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We calculate the conductance through Aharonov–Bohm chain and ladder rings pierced by a magnetic

flux which couples with the charge degrees of freedom. The system is weakly coupled to two leads and

contains strongly interacting electrons modeled by the prototypical t � J and Hubbard models. For a

wide range of parameters we observe characteristic dips in the conductance as a function of magnetic

flux which are a signature of spin and charge separation. We also show how the dips evolve when the

parameters of the models depart from the ideal case of total spin–charge separation. The ladder ring can

be mapped onto an effective model for large anisotropy which can be easily analyzed. These results

open the possibility of observing this peculiar many-body phenomenon in anisotropic ladder systems

and in real nanoscopic devices.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

New advances in fabrication techniques in nanoscience and
technology allow the preparation of samples that constitute an
interesting playground to test established and new ideas in
physics, in particular, the effect of strong electronic correlations.
Important examples can be given in experiments with quantum
dots (QDs), relevant to our problem, such as the realization of the
Kondo effect in systems with one QD [1–4] and the study of the
metal–insulator transition in a chain of 15 QDs [5]. The synthesis
of new materials of quasi-1D electronic character has led in the
last decade to a variety of experiments which seek evidence of
spin–charge separation (SCS), predicted theoretically for one-
dimensional (1D) strongly interacting systems in the framework
of the Luttinger liquid (LL) theory [6–8], such as the observation of
non-universal power-law I2V characteristics [9], the search for
characteristic dispersive features by angle-resolved photoemis-
sion spectroscopy (ARPES) [10], the violation of the Wiedemann–
Franz law [11]and the analysis of spin and charge conductivities
[10,12]. Candidate materials to present SCS [13] are the organic
Bechgaard and Fabre salts, molybdenum bronzes and chalcogen-
ides [9], cuprate chain and ladder compounds [14], laterally
confined two-dimensional electron gases, cleaved-edge over-
growth systems [15] and also carbon nanotube systems [16,17].

Several theoretical methods for detecting and visualizing SCS
were proposed and demonstrated many years ago. For example,
ll rights reserved.
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direct calculations of the real-time evolution of electronic wave
packets in finite Hubbard rings revealed different velocities in
the dispersion of spin and charge densities as an immediate
consequence of SCS [18]. Also, Kollath and coworkers have
repeated this calculation for larger systems using the density
matrix renormalization group (DMRG) technique [19]and ob-
served distinct features of SCS in a model for one-dimensional
cold Fermi gases in a harmonic trap, proposing quantitative
estimates for an experimental observation of SCS in an array of
atomic wires.

Another approach was adopted in Ref. [20], where the authors
analyzed the transmission through infinite Aharonov–Bohm (AB)
rings. The motion of the electrons in the ring was described by a LL
propagator with different charge and spin velocities, vc and vs,
included explicitly. With this assumption the flux-dependence of
the transmission has, in addition to the periodicity in multiples of
the flux quantum F0 ¼ hc=e, new structures which appear at
fractional values of the flux which are determined by the ratio
vs=vc . Recent results which go beyond the single pole approxima-
tion used there, claim that the number of dips is not determined
approximately by vc=vs but by vJ=vs, where vJ is the current
velocity [21]. The results, however, agree for small integer values
of p and q, for vs=vc ¼ p=q. Numerical calculations of the
transmittance through finite AB rings described by the t � J model
show clear dips at the fluxes that correspond to the ratio vs=vc

[22,23]. This discrepancy arises due to the finiteness of the
system. We have recently discussed the extension of these results
to ladders of two legs as a first step to higher dimensions [24].

In essence, these structures arise because transmission
requires the separated spin and charge degrees of freedom of an
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injected electron to recombine at the drain lead after traveling
through the ring in the presence of the AB flux.

In this paper we will briefly review previous results on the
transmittance through finite one-dimensional strongly interacting
rings and ladders represented by the t � J model. Additionally
we will show new results in which the electrons in the ring are
described by the Hubbard model, showing the robustness of the
characteristic dips in the conductance as the local interaction U is
diminished from the completely charge–spin separated case for
infinite U. We will also present results for an effective model that
describes the ladder system for large interchain coupling.
2. The model

The system is sketched in Fig. 1 and consists of a finite ring
threaded by a magnetic flux, weakly connected to two leads.
The electrons inside the ring are strongly correlated, while the
leads are non-interacting.

Our model Hamiltonian reads H ¼ Hleads þ Hlink þ Hring, where
Hleads describes free electrons in the left and right leads,

Hlink ¼ �t0
X

s
ðay
�1;sc0;s þ ay1;scL=2;s þH:c:Þ ð1Þ

describes the exchange of quasiparticles between the leads ðai;sÞ

and particular sites of the ring ðci;sÞand Hring depends on the
particular model considered in the ring.

Following Ref. [20], the transmission from the left to the right
lead can be calculated to second order in t0 where the ring is
integrated out. The resulting effective Hamiltonian is equivalent to
a one-particle model for a non-interacting chain with two central
sites modified by the interacting ring, with effective on-site
energy eðoÞ ¼ t02GR

0;0ðoÞ and effective hopping between them
~tðoÞ ¼ t02GR

0;L=2ðoÞ. GR
i;jðoÞ denotes the Green function of the

isolated ring.
At zero temperature, the transmittance and conductance of the

system may then be computed using the effective impurity
problem. The transmittance TðoÞ is given by [20]

Tðo;Vg ;fÞ ¼
4t2sin2kj~tðoÞj2

j½o� eðoÞ þ teik�2 � j~t2ðoÞjj2
; ð2Þ

where o ¼ �2tcosk is the tight-binding dispersion relation for the
free electrons in the leads which are incident upon the impurities.
These equations are exact for a non-interacting system. However,
for a more precise calculation of the transmittance, one should
resort to non-perturbative approaches [25]. We nevertheless
expect the dip structure to remain since they stem from more
general symmetry considerations [23].

From Eq. (2), Tðo;Vg ;fÞ may be calculated from the Green
functions of the isolated ring. We consider holes incident on a ring
of L sites and Ne þ 1 electrons in the ground state, obtaining the
Green functions from the ground state of the ring calculated using
t’ t’

t’

t ,J

t’

t ,J

t t

t t

leg 2

Φ

t||, J or U

leg 1

Φ

Fig. 1. Schematic representation of the interacting systems on a chain (a) and

ladder (b) rings connected by links t0 to free-electron leads.
numerical diagonalization [26] and substituting these in Eq. (2).
We fix the energy o ¼ 0 to represent half-filled leads and explore
the dependence of the transmittance on the threading flux,
obtained by integration over the excitations in a small energy
window, which accounts for possible voltage fluctuations and
temperature effects [22].
3. Conductance through a single ring

In this section we will calculate the transmittance through a
ring (Fig. 1a) for which the Hamiltonian reads

Hring ¼ �eVg

X

l;s
cyl;scl;s � tJ

X

l;s
ðcyl;sclþ1;se�if=L þH:c:Þ þ Hint; ð3Þ

where the flux is given in units of the flux quantum f ¼ 2pF=F0

and the system is subjected to an applied gate voltage Vg .
For the t � J model Hint ¼ J

P
lSl � Slþ1, Sl ¼

P
abcylasabclb is the

spin at site l and no double occupancy is allowed. For the Hubbard
model Hint ¼

P
l;sas0Unl;snl;s0 , with nl;s ¼ cyl;scl;s. Both models are

related in the very large interaction limit by J ¼ 4t2
J =U.

In the case of infinite on-site repulsion U (or equivalently
J ¼ 0Þ, the wave function can be factorized into a spin and a charge
part [22,27,28]. Therefore, charge–spin separation becomes
evident. For each spin state, the system can be mapped into a
spinless model with an effective flux which depends on the spin.
Considering a non-degenerate ground state containing N ¼ Ne þ 1
particles and analyzing the part of the Green function that enters
the transmittance when a particle is destroyed, it is shown that
the dips occur when two intermediate states cross at a given flux
and interfere destructively. These particular fluxes depend on the
spin quantum numbers and are located at [23]

fd ¼ pð2nþ 1Þ=Ne ð4Þ

with n integer. If the integration energy window includes these
levels, a dip in the conductance arises. If the ring is connected to
the leads at a distance MaL=2, the dips at fd are less intense [23].

In Fig. 2 we show the results for the transmittance through an
eight-site ring described by the t � J model for small J with
different fillings where we can clearly see the dips located at the
positions given by Eq. (4).

As a matter of comparison, in Figs. 3 and 4 we show results for
the transmittance using the Hubbard model in the ring. For large
Fig. 2. Transmittance as a function of flux for a t � J model with J ¼ 0:001tJ , tJ ¼ t,

t0 ¼ 0:3t and L ¼ 8 sites. The filling of the ring is, from top to bottom, Ne þ 1 ¼ 4,

Ne þ 1 ¼ 6 and Ne þ 1 ¼ 8. The transmission occurs through intermediate states

with N ¼ 3, 5 and 7 particles, respectively, which lead to minima at flux values

fd ¼ pð2nþ 1Þ=Ne (see text).
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Fig. 3. Transmittance vs flux for the Hubbard model in the 1D ring for L ¼ 6 sites,

Ne þ 1 ¼ 4 particles in the ground state and several values of U (curves are shifted

vertically for better visualization).

0 0.2 0.4 0.6 0.8 1

φ/π

0

0.2

0.4

0.6

0.8

1

T

U/t|| = 500

U/t|| = 100

U/t|| = 50

U/t|| = 10

U/t|| = 5

Fig. 4. Transmittance vs flux for the Hubbard model in the 1D ring for L ¼ 6 sites,

Ne þ 1 ¼ 6 particles in the ground state and several values of U (curves are shifted

vertically for better visualization).
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transition from weakly to strongly coupled chains for L ¼ 6 rungs and N ¼ 6

particles in the ground state for J? ¼ JJ ¼ 0.
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interactions, UctJ, dips are found at the positions given by Eq. (4).
However, when U is reduced increasing the mixture between
different spin sectors, thus weakening the spin–charge separation,
we observe the appearence of new dips and a shift of some of
them. This is due to the fact that the destructively interfering level
crossings which lead to the reduction in the conductance occur at
different values of the flux, as explained in Ref. [23].
4. Conductance through a ladder ring

In this section we will present results for a system consisting of
a ring formed by an anisotropic ladder containing interacting
electrons modeled by the following Hamiltonian (Fig. 1b):

Hring ¼ �eVg

X

i;l;s
cyil ;scil ;s � tJðc

y

il ;s
cilþ1;se�if=L þH:c:Þ

�t?
X

i;s
ðcyi1 ;sci2 ;s þH:c:Þ þ JJ

X

i;l

Sil � Silþ1 þ J?
X

i

Si1 � Si2 : ð5Þ

The AB ring has L rungs, the fermionic operators cyil ;s create
electrons at sites i ¼ 1; L of leg l ¼ 1;2 with spin s and
Sil ¼
P

abcyilasabcilb is the spin at site i and leg l. No double
occupancy is allowed.

For this ladder case the transmittance will depend on the
anisotropy parameters. We find signs of charge–spin separation,
i.e., dips in the transmittance for fractional values of the magnetic
flux, for two extreme cases: weakly ðt?5tJÞ and strongly ðt?ctJÞ

coupled chains (Fig. 5).
For the ladder with t? ¼ 0 and a total even number of electrons

N in the ground state, the lowest-lying state has N=2 electrons in
each leg. As we are calculating the transmittance through one leg
only and the intermediate state has one particle less, from the
condition for fd with Ne ¼ N=2� 1, one expects to see dips at
fd ¼ pðð2nþ 1Þ=N=2� 1Þ. In Fig. 5, for the weakly coupled case
with N ¼ 6 particles, each leg has, predominantly, Ne þ 1 ¼ 3
electrons leading to a dip at f ¼ p=2. When t? increases the dips
disappear until the opposite strongly coupled chain regime is
reached. In this limit and for J ¼ 0, the bands corresponding to the
bonding and antibonding states of each rung are very far apart
leading to an effective one-dimensional system in one of the
bands, where dips might reappear.

Now the total number of electrons in the lower band
corresponds to the total filling N (for a less than half-filled band)
and the transmittance will involve Ne ¼ N � 1 electrons. Hence, if
the physics is similar to the infinite-U Hubbard chain, the dips will
be found at fluxes fd ¼ pðð2nþ 1Þ=N � 1Þ. In Fig. 5 we find that for
large values of t?=tJ, the dips correspond indeed to these fluxes.
For smaller values of t?, we find a shift in the location of the
minima and sometimes the appearence of new dips.
4.1. Effective model for a strongly coupled ladder

When the ratio between inter and intrachain couplings
t?=tJc1, our model (5) can be mapped to an effective model in
the subspace of the bonding states of each rung, using degenerate
perturbation theory up to second order in tJ [29]. The model is
valid for energies lower than t? and a less than half-filled system:

Heff ¼ �tJ
X

isðĉ
y

isĉ iþ1;s þH:c:Þ þ J
X

i

ðSi � Siþ1 � 1=4Þ

þ t00
X

is
ðĉ
y

iþ2;sĉ isðSi � Siþ1 � 1=4Þ þH:c:Þ; ð6Þ

where J ¼ JJ=2þ 2t2
J =ðt? � 3J?=4Þ, t00 ¼ t2

J =ðt? � 3J?=4Þ and
ĉ is ¼ 1=

ffiffiffi
2
p
ðci1 ;s þ ci2 ;sÞ, the bonding operator. The ‘‘second’’



ARTICLE IN PRESS

0 0.2 0.4 0.6 0.8 1

φ/π

0

0.05

0.1

0.15

0.2

T

J||/ t|| = 0.11

J||/ t|| = 0.08

J||/ t|| = 0

J||/ t|| = 0.04

J||/ t|| = 0.01

Fig. 6. Transmittance through a strongly coupled ladder described by Heff for finite

interactions JJ=J? ¼ t2
J =t2
? for t? ¼ 10tJ, L ¼ 6 rungs and N ¼ Ne þ 1 ¼ 6 electrons

(curves are shifted vertically for better visualization).

J. Rincón et al. / Physica B 404 (2009) 3147–31503150
dimension of the original ladder is reflected by the second
nearest-neighbor term which tends to destroy the dips.

In Fig. 6 we show the conductance in this limit calculated using
this effective model where the dips are visible and correspond to
the fluxes given by Eq. (4) for small interactions J. Taking into
account the fact that the J’s are obtained perturbatively from the
large-U Hubbard model, we keep their relation as J?=JJ ¼ t2

?=t2
J .

Here we observe that the dips are still present for finite J’s,
however, as for the J ¼ 0 case where the dips were affected by the
interchain hopping parameter, in this case we also find shifts and
reductions in the their depth caused by the interactions.
5. Conclusions

To conclude, in this paper we have shown the existence of dips
in the conductance through finite strongly correlated low-
dimensional systems which arise as a consequence of non-trivial
destructive interference effects at fractional values of the flux
quantum F0. This feature is a strong indication of the existence of
SCS in these systems. We have presented results for the
transmittance through Hubbard and t � J one-dimensional and
anisotropic ladder rings. In all cases we find that the dip structure
is robust against finite interactions (small J’s or large UÞ. However,
we find new dips and shifts of their positions with respect to the
ideal scenario of complete charge–spin separation. We also find
that the dip structure, originally predicted for 1D systems, is still
present in the presence of a second transmission channel modeled
by a ladder system in the anisotropic limit. For a wide range of
parameters, in particular for weak and strong hoppings across the
rungs t?, the dips remain, but they disappear for intermediate
values of this parameter. These findings open the possibility of
measuring this peculiar phenomenon in real nanoscopic systems
or artificial structures, such as rings of quantum dots on the sub-
mm scale, where the magnetic fields needed for this kind of
experiments become accessible.
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