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Two-state behaviour of Kondo trimers

M. E. Torio,1 K. Hallberg,2 and C. R. Proetto2

1Instituto de Física Rosario, CONICET-UNR,
Bv 27 de Febrero 210 bis, (2000) Rosario, Argentina
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The electronic properties and spectroscopic features of a magnetic trimer with a Kondo-like cou-
pling to a non-magnetic metallic substrate are analyzed at zero temperature. The substrate density
of states is depressed in the trimer neighbourhood, being exactly zero at the substrate chemical
potential. The size of the resonance strongly depends on the magnetic state of the trimer, and
exhibits a two-state behavior. The geometrical dependence of these results agree qualitatively with
recent experiments and could be reproduced in a triangular quantum dot arrangement.
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The combination of the Scanning Tunneling Micro-
scope (STM), which can be used as a “tool” to build and
characterize atomically-precise structures, and the avail-
ability of high-quality clean metallic surfaces has pro-
vided a unique opportunity to investigate the chemical
and physical properties of deposited atoms, molecules,
and clusters with unprecedented resolution. It has been
natural then that much of the research concentrates on
one of the old paradigms of condensed-matter physics:
the behavior of magnetic impurities immersed in an oth-
erwise non-magnetic matrix. Ground-breaking exper-
iments have been reported on the properties of mag-
netic monomers[1] and dimers[2], quantum-confinement
of surface two-dimensional electron gases by a “corral” of
STM-positioned magnetic atoms[3], and “molecule cas-
cade” devices[4], with potential for quantum computing.
In most of these examples, it has become evident that at
low-temperatures the physics of magnetic impurities on
the metallic surface is dominated by the so-called Kondo
effect. Historically, the Kondo effect was introduced more
than forty years ago to explain the resistivity minimum
for decreasing temperatures observed in metallic ma-
trices with a minute fraction of magnetic impurities.[5]
Additional interest in the Kondo effect arose recently
from the semiconductor nano-oriented community, after
realization[7, 8] that a quantum dot with two attached
conducting leads behaves in many aspects as a magnetic
atom in a metal.[9, 10]

The aim of this work is the theoretical study of a
magnetic trimer in contact with a metallic substrate.
The trimer geometry is very interesting, due to the fact
that it is the simplest geometrical arrangement (including
monomers and dimers) which displays magnetic frustra-
tion among the three magnetic moments for the case of
antiferromagnetic interactions[11]. The main result from
our work is that as a consequence of the interplay be-
tween the trimer-metal Kondo interaction which tries to
stabilize the trimer in a high-spin state, and the intra-
trimer antiferromagnetic interactions which try of stabi-
lize a low-spin trimer state, the whole system exhibits
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FIG. 1: Schematic diagram of the system considered: an AF
spin trimer Kondo-coupled to a non-interacting chain

a two-state spectroscopic behavior that depends on the
geometrical arrangement of the triangle (whether it is an
equilateral or isosceles triangle) and on the interaction
parameters.
The model employed in the calculation consists of two

semi-infinite non-interacting tight-binding (TB) chains
connected to a central site (also non-interacting). This
central site is in turn Kondo-coupled to three magnetic
impurities, the trimer.The Hamiltonian reads:

H = Hc +Hc−t +Ht, (1)

where Hc is the Hamiltonian of two semi-infinite chains,

Hc = −
∑

j≤0,σ

tj−1(c
†
jσcj−1σ + h.c.)

−
∑

j≥0,σ

tj+1(c
†
jσcj+1σ + h.c.); (2)

Hc−t couples the chains to the trimer and can be written
as

Hc−t =
∑

α,σ

t′′α(c
†
0σdασ + h.c.), (3)

and Ht is the trimer Hamiltonian

Ht =
∑

α6=β,σ

tαβd
†
ασdβσ +

∑

α

(ε0nα + U nα↑nα↓) . (4)

In the equations above, tj = t = 1 for j ≤ −1, j ≥ 1,
while t−1 = t1 = t′ = 1, α, β = 1, 2, 3 (the trimer sites).
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cjσ (c†jσ) corresponds to the destruction (creation) op-
erator for one electron at the chain site j with spin σ
(=↑, ↓), while dασ (d†ασ) is a destruction (creation) op-
erator for electrons at the trimer sites. nασ = d†ασdασ,
nα =

∑
σ nασ, and U > 0. If t′′α = 0 for α = 1, 2, 3,

Hc−t = 0 and the whole system becomes the sum of two
uncoupled subsystems: the tight-binding chain and the
trimer. In the Kondo regime it is feasible to simplify
the Hamiltonian above by performing a Schrieffer-Wolff
(SW) canonical transformation of the second and third
terms in Eq.(1), which projects out of the Hilbert space
states where the trimer sites are either empty or dou-
ble occupied. Keeping only the most relevant terms, the
result of the transformation for these terms is (see Fig.
1)

Hc−t +Ht =
∑

α

J̄α (s0 · Sα) +
∑

α6=β

J̄αβ (Sα·Sβ). (5)

The first term in Eq.(5) represents an s-d interaction
among the trimer spins and the central site of the chain;
the second term is a Heisenberg interaction among the
spins located at each of the trimer sites. For the sym-
metric case 2ε0 + U = 0 considered in the present work,
J̄α = 8 |t′′α|2 /U, J̄αβ = 8 |tαβ |2 /U. As U > 0, both
J̄α and J̄αβ are positive, corresponding to antiferromag-
netic interactions in Eq.(5). Unless otherwise stated, we
will assume in this work a symmetric coupling config-
uration: J̄1 = J̄2 = J̄3 = J, and J̄13 = J1, J̄12 =
J̄23 = J2. Numerical calculations have been performed for
both Anderson-like (Eqs.(2-4)) and Kondo/Heisenberg-
like models (Eq.(2),(5)), but results will be shown only
for the latter. Results considering Anderson impurities
in the SW limit present a qualitatively similar physical
behaviour.
Since the possible trimer states will play a relevant role

in the following discussions, we will write down here its
eigenvectors and eigenvalues. From Eq.(5) we have Ht =
J1S1·S3 + J2(S1·S2 + S2·S3). If J1 = J2 the trimer is in
the equilateral (E) configuration, whereas if J1 6= J2 the
trimer is in the isosceles (I) configuration. The Hilbert
space of Ht comprises eight states: a quartet, and two
doublets. The quartet (Q) eigenstates each one with to-
tal spin 3/2, are given in the real space representation by:
|Q, 3/2〉 = |↑↑↑〉 , |Q, 1/2〉 = (|↑↑↓〉+ |↑↓↑〉+ |↓↑↑〉) /

√
3,

while |Q,−3/2〉 and|Q,−1/2〉 are obtained from |Q, 3/2〉
and |Q, 1/2〉 under the change ↑←→↓, respectively. It can
be checked that Ht |Q,Sz〉 = (J1 + 2J2)/4 |Q,Sz〉 , with
Sz = ±3/2,±1/2. The eigenstates of the two doublets
(D and D′), each one with total spin 1/2 are: |D, 1/2〉 =
(|↑↑↓〉 − |↓↑↑〉)/

√
2, |D′, 1/2〉 = (|↑↑↓〉 − 2 |↑↓↑〉 +

|↓↑↑〉)/
√
3, with |D,−1/2〉 and |D′,−1/2〉 obtained

again by switching up and down spins. Ht |D,Sz〉 =
(−3J1/4) |D,Sz〉 , Ht |D′, Sz〉 = (J1/4−J2) |D′, Sz〉 , with
Sz = ±1/2. For J1, J2 > 0, as obtained from the SW
transformation, the ground state (GS) of the isolated
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FIG. 2: Boundaries between the strong (large spin) and weak
(low spin) Kondo states for three different values of J . For
each boundary, the large (small) J1, J2 values correspond to
the low (high) spin values, S = 1/2 and 3/2 respectively.
The crosses mark the positions where the local DOS has been
calculated (Fig. 4).

trimer as a function of J2 changes from |D,Sz〉 to |D′, Sz〉
at J2 = J1, i. e. the equilateral case. It is important
to note that even for the coupled chain-trimer Hamilto-
nian, Eq.(5), the total spin of the trimer remains a good
quantum number of the whole system and this is why we
can characterize the states in the complete system by the
total spin of the trimer.
In Fig. 2 we present the phase diagram of the trimer

coupled to the chain, showing the critical lines separating
both total spin ground states in the trimer (3/2 and 1/2),
for different values of J and N = 13, the total length
of the tight binding chain. The phases were obtained
by comparing ground state energies calculated using ex-
act diagonalization. For small interaction parameters the
system is in the high-spin state (below each curve) and
for large parameters it is in the low-spin state (above
the curves). The high spin trimer state is increasingly
Kondo-stabilized as J increases. The critical boundary
has also a different behaviour at the left or right of the
equilateral line J1 = J2. To the left of this line, the
boundary is horizontal, i.e. for a given value of J , the
critical value of J2 (defined as Jc

2) is constant for a large
range of J1. In this region the transition occurs between
the total spin trimer states |Q〉 and |D′〉 when increas-
ing J2 for fixed J1 (see case (b) below Eq. (8)). To the
right of the equilateral line, the boundary is linear and,
increasing J2 similarly as above, the system evolves from
the |Q〉 trimer state to the second doublet state |D〉. For
a larger value of J2 (not shown), it then turns finally into
state |D′〉 (case (a) explained below Eq. 8)).
The scaling behaviour of this phase diagram is shown

in Fig. 3, where we present two magnitudes which serve
as useful characterizations of the whole system. In Fig.
3(a) we plot the Kondo energy EK(S) ≡ EGS(N,S) −
[Echain(N) + Etrimer(S)]. Note that by substracting
Echain(N) (defined as the energy of the tight-binding
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FIG. 3: Scaling behaviour of a) Absolute value of the Kondo
energy EK(S) for both spin states of the trimer and their dif-
ference (here J1 = 0.35); b) the critical J2 (Jc

2) value marking
the transition between both spin states, for several values of
the parameters. In both panels the high spin (low spin) state
corresponds to J2 < Jc

2 (J2 > Jc

2) and J = 1.5.

chain with J = 0) and Etrimer(S), what is left is the
non-trivial component of the GS energy related to the
Kondo coupling among the magnetic sites of the trimer
and the chain. Accordingly, we denote this energy as
EK(S), with S representing the total spin of the trimer.
As can be seen, the Kondo energy for the large spin state
is larger in magnitude than for the low spin state. In Fig.
3(b) we show the scaling behavior of (Jc

2). For values of
J1 smaller than or equal to the equilateral case, the value
of Jc

2 remains the same (see also Fig. 2), whereas for the
opposite case, Jc

2 is smaller (full dots).
In order to understand the results displayed in Figs.

2 and 3 it is quite instructive to solve the case with one
conduction site, N = 1, i. e. the tetrahedron (consid-
ering one conduction electron). Noting that Echain(N =
1) = 0, and considering that the trimer could be either in
a state with total spin 3/2 or 1/2, we have three possible
states for EGS(1,S):

EGS(1, Q) =
1

4
(J1 + 2J2)−

5

4
J, (6)

EGS(1, D) = −3

4
J1 −

3

4
J, (7)

EGS(1, D
′) =

1

4
(J1 − 4J2)−

3

4
J. (8)

The second term which appears on the r.h.s. of Eqs.
(6-8), corresponds either to EK(3/2) = −5J/4, or
EK(1/2) = −3J/4. These are just the binding ener-
gies corresponding to the s-d (Kondo) interaction term of
Eq.(5), for the case of a localized magnetic moment with
total spin 1/2 (−3J/4) or 3/2 (−5J/4). For J = 1.5,
EK(3/2) = −1.875, EK(1/2) = −1.125, corresponding
to the two N = 1 points in Fig. 3a. As N increases, both
EK(3/2) and EK(1/2) evolve smoothly and their differ-
ence is nearly converged for N = 17 (Fig. 3a). From

Eqs. (6-8) we can calculate Jc
2 for N = 1, and qualita-

tively follow its evolution with N. For fixed values of J
and J1, two scenarios for the GS are possible for increas-
ing values of J2: a) EGS(Q) → EGS(D) → EGS(D

′).
From EGS(Q) = EGS(D) we obtain Jc

2 = J − 2J1;
b) EGS(Q) → EGS(D

′). From EGS(Q) = EGS(D
′) we

obtain Jc
2 = J/3. The Jc

2 corresponding to the cases
J1 = J2, (i.e. always in the equilateral configuration),
J1 = 0.2, and 0.35 all fall in case b) and the three curves
fall onto a single curve (Fig. 3b). For J1 = 0.4, however,
case a) is pertinent, and Jc

2 displays a distinct behavior.
Both kinds of transitions can be seen also in a different
behaviour of the boundary lines in Fig. 2.

The fact that the total spin of the trimer presents two
different values, leads to a well defined two-state pattern
in the Kondo behaviour of the system. As we showed
before with the energies, the Kondo energy is stronger
for the high spin state. This can be clearly seen in the
local density of states (DOS) at the central site, where it
should present a dip when the Kondo efect is operative
[12, 13]

In Fig. 4 the local density of states at the central site
of the chain is shown. To obtain the density of states
ρσ(ω) we use a combined method. In the first place we
consider an open finite cluster of N sites (N = 13 in our
case) which includes the trimer. This is diagonalized us-
ing the exact diagonalization Lanczos technique[14]. We
then proceed to embed the cluster in an external reser-
voir of electrons, which fixes the Fermi level of the system,
attaching two semi-infinite leads to its right and left[15].
This is done by calculating the one-particle Green func-
tion Ĝ of the whole system within the chain approxima-
tion of a cumulant expansion[16] for the dressed propa-
gators. This leads to the Dyson equation Ĝ = ĝ + T̂ Ĝ,
where ĝ is the cluster Green function obtained by the
Lanczos method. The density of states is obtained from
Ĝ.

As a comparison, we have also included in Fig. 4 the
LDOS of the isolated non-interacting chain, correspond-
ing to the case J = 0 in our model. A profound dip
appears in the LDOS of the chain interacting with the
trimer, with the LDOS being exactly zero at the Fermi
level of the TB chain (ω = 0). Quite generally, dips of
this type arise each time a system with a continuous spec-
trum (i.e. the chain), interacts with a system with a dis-
crete spectrum (i.e. the trimer)[13]. While the original
discussion of Fano only addressed the case where the dis-
crete spectrum corresponds to a non-interacting system,
his analysis has been generalized to the case of discrete
many-body peaks interacting with a featureless contin-
uum spectrum[1]. The resulting dips in the DOS are
generally termed “Fano resonances”. Two types of Fano
resonances are observed in Fig. 4. The broad Fano reso-
nance is associated with the trimer in the state with total
spin 3/2 and its width is given by EK(3/2). The narrow
Fano resonance is associated with the trimer in the state
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FIG. 4: Local density of states at the central site of the chain
for J1 = 0.2, J = 1 and several values of J2, showing the
two-state behaviour of the Kondo effect. Also shown is the
J = 0 case (free chain) where no Kondo dip is present and the
single impurity case. For these parameters TK(E) < TK(I).

with total spin 1/2, and its width is given by EK(1/2).
Two important features should be noticed from Fig. 4:
i) the size (width) of the dip only depends on the total
spin of the trimer, and not on the particular values of J1
and J2, as long as the trimer total spin remains invariant.
This leads to the bimodal distribution of Fano resonances
showed in Fig. 4; ii) the case J1 = J2 = 0.2 corresponds
to the trimer in the equilateral configuration, with total
spin 1/2 and a narrow resonance. For a small reduction
in J2 (J2 = 0.1), the trimer is driven to an isosceles con-
figuration, with an increase of its Kondo energy and the
corresponding spectral feature.

Recent experimental results by Jamneala et. al.,[17]
investigating the local behavior of single triangular Cr
trimers deposited on the surface of gold show that Cr
trimers can be reversibly switched between two distin-
tic electronic states. According to their structural and
spectroscopic characterization, one of the two “switch-
ing states” corresponds to the “I” configuration which,
by using the STM dI/dV spectroscopy, reflects a low-
energy Kondo response (Fano resonance). The second
“switching state” was characterized as the trimer in the
“E” configuration, for which no low-energy feature was
discernible. Our numerical results, based on a simpli-
fied model where the hibridization to a single channel
is considered, could shed light on these experimental re-
sults. It captures the essential physics of this experiment
and reproduces its main gross experimental features:
the two-state spectroscopic behavior, and the fact that
TK(I) = EK(3/2) > TK(E) = EK(1/2), as displayed in
Fig. 4. For any T such that TK(I) > T > TK(E), the
narrow Fano resonance associated to the “E” configura-
tion will be lost, as well as the single impurity case, as
experimentally observed. The “I” configuration will ex-
hibit, on the contrary, a discernible Fano resonance. This
behaviour is obtained when all the antiferromagnetic pa-
rameters J , J1 and J2 are of the same relative order of
magnitude[2], where the magnitude is a fraction of an eV.
In addition, the isosceles state is obtained from the “E”

configuration, as in the experiment, by slightly reducing
the value of J2, i.e. separating atom number 2. Our re-
sults also agree qualitatively with recent results based on
Quantum Monte Carlo calculations[18].

Previous calculations on similar models reach contra-
dictory conclusions [18, 19, 20, 21] finding that the visible
Kondo effect corresponds to either equilateral or isosceles
configurations. In [20, 21], calculations based on approx-
imate variational and ab initio methods, restricted the
Hilbert subspace to the one with a Kondo singlet in the
“trimer+conduction state” (states with energies given by
Eqs. 7 and 8), and missed the “ferromagnetic” state of
the trimer, driven by the Kondo interaction (state with
energy given by Eq. 6). Accordingly, the two-state be-
havior is not present in their results, and moreover, both
obtain that TK(E) > TK(I), which does not agree with
the experimental interpretation.

This system is an ideal scenario for the experimen-
tal observation of a quantum critical point between two
states with different quantum numbers and its anal-
ysis with finite temperature could lead to interesting
physics[22]. The rising activity in experimental and the-
oretical studies of triple quantum dots[23] is due to the
interesting physics that can be obtained in these systems.
The feasible construction of a trimer of quantum dots
coupled to leads which can be tuned between different
quantum states, could lead to clean and controlable re-
sults. Conductance measurements performed in such a
system could detect between distinct spin states in the
trimer and serve as a readout method.

In conclusion, we have obtained a two-state behaviour
in a system consisting of a spin S=1/2 trimer Kondo-
coupled to a non-interacting chain. This simplified model
explains qualitatively the experimental findings of Cr
trimers deposited on the surface of Au, where, at a cer-
tain temperature, a Fano dip was found for the isosceles
configuration, but was absent for the equilateral state,
indicating a possible lower Kondo temperature in this
latter case, as obtained here. Moreover, such a system,
experimentally realizable as a triangular quantum dot de-
vice, could be used to measure the total spin state of the
timer adatom.
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