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Monitoring of regional lake water clarity using Landsat

imagery

Matias Bonansea, Raquel Bazán, Claudia Ledesma, Claudia Rodriguez

and Lucio Pinotti
ABSTRACT
The application of remote sensing technology to water quality monitoring has special significance for

lake management at regional scale. Water clarity expressed in terms of Secchi disk transparency

(SDT) is a highly useful indicator of trophic status and ecosystem health. In this study, we related

Landsat TM and ETMþ data with ground observations to develop a model for the estimation of SDT

which can be used as a standardized procedure for regional-scale lake clarity assessment in the

central region of Argentina. Samples were taken from two reservoirs of the region. Pearson

correlation coefficients and step-wise multiple regression analysis were used to evaluate correlation

between Landsat bands and measured SDT. Results suggested that Landsat band 3 plus the ratio 1/3

was a consistent and reliable predictor of SDT (R2¼ 0.80). The algorithm was validated (R2¼ 0.81)

and applied to the November 10, 2010 ETMþ image obtaining a map that characterized water clarity

of reservoirs within the study area. The procedure presented here could become a low cost

measurement tool for water management authorities and decision-makers, obtaining simpler and

practical results for regional water clarity monitoring.
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INTRODUCTION
Decision-makers are demanding new tools for regional

monitoring and assessment of water quality. The conven-

tional measurements of regional assessment are logistically

challenging and expensive to perform regularly due to

cost, lake accessibility and the number of water bodies

requiring repeated sampling (McCullough et al. b). As

a result, sample sizes must be limited and usually cannot

encompass each type of water body present in a region;

therefore, the status of the water system at a regional scale

can be difficult to represent (Zhao et al. ). According

to McCullough et al. (a), these restrictions lead to field

assessments concentrated in developed, easily accessible
areas, which create spatially irregular, non-random samples.

Many lakes are rarely or never monitored, so an accurate

assessment of their status and change over time cannot be

made. Satellite remote sensing has been shown to be a

powerful supportive tool for regional water quality assess-

ment, reducing costs and allowing monitoring to occur

simultaneously across an extensive area (Trivero et al.

; Larsen et al. ; Doña et al. ).

Among several satellite systems that have been used

for water quality monitoring, the Landsat system, which

provides an unparalleled record of the status and

dynamics of the Earth’s surface since 1972, is particularly

mailto:mbonansea@ayv.unrc.edu.ar
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useful for assessment of inland lakes (Kloiber et al. b;

Matthews ; Wulder et al. ; Chao Rodríguez et al.

). Most techniques for remote sensing of water quality

construct reliable empirical relationships between Landsat

data and ground observations of water quality parameters,

including chlorophyll and phycocyanin concentrations

(Vincent et al. ; Tebbs et al. ), water clarity

expressed in terms of Secchi disk transparency (SDT)

(Domínguez Gómez et al. ; Zhao et al. ; McCul-

lough et al. a), total suspended sediments (Kulkarni

; Bonansea & Fernandez ), among others. In this

study, we focus on SDT estimation due to its simplicity

and relatively low cost. Besides, this parameter, which is

widely used and a common metric of lake water quality,

has strong ecological and economic implications, being a

highly useful indicator of trophic status and ecosystem

health (Sriwongsitanon et al. ; Zhao et al. ; McCul-

lough et al. b; Chao Rodríguez et al. ). According

to Domínguez Gómez et al. (), the assessment of

water clarity has a crucial impact on water quality moni-

toring because it shows, in a global way, all the

components that can be found in water and the many

interactions existing among them.

Most studies related to water clarity estimation by

Landsat imagery have focused on generating empirical

models for the lake or reservoir where samples were

taken (Domínguez Gómez et al. ; Giardino et al.

; Guan et al. ). However, there has been increas-

ing focus on regional-scale assessment of water quality

and few monitoring programs exist for this purpose. Pull-

iainen et al. () suggest that the estimation of water

quality from remote sensing data for numerous lakes

could be achieved using ground observation data for

only a few representative lakes from the region. Kloiber

et al. (b) and Olmanson et al. () described a prac-

tical and efficient procedure for Landsat imagery for

routine, regional-scale assessments of lakes for water

clarity, and Kloiber et al. (a) used this approach to

measure spatial patterns and temporal trends in a large

number of lakes. McCullough et al. (a) have shown

that Landsat TM can be used to predict regional water

clarity in Maine lakes located in the northeastern United

States, and those predictions are more accurate when

average depth and watershed wetland area are included
om http://iwaponline.com/hr/article-pdf/46/5/661/369199/nh0460661.pdf

 2022
in models. Although most of the studies on regional lake

water clarity estimation by remote sensing were carried

out for the northern hemisphere, little has been done to

develop appropriate regional assessment of water clarity

in the southern hemisphere.

The objective of this paper was to develop an algor-

ithm to estimate water clarity which can be used as a

standardized procedure for regional-scale lake clarity

assessment in the central region of Argentina. Thus, we

were able to obtain a single standardized method with

constant coefficient values that could be used by water

management authorities and decision-makers to achieve

information for lakes not sampled, allowing an easier

comparison of water clarity from different lakes at a

regional scale.
METHODOLOGY

Study area

The western region of Córdoba province, located in the cen-

tral region of Argentina, is characterized by a mountainous

system called Sierras Pampeanas which encompasses

approximately a 500 km long and 150 km wide area. This

area presents nine moderately eutrophic reservoirs greater

than 0.3 km2 (Figure 1) which were built between 1930

and 1950 for multiple purposes such as water supply,

power generation, flood control, irrigation, tourism and rec-

reational activities (Bazán et al. ; Mancini et al. ;

Ledesma et al. ).

As part of a monitoring program, since the 1990s sev-

eral physical, chemical and biological properties of two

multipurpose reservoirs of the area (Río Tercero and Los

Molinos reservoirs) have been surveyed. Río Tercero reser-

voir (32W 110 S, 64W 230 W) which is the largest artificial

reservoir in the province, has a surface area of 46 km2, a

volume of 733 hm3 and maximum and mean depths of

46.5 and 12.2 m, respectively. In 1986, a nuclear power

plant (CNE: 600 MWa) was installed. Water for cooling

the nuclear reactor is taken from the middle section of

the reservoir and is returned to the western basin by a

5 km long open-sky channel (Bonansea et al. ). Los

Molinos reservoir (31W 490 S, 64W 320 W), which is used to



Figure 1 | Principal reservoirs of the western region of Córdoba province and position of sampling sites in Los Molinos and Río Tercero reservoir.
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supply drinking water to Córdoba city (with 1.4 million

inhabitants), has an area of 21.1 km2, an average depth of

16.3 m and a maximum volume of 399 hm3 (Bazán et al.

).

Water clarity was estimated in the field by measuring

SDT using a standard 20 cm diameter Secchi disk at

nine sampling sites in Río Tercero and five sites in Los

Molinos reservoir (Figure 1). Coordinates of sample sites

were recorded using a Global Positioning System (GPS)

device.

Satellite data

We used images from Landsat TM and Landsat ETMþ
(Path: 229; Row: 82) downloaded from the USGS Global

Visualization Viewer (http://glovis.usgs.gov). The TM

sensor is equipped with multi-spectral scanning equipment,

which operates on seven spectral bands located between

the visible and infrared regions of the spectrum. The spatial
://iwaponline.com/hr/article-pdf/46/5/661/369199/nh0460661.pdf
resolution is 30 m for the visible through middle infrared

channels and 120 m for the thermal infrared band (Loveland

& Dwyer ). The ETMþ sensor has a similar suite of

bands as TM, but with a 60 m thermal band and an

additional 15 m panchromatic band. Both sensors present

a revisit time of 16 days and a radiometric resolution of

256 digital numbers.

The criteria for image selection were: existing in situ

data of both reservoirs in ±4 days to the satellite passes

(time window) obtaining reasonable results for empirical

relationships between SDT and Landsat imagery; no

heavy rainfall prior to the image data to minimize the

effects of changes in water surfaces that disturb the esti-

mates; 0% haze or cloud cover when possible. To detect

haze and cloud cover, which affect spectral-radiometric

responses and cause erroneous results, an RGB band

combination (1,6,6) was used (Olmanson et al. ).

The selected criteria are in agreement with different

authors (Kloiber et al. b; Sriwongsitanon et al. ;

http://glovis.usgs.gov
http://glovis.usgs.gov
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Tebbs et al. ). Thus, from the pool of suitable images,

we selected one Landsat TM image and two ETMþ
images (Table 1).
Image pre-processing

The electromagnetic radiation signals collected by satellites

in the solar spectrum are modified by scattering and absorp-

tion by gases and aerosols while traveling through the

atmosphere from the Earth’s surface to the sensor (Song

et al. ). Atmospheric corrections to satellite data are

therefore important for correcting these effects, so that infor-

mation from multitemporal data set with variable aerosol

loading can be sensibly compared. Using the Second Simu-

lation of the Satellite Signal in the Solar Spectrum (6S)

(Vermote et al. ), atmospheric correction was carried

out.

The importance of applying the 6S model to improve

the estimates of water lake clarity was described in Sri-

wongsitanon et al. (). These authors suggest that the

6S model can remove the additive effects provided by

atmospheric rayleigh and aerosol scattering which influ-

ence the visible Landsat bands (band 1–3). On the other

hand, the corrected reflectance values of the near infrared

and infrared bands (band 4–7) tend to be higher than the

uncorrected reflectance values. This is because the near

infrared and middle infrared wavelengths are affected by

atmospheric absorption while the influence of air mol-

ecules and aerosol particle scattering are negligible in

these ranges. Since the 6S model can remove these effects,

reflectance values within these bands were then increased

(Sharma et al. ; Sriwongsitanon et al. ; Homem

Antunes et al. ).
Table 1 | Landsat data set and sampling date in Río Tercero and Los Molinos reservoirs

Río Tercero reservoir Los Molinos reservoir

Acquisition
image date

Landsat
sensor

Sampling
date

Time
window
(days)

Sampling
date

Time
window
(days)

09-28-2006 ETMþ 09-24-2006 �4 10-01-2006 3

12-09-2006 TM 12-09-2006 0 12-11-2006 2

11-10-2010 ETMþ 11-10-2010 0 11-10-2010 0
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Geometric correction was applied to each scene,

resulting in a root mean square error (RMSE) of pos-

itional accuracy of less than 0.5 pixel, guaranteeing a

precise geometric match between images. Since May

2003, ETMþ images have a permanent failure known as

Scan Line Corrector (SLC): off, characterized by wedge-

shaped gaps (Chen et al. ). Using a methodology

adapted from the SLC Gap-Filled Products, Phase One

Methodology article (USGS ), SLC failure was cor-

rected predicting the best closest value of the missing

pixels. To delineate the lake surface masks, producing

‘water-only’ images and isolating anomalously pixels that

do not belong to the reservoirs, the normalized difference

water index (NDWI) algorithm proposed by McFeeters

() was applied. According to Ji et al. () and

Alcântara et al. (), the NDWI can be used successfully

in delineating water bodies and monitoring the water area

changes.

Algorithm development

As the locations of sampling points were georeferenced, it

was possible to compare matchups between field data

and corresponding Landsat reflectance values. To deter-

mine which spectral band or band ratio was the best

predictor of SDT, Pearson correlation coefficients and

backward step-wise multiple regression analysis were car-

ried out between in situ SDT (dependent variable) versus

atmospherically corrected reflectance values of Landsat

bands or band ratios (independent variables). Applying

the Pearson correlation analysis, we assume that a high

level of correlation between variables is implied by a cor-

relation coefficient (r) greater than 0.5 in absolute terms

(Gupta ). The backward step-wise multiple regression

analysis was performed using the thresholds for factor

removal with a significance level of p-value more than

0.05. If the p-value is less than the threshold, it means

that the null hypothesis is rejected and the regression

relationship is then reliable to be used for prediction (Sri-

wongsitanon et al. ). Thus, we could identify the

spectral band or band ratio most correlated with in situ

SDT, which were used to generate a model to estimate

water clarity for all lakes within the region. In this

case, the multiple linear regression model used was



Figure 2 | Pearson correlation coefficients between SDT versus Landsat spectral bands

and band ratios. Asterisks represent the spectral bands retained by the step-

wise multiple regression analysis (p< 0.05).
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defined as

Yi ¼ β0 þ β1X1 þ β2X2 � � � þ βvXv þ ε (1)

where Yi refers to the response of the variable SDT, Xn

are the explanatory variables of each Landsat spectral

bands, βn are the regression coefficients, and ε is the

random error.

Simple regression analysis was made to evaluate the cor-

relation between estimated versus observed SDT data. The

RMSE of predicted SDT, which gives an estimate of the

error associated with the estimations (Matthews et al.

), was calculated according to

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Xi �Xð Þ2
n

s
(2)

where Xi and X are the in situ and satellite-derived SDT and

n is the sampling size.

Finally, as a demonstration of the real potential of

remote sensing, the validated algorithm was applied to the

pre-processed November 10, 2010 ETMþ image, obtaining

the spatial distribution of simulated errors, calculated as

the difference between simulated and observed SDT data,

and a map that characterizes water clarity of reservoirs in

the central region of Argentina.
RESULTS AND DISCUSSION

Estimation of water clarity

Remote sensing of water quality parameters is dependent

upon how parameter variations alter the optical proper-

ties of the water column (Pavelsky & Smith ).

Figure 2 shows the results of Pearson correlation coeffi-

cient and step-wise regression analyses between SDT

versus Landsat spectral bands. According to Brezonik

et al. (), suspended particles cause and increase in

the measured response for Landsat bands 1–4. Landsat

band 1, which can be used to measure the irradiance

attenuation due to the absorption of aquatic humus and

phytoplankton pigment concentration (Giardino et al.
://iwaponline.com/hr/article-pdf/46/5/661/369199/nh0460661.pdf
), showed a low association with measured SDT

(r¼�0.39). Landsat band 2 is centred on an algal reflec-

tance peak (Brezonik et al. ; Domínguez Gómez

et al. ). This spectral band, which was widely used

for estimating chlorophyll-a concentration (Domínguez

Gómez et al. ; Kulkarni ), showed a low relation

with measured SDT (r¼�0.39). A low negative associ-

ation was found between SDT and band 4 (r¼�0.47);

this could be explained because absorbance by water

increases sharply in this band (Brezonik et al. ).

There was no association between measured SDT and

Landsat bands 5 and 7 (r¼�0.02 and �0.10, respect-

ively). Sriwongsitanon et al. () suggest that in the

infrared regions (band 5 and 7), water increasingly

absorbs the light making it darker so these bands are

useful for vegetation and soil moisture studies and for dis-

criminating between rock and mineral types. Therefore,

we have not analyzed the band ratios of these bands.

The thermal infrared band of TM and ETMþ sensors

(band 6) was not used in the analysis because this band,

which is based on the reflective properties of the Earth’s

surface in the short-wave part of the electromagnetic spec-

trum, is used to estimate surface temperature (Giardino

et al. ; Chao Rodríguez et al. ). Our results

demonstrated that Landsat band 3 (ρ3) and band ratio

1/3 (ρ1/ρ3) can be used to investigate the most suitable

relationships for SDT monitoring as evidenced by high

Pearson correlation coefficients (r¼�0.78 and 0.79,

respectively). These results were confirmed in the step-

wise multiple regression analysis where only band 3 and

ratio band 1/3 were retained (R2¼ 0.80). According to

Matthews (), the negative correlation with band 3
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may be explained by the direct positive correlation

between reflectance in the red and gross particulate load

inducing particulate scattering. Therefore, as SDT

decreases, brightness in the red usually increases.

Thus, the estimated response between in situ SDT and

the atmospherically corrected reflectance values in ρ3 and

ρ1/ρ3, was finally formulated as (R2¼ 0.80)

SbDT ¼ 3:22� 1:66ρ3 þ 0:64ρ1=ρ3 (3)

The 95% confidence intervals for the parameters of the

model (Equation (1)) were calculated as 2.35< β0< 4.09;

�2.32< β1<�1.00; and 0.41< β2< 0.88.

Values of estimated and observed SDT were correlated

applying a simple regression model. The good fit between

observed and estimated SDT indicated the high predictive

capacity of this model (R2¼ 0.81). The error associated

with the estimations (RMSE¼ 0.64 m) was also reasonable

and lower than the RMSE in SDT measured in McCullough

et al. (a, b). Figure 3 also confirms the robustness of

this algorithm as giving a good agreement between the gra-

dient and intercept of the regression line. Therefore, the

methodology used was considered to be adequate to study

water clarity assessment in different water bodies of the

region.

According to Matthews (), there are a large number

of studies using Landsat to retrieve SDT, and most of these

use linear regressions of single bands or band ratios. Differ-

ent studies suggest that SDT can be estimated from different
Figure 3 | Scatter plot of Landsat-estimated and observed SDT with 1:1 fit line.
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combinations of Landsat bands 1 to 4 (Doña et al. ).

Some studies use Landsat band 2 (green band) or 4 (NIR

band) to estimate SDT (Lathrop & Lillesand , ;

Doña et al. ), although there are few recent examples

of this (Matthews ). Domínguez Gómez et al. (),

studying the trophic status of lakes located to the south of

Madrid, Spain, found that SDT, which is affected by phyto-

plankton and total suspended solids concentration, could be

associated with Landsat band 2, which shows the highest

light penetration. However, in our study, Landsat band 3

plus the ratio 1/3 provided strong predictive relationship

with SDT in reservoirs of Córdoba province. Several investi-

gators had success with similar relationship. The same band

combination was used by Lavery et al. () studying an

estuarine system in western Australia. Hellweger et al.

() found that TM band 3 provided a strong relationship

to SDT. McCollough et al. (a) used TM bands 1 and 3 to

predict SDT for Maine lakes, United States. According to

Matthews (), the ratio between TM bands 1 and 3 is par-

ticularly common to estimate lake water clarity. Lathrop

() and Cox et al. () suggest that ratio 1/3 is a

strong predictor of SDT. Kloiber et al. (b) and Brezonik

et al. () used Landsat band 1 plus ratio 1/3 to predict

SDT with high accuracy. Similar results were found by

Olmanson et al. () studying a series of lakes in Minne-

sota, United States and Zhao et al. () in Taihu lake,

China.

Map generation

The analysis of the spatial distribution of simulation errors

of the November 10, 2010 ETMþ image indicated that the

central region of the reservoirs showed a lower difference

between simulated and observed data (Figure 4). Both reser-

voirs showed that higher simulation errors, which were

located near the shores and tributaries, could be related

with the effect of the bottom or with tributaries inflow

which generate an important change in SDT (Bonansea &

Fernandez ). Although the method lost accuracy, the

trend curve continues to be coherent.

Although the validated algorithm was based on ground

observations from only two reservoirs of the region, we

used it to estimate SDT for all lakes within the study area.

This is in agreement with McCullough et al. (a) who



Figure 4 | Spatial distribution of simulated errors and scatter plot of Landsat-estimated versus observed SDT from November, 10 2010 ETMþ image.
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demonstrated that remote sensing is useful in regions con-

taining a large number of lakes that are cost prohibitive to

monitor regularly using traditional field methods. Thus, we

obtained a complete regional spatial sampling of water

clarity, allowing the mapping and analysis of spatial pat-

terns. Figure 5 shows the spatial distribution of SDT in

Córdoba reservoirs applying the validated algorithm to the

pre-processed November 10, 2010 ETMþ image. Satellite

estimated SDT ranged from <0.5 to about 6.7 m, with a

mean value of 3.5 m. Lower SDT values were registered in

San Roque reservoir, coinciding with Amé et al. ()

and Galanti et al. (), who suggest that this reservoir is

classified as eutrophic to hypereutrophic with elevated con-

centrations of nutrients. Lower SDT were also registered in

Arroyo Corto reservoir whose waters are pumped to Cerro

Pelado reservoir and reused to generate energy by the

Cerro Pelado Hydroelectric Complex in times of low
://iwaponline.com/hr/article-pdf/46/5/661/369199/nh0460661.pdf
rainfall, as the case of this date. Dividing the reservoirs

into classes based on 1.5 m SDT intervals, we found that

the most common clarity class is 3.0 to 4.5 m. Mean water

clarity remained stable between the reservoirs, with the

exception of Arroyo Corto.

Limitations

Landsat sensors are a powerful tool that can provide sys-

tematic and periodic information of water clarity in

reservoirs. However, there are limitations to monitoring

water quality with Landsat imagery. Over the past decade,

TM and ETMþ imagery availability decreased over time

due to different problems or anomalies (Wulder et al. ;

Marx & Loboda ). The deteriorated image quality result-

ing from SLC failure, which was mentioned before, has

become a major obstacle for Landsat 7 data applications



Figure 5 | Estimated water clarity map obtained from November, 10 2010 ETMþ image.
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(Chen et al. ). Since 2005, Landsat 5 has had problems

with its solar array drive which has affected data availability

(Wulder et al. ) and in mid-2013 this satellite was offi-

cially decommissioned. However, Landsat 5 is the longest-

operating Earth-observing satellite mission in history, trans-

mitting over 2.5 million images of land surface conditions

around the world and resulting in a unique, long-term, sys-

tematic collection of moderate resolution imagery (Wulder

et al. ). As we have included a TM image, we could per-

form a retrospective analysis of water clarity back to the

early 1980s, since Landsat 5 was launched, and surface

data were obtained by TM sensor.

The scope of our study may be expanded with the

inclusion of the new Landsat 8 LDCM which was launched

on January 2013 and is the follow-on mission to Landsat 7,

presenting a higher imaging capacity than previous Landsat

satellites (Loveland & Dwyer ; Wulder et al. ).

Although there are no other missions analogous to Landsat

with global observation capabilities or accumulated global

archives, Wulder et al. () suggest that several programs

and sensors are identified as having the potential to emulate
om http://iwaponline.com/hr/article-pdf/46/5/661/369199/nh0460661.pdf
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Landsat sensors. Thus, other satellite remote sensors, such

as SPOT, ASTER, MODIS, MERIS, may be useful alterna-

tives for lake water quality (McCullough et al. b;

Chawira et al. ). However, a careful comparison of

remote sensing reflectance data between sensors would be

required beforehand and specific user needs should guide

the selection of alternate data source.
CONCLUSIONS

Remote sensing provides suitable information concerning

water quality and aquatic systems management. In this study,

we demonstrated that water clarity of Córdoba reservoirs can

be estimated by Landsat imagery. Pearson correlation coeffi-

cients and step-wise multiple regression analyses were used to

investigate the relationship between SDT versus Landsat

bands and band ratios. Band 3 and the ratio 1/3 proved to be

consistent predictors of water clarity. The obtained algorithm

was used as a standardized procedure for regional-scale lake

clarity assessment in the central region of Argentina.

Rather than using regressions equations where the inde-

pendent variables and coefficients are different for each

Landsat image, we examined the feasibility of using a consist-

ent water clarity equation form to relate ground observation

and satellite data. Use of a consistent equation form is prefer-

able because it allows for easier comparison of the results

from different images. Thus, the procedure presented here

could become an independent, low additional training and

low cost measurement tool for water management authorities

and decision-makers, obtaining simpler and practical results

for regional water clarity monitoring. However, the

implementation and continuation of field-based reservoir

water quality monitoring in Córdoba reservoirs is essential

for better calibration and validation of future remote clarity

estimation models. Finally, the inclusion of the new LDCM

or other potential satellite sensors (e.g. SPOT, ASTER,

MODIS, and MERIS) could be useful to extend our study.
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