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Abstract Autoscaling strategies achieve efficient and

cheap executions of scientific workflows running in the

cloud by determining appropriate type and amount of

virtual machine instances to use while scheduling the

tasks/data . Current strategies only consider on-demand

instances ignoring the advantages of a mixed cloud in-

frastructure comprising also spot instances. Although

the latter type of instances are subject to failures and

therefore provide an unreliable infrastructure, they po-

tentially offer significant cost and time improvements

if used wisely. This paper discusses a novel autoscaling

strategy with two features. First, it combines both types

of instances to acquire a better cost-performance bal-

ance in the infrastructure. And second, it uses heuris-

tic scheduling to deal with the unreliability of spot in-

stances. Simulated experiments based on 4 scientific

workflows showed substantial makespan and cost reduc-

tions of our strategy when compared with a reference

strategy from the state of the art entitled Scaling First.

These promising results represent a step towards new
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and better strategies for workflow autoscaling in the

cloud.
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1 Introduction

With the advent of cloud, scientific computing has been

empowered with an advantageously paradigm for in-

silico research. Cloud computing offers transparent and

on-demand access to computational and storage resources

that fulfill the great demands of such scientific applica-

tions.

Cloud computing enables the acquisition of comput-

ing infrastructures on the fly with the help of virtual-

ization technologies [6]. Several types of Virtual Ma-

chine (VM) instances offer a wide spectrum of hard-

ware and software configurations to the under a pay-

per-use scheme. Typically, the prices differ according

to the type of instance acquired, but prices may also

vary according to their pricing model.

There are at least two different pricing models under

which the instances can be acquired. On the one hand,

on-demand instances can be purchased for a fixed price

typically charged by hour of use. This is the most com-

mon pricing model across public cloud providers. On

the other hand, there are also the so-called spot in-

stances whose prices fluctuate dynamically decreasing

during low demand periods. Cloud providers use this

strategy to increase the utilization of their resources

and thus their profits. Amazon was the pioneer on the

provisioning of spot instances [2].

Spot instances are generally much cheaper than their

on-demand counterpart. In some cases, spot prices show

reductions of more than a 50% with respect to the
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on-demand prices [2]. Although at first sight spot in-

stances seem very attractive for maximizing the cost-

performance of an infrastructure, they involve a com-

promise between cost and reliability and therefore they

must be used wisely. In the spot-instances model the

user must bid the maximum price that he/she is will-

ing to pay for each instance. If the spot price over-

comes such bid, an out-of-bid error occurs and the in-

stances are terminated, abruptly interrupting the tasks

that may be running in these instances.

Many efforts have been proposed to take advantage

of cloud-infrastructure services in the domain of scien-

tific workflows [29,23]. Having in mind that scientific

workflows usually comprise hundreds or thousands of

tasks, and that a wide spectrum of VM-instance types

and pricing models are available, determining before-

hand the right amount and type of necessary instances

for an application is very difficult. First, because the

unbalance of task durations and the existing dependen-

cies generate variable computation workloads along the

application’s execution. Second, because of the charac-

teristic performance variability of the cloud [24,10] it

may be difficult to accurately predict the duration of

tasks.

Autoscaling strategies [16,17] have to deal with the

dynamic scaling of the infrastructure according to the

application needs (i.e. determining the number and type

of instances) and the on-line scheduling of such tasks

on the running infrastructure. These are two interde-

pendent problems that must be solved simultaneously.

Even more, this scheduling problem in which work-

flow tasks have to be mapped onto a given set of re-

sources (VM instances) is NP-hard, whereby, autoscal-

ing strategies apply heuristics to efficiently find the scal-

ing and scheduling plans. Up to now, autoscaling strate-

gies for workflow applications have focused on the man-

agement of multiple workflow applications subject to

deadline or budget constraints. Although these strate-

gies represent important advances in the area, none of

them take into consideration the advantages of using

spot instances.

Motivated by this gap, we present a novel strategy

for the autoscaling of scientific workflows aiming for

makespan minimization subject to budget constraints,

which builds on previous work of our own [18]. Our

strategy is called Spot Instances Aware Autoscaling (SIAA).

The novelty of SIAA and therefore a major contribu-

tion relies on that it is the first strategy addressing the

problem of autoscaling of scientific workflows consid-

ering a combination of on-demand and spot instances.

Implications of using such unreliable spot instances in

the workflow execution process are profound because

the unwise use of them may lead to serious degrada-

tions in performance, which is the basis for our second

contribution. SIAA implements a new heuristic schedul-

ing algorithm that prioritizes the execution of tasks on

their fastest instances to improve workflow makespan.

The heuristic also prioritizes the execution of critical

tasks on reliable on-demand instances to mitigate the

negative effects of out-of-bid-errors that might happen

from the use of spot instances.

We evaluate the performance of our autoscaling strat-

egy on four widely used benchmark workflow applica-

tions. To such end, we analyzed the influence of two

bid-price prediction methods considering real data of

spot prices. On the other hand, we now evaluate the

(separate and joint) contributions based on time, cost

and number of instances derived from the use of spot

instances and the heuristic scheduling algorithm. Such

an analysis was missing in our previous work [18]. In

addition, we provide an analysis of the statistical sig-

nificance of our results and therefore the strength of our

claims.

The remainder of this paper is organized as follows.

Next section formalizes the problem of scientific work-

flow autoscaling and presents current efforts regarding

cloud-based autoscaling strategies for workflow applica-

tions. Section 3 examines the autoscaling strategy used

as a baseline for comparisons in our experiments. Sec-

tion 4 explains the details of our strategy. Then, Sec-

tion 5 presents the experiments carried out over 4 sci-

entific workflow applications and discusses the results

obtained. Section 6 presents the most relevant related

work and highlight the differences with our strategy. Fi-

nally, Section 7 concludes this work and provides future

research directions.

2 Workflow Autoscaling

This section discusses the main concepts behind the

problem of scientific workflow autoscaling in clouds, the

underlying assumptions, and the existing strategies to

tackle the problem.

2.1 Problem Definition

In this paper we address the problem of executing stan-

dalone scientific workflows in public clouds. The objec-

tive of autoscaling strategies discussed in this paper is

the minimization of workflow makespan subject to bud-

get constraints.

Workflow applications comprise a set of reusable

software components denominated tasks. We focus on

Directed Acyclic Graph (DAG)-like workflows in which
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tasks are represented by nodes, and dependencies be-

tween them are represented by edges in the graph. We

assume that there is a central storage for data and that

transfer operations are carried out as part of the execu-

tion of tasks. In other words, dependencies in the graph

represent control-flows.

While executing a workflow on the cloud, the per-

formance of tasks differs according to the type of Vir-

tual Machine (VM) instances used. Tasks have differ-

ent profiles according to their balance between CPU

and I/O operations (both, network demands and data

processing) which makes them suitable for some types

of instances over other types. Different instance types

also differ in their associated price, which we assume

is charged by hour as in well–known cloud services like

Amazon’s Elastic Compute Cloud (EC2).

In practice, scientific workflows model experiments

involving a large number of tasks, and several hours of

computation and/or process large amounts of data. Au-

toscaling strategies aim to determine the proper amount

and type of resources to acquire in order to fulfill the

variable workload patterns of the applications. Autoscal-

ing regards two interrelated problems: (a) the determi-

nation of the proper number and type of VM instances,

and (b) the scheduling of the workflow tasks onto the

available instances. Both sub-problems are NP-hard and

therefore the solutions proposed to date are based on

heuristics [16,17,18].

The fact that (i) the applications present variable

workload patterns, that (ii) performance models of tasks

are imperfect, and that (iii) cloud infrastructures present

variable performance, demand that autoscaling strate-

gies follow a dynamic approach [16,17]. Such dynamism

permits the autoscalers to adapt the execution and mit-

igate the effect of such discrepancies between the in-

formation available (estimations) and the actual pro-

gression of the execution. In a broad sense, autoscaling

strategies need to constantly monitor the status of the

environment (applications plus infrastructure) and take

the proper scaling and scheduling decisions during the

entire execution of an application.

More formally, autoscaling strategies are executed

periodically adjusting the number and type of VM in-

stances used, at the same time that tasks are being

scheduled. On each monitoring interval, the autoscal-

ing strategy addresses a makespan minimization prob-

lem subject to a budget1.

Given τ , the set of tasks in the workflow, and T vm,

the set of available VM types, such optimization prob-

lem is defined as:

1 Please note that other optimization objectives are also
valid such as the minimization of energy consumption, for
example.

min{makespan(Xsca, Xsch, S)} (1)

s.t. : cost(Xsca) ≤ B,

where Xsca = {T vm → N} is a scaling plan that indi-

cates the number of necessary instances of each type for

the next hour of computation, Xsch = {τ → T vm} is a

scheduling plan that maps each task t ∈ τ to a type of

instance where it will execute, S represents the current

status of the infrastructure and the application, and B

is the budget for the next hour of computation.

In this way, autoscaling strategies adapt the num-

ber of required instances within the budget constraint

and minimize workflow makespan by periodically solv-

ing the optimization problem presented on Eq. (1).

For each of the optimization problems solved, the

objective function makespan(Xsca, Xsch, S) depends on

the current status of the application and the infras-

tructure as well as the estimations of start time and

durations of tasks not yet executed. In other words,

makespan is computed as:

makespan = max
t∈τ
{EST(t) + dt} −min

t∈τ
{EST(t)}.

Task Durations The duration dt of a task t can be es-

timated using some of the existent performance predic-

tion mechanism [19,20]. Here, durations are estimated

considering the preferred instance type for each task.

The preferred instance type for a waiting task (i.e. a

task waiting for execution) is such that provides the

shortest execution time. That information is obtained

from the scheduling plan, Xsch. In the case of a running

task (i.e. a task that is executing on a VM instance),

the preferred instance type is just the type of the in-

stance where the task is currently executing according

to the current status, S. For running tasks, the remain-

ing execution time is estimated by subtracting the time

that the task has been running.

Tasks Earliest Start Time The earliest start time is the

minimum time at which a task can start its execution

considering its predecessors in the associated workflow.

The earliest start time (EST) of a waiting task t is

computed as:

EST(t) = max
1≤k≤p

{EST(tk) + dk},

where t is a waiting task, tk is one of the p parent tasks

of t and dk is the estimated duration of tk. For tasks

which are ready to execute, the EST is set to the current

time, i.e. the time at which the autoscaling problem is

being solved.
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Workflow Finish Time The finish time of a workflow

is the time at which the application completes its exe-

cution and it is computed as:

FT = max
1≤k≤n

{EST(tk) + dk}, (2)

where tk is one of the n tasks in the application.

Budget The budget B for the execution of each appli-

cation was fixed in concordance with the work of Mao

and Humphrey [17]. To get a reasonable budget esti-

mation instead of using arbitrary values, we computed

the average quotient between the cost and makespan

considering all instance types and on-demand prices.

Formally, the budget B for an application is computed

as:

B = avg
i∈T vm


∑
t∈τ
dt,i · pi

makespani

 , (3)

where T vm is the list of virtual machine types, τ is

the list of tasks in the workflow, dt,i is the estimated

running of executing the task t on an instance of type i,

pi is the on-demand price of (one CPU) of an instance

of type i for a period of time equal to one hour, and

makespani is the makespan of the application assuming

an unrestricted number of instances of type i 2.

2.2 Autoscaling Strategies

In recent years, several strategies for the autoscaling

of workflow applications have been designed. Strategies

can be focused on cost minimization [16] or makespan

minimization [17]. Under the makespan minimization

category, two algorithms entitled Scheduling First and

Scaling First have been proposed.

Both strategies, Scheduling First and Scaling First,

respond to the same scheme consisting of 4 stages com-

prising: (i) the collection of runtime information, (ii)

running a particular autoscaling algorithm, (iii) the

consolidation of instances, and (iv) idle-instances shut-

down. Autoscaling is performed, following these 4 stages,

in an hourly basis to mitigate the effects derived from

the discrepancy between the performance models and

the actual duration of tasks. This generic scheme is pre-

sented in Figure 1. The following sections are dedicated

to the description of each of these stages.

2 This makespan estimation is computed offline and should
not be confused with the makespan value to optimize in
Eq (1).

Fig. 1: Generic operational structure of autoscaling

strategies.

2.2.1 Collect Runtime Information

On each control loop, the strategy updates informa-

tion regarding the status of the running instances and

information of the execution of workflow tasks. This in-

formation is crucial because it permits the adaptation

of the strategy to the evolution of the application as it

runs [16,17].

2.2.2 Run an Autoscaling Algorithm

The generic autoscaling strategy can be instantiated

with a particular autoscaling algorithm that solves the

optimization problem presented on Eq. (1).

The obtained scaling plan Xsca is used to acquire

new instances taking into account those that might be

already running due to previous executions of the au-

toscaling algorithm. The scheduling plan Xsch is used

to enqueue each task t into the queue associated to the
corresponding VM type. In each queue, tasks compete

for the available instances. The submission of a given

task to one of such instances for their execution is per-

formed by a scheduling algorithm. Two commonplace

autoscaling algorithms are briefly described next.

The Scheduling-First algorithm [17] first determines

the fastest execution plan and then acquires the cloud

instances. The details of this algorithm are not going

to be further discussed nor will be included in the ex-

perimentation of this paper. The arguments supporting

such decision are presented in the following section.

In contrast to the previous algorithm, Scaling First [17]

begins by determining the number and type of instances

within the budget constraint, and then schedules the

tasks on the acquired resources to minimize the work-

flow makespan. We adopted this autoscaling algorithm

as baseline-comparison in our experiments because in

our previous study [18] such algorithm achieved much

better makespan reductions than Scheduling First. In

such study, we found that Scaling First outperformed
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Scheduling First within the range of 43.8% to 85.6% in

terms of speedup considering 4 benchmark workflows.

We claim that these results are sufficient reason to ex-

clude Scheduling First from this work. Section 3 is en-

tirely dedicated to the analysis of Scaling First.

2.2.3 Consolidate Instances

As the Scheduling-First and Scaling-First algorithms

schedule tasks to their fastest resources to minimize

the workflow makespan, some periods of unused com-

puting power may arise. In such cases, makespan can

be effectively reduced by re-scheduling ready tasks (i.e.

waiting tasks whose parents completed their execution)

to unused instances. If the idle instance is faster than

the originally assigned instance type, the task is re-

scheduled directly. However, if the idle instance is slower

than the originally assigned instance type, the task can

be re-scheduled only if no task will be ready before this

task terminates.

Instances Consolidation is a process complementary

to scheduling for taking advantage of unused computa-

tion intervals of instances. When possible, such intervals

are harnessed by reassigning tasks to execution queues

in different instance types. Instances consolidation in

this context should not be confused with VM consoli-

dation, which is a common strategy in the cloud for the

co-allocation of multiple instances on the same phys-

ical machine as a way to efficiently use the available

resources [8].

2.2.4 Shutdown Idle Instances

For avoiding the use of unnecessary instances, and there-

fore reducing monetary costs, idle instances close to

an hour of computation are terminated. Note that this

stage is very important because it virtually scales down

the infrastructure when the application workload de-

creases.

3 Scaling-First Autoscaling Strategy

In general terms Scaling First, as its name suggests, first

determines the number and type of necessary cloud in-

stances (scaling phase) and then schedules the workflow

tasks (scheduling phase) [17].

3.1 Scaling Phase

The main objective of this phase is determining a scal-

ing plan for the acquisition of instances. Then, the nec-

essary amount of instances of each type are requested

according to such plan. For a better comprehension of

the scaling phase, the following paragraphs discuss an

example adapted from [17]. Without loss of generality,

we assume 8 tasks (belonging to the same workflow)

that will be running during the following hour of com-

putation. Three VM types are available: large (L) with

price 0.5 USD/hour, medium (M) with price 0.3 USD/hour

and small (S) with price 0.1 USD/hour. Figure 2 illus-

trates the process. We also assume that the available

budget for the next hour is 1.4 USD.

Fig. 2: Scaling phase for the Scaling-First autoscal-

ing strategy. Labels below each instance represent the

needed instance-hours. This image has been adapted

from [17].

From the estimated duration of tasks on their pre-

ferred VM types, the algorithm computes the required

instance hours. From all the involved tasks instance-

hour requirements are summed up to determine the

unconstrained scaling plan which comprises 3 type-L

instances, 2 type-M instances and 1 type-S instance,

with an associated cost Cfast = 2.2 USD. As we have a

limited budget, the unconstrained amount of instances

must be scaled to fulfill the budget constraint. There-

fore the plan is scaled by the factor r = B/Cfast giving

a scaling plan comprising two type-L instances one in-

stance for each of the remaining VM types.

The following paragraphs explain the process more

formally. Algorithm 1 presents the pseudo-code of the

scaling algorithm.

Algorithm 1 Scaling First: scaling algorithm.

1: procedure scaleInfrastructure:
2: tasks← getTasksInThePeriod()
3: c← estimateConsumption(tasks)
4: c← scale(c, B/Cfast)
5: for all t in VMTypes do: . get instances
6: requestInstances(codt )

To determine the number and type of instances the

algorithm estimates the consumption of instances for

the next hour assuming that the tasks are executed
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on their preferred instance type. This estimated con-

sumption is represented by a vector c = [c1, c2, . . . , cm],

where each component ci is the number of instances of

the ith VM type to acquire. Each ci value is estimated

by adding the computation hour portions for all the

tasks which prefer and instance of the ith VM type. In

the case of running tasks, the computation load is set to

the type of the instance where such task is executing.

A consumption vector is used to compute the cost Cfast

associated to the needed instances. However, to fit the

scaling plan according to the budget B, this consump-

tion vector c is scaled down by the factor r = B/Cfast

as: scale(c, r) =

{
round(c · r) r < 1

round(c) r ≥ 1
, where c ·r is the

product of a vector and a scalar and the round(·) func-

tion is applied to each element of the resulting vector.

Instances are then acquired according to the re-

scaled consumption vector. It is important to note that

in this process only on-demand instances are consid-

ered.

3.2 Scheduling Phase

Once the necessary instances have been requested, the

task-scheduling process starts. Figure 3 illustrates the

scheduling phase process.

Fig. 3: Task scheduling in the Scaling-First autoscaling

strategy.

Following with our example, each of the task which

are ready for execution are inserted in the correspond-

ing queue according to their preferred VM type. Ready

tasks are taken from the queues according to their pri-

ority while there are available instances of such type.

From Figure 3a we can see that tasks T1 and T5 (in

green) are scheduled to 2 type-L instances, and all their

subsequent tasks are waiting for execution in their cor-

responding queues.

Figure 3b shows the status just after the termina-

tion of T1 and T5 (in blue). Tasks T2 and T6 are sub-

mitted to the two type-L instances that have recently

become idle from the termination of T1 and T5. Note

that T3 has been extracted from their corresponding

queue and is executing on the only type-M instance

available. Although T7 is ready for execution (repre-

sented in orange) there are no type-M instances avail-

able for submission and therefore the task remains in

the queue3.

Figure 3c shows the status just after the termina-

tion of T2, T3 and T6 (now in blue) and that tasks

T4 and T7 have been scheduled to their corresponding

instances. In this stage, T8 is in the queue waiting for

the termination of T7 (its parent task) and the termina-

tion of T4 that is running on the only available S-type

instance.

The following paragraphs explain the process in de-

tail. Algorithm 2 presents the pseudo-code of the schedul-

ing algorithm implemented by Scaling First.

Algorithm 2 Scaling First: scheduling algorithm.

1: procedure scheduleTasks(instances): . input:lists of
available on-demand instances

2: readyTasks← getReadyTasks() . tasks ready to run
3: queue← sortByPriority(readyTasks)
4: while notEmpty(instances) and notEmpty(queue)

do:
5: task ← queue.pop()
6: instance← preferred(task, instancesod)
7: schedule(task, instance) . submit for execution
8: if allCPUsBusy(instance) then:
9: remove(instance, instances)

The algorithm starts by sorting the ready tasks ac-

cording to priority (lines 2 and 3). Here, it is important

to remark that different workflows might be executing

in the cloud and tasks inherit the priority of the work-

flow they belong to. Therefore this prioritizing scheme

focus on establishing a preference between tasks belong-

ing to different workflows. As in this study we focus on

3 Note that at this point there is an idle type-S instance,
then it should be possible evaluate the consolidation of the
task as explained in Section 2.2.3.
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the management of a single workflow application at a

time, the tasks selection procedure turns out to be one

that chooses tasks considering the order established by

the dependencies between them. Random selection of

tasks is used to break ties between two o more compet-

ing tasks.

One by one, tasks are scheduled until there are no

more ready tasks to schedule or all the instances are

busy (line 4). Each selected task is voraciously sched-

uled on an idle virtual CPU of an available instance of

their preferred type (lines 5 through 7). For future ref-

erences within this paper, we call this algorithm the
�greedy� scheduling algorithm. When a task termi-

nates its execution, the virtual CPU (or processor) used

is registered as free. Then, runtime information is up-

dated and the scheduling algorithm is invoked with the

intention of allocating more tasks to the recently re-

leased (idle) processor.

At this point, it is worth to point out that the

scheduling algorithm is invoked in two contexts: (i) in

an hourly basis, i.e. each time the autoscaling algorithm

is executed, or (ii) each time a task terminates its exe-

cution.

4 SIAA: Autoscaling Using Spot Instances

Our Spot Instances Aware Autoscaling (SIAA) strat-

egy differs from Scaling First in two main aspects. On

the one hand, it uses a scaling algorithm that permits

the acquisition of a cloud infrastructure comprising on-

demand and spot instances. On the other hand, uses an

heuristic scheduling algorithm to minimize the work-

flow makespan and reduce the probability that failing

spot instances may interrupt the execution of critical

tasks.

SIAA follows the same philosophy as the Scaling-

First algorithm, i.e. it starts determining a scaling plan

and then schedules the tasks for running on the avail-

able instances. Following sections describe both algo-

rithms.

4.1 Scaling Algorithm

SIAA relies on the exploitation of a mixed infrastruc-

ture comprising on-demand and spot instances to at-

tain an overall better cost-performance. As said in Sec-

tion 1, on-demand instances provide a reliable comput-

ing platform suitable for the execution of critical tasks

but at expenses of a higher cost than spot instances.

Conversely, spot instances can be used to extend such

infrastructure with unreliable instances offering better

cost-efficiency, which are ideal for short duration or

non-critical tasks.

A scaling plan in SIAA is defined as Xsca = {T vm×
M → N}. The plan indicates the amount of instances

to acquire for each combination of instance type T vm

and pricing model M (i.e. on-demand or spot).

The balance between both types of instances is gov-

erned by the spots ratio parameter (α ∈ [0, 1]), which

is used to determine how to split the original budget

B and set the maximum prices to pay for on-demand

and spot instances respectively. According to α, the

budget for on-demand instances is computed as Bod =

(1 − α) · B and the budget for spot instances is com-

puted as Bs = α · B. Algorithm 3 presents the process

of infrastructure scaling.

Algorithm 3 SIAA: scaling algorithm.

1: procedure scaleInfrastructure(biddingStrategy):
. step 1: determine on-demand instances

2: tasks← getTasksInThePeriod()
3: c← estimateConsumption(tasks) . unbound

consumption
4: cod ← scale(c, Bod/Cfast)

. step 2: determine spot instances
5: c← c− cod . unbound consumption
6: p← biddingStrategy.predictBidPrices()
7: cs ← scale(c, Bs/Cs)

. step 3: request instances
8: for all t in VMTypes do:
9: requestInstances(codt )

10: requestSpotInstances(cst ,p)

The scaling algorithm follows 3 steps:

1. determine on-demand instances (see Section 4.1.1),

2. determine spot instances (see Section 4.1.2), and

3. acquire instances (see Section 4.1.3).

4.1.1 Step 1: Determine on-demand instances

To generate the scaling plan, the algorithm starts by es-

timating the computation load for the next hour (lines 2

and 3) as Scaling First does. Then, the consumption

vector for the required on-demand instances cod is de-

termined by fitting the number of instances according

to the available budget Bod. The cod vector is obtained

scaling the unconstrained consumption vector c by the

factor Bod/Cfast, where Cfast is the total cost of acquir-

ing all the instances in c using the on-demand instance

prices (line 4). Note that this first step in our algorithm

is very similar to the scaling algorithm implemented in

Scaling First, but the former fits the instances to a por-

tion of the original budget.
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4.1.2 Step 2: Determine spot instances

Analogously, the consumption vector of spot instances

cs is determined by scaling the remaining unconstrained

instances: c − cod (line 5). To such end, a vector p =

[p1, p2, . . . , pm] of bid prices is computed having one

value for each instance type. The components pi of such

vector (bid prices) can be obtained using any bid price

prediction method (line 6). Then the consumption vec-

tor c is scaled by the factor Bs/Cs using the same cri-

teria as before (line 7). Note that Cs is the total cost of

acquiring all the instances in cs according to the vector

of bid prices p.

Returning to bid prediction of spot instances, many

methods have been proposed [1,26,27]. This study re-

lies on 2 bidding methods described on Table 1.

Table 1: Bidding methods.

Strategy Bid value

Current the current price

Probabilistic a price over the current one that satisfies
that the probability of failure is below φ,
where φ ∈ {0.1, 0.05, 0.01}†

† These probabilities are computed according to a history of
prices that is previous to the current time.

It is important to note that the selection of a bid-

ding method has a great influence on various aspects of

SIAA’s performance. On the one hand, methods that

bid a low price increase the probability of task failures

derived from out-of-bid errors, but increase the poten-

tial number of instances to acquire. On the other hand,

methods that bid higher prices are less prone to fail-

ures but reduce the number of instances that SIAA can

acquire within the budget constraints.

4.1.3 Step 3: Acquire instances

Both consumption vectors (cod and cs) represent the

scaling plan Xsca generated by SIAA. According to

them, the algorithm acquires the necessary instances

considering the number of instances already running

(lines 10 to 12). For each VM type t, the algorithm

requests the necessary amount of on-demand instances

to reach the cod
t quantity. Similarly manner, for each

VM type t, a number of cst spot instances is requested,

considering not only the amount of instances already

running but also the recently requested on-demand in-

stances of type t.

4.2 Heuristic Task Scheduling

As part of the runtime information collection stage (up-

date of task durations and earliest start time of tasks),

SIAA computes the late start time and slack times to

determine which are the critical tasks in the workflow.

This information is crucial for an intelligent scheduling

of tasks.

The late start time (LST) is the maximum start

time at which a task can start without delaying any of

its successor tasks. The late start time of a task t is

computed as:

LST(t) = min
1≤k≤c

{LST(tk)− d},

where tk is one of the c child tasks of t and d is the

estimated duration of t. For each of the n exit tasks

the LST is computed as LST(t) = FT − dt, where FT

is finish time of the workflow computed according to

Eq. (2).

Critical tasks are those tasks that if delayed, will

produce an increment of the application makespan. The

slack time of a task permits identifying which of the

tasks are critical. The slack time of a task t is com-

puted as slack(t) = LST(t)−EST(t). Tasks with a slack

time of 0 are critical tasks and should not be delayed.

Slack times are used to establish a preference between

tasks according to its degree of criticality, i.e. task with

shorter slack times should be attended first.

4.2.1 Scheduling Algorithm

At this point in the process, the infrastructure has been

fitted to the needs for the next hour of computation for
a given application. The scheduling algorithm is now in

charge of efficiently executing the workflow considering

the available instances. SIAA uses an heuristic schedul-

ing algorithm that optimizes the workflow makespan.

The objective of makespan minimization is accom-

plished keeping in mind two premises:

1. execute the tasks as fast as possible, and

2. minimize the negative effects of instance failures in

the overall makespan.

Algorithm 4 describes the pseudo-code of the scheduling

strategy implemented by SIAA.

The scheduling algorithm undertakes the minimiza-

tion of workflow makespan by reducing the execution

time of critical tasks. Slack times are used to determine

a priority for the selection of tasks during scheduling.

Those tasks ready to execute are sorted by their slack

times in increasing order (line 4), i.e. first those tasks

that have smaller margin for delay. This criterion first

executes first those tasks which potentially have more
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Algorithm 4 SIAA: scheduling algorithm.

1: procedure ScheduleTasks(instancesod, instancess): .

input:lists of available on-demand and spot instances
2: readyTasks← getReadyTasks() . tasks ready to run
3: queue← ∅ . slack priority queue
4: queue.enqueueAll(readyTasks)
5: while notEmpty(queue) and notEmpty(instancesod∪

instancess) do:
6: task ← queue.pop() . get tasks by priority
7: instance← getECTInstance(task, instancesod)
8: if no on-demand instance is available then: .

check for available spot instances
9: instance← getECTInstance(task, instancess)

10: schedule(task, instance) . submit for execution
11: if allCPUsBusy(instance) then:
12: remove(instance, instances)

impact on workflow makespan. One by one, tasks are

scheduled until there are no more ready tasks to sched-

ule or all the instances are busy (line 5).

Tasks are scheduled to instances according to two

criteria. First, tasks are allocated to on-demand in-

stances (line 7), but if there are no available instances,

the algorithm checks the availability of spot instances

(line 9). This policy favors that failures, if occur, affect

non-critical tasks that could be re-scheduled without a

large impact on the overall makespan as they have a

wider margin for delays (larger slack times). Second,

tasks are allocated to the instances that promise the

earliest completion time (ECT). This policy is applied

while selecting an on-demand or a spot instance for the

task at hand. In this way the algorithm promotes the

execution of tasks on the fastest possible (available) in-

stances.

4.2.2 Tasks Termination Handling

As in the case of Scaling First, each time a task sucess-

fully finishes its execution the processor (virtual CPU)

used is marked as free. When a task is terminated due

to an out-of-bid error, the task is re-inserted in the

corresponding execution queue for its re-scheduling. In

both cases, the workflow information is updated and

the scheduling algorithm is invoked to continue with

the execution of tasks.

As in the case of Scaling First, it is worth to point

out that the scheduling algorithm is invoked in two con-

texts: (i) in an hourly basis, each time the autoscaling

algorithm is executed, or (ii) each time a task termi-

nates its execution or fails due to an out-of-bid error.

These events are handled in a separate thread of the

autoscaling algorithm.

5 Experimental Settings and Results

For validating our strategy, Scaling First was used as

baseline while evaluating performance in terms of num-

ber of instances acquired, out-of-bid errors, task fail-

ures, speedup and execution cost. SIAA was configured

using several settings to evaluate the influence of both

the scaling and the scheduling algorithms implemented

on it. Experiments consists on the evaluation of such au-

toscaling strategies/configurations considering a wide

number of simulated scenarios using the CloudSim sim-

ulator [7] version 3.0. Section 5.1 details the used ex-

perimental settings, then, sections 5.2 to 5.6 discuss the

results obtained.

5.1 Experimental Settings

Workflow Applications Different scientific workflow ap-

plications [4,11] from the areas of Geosciences, Astron-

omy and Bioinformatics were used to validate the per-

formance of the autoscaling strategies under realistic

workload patterns. Mentioned applications are:

– CyberShake (seismic hazard simulation) [13],

– LIGO’s Inspiral (detection of gravitational waves) [5],

– Montage (generation of mosaics from the sky) [3],

and

– SIPHT (search for small untranslated RNAs) [12].

This selection is based on the fact that such applica-

tions have been characterized in depth by recognized

researchers in the area [4,11]. These benchmark appli-

cations have been used in many studies and they are

convenient for replicability of experiments. In addition,

these four applications present very dissimilar workload

patterns and structure of dependencies appropriate for

studying the behavior of the autoscaling strategies un-

der different relevant conditions. Figure 4 shows the

tasks profile for the studied workflow applications. The

figure presents the median duration in minutes and the

number of tasks grouped by task type. Each application

comprises 1000 tasks except for SIPHT that comprises

968 tasks.

From the figure can be seen that the applications

present very different workload patterns resulting from

the different types and number of tasks. CyberShake

and Montage comprise many short-duration tasks, and

just a few of them (4 and 3 respectively) have dura-

tions that exceed one hour of computation. On the

other hand, LIGO’s Inspiral and SIPHT comprise many

long-duration tasks with durations that exceed 1 hour

of computation.

The structure of task dependencies on each workflow

application are also very dissimilar as can be appreci-
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Fig. 4: Tasks profile of the scientific workflows. Bars represent the median task duration for each type in minutes

using a logarithmic scale. The label on each bar represents the number of tasks for each type in the corresponding

workflow application.

ated from Figure 5. For a more insightful analysis of

these applications we invite the reader to refer to other

publications [4,11].

CyberShake and Montage present a large number

of independent short-duration tasks allowing a greater

parallelism. Such applications are prone to be bene-

fited from the exploitation of (cheaper) spot instances

as they permit the acquisition of large-size infrastruc-

tures. Therefore it is reasonable to think that the use of

spot instances will impact positively on makespan and

cost.

In opposition to the previously mentioned applica-

tions, LIGO’s Inspiral and Montage present a num-

ber of long-duration tasks, which are more sensitive to

out-of-bid errors. Instance failures on such tasks would

have a strong negative impact on makespan and cost as

tasks need to be restarted and new instances have to

be acquired in order to process such tasks. Therefore,

it would be expected that using heuristic scheduling

will avoid the occurrence of errors affecting such long-

duration tasks, leading to superior speedups and cost

savings.

VM Instances Table 2 presents the characteristics of

each type of on-demand instances considered during

the experimentation. Values in the table correspond

to actual characteristics of Amazon Elastic Compute

Cloud (EC2) instances, where vCPU is the number of

(virtual) CPUs available for such instance type, ECUtot

(acronym for EC2 compute units) are the relative com-

puting power of the instances considering all the virtual

Table 2: Characteristics of the on-demand instances.

The data corresponds to instances belonging to the us-

west (Oregon) region.

VM type vCPU ECUtot ECU Price [USD]

t2.micro (GP) 1 1 1 0.013
m3.medium (GP) 1 3 2 0.07
c3.2xlarge (CO) 8 28 3.5 0.42
r3.xlarge (MO) 4 13 3.25 0.35
m3.2xlarge (GP) 8 26 3.25 0.56

CPUs4, ECU is the relative performance of one of the

CPUs, and the last column denotes the price in US dol-

lars (USD) of an hour of computation. Note that each

VM-type name is accompanied by a category label that

stands for the type of processes for which the instance

is best suitable:

– general purpose (GP): balanced characteristics suit-

able for most of the tasks,

– compute optimized (CO): best suitable for compute-

intensive tasks, and

– memory optimized (MO): best suitable for memory-

intensive tasks.

Instance types were selected to provide diverse spec-

trum of performance and price configurations.

Spot instances have the same characteristics pre-

sented on the above table except that their prices vary

4 One ECU is equivalent to a CPU capacity of a 1.0-1.2 GHz
2007 Opteron.
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(a) CyberShake. (b) LIGO’s Inspiral. (c) Montage. (d) SIPHT.

Fig. 5: Example of dependency structures on small versions of the studied workflows. Images have been adapted

from [4].

over time. For experimentation we used an actual his-

tory of Amazon EC2 spot prices that corresponds to

the period between March 7th and June 7th of 2016 for

the US-west region (Oregon).

The first two months of data were used to determine,

for each application, the bidding values that satisfy

that the probability of failure is below φ, where φ ∈
{0.1, 0.05, 0.01}. The data corresponding to the last month

of the history was used during the simulations as the

actual spot price variations. Using the data in such way

allowed us the evaluation of the bidding methods and

therefore the performance of the autoscaling strategies

while completely ignoring the future evolution of spot

prices, which is the real scenario for any EC2 user.

Duration of Tasks For the sake of realism, autoscalers

are equipped with a performance model which aims

to estimate the actual duration of tasks. It is worth

to point out that the differences between such estima-

tions and the actual duration of tasks produced by the

simulator, augments the degree of uncertainty that au-

toscalers face during the decision making process. It is

also important to highlight that, both, the estimated

and the actual task durations, are derived from refer-

ence duration of tasks provided as part of the descrip-

tions of the benchmark workflows [4,11].

The estimated duration of tasks is computed us-

ing a simple model, which considers the run-time of

such task on an instance type used as reference (i.e.

m3.2xlarge instance type) and the computing power

and disk performance of the instance where the task

is going to execute. Formally, the duration dij of a task

i on an instance of type j is estimated as:

destimated
ij = dref

i .µj .ρij ,

µj =
ECUref

ECUj
,

where, dref
i is the reference duration of the task i

provided in the workflow descriptions, µj is the rel-

ative CPU performance considering of the ECUs per

virtual CPU for an instance of type j (ECUj) and the

ECUs per virtual CPU for the reference instance type

(ECUref), and ρij is correction factor that rewards or

penalizes the reference duration dref
i if there is concor-

dance or not between the characteristics of the task

(CPU-intensive or memory-intensive) and the charac-

teristics of the instance type (GP, CO or MO), as seen

in Table 2.

Although this is a simple model, it is suitable for

the simulation experiments described in this study. It is

worth to point out that more robust methods could also

be applied [19,20], however the study of such methods

is beyond the scope of this paper.

The actual duration of tasks is computed inter-

nally by CloudSim during the simulation. To compute

the actual duration of a task, the simulator takes as

inputs:

1. the size of the task, which is the number of opera-

tions that the task has to perform, and

2. the computing power of the instance used to exe-

cute the task (i.e. the ECU for the corresponding

instance type).

The size si of a task i is computed by sampling from

a uniform distribution U(0.9sref
i , 1.1sref

i ), where sref
i is

the reference size of task i, which is equal to sref
i =

destimated
i · ECUref . This mechanism is implemented by

CloudSim as a way to model the performance variability

of the infrastructure.
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During the simulation, the actual duration dactual
ij of

a task i running on an instance j is:

dactual
ij = si/ECUj ,

where si is the size of task i and and ECUj is the

ECU/vCPU for the instance type j (see table 2). The

equation presented gives us a rough approximation of

the actual duration of a task, which is ultimately de-

fined also by the evolution of the simulation. For more

details on the operation of CloudSim, we invite the

reader to refer to the available bibliography and docu-

mentation [7].

Budget Allocation For each applicacion, we computed a

fit budget value, Bfit, according to Eq. (3). To generate

a larger variety of experimentation scenarios, from each

fit budget value we derived reduced and wide budgets.

The reduced and wide budgets are computed from the

fit budget (Bfit) as Breduced = 0.8 · Bfit and Bwide =

1.2 · Bfit respectively. Table 3 presents the estimated

budgets used for each workflow application.

Table 3: Estimated budgets for each workflow applica-

tion.

Workflow Breduced Bfit Bwide

CyberShake 4.04 5.04 6.05
LIGO’s Inspiral 7.28 9.09 10.91
Montage 1.39 1.74 2.09
SIPHT 1.48 1.85 2.21

Autoscaling Strategies For performing complete com-

parison between Scaling First and SIAA we defined dif-

ferent settings of SIAA to evaluate the improvements

resulting from the use of (i) spot instances, (ii) the

heuristic scheduling algorithm, and (iii) both features

together. Table 4 provides a summary of all the au-

toscaling strategies evaluated and their settings includ-

ing: if spot instances were considered, which bidding

strategy was used and if the heuristic scheduling algo-

rithm was used. As can be seen, 4 families of strategies

can be identified, namely Scaling First, SIAA-no-spots,

SIAA-greedy, and SIAA-full.

Experimental Scenarios The evaluation of the autoscal-

ing strategies was performed according to a series of sce-

narios described as follows. Each scenario is defined by

(i) the autoscaling strategy used (Scaling First, SIAA

with all its possible configurations), (ii) the workflow at

hand (CyberShake, LIGO’s Inspiral, Montage, SIPHT),

Table 4: Summary of the autoscaling strategies and

their configuration. Text in parenthesis P<0.1, P<0.05

and P<0.01 indicate that the failure probability is be-

low 0.1, 0.05 and 0.01.

Name Spot? Bidding Scheduling

Scaling First no - greedy

SIAA-no-spots no - heuristic

SIAA-greedy (current) yes current greedy
SIAA-greedy (P<0.1) yes prob. greedy
SIAA-greedy (P<0.05) yes prob. greedy
SIAA-greedy (P<0.01) yes prob. greedy

SIAA-full (current) yes current heuristic
SIAA-full (P<0.1) yes prob. heuristic
SIAA-full (P<0.05) yes prob. heuristic
SIAA-full (P<0.01) yes prob. heuristic

and (iii) the budget available (fit, reduced, wide). Each

experimental scenario was simulated 30 times (10 for

each type of budget) for statistical significance of re-

sults using the CloudSim simulator [7]. In all cases, task

durations were affected by a 20% error (uniformly dis-

tributed, as described in “Duration of Tasks”) to pro-

vide a more realistic environment according to the per-

formance variability of the cloud. This 20% variability

on performance was selected in concordance with the

settings used by other colleagues [16,17]. Table 5 sum-

marizes the parameters used in the experiments.

Table 5: Experimental settings. SIAA was configured

without using spot instances, and with spot instances

using the current price, and the probabilistic bidding

methods with probability of failure P<α and α ∈
{0.1, 0.05, 0.01}. These settings give a total of 1200 sim-

ulations.

Setting Value

Strategy Scaling First, SIAA (all 9 configurations)
Application CyberShake, LIGO, Montage, SIPHT
Budget fit, reduced, wide
Perf. var. 20%
Repetitions 30 (10 per type of budget)

5.2 Global Results

Table 6 presents the global results per strategy includ-

ing the mean values for the metrics of the number of in-

stances, the percentage of spot instances, speedup with

respect to the sequential execution of the workflows,

cost of execution and number of out-of-bid errors and
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task failures. The best performances are highlighted in

bold font.

As can be observed form the table, using spot in-

stances always permits the acquisition of a larger amount

of instances, being the extreme case, the two flavors of

SIAA using the current price bidding method. On the

other side of the spectrum we can find the two meth-

ods that disregard the use of spot instances, i.e. Scaling

First and SIAA-no-spots. The reader can observe that

the proportion of spot instances varies from 65.8% to

91.7%.

It is worth to note that acquiring a larger amount of

spot instances is not always convenient. We can observe

that the use of a näıve bidding strategy such as current

price leads to higher rates of task failures which impact

notably in the speedup of applications. A task failure

implies the re-execution of such task and therefore an

overhead in the total execution time5. As can be seen

from the table, the use of such bidding strategy leads to

a performance of the applications, which is below the

performance of the baseline strategy (Scaling First).

Considering the cost of execution, the behavior is

different and the presence of failures does not imply

so profound implications. The main difference relies on

the fact that in the case of failure the last partial hour

is not charged. Even more, the fact that the majority

of the tasks comprised in the studied applications have

a duration below 1 hour of execution leads to many

situations in which tasks start and finish their execution

on instances which are not charged.

Regarding speedup, except for SIAA-full (current)
and SIAA-greedy (current), our strategy always outper-

forms Scaling First. The widest speedup margins are

observed for the full configurations of SIAA (i.e. using

spot instances and heuristic scheduling). In terms of

execution cost, all the SIAA configurations outperform

Scaling First. The lowest costs are obtained by SIAA-

full followed by SIAA-greedy, SIAA-no-spots and finally

Scaling First.

From these results we can say that SIAA-full (P<0.01)

achieves the fastest and cheapest executions support-

ing our hypothesis that the wise use of spot instances

through proper bidding and scheduling permits the ex-

ploitation of better time and cost improvements. The

following sections perform a fine-grained analysis to un-

veil the behavior of strategies per application. The re-

mainder of this section is dedicated to study in detail

the speedup, cost of execution and the effect of failures

on the two latter mentioned metrics.

5 Note that such effect could be mitigated by the use of a
checkpointing technique.

5.3 Speedup Analysis

Figure 6 presents the average speedups and standard

deviations per strategy for each workflow application.

Strategies are sorted in increasing order according to

speedup.

In almost all the cases SIAA-full (current) and SIAA-

greedy (current) present the lowest speedups below the

baseline strategy because of the large number of failures

that occur.

For CyberShake and Montage (Figures 6a and 6c),

for which most of their tasks have durations below 1

hour of computation the use of spot instances with

a proper bidding method implies an substantial im-

provement in terms of speedup. The best performing

strategies are SIAA-full and -greedy with probabilistic

bidding followed by SIAA-no-spots. In all the cases we

can observe also the positive incidence of the heuristic

scheduling algorithm because, for a given failure prob-

ability, it always happen that SIAA-full outperforms

SIAA-greedy6.

Conversely, for LIGO’s Inspiral and SIPHT (Fig-

ures 6b and 6d) the most important contributions to

speedup improvement come from the usage of the heuris-

tic scheduling algorithm. The reason behind such ob-

servation is that for those applications exist many long-

duration tasks (LIGO’s Inspiral: almost half of the tasks

demand 6 hours of computation; SIPHT: 96 tasks that

require more than 1 day of execution) and therefore

the avoidance of failures on such tasks permits that the

degradation of the global execution time is minimum.

Note that for LIGO’s Inspiral SIAA-full (probabilis-

tic bidding) and SIAA-no-spots obtain the best speedups

indicating the benefits of using the heuristic scheduling

and in second place the benefits of using spot instances.

For SIPHT, SIAA-full and SIAA-greedy with prob-

abilistic bidding (P<0.01) and SIAA-no-spots it is im-

portant to keep the number of out-of-bid errors to the

minimum due to the extreme long-duration of some of

their tasks.

We can conclude that the usage of spot instances

permits achieving better speedups. However, the usage

of the scheduling algorithm is very important even if

the autoscaling strategy is not using spot instances for

execution, i.e. SIAA-no-spots. The heuristic scheduling

leads to a better assignment of tasks improving the

workflow makespan. In addition, when spot instances

are used, the scheduling algorithm avoids the execution

of tasks affecting critical tasks. For LIGO’s Inspiral and

SIPHT, SIAA-full (P<0.01) always achieves the high-

6 Note also that SIAA-no-spots always outperforms Scaling
First and that they differ on the presence of the heuristic
scheduling algorithm.
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Table 6: Summary of results. Each row presents the mean values per strategy considering all the studied applica-

tions.

Strategy Instances % spot Out-of-bid errors Task Failures Speedup Cost

Scaling First 15.5 0.0% N/A N/A 57.6 174.9
SIAA-no-spots 15.6 0.0% N/A N/A 68.8 139.4

SIAA-greedy (current) 150.0 91.6% 135.8 755.7 49.2 129.0
SIAA-greedy (P<0.1) 28.8 71.4% 5.9 23.4 70.6 111.7
SIAA-greedy (P<0.05) 26.9 70.2% 3.3 13.2 72.5 105.4
SIAA-greedy (P<0.01) 23.8 65.8% 0.6 3.6 73.5 101.6
SIAA-full (current) 158.2 91.7% 143.9 825.1 52.1 120.2
SIAA-full (P<0.1) 28.6 71.8% 5.1 24.7 73.7 107.4
SIAA-full (P<0.05) 26.9 70.4% 2.5 13.1 76.5 99.2
SIAA-full (P<0.01) 23.8 66.0% 0.6 3.7 77.8 96.1
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Fig. 6: Speedup comparison for each workflow application. Words in parenthesis (current), (P<0.1), (P<0.05) and

(P<0.01) stand for the current and the probabilistic bidding methods.

est speedups. This observation is in concordance with

the fact that such bidding strategy produces the low-

est number of failures that impact on the long-duration

tasks that characterize such applications. For the other

two applications, CyberShake and Montage with tasks

of shorter duration, less conservative bidding methods

(P<0.1 and P<0.05) work properly. This analysis will

be deepened in Section 5.5.

5.4 Execution Cost Analysis

Figure 7 presents the average execution costs and stan-

dard deviations per strategy for each workflow applica-

tion. Strategies are sorted in decreasing order according

to cost.

For all the applications, using spot instances always

leads to cost savings when comparing with the base-

line strategy, Scaling First. This behavior is observed

even for the two flavors of SIAA that use the current

price bidding method which leads to the occurrence of

an extremely large number of failures. This observa-

tion is explained by the fact that the last partial hour



Autoscaling Scientific Workflows on the Cloud by Combining On-demand and Spot Instances 15

Scaling
First

no-spotsgreedy
(current)

full
(current)

greedy
(P<0.1)

greedy
(P<0.01)

greedy
(P<0.05)

full
(P<0.1)

full
(P<0.01)

full
(P<0.05)

0

10

20

A
vg
. T
ot
al
 C
os
t [
U
S
D
]

15.520.7 19.3 15.315.616.025.4 16.427.2 16.2

(a) CyberShake

Scaling
First

no-spotsgreedy
(current)

full
(current)

greedy
(P<0.1)

greedy
(P<0.05)

greedy
(P<0.01)

full
(P<0.1)

full
(P<0.05)

full
(P<0.01)

0

100

200

300

A
vg
. T
ot
al
 C
os
t [
U
S
D
]

230.9 171.8 169.8221.3 188.7 181.7326.6 264.0 183.0190.4

(b) LIGO's Inspiral

Scaling
First

no-spotsgreedy
(current)

full
(current)

greedy
(P<0.01)

full
(P<0.01)

greedy
(P<0.05)

full
(P<0.05)

greedy
(P<0.1)

full
(P<0.1)

0

10

20

A
vg
. T
ot
al
 C
os
t [
U
S
D
]

14.823.7 19.319.6 14.6 14.6 14.423.2 15.2 15.1

(c) Montage

Scaling
First

no-spotsgreedy
(current)

greedy
(P<0.1)

full
(current)

full
(P<0.1)

greedy
(P<0.05)

full
(P<0.05)

greedy
(P<0.01)

full
(P<0.01)

0

100

200

300

A
vg
. T
ot
al
 C
os
t [
U
S
D
]

244.8 220.8 217.8 183.8202.3 192.0225.4245.2322.1 195.1

(d) SIPHT

Fig. 7: Execution cost comparison for each workflow application. Words in parenthesis (current), (P<0.1), (P<0.05)

and (P<0.01) stand for the current and the probabilistic bidding methods.

of computation for a failing instance is not charged.

As the current price bidding method produces many

failures within the first hour of computation, the to-

tal cost does not increase significantly and thus never

achieves the level of strategies that do not consider spot

instances (Scaling First and SIAA-no-spots).

It is also important to note that for CyberShake

and Montage (Figures 7a and 7c) SIAA-full and SIAA-

greedy using the probabilistic bidding method with the

three thresholds achieve the lowest costs. It is also im-

portant to highlight that such configurations achieved

very similar results in terms of execution cost indicating

that the use of the heuristic scheduling algorithm is not

so important as the usage of spot instances. This ob-

servation is coherent with our original hipothesis that

the large number of independent short-duration tasks

on such applications are most benefited by the use of

infrastructures comprising cheap (spot) instances.

Differences in cost become larger between such strate-

gies when they are applied to the LIGO’s Inspiral and

SIPHT applications (Figures 7b and 7d). However, strate-

gies do not present the same behavior for both applica-

tions. In the case of LIGO’s Inspiral, the best perform-

ing strategy is SIAA-full with probabilistic bidding in

comparison with SIAA-greedy with the same bidding

method. In the case of SIPHT strategies are ranked

in a different manner. SIAA-full always leads to bet-

ter cost savings than SIAA-greedy for each threshold

of the probabilistic bidding method (P<0.01, P<0.05,

P<0.1).

Note that SIAA-no-spots is the second most expen-

sive strategy and that in the case of SIPHT the gap

in cost is very large. The same observation is true for

LIGO’s Inspiral. These cost reductions are explained by

the fact that the heuristic scheduling algorithm permits

better task-to-instance assignments leading to shorter

workflow makespans and therefore to the purchase of

less instance-hours.

5.5 Effect of Tasks Failures

This section is dedicated to the analysis of task failures

in both, cost and speedup of the applications consid-

ering all the spot-aware strategies, i.e. SIAA-full and

SIAA-greedy with all the bidding methods. Figure 5.5

shows the effect of tasks failures in the speedup (on

top) and cost-of-execution metrics (at the bottom) for

the mentioned autoscaling strategies.

As can be seen in the figure, the general trend is that

a larger amount of task failures leads to lower speedups

and higher execution costs. This trend does not com-

pletely apply to the case of the Montage application. It

is important to point out that by comparing the trend
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Fig. 8: Effect of tasks failures in the speedup of the applications and the total execution cost. Curves correspond

to strategies using all the bidding strategies.

lines, the use of the scheduling algorithm (SIAA-full)

leads to better speedups for the same number of task

failures. From another point of view, SIAA-full can deal

with a higher number of tasks failures and still achieve

the same level of speedups than SIAA-greedy thanks to

the use of the heuristic scheduling algorithm.

Similar observations can be made when evaluating

the cost of execution, however, in this case the cost has

a negative correlation with the number of task failures.

It can be also seen that cost trend lines for CyberShake

and Montage are also minimal and it seems there is

no difference in cost considering SIAA-full and SIAA-

greedy. The same behavior was observed in Figures 7a

and 7c. However, for LIGO’s Inspiral and SIPHT it can

be seen that SIAA-greedy leads to higher costs than

SIAA-full. As in the case of speedup, such difference is

caused by the use of the heuristic scheduling algorithm

which can deal better with the occurring failures.

5.6 Statistical Significance of Comparisons

From previous results we can observe that SIAA-full

in general outperformed the remaining strategies in its

various configurations. This section provides an analy-

sis of the speedup and cost improvements achieved and

their statistical significance with respect to the Scaling

First, our baseline for comparisons. Table 7 shows, for

each application the speedup improvements resulting

from the comparison with Scaling First. Only the best

performing configuration for SIAA-greedy and SIAA-

full are presented. The table presents the difference

between speedups and the percentage of improvement

with respect to the average Scaling First speedup.

To check statistical significance of results we used

the Mann–Whitney U test [15] with a confidence level

of α = 0.01. This is a non-parametric test that evalu-

ates that two samples come from the same population

based on a comparison of median values. In our case

the significance of results can be asserted when the re-

sulting p-value is less than α, i.e. when we discard the

null hypothesis. The table also presents the U statistic,

the p-values and if the test indicates that the results

are significant. Note that the improvement column is

computed as the difference of median values for each

sample.

We can observe that for all the applications, but

Montage, SIAA with its full configuration outperformed

Scaling First with a wide margin in various cases (from

7.98% to 40.02%). As SIAA takes advantage of instances

of better cost-performance, it is able to acquire more

computing power (more instances) with the same bud-

get. This leads to an increase of the amount of tasks

that can be executed in parallel and therefore to a re-
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Table 7: Speedup improvements of SIAA (with and without using spot instances) compared with Scaling First.

Results are aggregated by workflow application.

Workflow Strategy Improvement Percentage U statistic p-value significant?

CyberShake
SIAA-no-spots 4.91 7.98% 564 0.092 no
SIAA-greedy (P<0.1) 20.71 33.70% 892 < 0.001 yes
SIAA-full (P<0.05) 22.44 36.52% 900 < 0.001 yes

LIGO’s Inspiral
SIAA-no-spots 34.70 27.24% 898 < 0.001 yes
SIAA-greedy (P<0.1) 39.03 30.64% 691 < 0.001 yes
SIAA-full (P<0.01) 43.48 34.13% 900 < 0.001 yes

Montage
SIAA-no-spots -0.02 -0.10% 471 0.756 no
SIAA-greedy (P<0.05) 5.87 32.52% 888 < 0.001 yes
SIAA-full (P<0.05) 5.84 32.35% 890 < 0.001 yes

SIPHT
SIAA-no-spots 8.17 31.81% 900 < 0.001 yes
SIAA-greedy (P<0.01) 9.94 38.68% 893 < 0.001 yes
SIAA-full (P<0.01) 10.28 40.02% 900 < 0.001 yes

duction of the overall makespan. In addition, the heuris-

tic scheduling algorithm permits maximizing the use of

such instances and achieve higher performances than

those achieved by the remaining methods.

It can be seen that depending on the application, the

results of the test present differences. For LIGO’s Inspi-

ral and SIPHT, all the reported strategies present sta-

tistically significant speedup improvements over Scaling

First. For the remaining two applications, CyberShake

and Montage, the only strategy that is not significantly

better than Scaling First is SIAA-no-spots. These re-

sults demonstrate the importance of using at least one

of the two features implemented in SIAA in order to

achieve speedup improvements.

As in the case of speedup improvements, Table 8

presents the raw and percentual cost savings of SIAA

with respect to Scaling First as well as the results of

the Mann–Whitney U test.

We can observe that for all the applications, SIAA-

full outperformed Scaling First with a wide margin in

various cases (from 3.23% to 47.93%). We can observe

from the statistical test results that almost all the con-

figurations outperform the baseline strategy, except SIAA-

no-spots applied to the Montage workflow. Another in-

teresting result regarding Montage is that SIAA-full

and SIAA-greedy show the same cost reduction which

is consistent with the results in Figure 7c. The test in-

dicates that, except for the mentioned case, all the re-

ported strategies show statistically significant cost sav-

ings indicating that using at least one of the two novel

features of our strategy is advantageously. In the case

of Montage, significant cost savings are achieved when

spot instances are considered during the scaling pro-

cess. This observation confirms the importance of bet-

ter prices associated to spot instances.

6 Related Work

In the literature there are many approaches address-

ing the efficient management of workflow applications

on the cloud. Most of them focus on the problem of

workflow scheduling, which is a classical problem in dis-

tributed computing. For example, in the work of Poola

et al. [21] the authors present a robust scheduling al-

gorithm with resource allocation policies that schedules

workflow tasks on heterogeneous cloud resources while

trying to minimize makespan and cost under budget

and deadline constraints. Malawski et al. [14] address

the problem of efficient management of workflow en-

sembles under budget and deadline constraints on the

cloud using static and dynamic strategies for both task

scheduling and resource provisioning, considering ho-

mogeneous resources. In contrast with our paper, both

works deal with the problem of scheduling workflow ap-

plications under deadline and budget constraints but

without taking advantage of spot instances.

Workflow autoscaling has been also tackled under

both, deadline and budget constraints. The problem

was first addressed by Mao and Humphrey [16]. They

proposed an autoscaling strategy for the efficient execu-

tion of multiple workflow applications subject to dead-

line constraints. Later, the same authors moved to the

problem of workflow autoscaling but considering bud-

get constraints [17]. The strategies proposed simulta-

neously address the problems of scaling the infrastruc-

ture and scheduling workflow tasks in heterogeneous

cloud infrastructures but they did not considered spot

instances, which is the main difference with respect to

our work.

There are also several scheduling approaches aim-

ing to minimize the execution cost of scientific work-

flow approaches using mixed infrastructures comprising
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Table 8: Cost savings of SIAA (with and without using spot instances) compared with Scaling First. Results are

aggregated by workflow application.

Workflow Strategy Reduction Percentage U statistic p-value significant?

CyberShake
SIAA-no-spots 1.6 5.99% 713 < 0.001 yes
SIAA-greedy (P<0.01) 10.7 40.13% 900 < 0.001 yes
SIAA-full (P<0.05) 11.4 42.79% 900 < 0.001 yes

LIGO’s Inspiral
SIAA-no-spots 71.5 21.58% 900 < 0.001 yes
SIAA-greedy (P<0.01) 148.7 44.85% 900 < 0.001 yes
SIAA-full (P<0.01) 158.9 47.93% 900 < 0.001 yes

Montage
SIAA-no-spots 0.8 3.23% 528.5 0.246 no
SIAA-greedy (P<0.1) 8.8 37.80% 900 < 0.001 yes
SIAA-full (P<0.1) 8.8 37.80% 900 < 0.001 yes

SIPHT
SIAA-no-spots 87.1 26.40% 894 < 0.001 yes
SIAA-greedy (P<0.01) 142.9 43.31% 900 < 0.001 yes
SIAA-full (P<0.01) 148.1 44.89% 900 < 0.001 yes

spot and on-demand instances. Poola et al. [22] pro-

posed a fault tolerant and robust scheduling algorithm

with a mixed infrastructure to reduce the cost of exe-

cution whilst meeting the workflow deadlines. Zhou et

al. [28] developed a workflow scheduling system aimed

for the minimization of monetary cost using spot and

on-demand instances subject to probabilistic deadline

constraints. However, the main difference between their

work and ours is that we focus on a budget-constrained

autoscaling problem while the efforts mentioned focus

on solving scheduling problems subject to deadline con-

straints, thus they are useful in different scenarios.

7 Concluding Remarks

This paper presented a new strategy for the autoscaling

of scientific workflows entitled Spots Instances Aware

Autoscaling (SIAA) strategy. SIAA incorporates two

novel features namely (i) an infrastructure scaling algo-

rithm that uses a combination of on-demand and (unre-

liable but low-cost) spot instances, and (ii) a heuristic

scheduling method for makespan minimization whose

aim is to reduce the chance that out-of-bid errors in-

terrupt the execution of critical tasks. Then, our main

goal is to take advantage of both types of VM instances

while minimizing makespan under a given budget.

Experiments with four real-world scientific work-

flow applications showed that the combination of those

two features permits SIAA to overcome Scaling First

(a state-of-the-art autoscaling strategy) from 7.98% to

40.02% in terms of speedup. Results also demonstrated

that SIAA led to cost reductions of 3.23% to 47.93%. It

is important to highlight that SIAA using only one of

the two features at a time lead to improvements that are

halfway between Scaling First and the full-fledged ver-

sion of SIAA. In addition, depending on the application,

it might result more important to use spot instances or

the use of heuristic scheduling algorithm. All these ob-

servations highlight the importance of using both fea-

tures together to achieve good performance that arises

from their synergy.

It is also worth mentioniong that this strategy could

be implemented for its operation on real clouds as a

utility for the users. Such utility could run as central

manager receiving workflow submissions and adminis-

trating instances and tasks through the APIs that cloud

providers make available (e.g. for creating/destroying

instances, scheduling tasks, execution monitoring, etc.).

Also, some required mechanisms have to be adopted,

like for example the management of applications [9],

estimation of tasks running-time [19] and spot prices

prediction [25]. Finally it is worth to highlight that

such utility could be implemented as a service on the

cloud-provider side or it could be part of an external

tool.There are some research lines to develop as part of

the future work. First, the scaling algorithm in SIAA

operates subject to a parameter that determines a bal-

ance between on-demand and spot instances that re-

mains static along the execution of the application. It

seems a good idea to explore how to dynamically adapt

this balance according to the application needs in or-

der to improve speedups and execution costs. Second, it

is important to study the applicability of more sophis-

ticated bidding methods. Better bidding methods may

help in the reduction of bid failures and therefore help in

the achievement of better overall performances. Finally

it is crucial to study the incidence of data transfer times

and hence networking cost during the autoscaling pro-

cess beyond data processing times. These features open

the door for the design of new autoscaling techniques

aimed on big data workflows able to more accurately

balance performance and cloud resources rent costs.
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