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Abstract The leukotriene A4 hydrolase (LTA4H) is a

bifunctional zinc enzyme that catalyzes the final (rate-

limiting) step in the synthesis of leukotriene B4 (LTB4),

which is involved in several diseases. Many pharmaceuti-

cal attempts to exploit the LTA4H/LTB4 pathway have

been unsatisfactory, hence, the development of new

inhibitory drugs is essential. This paper describes the

generation of a quantitative structure–activity relationship

(QSAR) model on a series of 50 N-alkyl glycine amides

with experimentally defined IC50. In addition, the opti-

mized molecular structures of the inhibitors were docked

into the active site of the enzyme to identify the enzyme-

ligand interactions and quantify the estimated free energy

of binding (DGbind). A simple four-descriptor QSAR model

with high predictive capacity was obtained. The statistic

parameters of the model are: regression coefficient (Rtest)

of 0.714 and a standard deviation (Stest) of 0.696. The

predicted inhibitory activity of 85 new N-alkyl glycine

amides compounds was obtained with this QSAR model

and these compounds were docked into LTA4H. Ten of the

compounds present predicted IC50 values lower than

10 nM and binding poses and affinity values similar to the

natural ligand (leukotriene A4), turning them into suitable

candidates for experimental assays.
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Introduction

The leukotriene A4 hydrolase enzyme (LTA4H) is a

bifunctional zinc metalloenzyme with epoxide hydrolase

and aminopeptidase activities that catalyzes the rate-limiting

step in the production of leukotriene B4 (LTB4). Its structure

consists of three domains: a catalytic domain, an N-terminal,

and C-terminal domains (Thunnissen et al., 2001). Crystal-

lographic studies (Wunder et al., 2010; Thunnissen et al.,

2002; Sandanayaka et al., 2010) reveal that the active site

contains a Zn2? cation coordinated by the amino acids

His295, His299, and Glu318. Other studies indicate the zinc

atom and residues Glu271, Arg563, Asp375, and Tyr378 are

involved in the epoxide hydrolase mechanism. In addition,

these studies showed that above amino acids and also

Gln136, Lys565, and Tyr267 could interact with LTA4H

inhibitors (Thunnissen et al., 2001; Rinaldo-Matthis and

Haeggström, 2010; Rudberg et al., 2002).

The rate-limiting step of LTB4 biosynthesis is the ste-

reospecific hydrolysis of an unstable epoxide, Leukotriene

A4 (LTA4) (Haeggström, 2004). The LTB4 is a potent pro-

inflammatory activator related to inflammatory conditions

such as asthma, inflammatory bowel disease (IBD), chronic

obstructive pulmonary disease (COPD), arthritis, psoriasis,

and atherosclerosis (Goodarzi et al., 2003; Barnes, 2001;

Back et al., 2005). It was also recently reported that increased

production of LTB4 is associated with the increased risk for
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myocardial infarction, stroke (Sandanayaka et al., 2010), and

cancer (Chen et al., 2004). The relevance of the LTA4H in

human diseases has proved to be substantial, but pharma-

ceutical attempts to exploit 5-lipoxygenase pathway have

been disappointing (Shim and Paige, 2012).

In the last years, an enough variety of compounds that

inhibit the biosynthesis of LTB4 were presented (Kirkland

et al., 2008; Çaliskan and Banoglu, 2013; Tanis et al., 2012;

Ye et al., 2008; Penning, 2001). However, the research and

the development of novel and more potent drugs are essential

for the treatment and prevention of inflammatory diseases

states. Several molecular modeling techniques including

structure–activity relationship (SAR), quantitative struc-

ture–activity relationship (QSAR), molecular docking, and

molecular similitude (or combined approaches) are used as

potent tools for rational drug design. Recently, two QSAR

and molecular docking studies on LTA4H inhibitors have

been reported for the purpose of finding a relationship

between the activity and their structures (Thangapandian

et al., 2013; Thangapandian et al., 2011). In one of those

studies, a Bayesian model was developed using a training set

containing 26 compounds and nine molecular descriptors

(Thangapandian et al., 2011). In other one, the same authors

have employed an identical training set and the genetic

function approximation (GFA) technique to develop a six-

descriptor QSAR model.

According to the current interest in this topic, the main

aim of this paper was to develop a new QSAR model in order

to predict the activity of novel potential LTA4H inhibitors.

For this purpose, the QSAR model was established using a

series of 50 inhibitors of the N-alkyl glycine amide family

that have not been used previously in any QSAR study. The

multiple linear regression (MLR) variable selection

approach, considered one of the most popular statistical

techniques, was employed to develop the model, exploring

more than a thousand theoretical molecular descriptors. In

addition, we performed a molecular docking analysis to find

the binding poses and to get insights into the interactions

between the inhibitors and LTA4H.

Four previously synthesized compounds (Kirkland et al.,

2008) and 85 new designed N-alkyl glycine amides, refer-

red to as the tested compounds from now on, were docked

into the active site of LTA4H to ensure their binding

affinity and were evaluated as potential LT4H inhibitors

with the developed QSAR.

Materials and methods

Biological experimental data

The 50 N-alkyl glycine amides and its associated experi-

mental activity were extracted from the studies of Kirkland

et al. (2008). In the cited studies the inhibitory activities

were determined under identical experimental conditions

leading to a regular data distribution. The IC50 (concen-

tration of a compound required to inhibit 50 % of the

hydrolase activity of LTA4H) is the biological activity data

used in this study. The IC50 values, exhibiting a range of

activity from 27 to 2,000 nM, were converted to the cor-

responding log10IC50 and used as the dependent variable in

all QSAR investigations. The inhibitory activities and the

molecular structures of the 50 N-alkyl glycine amides are

presented in Table 1 and Fig. 1S of supplementary mate-

rial, respectively.

Computational details

The molecular structure of all compounds (50 N-alkyl

glycine amides and the 89 tested compounds) was opti-

mized at the semiempirical PM3 (parametric method-3)

level of theory using the Polak-Ribiere algorithm and a

gradient norm limit of 0.01 kcal Å-1 with Hyperchem 7.0

package. Molecular Docking calculations were performed

using Autodock Vina (Trott and Olson, 2010). The most

stable docked conformation of each of the 50 N-alkyl

glycine amides was used to calculate 1,497 molecular

descriptors with Dragon software. The multiple lineal

regression (MLR) calculations were carried out with Mat-

lab 7.0.

Molecular docking approach

The molecular docking study was performed keeping the

amino acid side chains rigid. The crystal structure of

LTA4H was obtained from Protein Data Bank (Bernstein

et al., 1977) (PDB accession code: 3CHO (Kirkland et al.,

2008)). The co-crystallized ligand (2-amino-N-[4-(phe-

nylmethoxy)phenyl]-acetamide) and all water molecules

were removed from the crystal structure. The grid box was

set to include completely the previously proposed active

site (Paz et al., 2012) and standard docking parameters

were used except the exhaustiveness for which a value of

100 was set. The free energy of binding (DGbind) was

estimated from the best docking results, i.e., the confor-

mation with the lowest energy.

Calculation of the molecular descriptors

The 1,497 calculated molecular descriptors include all

types of descriptors such as Constitutional, Topological,

Geometrical, Charge, GETAWAY (Geometry, Topology,

and Atoms-Weighted AssemblY), WHIM (Weighted

Holistic Invariant Molecular descriptors), 3D-MoRSE (3D-

Molecular Representation of Structure based on Electron

diffraction), Molecular Walk Counts, BCUT descriptors,
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2D-Autocorrelations, Aromaticity Indices, Randic Molec-

ular Profiles, Radial Distribution Functions, Functional

Groups, Atom-Centered Fragments, Empirical, and Prop-

erties (Todeschini and Consonni, 2009) among many oth-

ers. The dipole moment (l), EHOMO, ELUMO and GAP

(obtained from semiempirical PM3 calculations), and

DGbind (computed from molecular docking study) were

also added to the total set of molecular descriptors.

Development and validation of the QSAR model

The series of 50 N-alkyl glycine amides was partitioned in

two different sets: the training set (38 compounds) and the

test set (12 compounds). The elements of each set were

carefully selected such that: (a) the compounds share

similar structural features and (b) the experimental data of

the test set are sufficiently representative of the whole span

(Table 1).

A full search of optimal variables is impractical because

it requires D!/[d!(D-d)!] linear regressions. Where D is the

total set of descriptor and d represents the number of

selected descriptor. Therefore, an alternative method is

necessary. We employed the replacement method (RM) as

the molecular descriptor selection approach (Mercader

et al., 2010). This method is an efficient tool that produces

MLR-QSAR models that are quite close to the full search

methods but with lower computational cost. This technique

approaches the minimum of S taking into account the rel-

ative errors of the coefficients of the least-squares model

given by a set of d descriptors d = {X1,X2,…,Xd}. In

addition, the RM provides models with better statistical

parameters than those from the forward stepwise regression

procedure and similar to those from the more elaborated

genetic algorithm approach (Duchowicz et al., 2005).

The model was validated through four different

approaches: (a) the leave-one-out (loo) and (b) the leave-

more-out (l-%-o) cross-validation procedures, generating a

million cases of random data removal for l-%-o, where the

% is &20 (12 compounds); (c) a rigorous and more real-

istic validation procedure that involves the use of a set of

molecules (test set) which do not form part of the training

set; and (d) 10,000 cases of y-randomization (Wold and

Eriksson, 1995), which consists in the interchange of the

Table 1 Structure, experimental IC50, predicted log10IC50, and

DGbind (kcal mol-1) for the 50 N-alkyl glycine amides derivatives

1Compounds IC50

nM

log10IC50

Exp

log10IC50

Eq. 1

DGbind

kcal mol-1

1 135 2.130 2.241 -7.8

2 350 2.544 2.750 -10.6

3a 1,500 3.176 2.829 -9

4 230 2.362 2.125 -8.4

5 430 2.634 2.353 -10.7

6 120 2.079 2.135 -10.7

7 160 2.204 2.188 -10.9

8 290 2.462 2.309 -10.7

9 340 2.532 2.402 -11

10 360 2.556 2.700 -10.9

11 440 2.644 2.549 -10

12 80 1.903 2.196 -10.6

13 250 2.398 2.142 -11.6

14 230 2.362 2.381 -10.8

15 70 1.845 2.180 -10.9

16 120 2.079 2.113 -11

17a 90 1.954 2.066 -10.9

18 210 2.322 2.277 -10

19b 60 1.778 2.092 -10.4

20 420 2.623 2.639 -10.5

21 70 1.845 1.706 -10.9

22a 140 2.146 2.197 -10.9

23 180 2.255 2.115 -11.4

24 240 2.380 2.524 -10

25 270 2.431 2.532 -10.4

26 260 2.415 2.603 -10.2

27 380 2.580 2.343 -11.4

28 220 2.342 1.803 -11.8

29a,b 60 1.778 0.524 -11.1

30b 30 1.477 1.808 -11

31b 60 1.778 2.028 -11.9

32 180 2.255 2.224 -10.7

33b 48 1.681 1.773 -9.3

34a,b 27 1.431 1.273 -9.8

35 85 1.929 2.084 -8.9

36 130 2.114 2.130 -9.8

37a 380 2.580 1.929 -8.9

38 110 2.041 2.078 -9.5

39a 180 2.255 2.261 -9.7

40 570 2.756 2.429 -9.6

41a 110 2.041 2.154 -9.8

42a 92 1.964 2.444 -0.2

43 72 1.857 2.171 -9

44 110 2.041 1.973 -8.9

45 440 2.644 2.405 -8.8

46a 2,000 3.301 2.561 -9.8

47a 1,000 3.000 2.330 -10.7

Table 1 continued

1Compounds IC50

nM

log10IC50

Exp

log10IC50

Eq. 1

DGbind

kcal mol-1

48a 1,000 3.000 2.986 -10.5

49 1,000 3.000 2.777 -10.4

50 1,000 3.000 3.003 -11

a Compounds of test set,
b Lead compounds for the design of novel inhibitors
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experimental property such that the property value and the

compound do not match.

Results and discussion

Molecular docking analysis

The 50 N-alkyl glycine amides were docked into LTA4H

(Fig. 1 right panel). The spatial arrangement of the com-

pounds within the enzyme demonstrates that they bind into

the active site (compare to the position of the natural ligand

in the left panel of Fig. 1). Also, the superposition of the

inhibitors’ molecular structures reveals that there is a large

overlap between their structures.

Among the multiple weak interactions that take place

between the inhibitors and LTA4H, four interacting regions

can be distinguished: (a) an aromatic ring region, com-

prising the residues Tyr267, Tyr378, Tyr383, and Phe314

through p–p interactions; (b) the region of Pro266 whose

backbone carbonyl group acts as hydrogen bond acceptor;

(c) the Zn2? cation zone with a coordinate interaction; and

(d) the entry of the active site where Arg563 and Lys565

side chains allow the formation of hydrogen bonds.

The calculated free energies of binding (DGbind) of the

50 N-alkyl glycine amides indicate that these compounds

could present high binding affinity with the enzyme,

Table 1, and some of them higher than the natural ligand

itself (-9.5 kcal mol-1) (Paz et al., 2012). It is well known

that docking is not indicative of biological activity, how-

ever, these types of studies can be very useful to understand

how ligands bind to the enzyme.

Quantitative structure–activity relationship study

According to the number of compounds of the training set

(N = 38), linear regression models containing from one to

five descriptors (from a total of 1,497) would provide

sufficient information about the relationship between the

inhibitory activity and the structure of the compounds. The

classic semiempirical ‘‘rule of thumb’’ indicates that at

least six or seven data points (i.e., compounds) should be

present by descriptor (Hansch, 1990). The search for these

models was performed using the RM selection approach,

which is able to select the most relevant and representative

molecular descriptors for the training set. The five obtained

models and the details of the selected molecular descriptors

are summarized in Tables 2 and 3, respectively.

As can be seen in Table 2, the calibration statistical

parameters did not improve significantly when five

descriptors were utilized. In addition, the statistical

Fig. 1 Representation of the molecular structure of LTA4H (gray

cartoon) active site with its natural ligand( yellow sticks, left panel)

and 50 N-alkyl glycine amide inhibitors (yellow sticks, right panel).

The amino acid side chains represented in gray sticks are involved in

the interaction with inhibitors (Color figure online)

Table 2 Statistic parameters and molecular descriptors for the best

1–5 descriptor models

Number of

descriptors

Molecular Descriptors Calibration Validation

R S R S

1 H-051 0.332 0.343 0.539 0.597

2 ATS1m, ATS8m 0.498 0.320 0.739 0.464

3 MW, ATS8m, RDF080u 0.691 0.271 0.658 0.610

4 Sv, SIC0, ATS8m,

RDF080u

0.814 0.221 0.714 0.697

5 AAC, Eig1p, ATS8m,

ATS3p, RDF080u

0.857 0.199 0.676 0.849
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parameters of the test set only improved when d = 4. This

suggests that the optimal number of descriptors is four, and

that the model with five descriptors is possibly overfitted.

The following equation and parameters belong to the four-

descriptor QSAR model:

log10IC50 ¼�18:041 2:84ð Þ þ 0:569 0:07ð ÞSv

þ 37:731 6:14ð ÞSIC0� 0:242 0:03ð ÞATS8m

� 0:054 0:008ð ÞRDF080u ð1Þ

N ¼ 38; Strain ¼ 0:220; Rtrain ¼ 0:814;

R2 ¼ 0:662; F ¼ 16:237; p\10�4

Rtest ¼ 0:714; R2
test ¼ 0:510;

Stest ¼ 0:696; Sloo ¼ 0:257; Rloo ¼ 0:740;

Rl%o ¼ 0:600 Sl%o ¼ 0:351Srand ¼ 0:300

where N is the number of molecules of the training set, R is

the coefficient of correlation, S stands for the standard

deviation, F is the Fisher parameter, train, and test subin-

dex are applied to the training and test set, respectively,

subindex loo and l-%-o stand for the leave-one-out and

leave-%-out cross-validation techniques, respectively, and

rand superindex stands for y-randomization.

Table 1 lists the predicted log10IC50 values obtained from

the four-descriptor model, Eq. 1. Figure 2 shows the plot of

the predicted values as a function of the experimental values,

for both the training and test sets. The data are grouped along

the straight line of perfect fit which indicates that the

established QSAR is an acceptable model. Despite com-

pound number 29 (included in the test set) does not present a

relevant structural feature which may differentiate it from the

remainder of the set, the model did not predict properly its

biological activity. The statistical parameters of the model

improve slightly (Rtest = 0.766 and Stest = 0.551) when this

compound was considered outlier.

The validation was carried out through four different

methods: leave-one-out, leave-%-out, employing a test set

and y-randomization. As the name suggests, leave-one-out

technique involves using a single data from the total set as

the validation data, and the remaining data as the training

set. This is repeated such that each data in the sample is

used as validation. In leave-%-out, a percentage data is

removed from the full set as validation data and the

remaining data becomes the training set.

The regression coefficients of leave-one-out and leave-

%-out cross-validations (Rloo and Rl-%-o) exceed the

accepted value of 0.50, showing that the QSAR model is

predictive (Golbraikh and Tropsha, 2002). In addition, the

smallest Srand value (Srand = 0.300) achieved through the

analysis of 10,000 cases of y-randomization was greater

than the value found (S = 0.220) when true calibration was

Table 3 Brief description of molecular descriptors used in the five models

Molecular

Descriptors

Type of descriptor Brief description

MW Constitutional Molecular weight

Sv Constitutional Sum of atom van der Waals volumes (scaled on Carbon atom)

AAC Topologic Mean information indexon atomic composition.

SIC0 Topologic Structural information content (neighborhood symmetry of order-0)

Eig1p Topologic Leading eigenvalue from polarizability weighted distance matrix

ATS1m 2D autocorrelation Broto-Moreau autocorrelation of topologic structure – lag 1/weighted by atomic masses

ATS8m 2D autocorrelation Broto-Moreau autocorrelation of topologic structure – lag 8/weighted by atomic masses

ATS3p 2D autocorrelation Broto-Moreau autocorrelation of topologic structure – lag 3/weighted by atomic

polarizabilities

RDF080u Radial distribution

Function

Radial distribution Function – 8.0/unweighted

H-051 Atom-centered fragment H attached to alfa-C

Fig. 2 Log–Log plot of the experimental and predicted biological

activity according to equation 1. The training set is represented as

black filled circles and the test set in gray diamonds. The straight line

indicates the perfect fit
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considered. Therefore, the QSAR model found does not

result from happenstance.

Thangapandian et al. (2013) have developed a six-

descriptor QSAR model to characterize the activity of

diverse LTA4H inhibitors with a training set of 26 com-

pounds. In contrast to Thangapandian study, and in con-

formity to the classic semiempirical ‘‘rule of thumb’’

(Hansch, 1990), we have developed a four-descriptor

model using a training set of 38 compounds. To the best of

our knowledge, we think that a major number of data in the

training set would supply more information to the model

expanding the diversity of compounds that can be predicted

correctly. In addition, a model with a smaller number of

descriptors accounts for a simpler relationship with the

activity. The statistic parameters indicate that both models

have an excellent training, however, our model has greater

predictive power (Rtest = 0.714) than the model developed

by Thangapandian (Rtest = 0.502).

Molecular descriptors analysis

The four molecular descriptors participating in the QSAR

are: Sv, SIC0, ATS8 m, and y RDF080u. The standardi-

zation of the regression coefficients of Eq. 1, presented in

Fig. 3, allows assigning a greater importance to those

molecular descriptors with larger absolute standardized

coefficient values. The model descriptors significance

decreases in the following order: Sv (8.846) [ ATS8 m

(6.104) [ RDF080u (1.812) [ SIC0 (1.573).

Sv descriptor is the sum of atomic van der Waals vol-

umes (scaled on Carbon atom) and it is related to the

molecular volume (Todeschini and Consonni, 2009). The

positive sign indicates that log10IC50 value is directly

proportional to this descriptor. The ATS8 m descriptor

(Broto–Moreau autocorrelation descriptor of lag 8 that is

weighted by atomic mass) (Nekoei et al., 2011) belongs to

the 2D autocorrelation descriptors family. It has a negative

sign, which indicates that log10IC50 value is indirectly

related to this descriptor. When these descriptors are ana-

lyzed together, it can be seen that the activity is adversely

affected by the increase of molecular volume because of

the restrictions imposed by the size of the active site.

However, a very small molecule will not fit properly in the

active site. The incorporation of the ATS8 m descriptor

compensates this situation because the increase of the

molecular mass (and therefore the value of this descriptor)

causes a decrease of log10IC50 value.

The RDF080u and SIC0 descriptors have less influence

on the activity, Fig. 3. The Radial Distribution Function

(RDF) is a kind of molecular descriptor defined for an

ensemble of atoms, and may be interpreted as the proba-

bility distribution for finding an atom in a spherical volume

of certain radius, incorporating different types of atomic

properties in order to differentiate the nature and contri-

bution of atoms to the property being modeled. In the case

of RDF080u, the sphere radius is 8.0 Å and no atomic

property is used, characterizing the molecular size. This

descriptor also reveals an enthalpic contribution on activity

(related to the interactions of hydrogen bond and van der

Waals types) and it is important for hydrophobic interac-

tions with an enzyme (Zarei and Atabati, 2009; Vicente

et al., 2010; Jain et al., 2011). A high RDF080u value

suggests that the compound has great capacity for estab-

lishing hydrophobic interactions increasing its biological

activity. This is indicated by the negative sign of the

descriptor coefficient (see Eq. 1 and Fig. 3).

Fig. 3 Standardized regression coefficients of the molecular descrip-

tors employed in equation 1. Refer to Table 3 for descriptors

definition

Table 4 Predicted log10IC50 values for the previously synthesized

(Kirkland et al., 2008)

Compound log10IC50 Eq.1 IC50 [nM] DGbind [kcal mol-1]

51a 2.331 214.29 -10.7

52a 2.205 160.32 -11.1

53a 2.509 322.85 -10.7

54a 2.314 206.06 -10.8

100 0.507 3.21 -10.8

103 0.931 8.54 -10.3

104 0.716 5.20 -10.9

105 0.493 3.11 -9.8

129 0.889 7.75 -10.3

131 0.887 7.72 -11.5

134 0.206 1.61 -11.7

135 0.924 8.39 -9.7

138 0.352 2.25 -11.7

139 0.165 1.46 -10.2

Predicted Log10IC50 values and DGbind for the ten designed com-

pounds of lower IC50 values
a Extracted from Kirkland et al. (2008)
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The SIC0 topological descriptor corresponds to the

structural information content (neighborhood symmetry of

0-order) family. It measures the complexity of a compound

as the diversity of elements present in its molecular

structure, such as atoms, bonds, cycles, etc. and encodes

the size and the degree of branching in the compound. It is

known that the size and the shape of the molecule also

affect the intermolecular interaction (Natarajan et al., 2008;

Ramı́rez-Galicia et al., 2012). In this case, the sign sug-

gests that an increase in SIC0 (compounds with high

molecular complexity) has a negative effect on the bio-

logical activity.

Design of novel compounds

The information provided above, in conjunction with the

molecular docking results, could be employed in the

rational design of new inhibitors. We used this information

alongside a molecular modulation technique and designed

85 new N-alkyl glycine amides compounds. The molecular

modulation consists in varying the lead compound with

limited modifications (the structure should maintain the

initial characteristics) in order to find a better product with

higher activity, improved bioavailability, reduced toxicity,

and minimal secondary reactions. Despite these apparent

limitations in the possibility of variation, it is common to

find positive results in applying this technique, provided it

is done rationally. In this work, some molecules with IC50

values B 60 nM (compounds 19, 29, 30, 31, 33, and 34,

see Table 1) were considered as lead compounds to pro-

pose new structures.

The IC50 values of the 85 new compounds, listed in

Table 1S of supplementary material, were predicted by

means of our QSAR model, eq. 1. In addition of these, four

previously synthesized N-alkyl glycine amides (Kirkland

et al., 2008) with unknown experimental IC50 values were

also examined. We found that ten out of the 85 new

designed structures show predicted IC50 values below

10 nM (Table 4), lower than the values of the lead com-

pounds, while the four synthesized by Kirkland compounds

Fig. 4 Molecular docking of the new designed N-alkyl glycine

amides with predicted IC50 lower than 10 nM (yellow sticks) into the

active site of LTA4H (represented in either gray cartoon or gray

surfaces). The LTA4 binding site, represented as a light blue surface,

is partially occupied by the inhibitors (top left panel) which interact

with the amino acid side chains represented in gray sticks (top right

panel). The active site entry is sterically hindered (bottom panel)

(Color figure online)
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have a predicted activity greater than 160 nM. We think

that the ten compounds presented here, could be candidates

for future pharmacological studies.

Variations in the structure of the lead compounds gen-

erated these ten designed molecules. According to the

descriptors Sv and ATS8m included in the QSAR model,

the molecular volume must not be markedly modified.

Hence, the incorporation of the ringed substituents in

compounds 134, 135, and 138 could negatively influence

on the activity. However, these substituents provide a

marked possibility of interacting with the enzyme by

means of hydrogen bond interactions such as indicated by

the RDF080u descriptor. The substituents of the designed

compounds have simple chemical structure relatively easy

to be synthesized and tested experimentally.

To get insights into the binding mode of these ten

compounds with LTA4H, a molecular docking analysis

was performed. Fig. 4 presents the superposition of the best

docking pose of each new compound into LTA4H. All the

structures are located within the active site of the enzyme

where LTA4 (natural ligand) binds, top left panel of Fig. 4.

The interactions that take place involve the same regions of

the enzyme described for the compounds of the training

set, as can be seen comparing Fig. 1 (right panel) and

Fig. 4 (top right panel). Although only a part of the LTA4

binding site is occupied by the inhibitors, the active site

entry is sterically hindered, limiting the access to the nat-

ural ligand (Fig. 4, bottom panel). The calculated values of

DGbind (-9.6 to -11.7 kcal.mol-1) are similar to the val-

ues of the lead compounds which means that they could

have high affinity for the enzyme.

Conclusion

We carried out a quantitative structure activity relationship

analysis in conjunction with a molecular docking on a

series of the 50 N-alkyl glycine amides. The results

obtained were used to elucidate the interaction with the

enzyme and test the predicted inhibitory activity of four

previously synthesized (Kirkland et al., 2008) and 85

designed compounds.

The docking of the 50 studied compounds reveals the

high affinity of some them with the active site of the

enzyme. These compounds interact with Lys565, Tyr378,

and Tyr267, similar to the LTA4, and also with Pro266,

Phe314, and Gln136. Then, we developed a four-descriptor

QSAR model which have a good predictive power,

Rtrain = 0.814 and Rtest = 0.714. The descriptors of the

model are related to the volume and molecular mass, the

ability to make hydrophobic interactions and molecular

diversity, important features in these ligand-enzyme inter-

actions. The result is a simpler QSAR model and high

predictive capability compared with other models found in

the literature which discusses this biological activity.

The predictions of the tested compounds show that ten

compounds have IC50 values lower than 10 nM and four of

them have values lower than 5 nM, Table 4. The DGbind

values indicate that the affinity of these new compounds for

the active site is similar to the 50 N-alkyl glycine amides

series and the LTA4.

We consider that the information provided in this report

can be used as useful, fast, and costless tool for future

investigations and development of new potential LTA4H

inhibitors.
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