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Abstract

We consider a semi-infinite one-dimensional phase-change material with
two unknown constant thermal coefficients among the latent heat per unit
mass, the specific heat, the mass density and the thermal conductivity.
Aiming at the determination of them, we consider an inverse one-phase
Stefan problem with an over-specified condition at the fixed boundary and
a known evolution for the moving boundary. We assume that it is given
by a sharp front and we consider a time fractional derivative of order α
(0 < α < 1) in the Caputo sense to represent the temporal evolution of the
temperature as well as the moving boundary. This might be interpreted
as the consideration of latent-heat memory effects in the development of
the phase-change process. According to the choice of the unknown thermal
coefficients, six inverse fractional Stefan problems arise. For each of them,
we determine necessary and sufficient conditions on data to obtain the
existence and uniqueness of a solution of similarity type. Moreover, we
present explicit expressions for the temperature and the unknown thermal
coefficients. Finally, we show that the results for the classical statement of
this problem, associated with α = 1, are obtained through the fractional
model when α → 1−.
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1. Introduction

Determination of thermal coefficients for phase-change materials through
inverse Stefan problems has been widely studied during the last decades
[6, 7, 16, 29, 30, 31]. Especially, phase-change processes involving solidifi-
cation or melting have been extensively studied because of their scientific
and technological applications [1, 3, 5, 8, 10, 12, 20, 28, 33]. A review of
a long bibliography on moving and free boundary value problems for the
heat equation can be consulted in [32]. Recently, a new sort of Stefan
problems including time-fractional derivatives have begun to be studied
[2, 15, 17, 25, 26, 27, 35, 36, 37]. Some references in fractional derivatives
can be found at [11, 18, 19, 21, 22, 24] and a survey on fractional calculus
applications can be consulted in [9]. In [15, 25, 26, 27] there are considered
free boundary value problems which are obtained by replacing the time
derivative in a one-phase Stefan problem by a fractional derivative of order
α (0 < α < 1) in the Caputo sense [4], and explicit solutions of similarity
type are given for the resultant fractional Stefan problems. A physical in-
terpretation of the problems considered in [15, 25, 26, 27] is given in [37].
In that article, authors derive fractional Stefan problems for phase-change
processes by substituting the local expression of the heat flux given by the
Fourier law for a new non-local definition. They consider a heat flux given
as a weighted sum of local fluxes back in time, which they express in terms
of the Riemann-Liouville integral of order α (0 < α < 1) of the local flux
given by the Fourier law. They also explain how this change implies that
the new model takes into consideration latent-heat memory effects in the
evolution of the phase-change process and give to the parameter α the
physical meaning of being the strength of memory retention. This frac-
tional model reduces to the classical Stefan problem when α = 1. That is,
to the case of no memory retention. The same occurs with the solutions
of similarity type given in [25, 26, 27] in the sense that they converge to
the similarity solutions of the classical Stefan problems with which they are
related to, when α → 1−. To the authors knowledge, the first use of inverse
fractional Stefan problems for the determination of thermal coefficients has
been done recently in [34]. In that article the author studies the determina-
tion of one unknown thermal coefficient for a semi-infinite material through
a fractional one-phase Stefan problem with an over-specified condition at
the fixed boundary. Necessary and sufficient conditions on data to obtain
the existence and uniqueness of solutions of similarity type are established,
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DETERMINATION OF TWO UNKNOWN THERMAL . . . 401

and explicit expressions for the the temperature of the material, the free
boundary and the unknown thermal coefficient are given. Moreover, it
has shown that results through the fractional model reduce to the results
previously obtained in [29] for the determination of one unknown thermal
coefficient using a classical inverse Stefan problem. Encouraged by [30, 34],
we consider here the problem of determining two unknown thermal coeffi-
cients through an inverse fractional one-phase Stefan problem for which it
is known the evolution of the free boundary. In order to have dimensional
coherence in the time fractional heat equation as well as in the fractional
Stefan condition, we have included two extra parameters μα, να ∈ (0, 1] in
the model, which are such that:

μα → 1 when α → 1− (1.1a)

να → 1 when α → 1−. (1.1b)

In particular, μα and να can be considered equal to 1 with the corresponding
physical dimension (see below).

More precisely, we consider the following inverse problem for a one-
phase melting process:

DαT (x, t) = μαλ
2Txx(x, t) 0 < x < s(t), t > 0 (1.2a)

T (s(t), t) = Tm t > 0 (1.2b)

− kTx(s(t), t) = ναρlD
αs(t) t > 0 (1.2c)

T (0, t) = T0 t > 0 (1.2d)

kTx(0, t) = − q0

tα/2
t > 0, (1.2e)

where the unknowns are the temperature T [◦C] of the liquid phase and
two thermal coefficients among:

k > 0: thermal conductivity [W m−1 (◦C)−1]
ρ > 0: mass density [kgm3]
l > 0: latent heat per unit mass [J kg−1]

c > 0: specific heat [J kg−1 (◦C)−1].

According to [13, 14], the coefficient μαλ
2 [m2 s−α] in equation (1.2a) is a

sort of fractional diffusion coefficient, λ2 [m2 s−1] being the thermal diffu-
sivity given by:

λ2 =
k

ρc
(λ > 0).

We assume that the remaining coefficients:
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402 A.N. Ceretani, D.A. Tarzia

Tm > 0: phase-change temperature [◦C]
T0 > Tm: temperature at the boundary x = 0 [◦C]
q0 > 0: coefficient characterizing the heat flux

at x = 0 [W m2 (◦C)−1]
0 < α < 1: strength of the memory retention (dimensionless)

0 < μα ≤ 1: parameter required to have
0 < να ≤ 1: parameter required to have

dimensional coherence in condition (1.2c) [sα−1],

involved in Problem (1.2), are all known (e.g. through a phase-change
experiment). Aiming at the simultaneous determination of two unknown
thermal coefficients, we consider that the time evolution of the sharp inter-
face s is also known. More precisely, we follow [15, 25, 26, 27] in assuming
that it is given by:

s(t) = σtα/2, t > 0, (1.3)

with σ > 0 [ms−α/2]. The operator Dα in (1.2a) and (1.2c) represents the
fractional time derivative of order α in the Caputo sense, which is defined
by [4]:

Dαf(t) =

⎧⎨
⎩

1
Γ(1−α)

∫ t

0

f ′(τ)
(t− τ)α

dτ if 0 < α < 1

f ′(t) if α = 1
, t > 0 (1.4)

for any f ∈ W 1(R+) =
{
f ∈ C1(R+)/f ′ ∈ L1(R+)

}
, where Γ is the Gamma

function defined by:

Γ(x) =

∫ +∞

0
sx−1 exp(−s)ds, x > 0.

We finally observe that, since we are considering a one-phase melting
process, the temperature θ of the whole material is given by:

θ(x, t) =

{
T (x, t) if 0 < x < s(t), t > 0
Tm if s(t) ≤ x, t > 0

.

Some comments on the formulation of the fractional heat equation
(1.2a) must be done before go any further. Since x = 0 is the starting
point in the definition of the Caputo derivative given by (1.4), any function
T which satisfies the fractional equation (1.2a) must be defined in a larger
domain than the one of interest (see Definition 2.1. in the next section
for further details). This formulation will enable us to find solutions of
similarity type to problem (1.2) based on the similarity solutions found in
[15, 25, 26, 27] to direct fractional Stefan problems. This article should
be then interpreted as a mathematical game with fractional Stefan prob-
lems instead of one in which a physical theory for phase-change processes
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DETERMINATION OF TWO UNKNOWN THERMAL . . . 403

with memory is developed. In spite of this, we will use some terminology
coming from the physical interpretation of classical Stefan problems in the
context of phase-change problems, such as “temperature” or “thermal co-
efficients”. Through this sort of games, more precisely, through the explicit
solutions and mathematical strategies presented here, we hope to contribute
in the understanding of fractional Stefan problems and its relation with the
modeling of phase-change processes under the effects of memory in their
evolution.

2. Solutions of similarity type

We begin with a definition of being a solution to the inverse fractional
Stefan problem (1.2), which is based in the definition established in [25, 26]
for the direct case. Aiming at making it more readable, we first intro-
duce the sets Ω, ∂pΩ and function spaces C2

x(R
+),W 1

t (R
+) involved in the

definition:

Ω = {(x, t) / 0 < x < s(t), t > 0},
∂pΩ = {(0, t)/t > 0} ∪ {(s(t), t)/t > 0},
C2
x(R

+) =
{
f : R+ × R

+ → R/ f(·, t) ∈ C2(R+)∀ t > 0
}
,

W 1
t (R

+) =
{
f : R+ × R

+ → R/ f(x, ·) ∈ W 1(R+)∀x > 0
}
,

W 1(R+) being the Sobolev space of all functions in the Lebesgue space
L2(R+) which have a weak derivative in L2(R+).

Definition 2.1. The triplet given by the temperature T and two
unknown thermal coefficients among k, ρ, l and c is a solution to the inverse
fractional one-phase Stefan problem (1.2) if:

(1) T is defined in R
+
0 × R

+
0 ;

(2) T ∈ C(Ω) ∩C2
x(R

+) ∩W 1
t (R

+);
(3) T is a continuous function over Ω ∪ ∂pΩ and:

0 ≤ lim inf
(x,t)→(0,0)

T (x, t) ≤ lim sup
(x,t)→(0,0)

T (x, t) < ∞;

(4) For all t > 0, exists ∂
∂xT (s(t), t);

(5) The unknown thermal coefficients are positive real numbers;
(6) The temperature T and the two unknown thermal coefficients verify

(1.2).

Remark 2.1. We note that the function s given by (1.3) is consistent
with the definition of being a solution to a (direct) fractional one-phase
Stefan problem given in [25, 26], since it is a positive function belonging to
C(R+

0 ) ∩W 1(R+).

Auth
or'

s C
op

y



404 A.N. Ceretani, D.A. Tarzia

Encouraged by [15, 25, 26, 27, 34], in this section we are looking for a
solution of similarity type to Problem (1.2). That is, we look for a temper-
ature function T such that:

T (x, t) = A+B

(
1−W

(
− x√

μαλtα/2
,−α

2
, 1

))
, x > 0, t > 0, (2.1)

where A and B are real numbers that must be determined, and W is the
Wright function given by [38, 39]:

W (z, a, b) =
+∞∑
k=0

zk

k! Γ(ak + b)
, z ∈ C, a > −1, b ∈ C. (2.2)

According to [25, 26], we know that the function T given by (2.1) ful-
fills conditions 1 to 4 in Definition 2.1 and that it satisfies the fractional
diffusion equation (1.2a). Noting that W

(
0,−α

2 , 1
)
= 1, it follows from

condition (1.2d) that:
A = T0. (2.3)

From this, and condition (1.2b), we have that:

B =
Tm − T0

1−W
(
− σ√

μαλ
,−α

2 , 1
) . (2.4)

We observe thatW
(
− σ√

μαλ
,−α

2 , 1
)
�= 1 becauseW

(−x,−α
2 , 1

)
is a strictly

decreasing function in R
+ (see [25]) and, as we have already noted,

W
(
0,−α

2 , 1
)
= 1.

By taking into consideration that the Wright function satisfies [38, 39]:

d

dz
W (z, a, b) = W (z, a, a+ b), z ∈ C, a > −1, b ∈ C,

and the fractional Caputo derivative of a power function with positive ex-
ponent is given by [24]:

Dαtp =
Γ(p + 1)

Γ (p− α+ 1)
tp−α, t > 0, p > 0,

it follows from the fractional Stefan condition (1.2c) that:

√
μαl

[
1−W

(
− σ√

μαλ
,−α

2 , 1
)]

λcMα
2

(
σ√
μαλ

) =
(T0 − Tm)Γ

(−α
2 + 1

)
νασΓ

(
α
2 + 1

) , (2.5)

where Mν is the Mainardi function, which has been defined by ([23]):

Mν(z) = W (−z,−ν, 1− ν) , z ∈ C, 0 < ν < 1, (2.6)

as special case of the Wright function, and satisfies Mν(z) > 0 for all z ∈ R
+

([25]).
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DETERMINATION OF TWO UNKNOWN THERMAL . . . 405

Finally, when we consider B given by (2.4), the heat flux boundary
condition (1.2e) implies that it must be satisfied the following equality:

√
μαq0λ

k

[
1−W

(
− σ√

μαλ
,−α

2
, 1

)]
=

T0 − Tm

Γ
(−α

2 + 1
) . (2.7)

We have thus proved the following result:

Theorem 2.1. If the moving boundary s is defined by (1.3), then the
function T given by:

T (x, t) = T0 − T0 − Tm

1−W
(−ξ,−α

2 , 1
) [1−W

(
− x√

μαλtα/2
,−α

2
, 1

)]
,

x > 0, t > 0,

(2.8)

is a solution to Problem (1.2) with two unknown thermal coefficients among
k, ρ, l and c, if and only if it is a solution to the following system of
equations:

ξ
[
1−W

(−ξ,−α
2 , 1

)]
Mα

2
(ξ)

=
c(T0 − Tm)Γ

(−α
2 + 1

)
μαναlΓ

(
α
2 + 1

) , (2.9a)

1−W
(
−ξ,−α

2
, 1
)
=

√
kρc(T0 − Tm)√

μαq0Γ
(−α

2 + 1
) , (2.9b)

where the dimensionless parameter ξ is defined by:

ξ =
σ√
μαλ

. (2.10)

3. Existence and uniqueness of solutions of similarity type.
Formulae for the two unknown thermal coefficients.

In this section we will look for necessary and sufficient conditions on
data to have existence and uniqueness of solution to Problem (1.2) for
each possible choice of the two unknown thermal coefficients, as well as
explicit formulae for them. Thanks to Theorem 2.1, it can be done through
analysing and solving the system of equations (2.9) for each pair of unknown
thermal coefficients. With the aim of organizing the main results of this
section, we will write:

Case 1: Determination of l and c Case 4: Determination of c and ρ
Case 2: Determination of c and k Case 5: Determination of l and ρ
Case 3: Determination of l and k Case 6: Determination of ρ and k.

For each α ∈ (0, 1), we introduce the real functions Fα, Gα and Hα

defined in R
+ by:
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406 A.N. Ceretani, D.A. Tarzia

Fα(x) =
fα(x)

x
, (3.1a)

Gα(x) = xfα(x), (3.1b)

Hα(x) =
xfα(x)

Mα
2
(x)

, (3.1c)

where

fα(x) = 1−W
(
−x,−α

2
, 1
)
. (3.2)

The following result will be useful all throughout this section.

Lemma 3.1. For any α ∈ (0, 1), the real functions Fα, Gα and Hα

defined in (3.1) satisfy the following conditions:

Fα(0
+) =

1

Γ
(−α

2 + 1
) , Fα(+∞) = 0, F ′

α(x) < 0 ∀x > 0, (3.3a)

Gα(0
+) = 0, Gα(+∞) = +∞, G′

α(x) > 0 ∀x > 0, (3.3b)

Hα(0
+) = 0, Hα(+∞) = +∞, H ′

α(x) > 0 ∀x > 0. (3.3c)

P r o o f. The proof of (3.3a) was done in [34]. The demonstrations of
(3.3b) and (3.3c) follow from elementary computations and the following
facts:

(1) Since 0 < α < 1, fα is a positive and strictly increasing function in
R
+, [25].
(2) Since 0 < α < 1, Mα

2
is a positive and strictly decreasing function

in R
+, [25].
(3) lim

x→+∞ f(x) = 1 and lim
x→+∞Mα

2
(x) = 0, [11]. �

Theorem 3.1 (Case 1: Determination of l and c). If the moving
boundary s is given by (1.3), then Problem (1.2) admits the solution T , l
and c given by (2.8) and:

c =
1

ρk

[
q0
√
μαΓ

(−α
2 + 1

) [
1−W

(−ξ,−α
2 , 1

)]
T0 − Tm

]2

, (3.4a)

l =
q20 Γ

3
(−α

2 + 1
) [

1−W
(−ξ,−α

2 , 1
)]

Mα
2
(ξ)

ναρk(T0 − Tm)Γ
(
α
2 + 1

)
ξ

, (3.4b)
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DETERMINATION OF TWO UNKNOWN THERMAL . . . 407

respectively, ξ being the only one solution to the equation:

Fα(x) =
k(T0 − Tm)

σq0Γ
(−α

2 + 1
) , x > 0, (3.5)

if and only if the following inequality holds:

k(T0 − Tm)

σq0
< 1. (3.6)

P r o o f. Isolating c from equation (2.9b), we have that c is given by
(3.4a). Now, by combining this with equation (2.9a), it can be obtained that
l is given by (3.4b). It must be noted that the parameter ξ involved in both
(3.4a) and (3.4b) depends on c. Nevertheless, it can be determined without
making any reference to c as follows. By replacing (3.4a) in the definition
of ξ given in (2.10), we have that ξ must be a solution to equation (3.5). It
follows from (3.3a) that the equation (3.5) admits a solution if and only if
its RHS is between 0 and 1

Γ(−α
2
+1)

. To complete the proof only remains to

observe that this is equivalent to say that inequality (3.6) must hold and
that, when this happens, equation (3.5) has an only one positive solution.

�

Theorem 3.2 (Case 2: Determination of c and k). If the moving
boundary s is given by (1.3), then Problem (1.2) admits the solution T , c
and k given by (2.8) and:

c =
μαναlΓ

(
α
2 + 1

)
ξ
[
1−W

(−ξ,−α
2 , 1

)]
(T0 − Tm)Γ

(−α
2 + 1

)
Mα

2
(ξ)

, (3.7a)

k =
q20 Γ

3
(−α

2 + 1
) [

1−W
(−ξ,−α

2 , 1
)]

Mα
2
(ξ)

ναρl(T0 − Tm)Γ
(
α
2 + 1

)
ξ

, (3.7b)

respectively, ξ being the only one solution to the equation:

Mα
2
(x) =

νασρlΓ
(
α
2 + 1

)
q0Γ2

(−α
2 + 1

) , x > 0, (3.8)

if and only if the following inequality holds:

νασρlΓ
(
α
2 + 1

)
q0Γ

(−α
2 + 1

) < 1. (3.9)

P r o o f. By following the same steps as in the demonstration of the
Theorem 3.1, it can be shown that c and k must be given by (3.7), where
the parameter ξ should be a solution to equation (3.8). Since the Mainardi
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function Mα
2

is a strictly decreasing function from 1
Γ(−α

2
+1)

to 0 in R
+

([25]), we have that the equation (3.8) admits a solution if and only if its
RHS is between 0 and 1

Γ(−α
2
+1)

. This is equivalent to say that inequality

(3.9) must holds. Moreover, when data satisfy (3.9), equation (3.8) has an
only one positive solution. �

Theorem 3.3 (Case 3: Determination of l and k). If the moving
boundary s is given by (1.3), then Problem (1.2) admits the solution T , k
and l given by (2.8) and:

k =
1

ρc

[
q0
√
μαΓ

(−α
2 + 1

) [
1−W

(−ξ,−α
2 , 1

)]
T0 − Tm

]2

, (3.10a)

l =
c(T0 − Tm)Γ

(−α
2 + 1

)
Mα

2
(ξ)

μαναΓ
(
α
2 + 1

)
ξ
[
1−W

(−ξ,−α
2 , 1

)] , (3.10b)

respectively, ξ being the only one solution to the equation:

Gα(x) =
σρc(T0 − Tm)

μαq0Γ
(−α

2 + 1
) , x > 0. (3.11)

P r o o f. By proceeding analogously to the proofs of the previous The-
orems 3.1 and 3.2, we have that k and l should be given by (3.10), ξ being
a solution to equation (3.11). Since the RHS of the equation (3.11) is a
positive number, it follows from (3.3b) that the equation (3.11) admits an
only one solution for any set of data. �

The following Theorems 3.4, 3.5, corresponding to Cases 4, 5, can be
proved in much the same way as Theorem 3.1. Therefore, we do not include
here their demonstrations.

Theorem 3.4 (Case 4: Determination of c and ρ). If the moving
boundary s is given by (1.3), then Problem (1.2) admits the solution T , c
and ρ given by (2.8), (3.7a) and:

ρ =
q20 Γ

3
(−α

2 + 1
) [

1−W
(−ξ,−α

2 , 1
)]

Mα
2
(ξ)

ναkl(T0 − Tm)Γ
(
α
2 + 1

)
ξ

, (3.12a)

respectively, ξ being the only one solution to the equation (3.5), if and only
if inequality (3.6) holds.
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DETERMINATION OF TWO UNKNOWN THERMAL . . . 409

Theorem 3.5 (Case 5: Determination of l and ρ). If the moving
boundary s is given by (1.3), then Problem (1.2) admits the solution T , l
and ρ given by (2.8), (3.10b) and:

ρ =
1

kc

[
q0
√
μαΓ

(−α
2 + 1

) [
1−W

(−ξ,−α
2 , 1

)]
T0 − Tm

]2

, (3.13a)

respectively, ξ being the only one solution to the equation (3.5), if and only
if inequality (3.6) holds.

Theorem 3.6 (Case 6: Determination of ρ and k). If the moving
boundary s is given by (1.3), then Problem (1.2) admits the solution T , ρ
and k given by (2.8) and:

ρ =
q0μαΓ

(−α
2 + 1

)
ξ
[
1−W

(−ξ,−α
2 , 1

)]
σc(T0 − Tm)

, (3.14a)

k =
σq0Γ

(−α
2 + 1

) [
1−W

(−ξ,−α
2 , 1

)]
(T0 − Tm)ξ

, (3.14b)

respectively, ξ being the only one solution to the equation:

Hα(x) =
c(T0 − Tm)Γ

(−α
2 + 1

)
μαναlΓ

(
α
2 + 1

) , x > 0. (3.15)

P r o o f. By following the same ideas as in the proof of Theorem 3.1,
we have that ρ and k must be given by (3.14), where ξ should be a solution
to equation (3.15). By noting that the RHS of this equation is a positive
number, it follows from (3.3c) that the equation (3.15) admits an only one
positive solution for any set of data. �

Table 1 summarizes the formulae obtained for the two unknown thermal
coefficients and the condition that data must verify to obtain them, for
each one of the six possible choices of the two unknown thermal coefficients
among k, ρ, l and c in Problem (1.2) when the moving boundary s is defined
by (1.3).
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Case Formulae for the unknown � Equation for ξ

thermal coefficients ∗ Restriction for data

1 c = 1
ρk

[
q0

√
μαΓ(−α

2
+1)[1−W(−ξ,−α

2
,1)]

T0−Tm

]2

� Fα(x) =
k(T0−Tm)

σq0Γ(−α
2
+1)

, x > 0

l =
q20Γ

3(−α
2
+1)[1−W(−ξ,−α

2
,1)]Mα

2
(ξ)

ναρk(T0−Tm)Γ(α
2
+1)ξ

∗ k(T0−Tm)
σq0

< 1

2 c =
μαναlΓ(α

2
+1)ξ[1−W(−ξ,−α

2
,1)]

(T0−Tm)Γ(−α
2
+1)Mα/2(ξ)

�Mα
2
(x) =

νασρlΓ(α
2
+1)

q0Γ2(−α
2
+1)

, x > 0

k =
q20Γ

3(−α
2
+1)[1−W(−ξ,−α

2
,1)]Mα

2
(ξ)

ναρl(T0−Tm)Γ(α
2
+1)ξ

∗ νασρlΓ(α
2
+1)

q0Γ(−α
2
+1)

< 1

3 k = 1
ρc

[
q0

√
μαΓ(−α

2
+1)[1−W(−ξ,−α

2
,1)]

T0−Tm

]2

�Gα(x) =
σρc(T0−Tm)

μαq0Γ(−α
2
+1)

, x > 0

l =
c(T0−Tm)Γ(−α

2
+1)Mα

2
(ξ)

μαναΓ(α
2
+1)ξ[1−W(−ξ,−α

2
,1)]

∗−

4 c =
μαναlΓ(α

2
+1)ξ[1−W(−ξ,−α

2
,1)]

(T0−Tm)Γ(−α
2
+1)Mα/2(ξ)

� Fα(x) =
k(T0−Tm)

σq0Γ(−α
2
+1)

, x > 0

ρ =
q20Γ

3(−α
2
+1)[1−W(−ξ,−α

2
,1)]Mα

2
(ξ)

ναkl(T0−Tm)Γ(α
2
+1)ξ

∗ k(T0−Tm)
σq0

< 1

5 l =
c(T0−Tm)Γ(−α

2
+1)Mα/2(ξ)

μαναΓ(α
2
+1)ξ[1−W(−ξ,−α

2
,1)]

� Fα(x) =
k(T0−Tm)

σq0Γ(−α
2
+1)

, x > 0

ρ = 1
kc

[
q0

√
μαΓ(−α

2
+1)[1−W(−ξ,−α

2
,1)]

T0−Tm

]2
∗ k(T0−Tm)

σq0
< 1

6 ρ =
μαq0Γ(−α

2
+1)ξ[1−W(−ξ,−α

2
,1)]

σc(T0−Tm)
�Hα(x) =

c(T0−Tm)Γ(−α
2
+1)

μαναΓ(α
2
+1)

, x > 0

k =
σq0Γ(−α

2
+1)[1−W(−ξ,−α

2
,1)]

(T0−Tm)ξ
∗−

Table 1. Formulae for the two unknown thermal coeffi-
cients and restriction on data for Problem (1.2)
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4. Convergence to the classic case when α → 1−

When α = 1, the time fractional derivative of order α in the Caputo
sense of a function coincides with its classical time derivative. Then, if we
allow α to be equal to 1 in Problem (1.2) and we consider that case, we
obtain that Problem (1.2) reduces to the classical inverse one-phase Stefan
problem studied in [30]. This problem, which we will refer to as Problem
(1.2�), is given by the classical diffusion equation:

Tt(x, t) = λ2 Txx(x, t), 0 < x < s(t), t > 0, (1.2a�)

the classical Stefan condition:

− k Tx(s(t), t) = ρ l ṡ (t), t > 0, (1.2c�)

and conditions (1.2b), (1.2d) and (1.2e). Of course, to obtain (1.2a�) and
(1.2c�) we have also considered μα = 1 and να = 1 in (1.2a) and (1.2c),
respectively.

The determination of two unknown thermal coefficients through a clas-
sical inverse one-phase Stefan problem was done in [30]. In that article,
necessary and sufficient conditions on data to obtain existence and unique-
ness of solution to Problem (1.2�) are given, together with formulae for the
unknown thermal coefficients. In several articles [15, 25, 26, 27, 34] it has
been proved the convergence when α → 1− of the solution to a fractional
Stefan problem with 0 < α < 1 to the solution to the associated classical
problem obtained by considering α = 1. Encouraged by those works, we
are interested in this section in proving the convergence when α → 1− of
the results obtained in Section 3 to the ones given in [30].

In order to emphasize the dependence on α of the formulae given in
Theorems 3.1 to 3.6, we will mention it here explicitly. For example, if
we are analyzing the convergence of the solution to Problem (1.2) given in
Theorem 3.1, we will refer to it as T (x, t, α), l(α) and c(α). We will also
write ξ(α) to represent the coefficient defined by (2.10).

We start our analysis by recalling the limit behaviour when α → 1− of
the Wright and Mainardi functions involved in the results given in Section
3. The proof of the following lemma can be consulted in [25].

Lemma 4.1. For each x > 0, the Wright and Mainardi functions are
such that:

1−W
(
−x,−α

2
, 1
)
→ erf

(x
2

)
, when α → 1− (4.1a)

Mα/2(x) →
1√
π

exp

(
−x2

4

)
, when α → 1−, (4.1b)
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where erf is the error function, which is defined by:

erf(x) =
2√
π

∫ x

0
exp(s2)ds, x > 0.

Theorem 4.1 (Convergence related to Case 1). If inequality (3.6)
holds, then the solution T (x, t, α), l(α), c(α) to Problem (1.2) given in
Theorem 3.1 converges to the solution obtained in [30], which is given by:

T (x, t) = T0 +
T0 − Tm

erf
(
σ�

λ

) erf

(
x

2λ
√
t

)
, 0 < x < s(t), t > 0, (4.2a)

c =
k

ρ

(
ξ�

σ�

)2

, (4.2b)

l =
q0 exp(−ξ�2)

ρσ�
, (4.2c)

where σ� is defined by:

σ� =
σ

2
(4.3)

and ξ� is the only one solution to the equation:

erf(x)

x
=

k(T0 − Tm)

q0σ�
√
π

, x > 0. (4.4)

P r o o f. Taking the limit when α → 1− into both sides of the equation
(3.5) and using (4.1b), we obtain the following equation:

erf(x/2)

x
=

k(T0 − Tm)

q0σ
√
π

, x > 0. (4.5)

On one hand, we have that the LHS of the equation (4.5) defines a strictly
decreasing function from 1√

π
to 0 in R

+. On the other hand, since inequality

(3.6) holds, the RHS of equation (3.6) is between 0 and 1√
π
. Therefore, it

follows that equation (4.5) has an only one positive solution. By introducing
the parameter σ� defined by (4.3), we can rewrite equation (4.5) as follows:

erf(x/2)

x/2
=

k(T0 − Tm)

q0σ�
√
π

, x > 0,

and see that the solution ξ(α) to the equation (3.5) is such that:

ξ(α) → 2ξ�, when α → 1−, (4.6)
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ξ� being the only one solution to the equation (4.4). From (1.1), (4.1) and
(4.6), it follows from elementary computations that:

c(α) → c, when α → 1−, (4.7a)

l(α) → l, when α → 1−, (4.7b)

where c and l are given by (4.2b) and (4.2c), respectively. Finally, it follows
from (1.1a), (4.1), (4.6) and (4.7) that:

T (x, t, α) → T (x, t), when α → 1−, (4.8)

for each pair (x, t) with 0 < x < s(t) and t > 0, where T (x, t) is given by
(4.2a). We then have proved that the solution to Problem (1.2) given in
Theorem 3.1 converges to the solution to Problem (1.2�) given in [30] when
α → 1−. �

Remark 4.1. We note that inequality (3.6) can be written as:

k(T0 − Tm)

2σ�q0
< 1, (4.9)

σ� being the parameter defined by (4.3), which is the condition established
in [30] to ensure the existence and uniqueness of the solution to Problem
(1.2�) given by (4.2).

Theorem 4.2 (Convergence related to Case 2). If inequality (3.9)
holds for each α ∈ (0, 1), then the solution T (x, t, α), c(α), k(α) to Problem
(1.2) given in Theorem 3.2 converges to the solution obtained in [30], which
is given by (4.2a) and:

c =
q0
√
πξ� erf(ξ�)

ρσ�(T0 − Tm)
, (4.10a)

k =
σ�q0

√
π erf(ξ�)

(T0 − Tm)ξ�
, (4.10b)

where σ� is given by (4.3) and ξ� is the only one solution to the equation:

exp(x2) =
q0
ρlσ�

, x > 0. (4.11)

P r o o f. If we take the limit when α → 1− side by side of equation (3.8)
and we have into consideration (1.1b) and (4.1b), the following equation is
obtained:

exp

(
x2

4

)
=

2q0
σ ρ l

, x > 0. (4.12)
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Since inequality (3.9) holds for all α ∈ (0, 1), we have that the following
inequality also holds:

2q0
σρl

< 1. (4.13)

Therefore, equation (4.12) admits only one positive solution. We note that
equation (4.12) can be rewritten as:

exp

((x
2

)2
)

=
q0
σ�ρl

, x > 0,

where σ� is given by (4.3), from which we can see that the solution ξ(α) to
equation (3.8) is such that:

ξ(α) → 2ξ�, when α → 1−, (4.14)

ξ� being the only one solution to equation (4.11). It follows now from (1.1)
(4.1), (4.14) and elementary computations that:

c(α) → c, (4.15a)

k(α) → k, (4.15b)

where c and k are given by (3.7), respectively. Finally, we have from (1.1a),
(4.1), (4.14) and (4.15) that T (x, t, α) satisfies (4.8). �

Remark 4.2. By introducing the parameter σ� defined by (4.3), we
have that the inequality (4.13) can be rewritten as:

q0
ρlσ�

> 1, (4.16)

which is the condition established in [30] to ensure the existence and unique-
ness of the solution to Problem (1.2�) given by (4.2a) and (4.10).

Theorem 4.3 (Convergence related to Case 3). If inequality (3.6)
holds, then the solution T (x, t, α), l(α), k(α) to Problem (1.2) given in
Theorem 3.3 converges to the solution obtained in [30], which is given by
(4.2a) and:

l =
q0 exp(−ξ�2)

ρσ�
, (4.17a)

k = ρc

(
σ�

ξ�

)2

, (4.17b)

where σ� is given by (4.3) and ξ� is the only one solution to the equation:

x erf(x) =
ρ c σ�(T0 − Tm)

q0
√
π

, x > 0. (4.18)
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P r o o f. Taking the limit when α → 1− into both sides of the equa-
tion (3.11) and having into consideration (1.1a) and (4.1a), we obtain the
following equation:

x erf
(x
2

)
=

σ ρ c (T0 − Tm)

q0
√
π

, x > 0. (4.19)

Since the LHS of equation (4.19) defines a strictly increasing function from 0
to +∞ in R

+ and the RHS of equation (4.19) is a positive number, it follows
that equation (4.19) has an only one positive solution. By introducing the
parameter σ� defined by (4.3), the equation (4.19) can be rewritten as:

x

2
erf

(x
2

)
=

σ� ρ c (T0 − Tm)

q0
√
π

, x > 0,

from which we can see that the solution ξ(α) to the equation (3.11) is such
that:

ξ(α) → 2ξ�, when α → 1−, (4.20)

ξ� being the only one solution to equation (4.18). The rest of the proof
runs as before. �

The following results can be proved in the same manner as the previous
theorems in this section. Then, we prefer to omit their proofs.

Theorem 4.4 (Convergence related to Case 4). If inequality (3.6)
holds, then the solution T (x, t, α), c(α), ρ(α) to Problem (1.2) given in
Theorem 3.4 converges to the solution obtained in [30], which is given by
(4.2a) and:

c =
klξ�, exp(ξ�2)

q0
√
π

, (4.21a)

ρ =
q0 exp(−ξ�2)

lσ�
, (4.21b)

where σ� is given by (4.3) and ξ� is the only one solution to the equation
(4.4).

Theorem 4.5 (Convergence related to Case 5). The solution T (x, t, α),
l(α), ρ(α) to Problem (1.2) given in Theorem 3.5 converges to the solution
obtained in [30], which is given by (4.2a) and:

l =
q0cσ

� exp(−ξ�2)

kξ�2
, (4.22a)

ρ =
k

c

(
ξ�

σ�

)2

, (4.22b)

where σ� is given by (4.3) and ξ� is the only one solution to the equation
(4.4).
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Theorem 4.6 (Convergence related to Case 6). The solution T (x, t, α),
ρ(α), k(α) to Problem (1.2) given in Theorem 3.6 converges to the solution
obtained in [30], which is given by (4.2a) and:

ρ =
q0 exp(−ξ�2)

lσ�
(4.23a)

k =
q0cσ

� exp(−ξ�2)

lξ�2
, (4.23b)

where σ� is given by (4.3) and ξ� is the only one solution to the equation:

x erf(x) exp(x2) =
c(T0 − Tm)

l
√
π

, x > 0. (4.24)

Table 2 summarizes the formulae obtained for the two unknown thermal
coefficients and the condition that data must verify to obtain them, for each
one of the six possible choices for the two unknown thermal coefficients
among k, ρ, l and c in Problem (1.2) when α → 1−.

Conclusions

In this article we have considered a semi-infinite one-dimensional phase-
change material with two unknown constant thermal coefficients. These
were assumed to be among the latent heat per unit mass, the specific heat,
the mass density and the thermal conductivity. The determination of them
have been done through an inverse one-phase fractional Stefan problem
with an overspecified condition at the fixed boundary of the material and
a known evolution of the moving boundary. It was considered that this
problem corresponds to a melting process with latent-heat memory effects,
which we have represented by replacing the classical time derivative in-
volved in the diffusion equation and the Stefan condition, by a time frac-
tional derivative of order α (0 < α < 1) in the Caputo sense. Solutions
of similarity type were looked for and necessary and sufficient conditions
on data to have their existence and uniqueness were given for each of the
six inverse fractional Stefan problems that arise according to the choice
of the two unknown thermal coefficients. We have also obtained explicit
expressions for the temperature and the two unknown thermal coefficients.
Finally, we have compared our results with those obtained for the deter-
mination of two coefficients through the classical statement (α = 1) of the
inverse Stefan problem and we have proved the convergence of our results
to those obtained by the classic case.
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Case Formulae for the unknown � Equation for ξ�

thermal coefficients ∗ Restriction for data

1 c = k
ρ

(
ξ�

σ�

)2

� erf(x)
x

= k(T0−Tm)

q0σ�
√

π
, x > 0

l = q0 exp(−ξ�2)
ρσ� ∗ k(T0−Tm)

2σ�q0
< 1

2 c =
q0
√

πξ� erf(ξ�)

ρσ�(T0−Tm)
� exp(x2) = q0

ρlσ� , x > 0

k =
σ�q0

√
π erf(ξ2)

(T0−Tm)ξ�
∗ q0

ρlσ�

3 k = ρc
(

σ�

ξ�

)2

� x erf(x) = ρcσ�(T0−Tm)

q0
√

π
, x > 0

l = q0 exp(−ξ�2)
ρσ� ∗−

4 c = klξ�2 exp(ξ�2)
q0σ� � erf(x)

x
= k(T0−Tm)

q0σ�
√

π
, x > 0

ρ = q0 exp(−ξ�2)
lσ� ∗ k(T0−Tm)

2σ�q0
< 1

5 l = q0cσ
� exp(−ξ�2)

kξ�2 � erf(x)
x

= k(T0−Tm)

q0σ�
√

π
, x > 0

ρ = k
ρ

(
ξ�

σ�

)2

∗ k(T0−Tm)
2σ�q0

< 1

6 ρ = q0 exp(−ξ�2)
lσ� � x erf(x) exp(x2) = c(T0−Tm)

l
√

π
, x > 0

k = q0cσ
� exp(−ξ�2)

lξ�2 ∗−

Table 2. Formulae for the two unknown thermal coeffi-
cients and restriction on data for Problem (1.2) when α →
1−

Time fractional diffusive equations have been used to model sub-diffu-
sive processes and phenomena evolving under the effects of memory. This,
together with the emerging and strong mathematical development on frac-
tional calculus, motivates scientists to reach a deeper understanding of time
fractional Stefan problems for the diffusive equation. In this regard, there
are several open problems to be answered. The main of them it might be
the one related to the mathematical derivation of fractional Stefan prob-
lems from physical assumptions of a system evolving under the effects of
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418 A.N. Ceretani, D.A. Tarzia

memory. Inwards the mathematical world, there are many other problems
to be solved. Numerical treatment of fractional Stefan problems, for exam-
ple, is faced with the problem that diffusive models seems not to converge
to sharp front models (see [37]). This, an several other problems such us
the study of two-phase fractional Stefan problems or the determination of
thermal coefficients through them, make the study of time fractional Stefan
problems an interesting area to look at.
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