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Quantum corrals present interesting properties due to the combination of confinement and, in the case

of elliptical corrals, to their focalizing properties. We study the case when two magnetic impurities are

added to the non-interacting corral, where they interact via a superexchange AF interaction J with the

surface electrons in the ellipse. Previous results showed that, when both impurities are located at the

foci of the system, they experience an enhanced magnetic interaction, as compared to the one they

would have in an open surface. For small J and even filling, they are locked in a singlet state, which

weakens for larger values of this parameter. When J is much larger than the hopping parameter of the

electrons in the ellipse, both spins decorrelate while forming a local singlet with the electrons of the

ellipse, thus presenting a confined RKKY–Kondo transition.

We interpret this behaviour by means of the von Neumann entropy between the localized impurities

and the itinerant electrons of the ellipse: for small J the entropy is nearly zero while for large J it is

maximum. In addition, the local density of states provides us with a concrete experimental tool for

detecting the Kondo regime.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Modern laboratory techniques have allowed an important
progress in the comprehension of quantum phenomena in solid
state structures at the nanoscopic scale. This has been possible
thanks to the design, modelling and fabrication of devices for
quantum confinement and the control of atoms, photons and
electrons. One of its consequences has been to motivate the
development of novel applications in nanotechnology, particularly
in quantum electronics.

At the same time, an innovative theory such as quantum
information has evolved into a new paradigm in computation and
communication that has overcome the limits of classical informa-
tion [1]. While classical bits in binary logic take two possible
values, zero and one, quantum computation is based on new
quantum units of information or qubits, which represent a
superposition of ones and zeros. Its multiple applications
(computation, communication, cryptography or quantum tele-
portation, among others) require a controlled manipulation of
light and matter at the quantum level.

In this sense nanostructured materials play an important role
[2,3]. Among these we can mention the so-called quantum corrals,
where the electrons remain quantically confined by means of a
ll rights reserved.

g).
geometrical array of adatoms deposited on the surface of nobel
metals, forming a nearly closed structure. These systems have
allowed the observation of surprising effects such as quantum
mirages [4,5], where the introduction of an impurity on one of the
foci of an elliptical structure formed a ghost image in the empty
one. These systems are excellent candidates for technological
applications in quantum information and spintronics [6–8]. For
example, by adding a magnetic atom on one focus the quantum
mirage could be used as a geometric protection of magnetic qubits
against decoherence. In addition, quantum entanglement can be
robust if two magnetic impurities are added at the foci. Also
feasible is the implementation of logical gates of one and two
qubits. In this case, these corrals could serve as elementary
prototypes of quantum computers.

In a recent work we have shown that, when a magnetic
impurity is added to a focus, an image is formed at the other focus,
which can be observed in the local density of states (DOS) when
the Kondo effect is operative [9,10]. This implies that in any
system with focalizing properties, two impurities which are
located at relatively large distances could strongly interact. We
have studied the problem with two impurities [11–13] where we
have calculated the time response to localized stimulations and
the degree of quantum entanglement for different partitions of
the system.

In this work we present results for the quantum entanglement
between two localized magnetic impurities which interact
antiferromagnetically with the itinerant surface electrons of the
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ellipse. We find that, when this interaction is weak, the spins are
strongly entangled in a singlet state while they are disentangled
from the elliptical degrees of freedom. For large interactions,
instead, the spins decorrelate while increasing their entanglement
with the electrons. This state can be characterized by measuring
the local density of states at the foci.
2. The model

In Fig. 1 we sketch the model used, which consists of a hard-
wall ellipse with non-interacting electrons, which interact via an
antiferromagnetic superexchange interaction with two localized
spins with S ¼ 1=2 situated at the foci. We have taken the Fermi
energy to coincide with the twenty-third one-body eigenstate for
this eccentricity to resemble the experiments. However, other
Fermi levels lead to similar results provided the weight of the
wave function at the foci is appreciable.

The Hamiltonian of the model reads

H ¼ Hel þ JðS1:r1 þ S2:r2Þ, (1)

where

Si � ri ¼ Sz
i � r

z
i þ

1
2ðS
þ

i r�i þ S�i � r
þ

i Þ, (2)

sþi ¼ cyi"ci#, sz
i ¼ ðni" � ni#Þ=2, with nis the number operator and

cis the destruction operator of an electron with spin s in focus i of
the ellipse. In the basis of eigenstates jai of the ellipse, these local
operators can be expanded as cis ¼

P
aCaicas, where cas and Cai

are the destruction operator and amplitude in state jai. Hel is the
Hamiltonian of the isolated ellipse with infinite walls and hopping
matrix element t�.

In this basis the spin operators are expressed as

sz
i ¼

1

2

X

a1a2

C�a1iCa2iðc
y

a1"
ca2" � cya1#

ca2#Þ,

sþi ¼
X

a1a2

C�a1iCa2 ic
y

a1"
ca2#. (3)

In order to perform the many-body calculations, we have solved
this Hamiltonian numerically with exact diagonalization for a
small number of levels L and using the Lanczos technique for
larger systems and different fillings corresponding to an even
(closed shell) or odd (open shell) number of particles, N.
Fig. 1. (a) System under consideration: squared modulus of the eigenstate at the

Fermi energy for the non-interacting ellipse with eccentricity � ¼ 0:6. White and

black represent high and low electron densities, respectively. (b) Graphical

representation: S1 and S2 are the impurity spins at the foci of the ellipse which

interact with the localized spins si via a superexchange interaction J. The lines

indicate the partition considered for the calculation of the von Neumann entropy

between subsystems A and B.
3. Quantum entanglement

A very important quantity in quantum information is the von
Neumann or quantum entropy [1]. Given a quantum system A in a
mixed state described by a density operator rA, the quantum
entropy is defined as

S ¼ �TrðrAlog2rAÞ. (4)

This entropy is a measure of uncertainty in the mixed state. If
we consider a system in a pure state jci and divide it into two
parts, A and B, the entanglement between A and B is defined as
the entropy of either part as E ¼ �TrðrAlog2rAÞ ¼ �TrðrBlog2rBÞ

where the density matrices are defined as rA
i0i
¼
P

jc
�

ijci0 j, and cij

is the projection of the pure state jci onto states i and j

corresponding to parts A and B of the system, respectively, and
similarly for rB

i0 i
. When the density matrices are diagonalized

obtaining the eigenvalues oA
i , the entropy has a simpler form

S ¼ �
X

i

oA
i log2oA

i ¼ �
X

i

oB
i log2oB

i . (5)

The quantum entropy is positive and lower than the smallest of
the dimensions of A and B. If jci is formed as a direct product of
states in A and B (oA

1 ¼ oB
1 ¼ 1) then S ¼ 0 and there is no

entanglement. On the contrary, when all states in A combine with
all states in B (completely mixed density operator, oi ¼ 1=d,
where d is the smallest dimension of the Hilbert spaces of A and
B), then Smax ¼ log2ðdÞ.

We will study a particular partition which consists of
considering the localized spins separated from the ellipse (Fig.
1b). This helps us understand the entanglement of the spins and
the rest of the ellipse while varying the magnetic interaction.

For this partition we find that the entropy increases with J and
has a slightly different behaviour for even and odd particles in the
ellipse (Fig. 2). For the even case and small interaction, the
entropy is negligible because the spins are locked into a singlet
state [11] and the ground state consists of a direct product
between this singlet and the ground state of the non-interacting
ellipse. This state can be thought of as due to an effective RKKY
interaction via the itinerant electrons, which is enhanced due to
confinement. When J increases, again more states get involved,
the localized spins are no longer in a singlet and the entropy or
entanglement increases. In the largest entangled case we have in
A a product of all four spin states (j ""i, j "#i, j #"i, j ##i), which
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Fig. 2. Quantum entropy as a function of the magnetic interaction for even and

odd fillings. The increase in the entanglement between the localized spins and the

ellipse with J is clearly observable.



ARTICLE IN PRESS

0

20

40

60

0

20

40

60

0

20

40

60ρ 
(ω

)

-0.4
0

20

40

60

J/2t* = 0.1

J/2t* = 1

J/2t* = 2

J/2t* = 3

ω/2t*

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Fig. 3. Local density of states at one focus of the ellipse for occupied (full lines) and

unoccupied (broken lines) levels. Here we have considered L ¼ 8 energy levels,

N ¼ 10 electrons in the ellipse and different values of the interaction J.
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appear with equal probability. The spins are completely
decoupled and form local Kondo singlets with the electrons.

For the odd case and small J, the spins are in a mixture of
mainly two triplet states because we are considering the Sz ¼ 1=2
subspace. Again, for large J, the results match the even case and
have maximum entropy (S ¼ log24 ¼ 2).
4. Local density of states

As a means to detect whether the system is in the local Kondo
regime we can resort to the observation of the local densities of
states defined as

rðoÞ ¼ � 1

p lim
Z!0þ

Im Gðoþ iZþ E0Þ,

r�ðoÞ ¼ � 1

p lim
Z!0þ

Im G�ð�oþ iZþ E0Þ, (6)

where

GðzÞ ¼ hc0jc
y

i"ðz� HÞ�1ci"jc0i,

GðzÞ� ¼ hc0jci"ðz� HÞ�1cyi"jc0i, (7)

o is the energy, i ¼ 1;2 are the foci of the ellipse, E0 is the ground
state energy. The quantities defined above correspond to the
photoemission and inverse photoemission spectra, respectively.

We present our results in Fig. 3. Here we can distinguish two
different regimes. For small J, the spectra consist mainly of the
discrete levels of the isolated ellipse. However, when the
antiferromagnetic superexchange interaction J increases
(J=2t�41), a pseudogap or a reduction of the local DOS starts
developing, showing the transition to a different state. This
reduction is a consequence of the Fano interference between the
states of the ellipse and the localized spin when the many-body
Kondo singlet is formed [14], thus signalling the mutual
decoupling of the two impurities and the onset of the local
Kondo state.
5. Conclusions

We have studied an elliptical confined system with focalizing
properties in the presence of two localized impurities which
interact antiferromagnetically (via J) with the itinerant electrons
of the corral. We found a different behaviour for even and odd
fillings in the ellipse which shows up in the character of the
ground state and the excitations. For the even-particle case and
small interaction J, both localized spins are entangled in a (quasi)-
singlet state. When increasing the antiferromagnetic interaction J,
an interesting feature arises which resembles the RKKY–Kondo-
like transition occurring in the two-impurity system: while the
localized spins form a singlet state between them for small
interactions, this coupling decreases for larger J giving rise to an
on-site singlet correlation between the spin and the itinerant
electron. For odd number of electrons the effective interaction is
ferromagnetic in the ground state. The character of this interac-
tion can be controlled by changing the chemical potential of the
system.

In this work we have also analysed the entanglement and von
Neumann entropy for a particular partition of the system in the
ground state, which offers us an alternative perspective on the
problem. When the impurities are locked in a singlet state their
entanglement with the ellipse is negligible, while it grows to its
maximum value when they decouple from each other and form a
local Kondo state with the electrons.

For small to moderate values of J (J=2t�t1) we expect the main
results synthesized above to hold in the case of more realistic
models of quantum ellipses which include tunnelling of the
electrons in open corrals and inelastic processes with bulk
electrons. In this parameter range the broadening of the relevant
energy levels is smaller than their separation [10,5]. When larger
interactions are included, higher levels which are more hybridized
take part, and models including these processes should be
considered.
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