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Abstract: This paper evaluates bootstrap inference methods for quantile regression
panel data models. We propose to construct confidence intervals for the parameters of
interest using percentile bootstrap with pairwise resampling. We study three different
bootstrapping procedures. First, the bootstrap samples are constructed by resampling only
from cross-sectional units with replacement. Second, the temporal resampling is performed
from the time series. Finally, a more general resampling scheme, which considers sampling
from both the cross-sectional and temporal dimensions, is introduced. The bootstrap
algorithms are computationally attractive and easy to use in practice. We evaluate the
performance of the bootstrap confidence interval by means of Monte Carlo simulations.
The results show that the bootstrap methods have good finite sample performance for both
location and location-scale models.
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1. Introduction

Quantile regression (QR) for panel data has attracted interest in both theoretical and applied literature.
It allows researchers to explore a range of conditional quantile functions, thereby exposing a variety of
forms of conditional heterogeneity, and to control for unobserved individual characteristics. Controlling
for individual-specific heterogeneity via fixed-effects (FE), while exploring heterogeneous covariate
effects within the quantile regression framework, offers a more flexible approach to the analysis of panel
data than that afforded by the classical Gaussian fixed and random effects estimators. The authors in [1,2]
develop the asymptotic properties of these estimators (for other recent developments, see, e.g., [3–5]).
In particular, the asymptotic variance of QR estimators depends on the density of the innovation term,
and it is not easy to compute in practice. Thus, we argue that inference procedures and confidence
interval construction can be greatly simplified by using bootstrap methods, and this paper evaluates
bootstrapping procedures for panel quantile regression estimators with FE.

Bootstrapping techniques have been used to construct confidence intervals for QR in the
cross-sectional context extensively. Buchinsky [6] uses Monte Carlo simulation to study several
estimation procedures of the asymptotic covariance matrix in quantile regression models, and the results
favor the bootstrap design. Hahn [7] shows that the construction of confidence intervals based for the
QR estimators can be greatly simplified by using bootstrapping. Moreover, the confidence intervals
constructed by the bootstrap percentile method have asymptotically correct coverage probabilities.
Horowitz [8] proposes bootstrap methods for median regression models. Feng, He, and Hu [9] proposes
an adaptation wild bootstrap methods for QR. Wang and He [10] develops inference procedures based
on rank-score tests with random effects. In the panel data FE context, [11,12] use bootstrapping for
constructing confidence intervals in the QR panel data. However, they do not provide evidence that this
procedure is valid, nor do they provide an explicit methodology to implement the bootstrapping for panel
data QR. This paper fills this gap.

Inference in panel datasets using least squares methods has been mainly used in asymptotic
approximations for the construction of test statistics and the variances of the estimators. The use of
bootstrap as an alternative to such asymptotic approximations has been considered, but its properties
have not received the same amount of attention as in the cross-section or time series literature. The
consideration of the bootstrap for panel data has focused on resampling in the time dimension, extending
the work on the bootstrap in time series. Resampling in the cross-sectional dimension has received
attention, as well. However, the literature on the combination of the two resampling schemes in panel
data is very limited. Kapetanios [13] discusses bootstrapping for panel data when resampling occurs in
both cross-sectional and time series dimensions. A treatment of resampling methods when N is large,
but T is assumed small and fixed can be found in [14].

In this paper, we suggest inference procedures to construct confidence intervals for the parameters of
interest in QR FE panel data models based on the application of bootstrap percentiles. This alternative
approach circumvents the problem of estimating the sparsity function and the asymptotic covariance
matrix. We apply the pairwise bootstrap resampling technique, since bootstrapping pairs is, in general,
less sensitive to certain regularity conditions than bootstrapping residuals. Following [13], we study
three different possibilities of sampling schemes for panel data QR: cross-sectional, temporal and



Econometrics 2015, 3 656

cross-sectional and temporal. In the first case, we construct the bootstrap samples by resampling
only from cross-sectional units with replacement. In the second case, the temporal resampling is only
from the time series dimension, without changing the cross-sectional dimension. In the final case, a
more general resampling scheme is proposed, which considers sampling from both cross-sectional and
temporal dimensions.

A Monte Carlo study is conducted to study and evaluate the finite sample properties of the proposed
inference procedure. We use the FE QR estimator. We evaluate the bootstrapping procedure using two
different underlying models: (i) random-effects (where the covariates are not related to the individual
effects); and (ii) fixed-effects (where covariates are correlated with the individual effects) models. We
compute empirical rejection rates of the confidence interval for all different bootstrapping procedures.
The results show that for the cross-sectional bootstrapping, the confidence intervals’ empirical rejection
rates are close to the nominal size, and more importantly, as expected, the results indicate that the
empirical sizes approximate the nominal size as the sample size increases. Overall, the results show
good performance for large N , with marginal improvements as T increases. In addition, similar results
are obtained for the random- and fixed-effects models.

The rest of the paper is organized as follows. Section 2 briefly presents the fixed effects quantile
regression model. Section 3 describes the bootstrap inference procedures. Section 4 describes the
Monte Carlo experiment and results. Conclusions appear in Section 5.

2. The Model and Estimator

2.1. The Model

This paper considers a QR model with individual FE. Thus, the τ -th conditional quantile function of
the response yit of the t-th observation on the i-th individual can be represented as

Qyit(τ |xit, ηi) = ηi(τ) + x′itβ(τ), (1)

where yit is the response variable, ηi denotes the individual FE, xit is a p-vector of exogenous covariates
and Qyit(τ |xit, ηi) is the conditional τ -quantile of yit given (xit, ηi). In Model (1), both the effects of the
covariates (xit) and the individual-specific effects are allowed to depend on the quantile, τ , of interest.
In general, each ηi and β can depend on τ , but we assume τ to be fixed throughout the paper and
suppress such a dependence for notational simplicity. The η’s are intended to capture some individual
specific source of variability, or “unobserved heterogeneity,” that was not adequately controlled for by
other covariates.

It is important to note that in the QR framework there is no transformation that can eliminate the
FE; thus, we are required to deal with the full problem. This intrinsic difficulty has been recognized
by [11], among others, and is clarified by Koenker and Hallock [15] (p.19) : “Quantiles of convolutions
of random variables are rather intractable objects, and preliminary differencing strategies familiar from
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Gaussian models have sometimes unanticipated effects.” Therefore, following [2], we consider the FE
estimation of β, which is implemented by treating each individual effect as a parameter to be estimated.1

2.2. Fixed-Effects Quantile Regression Estimator

We consider the standard QR FE estimation, which is implemented by treating each individual effect
as a parameter to be estimated. The estimator is defined by

(η̂, β̂) = argmin
η,β

N∑
i=1

T∑
t=1

ρτ (yit − z′itη − x′itβ), (2)

where zit identifies the individual FE, η = (η1, ..., ηN)
′ is the N × 1 vector of individual specific effects

or intercepts, β is a vector of slope parameters and ρτ (u) := u(τ − I(u < 0)) as in [16].
The asymptotic properties of the (η̂, β̂) estimators are derived in [2]. They show consistency and

asymptotic normality of the estimator under a condition on the sample size growth. This assumption
is relatively stringent and basically requires the time dimension to grow quickly relative to the
cross-section, i.e., N2/T → 0. However, a detailed discussion on such assumptions is outside the
scope of this paper.2

3. Inference

3.1. The Bootstrap

The main concern of this paper is the application of bootstrapping procedures to the problem of
constructing confidence intervals for the slope coefficients of the QR FE panel data model in (1), based
on the point estimation methods described in the previous section.

The bootstrap resampling methods are designed to be used when the innovations of a regression
are not identically distributed. The bootstrapping procedures are based on the so-called (y, x)-pairs
bootstrap, which was originally proposed by [17]. This is a fully-nonparametric procedure that is
applicable to a wide variety of models. Unlike resampling residuals, the pairs’ bootstrap is not limited to
iid errors in regression models. In the pairs’ bootstrap, instead of resampling the dependent variable, or

1 An alternative model was developed by [1], where the individual effects are the same across quantiles. In most
applications, the time series dimension T is relatively small compared to the number of individuals N . Therefore, it
might be difficult to estimate a τ -dependent distributional individual effect. The restriction of the individual effects, η, to
be independent of the specific quantile, τ , is implemented by estimating the model for several quantiles simultaneously.

2 The work in [1] introduced a general approach to estimate quantile regression models for panel data with FE that may
be subject to shrinkage by l1 regularization methods. It is well know that the optimal estimator for the random effects
Gaussian model involves shrinking the individual effects toward a common value. When there is an intercept in the
model, this common value can be taken to be the conditional central tendency of the response at a point determined by the
centering of the other covariates. In the quantile regression model, this would be some corresponding conditional quantile
of the response. Particularly, when N is large relative to T , shrinkage may be advantageous in controlling the variability
introduced by the large number of estimated individual-specific parameters.
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residuals, possibly centered or rescaled, it bootstraps pairs consisting of an observation of the dependent
variable along with the vector of explanatory variables for that same observation.

However, this bootstrap implicitly assumes that the pairs (yit, xit) are independent. Although this is
still a restrictive assumption, ruling out any form of dependence among observations, it does allow for
arbitrary forms of heteroskedasticity of yit conditional on xit. The objects resampled are iid drawings
from the joint distribution of yit and xit. Each bootstrap sample consists of some of the original pairs
once, some of them more than once and some of them not at all. This procedure does not condition on x
and does not assume that the innovation term is iid.

As in [13], we discuss several possibilities for bootstrap resampling schemes that can be applied in
panel datasets, such as the cross-sectional resampling, the temporal resampling and the cross-sectional
and temporal resampling.

Cross-sectional resampling: The first scheme is the cross-sectional resampling, which consists
of resampling Y and X with replacement from the cross-section dimension with probability 1/N ,
maintaining intact the temporal structure for each individual i. Thus, in this case, let Y ∗ =

(yi1 , ..., yis , ..., yiN ), where each element of the vector of indices (i1, ..., iN) is obtained by drawing with
replacement from (1, ..., N), and each element is yis = (yis1, ..., yisT ) for s ∈ (i1, ..., iN). The same
vector of indices is used to obtain X∗.

Temporal resampling: The second scheme consist of resampling both Y and X with replacement
from the temporal dimension for each individual with probability 1/T , maintaining fixed the individual
structure. The implementation constructs, for each i ∈ (1, ..., N), y∗i = (yit1 , ..., yitr , ..., yitT ), where
each element of the vector of indices (t1, ..., tT ) is obtained by drawing with replacement from (1, ..., T ).
Then, construct Y ∗ = (y∗1, ..., y

∗
i , ...y

∗
N). The same vector of indices is used to obtain X∗.

Cross-sectional and temporal resampling: The third scheme involves both cross-sectional and
temporal resampling. Here, it first resamples from the cross-sectional dimension with probability
1/N (maintaining intact the temporal structure for each individual), and second, it resamples for each
constructed cross-sectional unit across the time dimension with probability 1/T .

3.2. Practical Implementation

For a given τ -quantile of interest, the bootstrapped panel data QR FE estimator is given by

(η̂∗, β̂∗) = argmin
η,β

N∑
i=1

T∑
t=1

ρτ (y
∗
it − z∗′itη − x∗′itβ),

where (y∗it, x
∗
it) is the pairwise bootstrap resampled data and z∗it identifies the FE.

Implementation of the bootstrap in practice is simple. The steps for implementing the tests are as
follows. Take B as a large integer. Given one of the three bootstraps discussed above, for each b =

1, . . . , B:

(i) Obtain the resampled data {(ybit, zbit, xbit), i = 1, . . . , n t = 1, . . . , T}.
(ii) Estimate β̂b.

The limiting distribution of β̂ can be approximated by repeating these steps a large number of
times, and the confidence intervals can be obtained by computing the quantiles of the implied empirical



Econometrics 2015, 3 659

distribution using β̂∗. More specifically, let Ĝ be the cumulative distribution function of a bootstrapped
estimator. Let α be the level of the confidence interval. Then, one can compute the 1 − α percentile
confidence interval for each element in the coefficient vector β by the α/2 and 1 − α/2 empirical
percentiles of Ĝ as:

[β̂∗α/2, β̂
∗
1−α/2] = [Ĝ−1(α/2), Ĝ−1(1− α/2)].

4. Monte Carlo

In this section, we conduct a small Monte Carlo experiment to study and evaluate the finite sample
properties of the proposed inference procedure. We evaluate the bootstrapping procedures for inference
with the standard QR FE estimator. We use two different underlying models to generate the data: (i)
random-effects (where the covariates are not related to the individual effects); and (ii) fixed-effects
(where covariates are correlated with the individual effects) models. We compute empirical rejection
rates of the confidence interval for the three different bootstrapping procedures described above.

4.1. Design

We follow the Monte Carlo framework of [1,2]. We evaluate the finite sample properties of the
proposed inference procedure by computing the empirical rejection rates. We consider the following
data-generating process:

yit = ηi + xitβ + (γ1 + γ2xit)uit i = 1, ..., N, t = 1, ..., T. (3)

Two simple versions of our basic model (3) are considered in the simulation experiments. In the first, the
covariate xit exerts a pure location shift effect, and we set γ1 = 1 and γ2 = 0. In the second, it has both
location and scale shift effects, and we set γ1 = 1 and γ2 = 0.1. Note that in the location shift model,
β(τ) = β for all τ , while in the second location and scale shift model, β(τ) = β + γ2F

−1
u (τ), where

F−1u is the inverse distribution function, or quantile, of u.
We consider different data-generating processes (DGPs). First, we consider three different

distributions for ηi and uit. In the first variant, both ηi and uit are standard Gaussian; in the second,
they are both χ2

3 − 3; in the third, they are both Cauchy.
The scalar covariate x is generated in two variants, with differences in each case for the location and

location-scale shift models.

1. Random-effects model: xit = θi + εit, where both θi and εit are standard Gaussian in the location
shift model and χ2

3 in the location-scale shift model3. This model has a covariate that is not
correlated with the unobserved FE, and thus, the random-effects model is correct.

2. Fixed-effects model: xit = 0.3ηi + εit, where εit is standard Gaussian in the location shift model
and χ2

3 in the location-scale shift model. In this model, x is correlated with the unobserved FE.

We consider panel sizes of N ∈ {10, 25, 50} and T ∈ {5, 10, 50}. Moreover, we consider bootstrap
replications of size 500 and, for each experiment, compute all three types of bootstrap discussed in

3 This is to avoid non-linearities in the linear quantile functions, which arise if x can take both positive and negative values.
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Section 3: cross-sectional (CS), temporal (TE) and cross-sectional and temporal (CT). We set the number
of Monte Carlo simulations to 500. The performance of the confidence interval bootstrap estimator
is evaluated by computing the empirical rejection rate. Let [β̂∗α/2(τ), β̂

∗
1−α/2(τ)] be the constructed

(1 − α) × 100% bootstrap confidence interval for β(τ) in a particular sample. Then, we compute the
proportion of cases that β(τ) < β̂∗α/2(τ) or β(τ) > β̂∗1−α/2(τ) over the 500 Monte Carlo simulations,
which is called the rejection rate. If the bootstrapping procedure correctly simulates the distribution of
β̂(τ), this proportion should be close to α. Finally, we consider α = 0.1.

4.2. Results

Results for the case where the covariate xit is not correlated with η are presented in Tables 1 and 2.
The results for which the covariate xit is correlated with η are presented in Tables 3 and 4.

Simulations results for the random-effects model (i.e., x not correlated with η) appear in Tables 1
and 2 for the location and location-scale models, respectively. The best performance is observed for the
CS bootstrapping procedure, where the confidence intervals coverage approaches 0.1 for sample sizes
with N = 25, 50, although the coverage is too large for N = 10. TE produce slight under-coverage, that
is confidence intervals that cover less than 0.1 for all cases of N and T . Note that CT has a particularly
low coverage, close to 0.01, 1/10 of the target coverage. Normal, chi-squared and Cauchy DGPs show
similar trends regarding the effect of both N and T , and the worst performance is for the Cauchy model.
As suggested by an anonymous referee, the fact that TE and CT has a worse performance than CS could
be due to the fact that conditional on the sample, the covariance terms present in the original variance
are missing the TE or CT bootstrap, and thus, they do not mimic some features of the data.

The location model has better coverage properties than the location-scale one for τ = 0.25 and
τ = 0.75, while they have similar properties for the median. The Cauchy model in which the
density is very sparse at the corresponding first and third quartiles has a larger coverage than normal
and chi-squared ones.

Note that the performance of the coverage for the estimated confidence intervals is not linear in T .
That is, for a given N , increasing T does not monotonically increase or decrease coverage. In general,
for a given N , a larger T results in a coverage closer to the nominal size of 0.1.

Simulations results for the fixed-effects model (i.e., x correlated with η) appear in Tables 3 and 4 for
the location and location-scale models, respectively. Similar results to those of the previous tables are
observed. That is, the coverage is correct for the CS procedure, but requires N = 25, 50, while both
the TE and CT produce are smaller than the nominal coverage. Note, however, that the location-scale in
Table 4 shows a better performance than that of Table 2. This suggests that using information from the
covariates helps in reducing the effect of the unobserved individual effects (i.e., η).

Overall, the results confirm that, as expected, the empirical sizes approximate the nominal size as the
sample size increases. In addition, the results show evidence that the CS procedure produces the closest
coverage to the nominal size of 0.1, and this is achieved for large N (i.e., ≥ 25) improving with larger T
(in a non-linear relationship).
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Table 1. Monte Carlo simulations, data-generating process (DGP): location model,
random-effects model.

Cross-Sectional Temporal Cross-Sectional and Temporal

N T τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.25 τ = 0.50 τ = 0.75

ηi ∼ N(0, 1), uit ∼ N(0, 1)

10 5 0.154 0.156 0.168 0.074 0.062 0.064 0.020 0.016 0.030
10 10 0.160 0.192 0.172 0.058 0.046 0.056 0.012 0.016 0.030
10 50 0.160 0.172 0.158 0.074 0.056 0.076 0.008 0.010 0.014
25 5 0.144 0.136 0.128 0.078 0.062 0.072 0.020 0.026 0.034
25 10 0.152 0.128 0.130 0.070 0.040 0.056 0.024 0.020 0.018
25 50 0.126 0.136 0.116 0.040 0.054 0.052 0.012 0.020 0.022
50 5 0.122 0.108 0.112 0.072 0.064 0.076 0.002 0.006 0.010
50 10 0.088 0.098 0.112 0.074 0.056 0.056 0.010 0.012 0.010
50 50 0.108 0.100 0.112 0.054 0.052 0.060 0.008 0.008 0.008

ηi ∼ χ2
3, uit ∼ χ2

3

10 5 0.162 0.168 0.166 0.070 0.062 0.090 0.026 0.030 0.022
10 10 0.146 0.152 0.166 0.072 0.064 0.076 0.032 0.016 0.014
10 50 0.170 0.162 0.160 0.068 0.054 0.060 0.018 0.016 0.026
25 5 0.110 0.126 0.142 0.066 0.078 0.076 0.024 0.022 0.024
25 10 0.130 0.128 0.128 0.050 0.038 0.070 0.014 0.004 0.012
25 50 0.132 0.134 0.142 0.066 0.080 0.094 0.026 0.018 0.008
50 5 0.130 0.120 0.102 0.094 0.070 0.068 0.012 0.008 0.012
50 10 0.130 0.124 0.094 0.052 0.046 0.078 0.014 0.014 0.012
50 50 0.108 0.082 0.090 0.068 0.066 0.072 0.006 0.018 0.010

ηi ∼ t1, uit ∼ t1

10 5 0.182 0.154 0.148 0.070 0.060 0.066 0.022 0.022 0.022
10 10 0.154 0.162 0.150 0.050 0.052 0.056 0.014 0.010 0.018
10 50 0.174 0.156 0.190 0.076 0.062 0.058 0.014 0.032 0.028
25 5 0.126 0.124 0.122 0.072 0.060 0.068 0.012 0.008 0.006
25 10 0.148 0.122 0.100 0.038 0.024 0.044 0.012 0.010 0.010
25 50 0.136 0.128 0.116 0.058 0.074 0.072 0.020 0.016 0.020
50 5 0.124 0.102 0.124 0.074 0.060 0.078 0.026 0.024 0.044
50 10 0.118 0.136 0.132 0.060 0.044 0.068 0.024 0.016 0.018
50 50 0.114 0.110 0.102 0.074 0.086 0.078 0.030 0.016 0.024

Notes: Rejection rates based on 500 replications. Monte Carlo experiments using 500 simulations. Theoretical size: 10%. See the text for details.
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Table 2. Monte Carlo simulations, DGP: location-scale model, random-effects model.

Cross-Sectional Temporal Cross-Sectional and Temporal

N T τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.25 τ = 0.50 τ = 0.75

ηi ∼ N(0, 1), uit ∼ N(0, 1)

10 5 0.190 0.178 0.180 0.130 0.088 0.076 0.016 0.016 0.032
10 10 0.158 0.174 0.158 0.090 0.074 0.088 0.020 0.030 0.042
10 50 0.150 0.136 0.154 0.096 0.074 0.072 0.030 0.018 0.018
25 5 0.148 0.132 0.140 0.122 0.080 0.130 0.054 0.028 0.042
25 10 0.122 0.116 0.134 0.094 0.058 0.088 0.030 0.012 0.022
25 50 0.118 0.114 0.122 0.096 0.082 0.100 0.016 0.028 0.022
50 5 0.138 0.150 0.152 0.136 0.064 0.154 0.048 0.020 0.066
50 10 0.120 0.128 0.092 0.098 0.052 0.076 0.024 0.016 0.034
50 50 0.102 0.128 0.122 0.082 0.076 0.090 0.026 0.016 0.034

ηi ∼ χ2
3, uit ∼ χ2

3

10 5 0.178 0.190 0.186 0.108 0.088 0.124 0.040 0.028 0.046
10 10 0.136 0.152 0.152 0.060 0.054 0.098 0.014 0.012 0.018
10 50 0.196 0.154 0.160 0.076 0.060 0.082 0.036 0.044 0.034
25 5 0.146 0.138 0.148 0.078 0.090 0.148 0.022 0.018 0.068
25 10 0.118 0.136 0.128 0.080 0.062 0.090 0.020 0.016 0.038
25 50 0.138 0.130 0.140 0.094 0.064 0.086 0.024 0.018 0.024
50 5 0.136 0.122 0.152 0.096 0.100 0.240 0.034 0.026 0.100
50 10 0.106 0.110 0.126 0.094 0.080 0.100 0.018 0.012 0.050
50 50 0.128 0.086 0.120 0.082 0.064 0.080 0.020 0.016 0.016

ηi ∼ t1, uit ∼ t1

10 5 0.210 0.178 0.196 0.126 0.064 0.084 0.044 0.022 0.040
10 10 0.210 0.166 0.174 0.092 0.072 0.112 0.044 0.020 0.046
10 50 0.172 0.160 0.166 0.074 0.076 0.082 0.020 0.020 0.018
25 5 0.158 0.118 0.144 0.100 0.064 0.132 0.044 0.020 0.056
25 10 0.128 0.124 0.150 0.088 0.046 0.096 0.050 0.026 0.044
25 50 0.126 0.130 0.148 0.072 0.076 0.068 0.016 0.020 0.030
50 5 0.172 0.146 0.128 0.148 0.040 0.136 0.048 0.010 0.056
50 10 0.116 0.112 0.130 0.142 0.060 0.114 0.020 0.002 0.022
50 50 0.154 0.102 0.148 0.086 0.084 0.102 0.016 0.018 0.024

Notes: Rejection rates based on 500 replications. Monte Carlo experiments using 500 simulations. Theoretical size: 10%. See the text for details.
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Table 3. Monte Carlo simulations, DGP: location model, fixed-effects model.

Cross-Sectional Temporal Cross-Sectional and Temporal

N T τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.25 τ = 0.50 τ = 0.75

ηi ∼ N(0, 1), uit ∼ N(0, 1)

10 5 0.174 0.156 0.148 0.082 0.060 0.068 0.034 0.026 0.030
10 10 0.152 0.172 0.152 0.058 0.032 0.038 0.022 0.012 0.022
10 50 0.140 0.148 0.188 0.076 0.072 0.082 0.024 0.018 0.012
25 5 0.110 0.108 0.122 0.080 0.066 0.082 0.016 0.010 0.016
25 10 0.136 0.136 0.138 0.060 0.048 0.076 0.014 0.014 0.024
25 50 0.116 0.126 0.112 0.060 0.070 0.072 0.016 0.010 0.006
50 5 0.126 0.112 0.108 0.094 0.052 0.072 0.026 0.022 0.020
50 10 0.106 0.114 0.112 0.056 0.038 0.040 0.010 0.020 0.020
50 50 0.136 0.132 0.102 0.090 0.084 0.072 0.020 0.020 0.010

ηi ∼ χ2
3, uit ∼ χ2

3

10 5 0.188 0.172 0.158 0.088 0.072 0.070 0.008 0.010 0.012
10 10 0.182 0.160 0.160 0.064 0.068 0.076 0.016 0.022 0.026
10 50 0.156 0.160 0.128 0.074 0.072 0.078 0.014 0.016 0.016
25 5 0.124 0.122 0.112 0.098 0.066 0.062 0.032 0.032 0.030
25 10 0.156 0.136 0.126 0.056 0.044 0.066 0.022 0.008 0.012
25 50 0.140 0.140 0.124 0.058 0.072 0.062 0.016 0.012 0.016
50 5 0.100 0.108 0.146 0.078 0.058 0.072 0.016 0.014 0.016
50 10 0.096 0.110 0.110 0.044 0.026 0.050 0.012 0.012 0.012
50 50 0.122 0.110 0.088 0.064 0.064 0.084 0.018 0.020 0.016

ηi ∼ t1, uit ∼ t1

10 5 0.176 0.166 0.154 0.090 0.078 0.096 0.028 0.018 0.016
10 10 0.130 0.144 0.176 0.056 0.052 0.056 0.014 0.006 0.014
10 50 0.190 0.166 0.146 0.072 0.060 0.062 0.028 0.014 0.018
25 5 0.128 0.090 0.110 0.072 0.042 0.070 0.016 0.024 0.030
25 10 0.120 0.118 0.108 0.052 0.062 0.062 0.016 0.012 0.010
25 50 0.136 0.146 0.130 0.080 0.084 0.064 0.020 0.020 0.018
50 5 0.130 0.134 0.110 0.072 0.058 0.068 0.024 0.022 0.028
50 10 0.132 0.120 0.104 0.052 0.044 0.056 0.020 0.012 0.010
50 50 0.120 0.118 0.122 0.060 0.052 0.070 0.012 0.014 0.020

Notes: Rejection rates based on 500 replications. Monte Carlo experiments using 500 simulations. Theoretical size: 10%. See the text for details.
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Table 4. Monte Carlo simulations, DGP: location-scale model, fixed-effects model.

Cross-Sectional Temporal Cross-Sectional and Temporal

N T τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.25 τ = 0.50 τ = 0.75

ηi ∼ N(0, 1), uit ∼ N(0, 1)

10 5 0.166 0.150 0.184 0.102 0.074 0.122 0.044 0.036 0.032
10 10 0.206 0.170 0.164 0.100 0.066 0.096 0.020 0.012 0.038
10 50 0.172 0.150 0.188 0.080 0.080 0.104 0.030 0.018 0.016
25 5 0.130 0.116 0.144 0.142 0.074 0.128 0.030 0.012 0.038
25 10 0.126 0.118 0.126 0.094 0.052 0.086 0.038 0.020 0.044
25 50 0.152 0.118 0.134 0.078 0.070 0.068 0.010 0.010 0.010
50 5 0.130 0.150 0.132 0.162 0.076 0.146 0.046 0.022 0.048
50 10 0.132 0.112 0.134 0.106 0.076 0.140 0.030 0.010 0.018
50 50 0.112 0.110 0.122 0.078 0.062 0.076 0.020 0.014 0.026

ηi ∼ χ2
3, uit ∼ χ2

3

10 5 0.184 0.142 0.172 0.084 0.084 0.130 0.028 0.040 0.072
10 10 0.158 0.162 0.186 0.072 0.054 0.098 0.014 0.020 0.050
10 50 0.188 0.156 0.180 0.086 0.086 0.096 0.026 0.032 0.032
25 5 0.158 0.138 0.146 0.112 0.078 0.190 0.024 0.032 0.072
25 10 0.130 0.150 0.112 0.086 0.052 0.100 0.020 0.014 0.040
25 50 0.110 0.104 0.106 0.070 0.076 0.072 0.034 0.016 0.012
50 5 0.136 0.130 0.166 0.102 0.084 0.254 0.032 0.028 0.086
50 10 0.120 0.132 0.136 0.078 0.072 0.150 0.016 0.008 0.036
50 50 0.122 0.122 0.116 0.066 0.086 0.094 0.020 0.014 0.014

ηi ∼ t1, uit ∼ t1

10 5 0.200 0.164 0.170 0.108 0.048 0.130 0.034 0.014 0.024
10 10 0.150 0.138 0.184 0.098 0.058 0.106 0.034 0.018 0.038
10 50 0.158 0.148 0.138 0.104 0.086 0.106 0.026 0.022 0.024
25 5 0.140 0.140 0.146 0.146 0.082 0.136 0.050 0.020 0.050
25 10 0.132 0.136 0.142 0.110 0.038 0.102 0.036 0.016 0.026
25 50 0.100 0.106 0.142 0.104 0.066 0.092 0.034 0.008 0.036
50 5 0.156 0.104 0.146 0.192 0.068 0.178 0.072 0.014 0.064
50 10 0.118 0.116 0.120 0.138 0.052 0.124 0.044 0.012 0.036
50 50 0.122 0.148 0.140 0.098 0.076 0.108 0.036 0.020 0.008

Notes: Rejection rates based on 500 replications. Monte Carlo experiments using 500 simulations. Theoretical size: 10%. See the text for details.
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5. Conclusions

The asymptotic variance-covariance matrix of the techniques developed in [1,2] for QR FE estimators
cannot be easily obtained. They require estimation of the density of the innovations term. In order
to overcome this difficulty, this paper explores bootstrap inference techniques for QR panel data. We
propose to construct confidence intervals for the parameters of interest using percentile bootstrapping
with a pairwise resampling technique. We evaluate the performance of the bootstrap confidence interval
by means of Monte Carlo simulations. We assess the finite sample performance of the intervals by
computing their empirical rejection rates. The results look promising and confirm that bootstrapping
techniques can be used for inference in these models. In particular, we recommend using cross-section
bootstrap with replacement from the cross-section dimension with probability 1/N , maintaining intact
the temporal structure for each individual i.
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