]2 − |t̃2(ω)|
∣∣2 , (5)

where

ǫ(ω) = t′ 2GR
00(ω), t̃(ω) = t′ 2GR

0M (ω), (6)

play the role of a correction to the on-site energy at the
extremes of the leads and an effective hopping between
them respectively.
Although derived from perturbation theory, this equa-

tion is in fact exact for a non-interacting system. How-
ever, in general, for an odd number of electrons, the
ground state of the isolated ring is Kramers degenerate
for a system with time reversal symmetry and the equa-
tion ceases to be valid, missing the physics of the ensuing
(non-perturbative) Kondo effect in which the electrons
of the leads screen the spin of the ring.8,36 Nevertheless,
the characteristic energy of this Kondo effect decreases
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exponentially with decreasing t′ and therefore for small
enough t′ the Kondo effect is destroyed by a Zeeman
term or temperature small in comparison with the other
energy scales in the problem. Here, we assume this situ-
ation. The effect of a Zeeman term on the conductance
in the Kondo regime, has been explicitly shown mapping
the problem to an effective Anderson model and solving
it by non-perturbative methods.8 In addition, the main
conclusions of this work are of qualitative nature and are
not affected by the accuracy of Eq. (5).

The conductance is G = (ne2/h)T (µ, Vg, φ), where
n = 1 or 2 depending if the spin degeneracy is broken
or not,8 and µ is the Fermi level, which we set as zero
(half-filled leads). As the gate voltage Vg is varied a peak
in the conductance is obtained when there is a degener-
acy in the ground state of the ring for two consecutive
number of particles: Eg(N + 1) = Eg(N), where Eg(N)
is the ground state energy of Hring with N electrons. To
simplify the discussion, and without loss of generality,
we assume that we start with N +1 electrons in the ring
and apply a negative gate voltage in such a way that a
peak in the conductance is obtained at a critical value V c

g

when the number of electrons in the ring changes from
N + 1 to N electrons. Note that Eq. (5) formally gives
more peaks in the transmittance when at several values
of Vg < V c

g excited states |e〉 of N electrons are reached
(Ee(N) = Eg(N + 1)). However these peaks are in prin-
ciple not experimentally accessible since the ground state
has less than N + 1 particles for Vg < V c

g . In any case,
the information on the excited states of N electrons is
relevant to explain not only the position of the dips as
a function of flux φ in the integrated transmittance,30–32

but also the values of the flux at which particular reduc-
tions of the intensity of the observable first peak in the
conductance are obtained.

C. Dips in the conductance

The values of the flux φd for which dips or reduced
conductances are expected, correspond to some particu-
lar crossings of the energy levels of N electrons. Far from
these crossings, and to leading order in t′, the transmit-
tance as a function of gate voltage Vg has a Lorentzian
shape reaching the maximum value (T = 1) for Vg such
that Ee(N) = Eg(N +1) (where the subscript e refers to
any state in the subspace of N electrons) and half-width
at half maximum

we =
2(t′)2

t
|〈e|c0σ|g〉|

2
, (7)

where |g〉 is the ground state in the subspace of N + 1
electrons assumed non-degenerate.8 This assumption is
always true in the presence of a small Zeeman magnetic
field except at particular values of the flux that do not
correspond to φd, which are not relevant for the present
analysis.

Keeping this assumption, some conclusions can be
drawn for the general case using symmetry arguments.
Using the Lehman’s representation, the part of the
Green’s function GR

0j(ω) that enters the transmittance
[Eq. (6)] when a particle is destroyed is:

GR
0j(ω) =

∑

e

〈g|c†jσ |e〉〈e|c0σ|g〉

ω + Ee − Eg
. (8)

Since the ring is invariant under rotations R that

map each site to its consecutive one Rc†jσR
† = c†j+1σ,

the eigenstates of Hring are also eigenstates of R. De-
noting as Kν the wave vector of the state |ν〉, one

has R|ν〉 = exp(iKν)|ν〉, and therefore 〈g|c†jσ |e〉 =

exp[ij(Kg −Ke)]〈g|c
†
0σ|e〉. Replacing above one obtains

GR
0j(ω) =

∑

e

e−ij(Ke−Kg)|〈e|c0σ|g〉|
2

ω + Ee − Eg
. (9)

At the values of the flux for which two states of N elec-
trons |e〉 and |e′〉 are degenerate, assuming that the corre-
sponding matrix elements entering Eq. (9) are nonzero,
clearly only these two states (which correspond to the
dominant poles of GR

0j(ω)) contribute significantly to the
Green’s function at the Fermi energy (ω = µ = 0) when
Vg (which displaces all Ee rigidly with respect to Eg)
is tuned in such a way that Ee = Ee′ ∼ Eg. Replac-
ing Eq. (9) with only these two leading terms in Eqs. (5)
and (6) one has an analytical expression for T (µ, Vg, φ) in
terms of two matrix elements, proportional to we and we′

(Eq. (7)) and a relative phase β = exp[iM(Ke′ −Ke)] be-
tween them in GR

0M (ω) (Eq. (9)). It is easy to see that if
β = 1, the transmittance for Ee = Ee′ has the same form
for a non-degenerate state, but with a width we + we′

equal to the sum of the individual ones. In this case,
nothing dramatic happens. In particular the integrated
transmittance in a window which includes those levels as
a function of flux does not change at the crossing between
Ee and Ee′ .
If, however, β 6= 1, GR

0M (ω) and thus the transmit-
tance, which is proportional to |GR

0M (ω)|2, (Eqs. (5) and
(6)), are reduced near the crossing. This effect is more
noticeable if β = −1 and we = we′ . In any case, if β 6= 1,
the above mentioned analytical expression vanishes at
the crossing point and the transmittance as a function of
gate voltage shows a peak with a dip inside (Fig. 4).
Note that these results are independent of the particu-

lar model used. In particular if the conductance through
a ring with N ′ = N +1 electrons is measured, with leads
connected near 180 degrees (M = L/2) and the ground
state forN ′±1 electrons has a level crossing involving two
wave vectors differing in 2nπ/L with n odd for a given
flux, then the conductance shows a dip at that flux.

III. ANALYTICAL RESULTS FOR J = 0

The general results described above can be made more
explicit for J = 0. In this case, the model is equivalent
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FIG. 2: (Color online) Energy levels for a system of four sites
and three electrons for J = 0. Solid lines correspond to the
spin quantum number ns = 0, dashed lines to ns = −2 and
dotted lines to ns = −1. The different colors indicate different
charge configurations.

to the Hubbard model with infinite on-site repulsion U ,
for which the wave function can be factorized into a spin
and a charge part.18,32,37 Therefore, spin-charge separa-
tion becomes apparent. For each spin state, the system
can be mapped into a spinless model with an effective flux
which depends on the total spin. While the analysis given
below can be made using the Bethe ansatz formalism,18

here we follow the elegant method of Caspers and Ilske.37

For a system of N particles one can construct spin-wave
functions which transform under the irreducible represen-
tations of the group CN of cyclic permutations of the N
spins of the L-site system. Each of these representations
is labeled by a “spin” wave vector ks = 2πns/N , where
the integer ns characterizes the spin wave function. The
total energy and momentum (in an appropriate gauge)
of any state of the ring have simple expressions:

E = −2t
N∑

l=1

cos(kl), kl =
2πnl + φeff

L
, (10)

K =
∑

kl = [2π(nc + ns) +Nφ] /L, (11)

φeff = φ+ ks = φ+
2π

N
ns, (12)

where the integers nl characterize the charge part of the
wave function and nc =

∑
nl.

The calculation of the Green’s functions becomes very
involved due to difficulties in handling the wave func-
tions. However, even without calculating the matrix el-
ements entering Eq. (9), we can predict the positions of
dips in the transmittance from a knowledge of the ener-
gies and momenta of the eigenstates.
Let us analyze first the level crossings for L even and

M = L/2 (the most studied case30–32) with N odd.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

 

 

I

Φ/π

 

 

 M=1 (90 degrees)
 M=2 (180 degrees)

FIG. 3: (Color online) Total integral of the transmittance for
a system of L = 4 sites and N +1 = 4 electrons for J = 0.01,
t′ = 0.3t and two positions of the leads M .

We recall the reader that we start with a system with
N + 1 electrons and create a hole, leading to an in-
termediate state with N electrons. The energy levels
for the case with L = 4, N = 3 are shown in Fig. 2.
In the subspace with N electrons, the ground state |0〉
(with energy E0(φ)) for ns = φ = 0 has occupied mo-
menta kl = 2πnl/L, with consecutive nl = −(N − 1)/2,
1− (N − 1)/2, . . . , (N − 1)/2, and therefore nc = 0. As
the flux increases to 2π, this state evolves to the state |1〉,
in which nl = −(N − 1)/2 is replaced by (N +1)/2 with
nc = N . Therefore we can write E1(0) = E0(2π). The
lower “charge band” (used usually to integrate the trans-
mittance32) extends between E0(0) and E0(2π). Clearly
from Eq. (10) E0(−φ) = E0(φ) and a state | − 1〉 ex-
ists with all kl opposite to those of |1〉. In the en-
larged interval −2π ≤ φ ≤ 2π, the ground state en-
ergy is reached for E1(−2π) = E0(0) = E−1(2π) when
ns = 0 (full lines in Fig. 2). Now keeping the same
charge quantum numbers as |0〉, but allowing spin states
with ns 6= 0, new eigenfunctions appear, whose energies
and momenta are given by Ens

0 (φ) = E0(φ + 2πns/N),
K = (2πns + Nφ)/L. These states reach the ground
state energy at φ = −2πns/N (dashed and dotted lines
in Fig. 2).38 The crossings of energy levels at low ener-
gies take place at intermediate points between any two
of these minima φ = −π(ns + n′

s)/N . When ns + n′
s is

odd (even) the relative phase β = exp[iL(Ke′ −Ke)/2] =
exp [i(n′

s − ns)] = −1 (1) and there is (there is not) a dip
in the integrated transmittance. Therefore, the positions
of the dips are located at

φd = π(2n+ 1)/N, (13)

with n integer. These are also the positions where cross-
ings in the (experimentally accessible) ground state for
N particles take place (n′

s − ns = ±1, see Fig. 2).38

The same expression is valid for N even but in this
case for ns = 0, the minimum energy lies at φ = π,
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E0(2π − φ) = E0(φ) and the crossings occur when φ =
π − π(ns + n′

s)/N .
Performing the sums in Eqs. (10) and (11) using the

quantum numbers that lead to the minimum energy,
as explained above, analytical expressions are obtained
for the ground state energy and momentum as a func-
tion of flux for L sites and N particles, Eg(L,N, φ) and
Kg(L,N, φ). Defining

φ̃ = φ for odd N,

φ̃ = φ− π for even N, (14)

and writing φ̃ in the form

φ̃ = nint

[
Nφ̃

2π

]
2π

N
+ φ̃r, (15)

where nint[x] denotes the nearest integer to x, one ob-
tains

Eg(L,N, φ) = −2t
sin(Nπ/L) cos(φ̃r/L)

sin(π/L)
, (16)

Kg(L,N, φ) = Nφ̃/L. (17)

For odd N , the transmittance vanishes at φ = π due
to the reflection symmetry of the system.32 This argu-
ment does not work for even N because the ground state
of Hring has orbital degeneracy for N + 1 electrons at
φ = π. It cannot be applied either for M 6= L/2 (where
the reflection symmetry is lost8) or if the model includes
hopping at large distances (as in Ref. 31).
If the ring is connected to the leads at a distance M 6=

L/2, the dips at φd are less intense, because β 6= −1 if
ns+n′

s is odd. However, also β 6= 1 if ns+n′
s is even and

therefore, new dips appear at the remaining crossings

φ′
d = 2πn/N, (18)

with n integer.
The same arguments can be repeated for states with

other charge quantum numbers lying at higher energies.
These results have been verified numerically and gen-

eralize those obtained previously for L even, M = L/2
and oddN .32 In particular, the total integrated transmit-
tance for a half-filled ring with L = 4 (so N = L−1 = 3)
is shown in Fig. 3 for two positions of the drain lead,
at M = 1 (90-degree configuration) and M = L/2 (180-
degree).
Some particular crossings satisfying Eq. (13) do not

lead to dips because one of the matrix elements of Eq. (9)
vanishes as a consequence of selection rules related with
the total spin. For example, for the system of Fig. 3 the
ground state with 4 electrons is a singlet, and one of the
states with lowest energy for N = 3 that cross at φd 6= π
is a spin quartet which cannot be accessed destroying an

-2.1 -1.8 -1.5 -1.2 -0.9
eV

g
 - E

g
(N+1)

0

0.2

0.4

0.6

0.8

1

T

FIG. 4: Low energy part of the transmittance as a function
of gate voltage for a half-filled ring of L = 6 sites, J = 0.03t,
t′ = 0.3t, and M = 3 near a level crossing of the intermediate
states with N = 5 particles. The crossing is at φd ≃ 0.07743π
and the different curves from left to right correspond to (φ−

φd)/π = −0.04, −0.02, −0.01, 0, 0.01, 0.02, and 0.04.

electron from a singlet. Therefore, in this system, no
depression of the conductance can be observed at equi-
librium at zero temperature (for which only the ground
state for any number of particles is accessible) at fluxes
different from half a flux quantum (φd = π). At this flux
a depression of the conductance is already expected for a
non-interacting system. However, this is not the general
case, and with increasing number of particles, states of
low total spin are part of the ground state for any flux.
Already for 5 particles, the 32 spin wave functions can be
classified as one sextuplet with ns = 0, one quadruplet
for each of the four ns 6= 0 and five doublets, one for each
of the non-equivalent ns. Addition of J , in general favors
the lowest total spin (some exceptions for low J will be
discussed below).
Note that for a half-filled system, the energy is zero

for J = 0 independent of the spin configuration (see
Eq. (16)). Therefore addition of an antiferromagnetic
exchange favors the lowest total spin: 0 (1/2) for an even
(odd) number of particles.
To end this section we note that the spin velocity in

the limit J → 0 depends strongly on flux. It can be
shown that for large N , it is vs = vc/N

2 or vs = vc/N
for φeff that leads to the minimum or maximum energy
respectively.

IV. NUMERICAL RESULTS

In this section we present numerical results for the
transmittance, obtained diagonalizing the ring using
Davidson’s method39 in order to obtain the Green’s func-
tions, which replaced in Eqs. (5) and (6), give the trans-
mittance. The systems studied are represented in Fig. 1.
In contrast to previous work,30–33 we concentrate on the
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first peak in the transmittance as the gate voltage is de-
creased, which is experimentally accessible at equilibrium
and low temperatures. For weakly coupled rings, this
means that one has a system with N + 1 electrons in
the ring, a hole enters it from one of the leads, interact-
ing with low-energy intermediate states with N electrons,
before leaving the ring at the other lead, while the ring
returns to the ground state. Therefore the conductance
gives information on the low-energy eigenstates of the
ring and, as shown above for J → 0, on the separation of
charge and spin degrees of freedom in a strongly interact-
ing system. Similar results can be obtained for increasing
gate voltage. In any case the electronic structure of the
low-energy intermediate states is reflected.

In Fig. 4 we show the transmittance for a half-filled ring
of 6 sites connected with the leads at opposite sites (see
Fig. 1 (a)) near a crossing of excited states with N = 5
particles. The value of M = L/2 = 3 and the particular
crossing were chosen so that according to the previous
sections, a large negative interference is expected, lead-
ing to a depressed conductance. For J = 0, the crossing
occurs at φd = π/5, but finite J displaces it to smaller
values. We have chosen a finite value of J to break the
degeneracy at J = 0 between eigenstates with ns = 0
with total spin S = 1/2 and S = 5/2 for N = 5, as dis-
cussed at the end of the previous section. In any case, the
states with S = 5/2 do not contribute to the transmit-
tance since they cannot be reached destroying an electron
in the singlet ground state for 6 electrons.

Near the flux φd for which two 5-electron states with
S = 1/2 are degenerate, both corresponding peaks in the
transmittance merge into one, therefore only one peak is
seen for each flux (Fig. 4). Note that far from the crossing
the width of each peak is given by Eq. (7) and increases
with t′. Near the crossing, two poles of the Green’s func-
tions dominate the transmittance as discussed in Section
II C, and they contribute with opposite sign to it. As a
consequence a strong depression of the conductance takes
place at φd. In particular, Eqs. (5) and (6) indicate that
the transmittance vanishes at φ = φd for the value of
the gate voltage at which the energies of both 5-electron
states coincide with that of the ground state for 6 elec-
trons. This might be an artifact of these expressions
which are perturbative and are not expected to be valid
near this point of triple degeneracy.36 However, the phys-
ical origin of the depression of the conductance is clear
and should be present in a more elaborate treatment.

To quantify in a systematic way the relative intensity
of the conductance that might be measured in an exper-
imental setup, we integrate the transmittance given by
Eqs. (5) and (6) in a window of gate voltage Vg of width
0.002t centered around the degeneracy point between the
ground state for N+1 andN electrons. This corresponds
to the intensity of the first observable peak in the trans-
mittance as the gate voltage is lowered. The result as a
function of the applied magnetic flux for the same system
of Fig. 4 is represented in Fig. 5. The curve is symmetric
under change of sign of φ and therefore we show only the

0 0.2 0.4 0.6 0.8 1
φ/π

0

0.005

0.01

0.015

I
fp

J/t = 0.001

J/t = 0.05

J/t = 0.01

J/t = 0.03

FIG. 5: (Color online) Intensity of the first peak in the trans-
mittance as the gate voltage is lowered, Ifp, as a function of
applied magnetic flux, for a ring of 6 sites and 6 electrons,
M = 3 (Fig. 1 (a)), t′ = 0.3t and several values of J . The
curves with J > 0.001t are displaced vertically for the sake of
clarity.

interval 0 ≤ φ ≤ π. For J → 0 the dips should occur
at φd/π = 0.2, 0.6 and 1 according to Eq. (13). How-
ever, near 0.6 the ground state for 5 electrons changes
from one of total spin S = 1/2 to S = 3/2 and the latter
is not accessible destroying an electron in the 6-electron
singlet ground state. Therefore, the transmittance van-
ishes at the gate voltage for which the ground state for
5 and 6 electrons have the same energy if 0.6 < φ ≤ π.
As a consequence, in the interval shown there is only one
dip present. The position of this dip moves to lower val-
ues of φ with increasing J . As might be expected the
region of magnetic flux for which the ground state with
5 electrons has low total spin (S = 1/2) increases with
increasing antiferromagnetic exchange J .

For a given flux, if the gate voltage is decreased further
after the first peak in the transmittance is observed, the
ground state of the ring has now 5 electrons and the next

0 0.2 0.4 0.6 0.8 1
φ/π

0

0.005

0.01

0.015

I
fp

J/t = 0.001

J/t = 0.1

J/t = 0.01

J/t = 0.05

FIG. 6: (Color online) Same as Fig. 5 for 5 electrons.
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J/t = 0.05

J/t = 0.01
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FIG. 7: (Color online) Same as Fig. 5 for a ring of 7 sites, 7
electrons and M = 3 (Fig. 1 (b)).

peak corresponds to the degeneracy of the ground states
for 5 and 4 electrons. Fig. 6 illustrates this situation.
For J → 0, Eq. (13) gives dips in the integrated trans-
mittance for φd/π = 0.25 and 0.75. This agrees with the
numerical calculations. The steps observed for interme-
diate values of J are again due to jumps in the total spin
of one of the ground states (for 4 or 5 electrons). In par-
ticular for φ/π ≈ 0.83 for J = 0.05, the total spin of the
5-electron ground state jumps from S = 1/2 for lower
values of φ to S = 3/2 for higher values of the flux.
Finally in Fig. 7 we show the results for a half-filled

ring of 7 sites with M = 3 [see Fig. 1 (b)]. For low J , the
dips are expected at φd/π = 1/6, 1/2 and 5/6 in close
agreement with the numerical results. For increasing J
the dips tend to merge into one near φ = π/2.
Preparing the system with an odd number of electrons,

like a half-filled system with an odd number of sites, has
the advantage that more than one total spin is available
for the intermediate states (0 and 1 in this case) and more
dips are observable.

V. SUMMARY AND DISCUSSION

We have shown for the first time that the equilibrium

conductance through finite rings described by the t − J
model threaded by a magnetic flux, weakly coupled to
conducting leads, at zero temperature, shows depres-
sions at particular values of the flux. In general, for any
strongly correlated model, these depressions are related
with level crossings of excited states and the degree of
interference depends on the wave vectors of these excited
states, as described in Section II C. Previous results in-
volved an integration over an energy window which in-
cluded several excited states and this procedure could
cast doubts on the validity of the behaviour for equilib-
rium conductance at zero or very low temperatures.
For the t−J model and J = 0, using the exactly known

energy spectrum of the isolated ring, we have determined
the conditions under which dips in the integrated trans-
mittance should occur, for different number of particles
and sites of the ring . The position of the dips reflect the
particular features of the spectrum for J = 0, in which
the charge and spin degrees of freedom are separated at
all energies, and not only asymptotically at low energies,
as expected in Luttinger liquids.12–15

In the equilibrium conductance at zero temperature,
only the first peak in the transmittance as a function
of gate voltage is accessible in an experimental setup.
Depression of this conductance is expected in general at
certain values of the applied magnetic flux, which are
given by Eq. (13) for J = 0. The negative interference is
more marked if the leads are connected at angles near 180
degrees. These results are confirmed by our numerical
calculations. The positions of depressed conductance are
modified as J is increased in a way which seems difficult
to predict. For moderate values of J it is not clear for us,
how to relate any particular position to a specific change
in the spin quantum number. In addition, the number
of these positions seems to decrease with increasing J .
This is in qualitative agreement with expectations based
on the increase of the spin velocity,30–32 which should
increase with J . In particular, our results are valid for
half-filled systems which we believe are easier to realize
experimentally. Note, however, that due to particular
selection rules explained at the end of Section III, the
system size L should be different than four to observe
dips in the conductance. In any case and for any model,
if the energy, wave vector and spin of the ground state
is known when one particle is added to or removed from
the system, the position of the dips can be predicted
following the arguments of Section II C.
Due to selection rules related with total spin, more dips

are expected for systems with an odd number of particles.
Our numerical results were based on an expression

for the conductance first used by Jagla and Balseiro,30

which is perturbative in the coupling of the ring with
the leads [Eqs. (5) and (6)]. This expression cannot cap-
ture non-perturbative effects, like the Kondo physics.36

However, the physics of the depression of the conduc-
tance is present independently of the formalism used to
calculate it. Nevertheless a more elaborate calculation
of the conductance would be desirable. One possibility
is to use numerical results for the ring to construct an
effective model for the low-energy physics including the
leads, and solve the model by non-perturbative methods.
This approach has been followed in simpler problems.8,36
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