
ZU064-05-FPR paper 9 December 2014 11:37

Under consideration for publication in J. Functional Programming 1

Mtac:
A Monad for Typed Tactic Programming in Coq

BETA ZILIANI
Max Planck Institute for Software Systems (MPI-SWS)

beta@mpi-sws.org

and
DEREK DREYER

Max Planck Institute for Software Systems (MPI-SWS)
dreyer@mpi-sws.org

and
NEELAKANTAN R. KRISHNASWAMI

University of Birmingham
n.krishnaswami@cs.bham.ac.uk

and
ALEKSANDAR NANEVSKI

IMDEA Software Institute
aleks.nanevski@imdea.org

and
VIKTOR VAFEIADIS

Max Planck Institute for Software Systems (MPI-SWS)
viktor@mpi-sws.org

Abstract

Effective support for custom proof automation is essential for large-scale interactive proof develop-
ment. However, existing languages for automation via tactics either (a) provide no way to specify the
behavior of tactics within the base logic of the accompanying theorem prover, or (b) rely on advanced
type-theoretic machinery that is not easily integrated into established theorem provers.

We present Mtac, a lightweight but powerful extension to Coq that supports dependently-typed
tactic programming. Mtac tactics have access to all the features of ordinary Coq programming, as
well as a new set of typed tactical primitives. We avoid the need to touch the trusted kernel type-
checker of Coq by encapsulating uses of these new tactical primitives in a monad, and instrumenting
Coq so that it executes monadic tactics during type inference.

1 Introduction

The past decade has seen a dramatic rise in both the popularity and sophistication of
interactive theorem proving technology. Proof assistants like Coq and Isabelle are now em-
inently effective for formalizing “research-grade” mathematics (Gonthier, 2008; Gonthier
et al., 2013b), verifying serious software systems (Klein et al., 2010; Leroy, 2009; Ševčı́k

ZU064-05-FPR paper 9 December 2014 11:37

2 B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski and V. Vafeiadis

et al., 2013; Chlipala, 2011b), and, more broadly, enabling researchers to mechanize and
breed confidence in their results. Nevertheless, due to the challenging nature of the verifica-
tion problems to which these tools are applied, as well as the rich higher-order logics they
employ, the mechanization of substantial proofs typically requires a significant amount of
manual effort.

To alleviate this burden, theorem provers provide facilities for custom proof automation,
enabling users to instruct the system how to carry out “obvious” or oft-repeated proof steps
automatically. In some systems like Coq, the base logic of the theorem prover is powerful
enough that one can use “proof by reflection” to implement automation routines within
the base logic itself (e.g., Boutin (1997)). However, this approach is applicable only to
pure decision procedures, and requires them to be programmed in a restricted style (so that
their totality is self-evident). In general, one may wish to write automation routines that
engage in activities that even a rich type system like Coq’s does not sanction—routines,
for instance, that do not (provably) terminate on all inputs, that inspect the intensional
syntactic structure of terms, or that employ computational effects.

Toward this end, theorem provers typically provide an additional language for tactic
programming. Tactics support general-purpose scripting of automation routines, as well
as fine control over the state of an interactive proof. However, for most existing tactic
languages (e.g., ML, Ltac), the price to pay for this freedom is that the behavior of a tactic
lacks any static specification within the base logic of the theorem prover (such as, in Coq,
a type). As a result of being untyped, tactics are known to be difficult to compose, debug,
and maintain.

A number of researchers have therefore explored ways of supporting typed tactic pro-
gramming. One approach, exemplified by Delphin (Poswolsky & Schürmann, 2009), Bel-
uga (Pientka, 2008), and most recently VeriML (Stampoulis & Shao, 2010), is to keep
a strict separation between the “computational” tactic language and the base logic of
the theorem prover, thus maintaining flexibility in what tactics can do, but in addition
employing rich type systems to encode strong static guarantees about tactic behavior. The
main downside of these systems is a pragmatic one: they are not programmable or usable
interactively, and due to the advanced type-theoretic machinery they rely on—e.g., for
Beluga and VeriML, contextual modal type theory (Nanevski et al., 2008a)—it is not clear
how to incorporate them into established interactive theorem provers.

A rather different approach, proposed by Gonthier et al. (2013a) specifically in the
context of Coq, is to encapsulate automation routines as overloaded lemmas. Like an
ordinary lemma, an overloaded lemma has a precise formal specification in the form of
a (dependent) Coq type. The key difference is that an overloaded lemma—much like
an overloaded function in Haskell—is not proven (i.e., implemented) once and for all
up front; instead, every time the lemma is applied to a particular goal, the system will
run a user-specified automation routine in order to construct a proof on the fly for that
particular instance of the lemma. To program the automation routine, one uses Coq’s
“canonical structure” mechanism to declare a set of proof-building rules—implemented as
Coq terms—that will be fired in a predictable order by the Coq unification algorithm (but
may or may not succeed). In effect, one encodes one’s automation routine as a dependently-
typed logic program to be executed by Coq’s type inference engine.

ZU064-05-FPR paper 9 December 2014 11:37

Mtac: A Monad for Typed Tactic Programming in Coq 3

The major benefit of this approach is its integration into Coq: it enables users to program
tactics in Coq directly, rather than in a separate language, while at the same time offering
significant additional expressive power beyond what is available in the base logic of Coq.
The downside, however, is that the logic-programming style of canonical structures is in
most cases not as natural a fit for tactics as a functional-programming style would be.1

Moreover, canonical structures provide a relatively low-level language for writing tactics.
The control flow of sophisticated canonical structure programs depends closely on how
Coq type inference is implemented, and thus writing even simple tactics requires one to
think at the level of the Coq unification algorithm, sometimes embracing its limitations
and sometimes working around them. To make up for this, Gonthier et al. (2013a) describe
a series of “design patterns” for programming canonical structures effectively. While these
design patterns are clearly useful, the desire for them nonetheless suggests that there is a
high-level language waiting to be born.

1.1 Mtac: A Monad for Typed Tactic Programming in Coq

In this paper, we present a new language—Mtac—for typed tactic programming in Coq.
Like Beluga and VeriML, Mtac supports general-purpose tactic programming in a direct
functional style. Unlike those languages, however, Mtac is not a separate language, but
rather a simple extension to Coq. As a result, Mtac tactics (or as we call them, Mtactics)
have access to all the features of ordinary Coq programming in addition to a new set
of tactical primitives. Furthermore, like overloaded lemmas, their (partial) correctness is
specified statically within the Coq type system itself, and they are fully integrated into
Coq, so they can be programmed and used interactively. Mtac is thus, to our knowledge,
the first language to support interactive, dependently-typed tactic programming.

The key idea behind Mtac is dead simple. We encapsulate tactics in a monad, thus
avoiding the need to change the base logic and trusted kernel typechecker of Coq at all.
Then, we modify the Coq infrastructure so that it executes these monadic tactics, when
requested to do so, during type inference (i.e., during interactive proof development or
when executing a proof script).

More concretely, Mtac extends Coq with:

1. An inductive type family #τ (read as “maybe τ”) classifying Mtactics that—if they
terminate successfully—will produce Coq terms of type τ . The constructors of this
type family essentially give the syntax for a monadically-typed tactic language: they
include the usual monadic return and bind, as well as a suite of combinators for tactic
programming with fixed points, exception handling, pattern matching, and more.
(Note: the definition of the type family #τ does not per se require any extension to
Coq—it is just an ordinary inductive type family.)

2. A primitive tactic execution construct, run t, which has type τ assuming its argument
t is a tactic of type #τ . When (our instrumentation of) the Coq type inference engine
encounters run t, it executes the tactic t. If that execution terminates, it will either

1 In terms of expressivity, there are tradeoffs between the two styles—for further discussion, see
Section 7.

ZU064-05-FPR paper 9 December 2014 11:37

4 B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski and V. Vafeiadis

01 Definition search (x : A) :=
02 mfix f (s : list A) :=
03 mmatch s as s’ return #(x ∈ s’) with
04 | [l r] l ++ r ⇒
05 mtry
06 il ← f l;
07 ret (in or app l r x (or introl il))
08 with ⇒
09 ir ← f r;
10 ret (in or app l r x (or intror ir))
11 end
12 | [s’] (x :: s’) ⇒ ret (in eq)
13 | [y s’] (y :: s’) ⇒
14 r ← f s’;
15 ret (in cons y r)
16 | ⇒ raise NotFound
17 end.

Fig. 1. Mtactic for searching in a list.

produce a term e of type τ (in which case Coq will rewrite run t to e) or else an
uncaught exception (which Coq will report to the user). If a proof passes entirely
through type inference without incurring any uncaught exceptions, that means that
all instances of run in the proof must have been replaced with standard Coq terms.
Hence, there is no need to extend the trusted kernel typechecker of Coq to handle
run.

Example: Searching in a List. To get a quick sense of what Mtac programming is like,
consider the example in Figure 1. Here, search is a tactical term of type ∀x : A. ∀s :
list A. #(x ∈ s). When executed, search x s will search for an element x (of type A) in
a list s (of type list A), and if it finds x in s, it will return a proof that x ∈ s. Note, however,
that search x s itself is just a Coq term of monadic type #(x ∈ s), and that the execution of
the tactic will only occur when this term is run.

The implementation of search relies on four new features of Mtac that go beyond what is
possible in ordinary Coq programming: it iterates using a potentially unbounded fixed point
mfix (line 2), it case-analyzes the input list s using a new mmatch constructor (line 3), it
raise-s an exception NotFound if the element x was not found (line 16), and this exception
is caught and handled (for backtracking purposes) using mtry (line 5). These new features,
which we will present in detail in §2, are all constructors of the inductive type family #τ .
Regarding mmatch, the reason it is different from ordinary Coq match is that it supports
pattern-matching not only against primitive datatype constructors (e.g., [] and ::) but also
against arbitrary terms (e.g., applications of the ++ function for concatenating two lists).
For example, search starts out (line 4) by checking whether s is an application of ++ to
two subterms l and r. If so, it searches for x first in l and then in r. In this way, mmatch

supports case analysis of the intensional syntactic structure of open terms, in the manner
of VeriML’s holcase (Stampoulis & Shao, 2010) and Beluga’s case (Pientka, 2008).

ZU064-05-FPR paper 9 December 2014 11:37

Mtac: A Monad for Typed Tactic Programming in Coq 5

By run-ning search, we can now, for example, very easily prove the following lemma
establishing that z is in the list [x;y;z]:

Lemma z in xyz (x y z : A) : z ∈ [x;y;z] := run (search)

Note here that we did not even need to supply the inputs to search explicitly: they were
picked up from context, namely the goal of the lemma (z ∈ [x;y;z]), which Coq type
inference proceeds to unify with the output type of the Mtactic search.

1.2 Contributions and Overview

In the remainder of this article, we will:

• Describe the design of Mtac in detail (§2).
• Give a number of examples to concretely illustrate the benefits of Mtac programming

(§3).
• Present the formalization of Mtac, along with meta-theoretic results such as type

soundness (§4).
• Explore some technical issues regarding the integration of Mtac into Coq (§5).
• Extend the language to support stateful Mtactics (§6).
• Compare with related work and discuss future work (§7).

The source code of the Mtac implementation and the examples can be downloaded from:

http://plv.mpi-sws.org/mtac

This article is an extended version of our ICFP 2013 paper (Ziliani et al., 2013). The
main differences from the conference version are the inclusion of: completely new material
about stateful Mtactics (§6); a revised account of Mtac’s operational semantics, in which
(following Coq) unification variables are assigned contextual types (§4.1–4.2); details of
the type soundness proof for Mtac (§4.3); extended comparison with related work (§7); and
a number of mostly minor corrections. One more significant correction is to the operational
semantics of the abs construct (the EABS rule in Figure 13, discussed at the end of §4.2),
which was missing a key side condition in the original conference paper.

2 Mtac: A Language for Proof Automation

In this section, we describe the syntax and typing of Mtac, our language for typed proof
automation.

Syntax of Mtac. Mtac extends CIC, the Calculus of (co-)Inductive Constructions (see
e.g., Bertot & Castéran (2004)), with a monadic type constructor #τ , representing tactic
computations returning results of type τ , along with suitable introduction and elimination
forms for such computations. We define # : Type → Prop as a normal CIC inductive
predicate with constructors reflecting our syntax for tactic programming, which are shown
in Fig. 2. (We prefer to define # inductively instead of axiomatizing it in order to cheaply
ensure that we do not affect the logical consistency of CIC.) The # constructors include
standard monadic return and bind (ret, bind), primitives for throwing and handling ex-
ceptions (raise, mtry), a fixed point combinator (mfix), a pattern matching construct

ZU064-05-FPR paper 9 December 2014 11:37

6 B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski and V. Vafeiadis

: Type→ Prop
ret : ∀A. A→#A
bind : ∀A B. #A→ (A→#B)→#B
raise : ∀A. Exception→#A
mtry : ∀A. #A→ (Exception→#A)→#A
mfix : ∀A P. ((∀x : A. #(P x))→ (∀x : A. #(P x)))

→∀x : A. #(P x)
mmatch : ∀A P (t : A). list (Patt A P)→#(P t)
print : ∀s : string. #unit
nu : ∀A B. (A→#B)→#B
abs : ∀A P x. P x→#(∀y : A. P y)
is var : ∀A. A→#bool
evar : ∀A. #A
is evar : ∀A. A→#bool

Patt : ∀A (P : A→ Type). Type
Pbase : ∀A P (p : A) (b : #(P p)). Patt A P
Ptele : ∀A P C. (∀x : C. Patt A P)→ Patt A P

Fig. 2. The # and Patt inductive types.

(mmatch), and a printing primitive useful for debugging Mtactics (print). Mtac also
provides more specialized operations for handling parameters and unification variables
(nu,abs, is var,evar, is evar), but we defer explanation of those features until §3.2.

First, let us clear up a somewhat technical point. The reason we define # as an inductive
predicate (i.e., whose return sort is Prop rather than Type) has to do with the handling
of mfix. Specifically, in order to satisfy Coq’s syntactic positivity condition on inductive
definitions, we cannot declare mfix directly with the type given in Figure 2, since that
type mentions the monadic type constructor # in a negative position. To work around this,
in the inductive definition of #τ , we replace the mfix constructor with a variant, mfix′,
in “Mendler style” (Mendler, 1991; Hur et al., 2013), i.e., in which references to # are
substituted with references to a parameter �:

mfix′ : ∀A P �. (∀x : A. �(P x)→#(P x))→
((∀x:A. �(P x))→ (∀x:A. �(P x)))→∀x:A. #(P x)

The mfix from Figure 2 is then recovered simply by instantiating the� parameter of mfix′

with #, and instantiating its first value parameter with the identity function. However,
due to the inherent “circularity” of this trick, it only works if the type #τ belongs to an
impredicative sort like Prop. (In particular, if #τ were defined in Type, then while mfix′

would be well-formed, applying mfix′ to the identity function in order to get an mfix would
cause a universe inconsistency.) Fortunately, defining #τ in Prop has no practical impact
on Mtac programming. Note that, in CIC, Prop : Type; so it is possible to construct nested
types such as #(#τ).

Now, onto the features of Mtac. The typing of monadic ret and bind is self-explanatory.
The exception constructs raise and mtry are also straightforward: their types assume the
existence of an exception type Exception. It is easy to define such a type, as well as a way
of declaring new exceptions of that type, in existing Coq (see §5 for details). The print

ZU064-05-FPR paper 9 December 2014 11:37

Mtac: A Monad for Typed Tactic Programming in Coq 7

statement print takes the string to print onto the standard output and returns the trivial
element.

Pattern matching, mmatch, expects a term of type A and a sequence of pattern matching
clauses of type Patt A P, which match objects x of type A and return results of type P x.
Binding in the pattern matching clauses is represented as a telescope: Pbase p b describes
a ground clause that matches the constant p and has body b, and Ptele(λx. pc) adds the
binder x to the pattern matching clause pc. So, for example, Ptele(λx. Ptele(λy. Pbase (x+
y) b) represents the clause that matches an addition expression, binds the left subexpression
to x and the right one to y, and then returns some expression b which can mention both x
and y. Another example is the clause, Ptele(λx. Pbase x b) which matches any term and
returns b.

Note that it is also fine for a pattern to mention free variables bound in the ambient
environment (i.e., not bound by the telescope pattern). Such patterns enable one to check
that (some component of) the term being pattern-matched is unifiable with a specific term
of interest. We will see examples of this in the search2 and lookup Mtactics in §3.

In our examples and in our Coq development, we often omit inferrable type annotations
and use the following notation to improve readability of Mtactics:

x← t; t ′ denotes bind t (λx. t ′)

mfix f (x : τ) : #τ ′ := t denotes mfix (λx : τ. τ ′) (λ f . λx. t)

νx : A. t denotes nu (λx : A. t)

mmatch t denotes mmatch (λx. τ) t
as x return #τ with [

| [x1] p1⇒ b1 Ptele x1 (Pbase p1 b1),

.

| [xm] pm⇒ bm Ptele xm (Pbase pm bm)

end]

mtry t denotes mtry t (λx.
with ps end mmatch x with ps end)

where Ptele x1 · · ·xn p means Ptele(λx1. · · · . Ptele(λxn. p)· · ·). Both type annotations in
the mfix and in the mmatch notation (in the latter, denoted as x return #τ) are optional
and can be omitted, in which case the returning type is left to the type inference algorithm
to infer. The mfix construct accepts up to 5 arguments.

Running Mtactics. Defining # as an inductive predicate means that terms of type #τ

can be destructed by case analysis and induction. Unlike other inductive types, # supports
an additional destructor: tactic execution. Formally, we extend Coq with a new construct,
run t, that takes an Mtactic t of type #τ (for some τ), and runs it at type-inference time to
return a term t ′ of type τ .

Γ ` t : #τ Γ ` t ∗ ret t ′

Γ ` run t : τ

We postpone the definition of the tactic evaluation relation, , as well as a precise formu-
lation of the rule, to §4, but note that since tactic evaluation is type-preserving, t ′ has type
τ , and thus τ is inhabited.

ZU064-05-FPR paper 9 December 2014 11:37

8 B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski and V. Vafeiadis

3 Mtac by Example

In this section, we offer a gentle introduction to the various features of Mtac by working
through a sequence of proof automation examples.

3.1 noalias: Non-Aliasing of Disjointly Allocated Pointers

Our first example, noalias, is taken from Gonthier et al. (2013a). The goal is to prove that
two pointers are distinct, given the assumption that they appear in the domains of disjoint
subheaps of a well-defined memory.

In Gonthier et al. (2013a), the noalias example was used to illustrate a rather subtle
and sophisticated design pattern for composition of overloaded lemmas. Here, it will help
illustrate the main characteristics of Mtac, while at the same time emphasizing the relative
simplicity and readability of Mtactics compared to previous approaches.

Preliminaries. We will work here with heaps (of type heap), which are finite maps from
pointers (of type ptr) to values. We write h1 • h2 for the disjoint union of h1 and h2, and
x 7→ v for the singleton heap containing only the pointer x, storing the value v. The disjoint
union may be undefined if h1 and h2 overlap, so we employ a predicate def h, which
declares that h is in fact defined.

Motivating Example. With these definitions in hand, let us state a goal we would like to
solve automatically:

D : def (h1 • (x1 7→ v1 • x2 7→ v2)• (h2 • x3 7→ v3))

x1 != x2∧ x2 != x3

Above the line is a hypothesis concerning the well-definedness of a heap mentioning x1,
x2, and x3, and below the line is the goal, which is to show that x1 is distinct from x2, and
x2 from x3.

Intuitively, the truth of the goal follows obviously from the fact that x1, x2, and x3

appear in disjoint subheaps of a well-defined heap. This intuition is made formal with
the following lemma (in plain Coq):

noalias manual : ∀(h:heap) (y1 y2:ptr) (w1:A1) (w2:A2).

def (y1 7→ w1 • y2 7→ w2 •h)→ y1 != y2

Unfortunately, we cannot apply this lemma using hypothesis D as it stands, since the heap
that D proves to be well-defined is not of the form required by the premise of the lemma—
that is, with the pointers in question (x1 and x2, or x2 and x3) at the very front of the heap
expression. It is of course possible to solve the goal by: (a) repeatedly applying rules of
associativity and commutativity for heap expressions in order to rearrange the heap in the
type of D so that the relevant pointers are at the front of the heap expression; (b) applying
the noalias manual lemma to solve the first inequality; and then repeating (a) and (b) to
solve the second inequality.

But we would like to do better. What we really want is an Mtactic that will solve these
kinds of goals automatically, no matter where the pointers we care about are located inside

ZU064-05-FPR paper 9 December 2014 11:37

Mtac: A Monad for Typed Tactic Programming in Coq 9

01 Record form h := Form {
02 seq of :> list ptr;
03 axiom of : def h → uniq seq of
04 ∧ ∀ x. x ∈ seq of → x ∈ dom h }.
05
06 Definition scan :=
07 mfix f (h : heap) : #(form h) :=
08 mmatch h with
09 | [x A (v:A)] x 7→ v ⇒ ret (Form [x] ...)
10 | [l r] l • r ⇒
11 rl ← f l;
12 rr ← f r;
13 ret (Form (seq of rl ++ seq of rr) ...)
14 | [h’] h’ ⇒ ret (scan h [] ...)
15 end.

Fig. 3. Mtactic for scanning a heap to obtain a list of pointers.

the heap. One option is to write an Mtactic to perform all the rearrangements necessary
to put the two pointers at the front, and then apply the lemma above. This approach has
two drawbacks: it is computationally expensive, and it generates big proof terms. Both
problems comes from the observation that the algorithm has to rearrange the heap twice
for each inequality, “bubbling up” each of the pointers in the inequality to the front of the
heap.

Instead, we pursue a solution analogous to the one in Gonthier et al. (2013a), breaking
the problem into two smaller Mtactics scan and search2, combined in a third Mtactic,
noalias.

The Mtactic scan. Figure 3 presents the Mtactic scan. It scans its input heap h to produce
a list of the pointers x appearing in singleton heaps x 7→ v in h. More specifically, it returns
a dependent record containing a list of pointers (seq of, of type list ptr), together with a
proof that, if h is well-defined, then (1) the list seq of is “unique” (denoted uniq seq of),
meaning that all elements in it are distinct from one another, and (2) its elements all belong
to the domain of the heap.

To do this, scan inspects the heap and considers three different cases. If the heap is a
singleton heap x 7→ v, then it returns a singleton list containing x. If the heap is the disjoint
union of heaps l and r, it proceeds recursively on each subheap and returns the concate-
nation of the lists obtained in the recursive calls. Finally, if the heap doesn’t match any of
the previous cases, then it returns an empty list. Note that this case analysis is not possible
using Coq’s standard match mechanism, because match only pattern-matches against
primitive datatype constructors. In the case of heaps, which are really finite maps from
pointers to values, x 7→ v and l • r are applications not of primitive datatype constructors
but of defined functions (7→ and •). Thus, in order to perform our desired case analysis, we
require the ability of Mtac’s mmatch mechanism to pattern-match against the syntax of
heap expressions.

In each case, scan also returns a proof that the output list obeys the aforementioned
properties (1) and (2). For presentation purposes, we omit these proofs (denoted with . . . in

ZU064-05-FPR paper 9 December 2014 11:37

10 B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski and V. Vafeiadis

01 Definition search2 x y :=
02 mfix f (s : list ptr) : #(uniq s → x != y) :=
03 mmatch s with
04 | [s’] x :: s’ ⇒ r ← search y s’; ret (foundx pf x r)
05 | [s’] y :: s’ ⇒ r ← search x s’; ret (foundy pf y r)
06 | [z s’] z :: s’ ⇒ r ← f s’; ret (foundz pf z r)
07 | ⇒ raise NotFound
08 end.

Fig. 4. Mtactic for searching for two pointers in a list.

Definition noalias h (D : def h) : #(∀ x y. #(x != y)) :=
sc ← scan h;
ret (λ x y.

s2 ← search2 x y (seq of sc);
ret (combine s2 D)).

Fig. 5. Mtactic for proving that two pointers do not alias.

the figures), but they are proven as standard Coq lemmas. (We will continue to omit proofs
in this way throughout the paper when they present no interesting challenges. The reader
can find them in the source files.)

The Mtactic search2. Figure 4 presents the Mtactic search2. It takes two elements x and
y and a list s as input, and searches for x and y in s. If successful, search2 returns a proof
that, if s is unique, then x is distinct from y. Similarly to scan, this involves a syntactic
inspection and case analysis of the input list s.

When s contains x at the head (i.e., s is of the form x :: s′), search2 searches for y in the
tail s′, using the Mtactic search from §1.1. If this search is successful, producing a proof
r : y ∈ s′, then search2 concludes by composing this proof together with the assumption
that s is unique, using the easy lemma foundx pf:

foundx pf : ∀x y : ptr. ∀s : list ptr.
y ∈ s→ uniq (x :: s) → x != y

(In the code, the reader will notice that foundx pf is not passed the arguments y and s
explicitly. That is because they are inferrable from the type of r, and thus are treated as
implicit arguments.)

If s contains y at the head, search2 proceeds analogously. If the head element is different
from both x and y, then it calls itself recursively with the tail. In any other case, it throws
an exception.

Note that, in order to test whether the head of s is x or y, we rely crucially on the ability
of patterns to mention free variables from the context. In particular, the difference between
the first two cases of search2’s mmatch and the last one is that the first two do not bind
x and y in their telescope patterns (thus requiring the head of the list in those cases to be
syntactically unifiable with x or y, respectively), while the third does bind z in its telescope
pattern (thus enabling z to match anything).

ZU064-05-FPR paper 9 December 2014 11:37

Mtac: A Monad for Typed Tactic Programming in Coq 11

The Mtactic noalias. Figure 5 shows the very short code for the Mtactic noalias, which
stitches scan and search2 together. The type of noalias is as follows:

∀h : heap. def h→#(∀x y. #(x != y))

As the two occurrences of # indicate, this Mtactic is staged: it takes as input a proof that
h is defined and first runs the scan Mtactic on h, producing a list of pointers sc, but then
it immediately returns another Mtactic. This latter Mtactic in turn takes as input x and y
and searches for them in sc. The reason for this staging is that we may wish to prove non-
aliasing facts about different pairs of pointers in the same heap. Thanks to staging, we can
apply noalias to some D just once and then reuse the Mtactic it returns on many different
pairs of pointers, thus avoiding the need to rescan h redundantly.

At the end, the proofs returned by the calls to scan and search2 are composed using a
combine lemma with the following type:

Lemma combine h x y (sc : form h) :
(uniq (seq of sc)→ x != y)→ def h→ x != y.

This lemma is trivial to prove by an application of the cut rule.

Applying the Mtactic noalias. The following script shows how noalias can be invoked in
order to solve the motivating example from the beginning of this section:

pose F := run (noalias D)

split; refine run (F)

When Coq performs type inference on the run in the first line, that forces the execution
of (the first scan-ning phase of) the Mtactic noalias on the input hypothesis D, and the
standard pose mechanism then binds the result to F . This F has the type

∀x y : ptr. #(x != y)

In the case of our motivating example, F will be an Mtactic that, when passed inputs x and
y, will search for those pointers in the list [x1;x2;x3] output by the scan phase.

The script continues with Coq’s standard split tactic, which generates two subgoals, one
for each proposition in the conjunction. For our motivating example, it generates subgoals
x1 != x2 and x2 != x3. We then solve both goals by executing the Mtactic F . When F is
run to solve the first subgoal, it will search for x1 and x2 in [x1;x2;x3] and succeed; when
F is run to solve the second subgoal, it will search for x2 and x3 in [x1;x2;x3] and succeed.
QED. Note that we provide the arguments to F implicitly (as). As in the proof of the
z in xyz lemma from §1.1, these arguments are inferred from the respective goals being
solved. In order to make inference work for us, as will be explained more in detail in §5,
we use the refine tactic instead of apply.

Developing Mtactics Interactively. One key advantage of Mtac is that it works very well
with the rest of Coq, allowing us among other things to develop Mtactics interactively.

For instance, consider the code shown in Figure 6. This is an interactive development
of the search2 Mtactic, where the developer knows the overall search structure in advance,
but not the exact proof terms to be returned, as this can be difficult in general. Here, we

ZU064-05-FPR paper 9 December 2014 11:37

12 B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski and V. Vafeiadis

01 Program Definition interactive search2 x y :=
02 mfix f (s : list ptr) : #(uniq s → x != y) :=
03 mmatch s with
04 | [s’] x :: s’ ⇒ r ← search y s’; ret
05 | [s’] y :: s’ ⇒ r ← search x s’; ret
06 | [z s’] z :: s’ ⇒ r ← f s’; ret
07 | ⇒ raise NotFound
08 end.
09 Next Obligation. ... Qed.
10 Next Obligation. ... Qed.
11 Next Obligation. ... Qed.

Fig. 6. Interactive construction of search2 using Program.

have prefixed the definition with the keyword Program (Sozeau, 2007), which allows us
to omit certain parts of the definition by writing underscores. Program instructs the type
inference mechanism to treat these underscores as unification variables, which—unless
instantiated during type inference—are exposed as proof obligations. In our case, none of
these underscores is resolved, and so we are left with three proof obligations. Each of these
obligations can then be solved interactively within a Next Obligation . . .Qed block.

Finally, it is worth pointing out that within such blocks, as well as within the actual
definitions of Mtactics, we could be running other more primitive Mtactics.

3.2 tauto: A Simple First-Order Tautology Prover

With this next example, we show how Mtac provides a simple but useful way to write
tactics that manipulate contexts and binders. Specifically, we will write an Mtactic im-
plementing a rudimentary tautology prover, modeled after those found in the work on
VeriML (Stampoulis & Shao, 2010) and Chlipala’s CPDT textbook (Chlipala, 2011a).
Compared to VeriML, our approach has the benefit that it does not require any special type-
theoretic treatment of contexts: for us, a context is nothing more than a Coq list. Compared
to Chlipala’s Ltac version, our version is typed, offering a clear static specification of what
the tautology prover produces, if it succeeds.

To ease the presentation, we break the problem in two. First, we show a simple propo-
sitional prover that uses the language constructs we have presented so far. Second, we
extend this prover to handle first-order logic, and we use this extension to motivate some
additional features of Mtac.

Warming up the Engine: A Simple Propositional Prover. Figure 7 displays the Mtac-
tic for a simple propositional prover, taking as input a proposition p and, if successful,
returning a proof of p:

prop-tauto : ∀p : Prop. #p

The Mtactic only considers three cases:

• p is True. In this case, it returns the trivial proof I.
• p is a conjunction of p1 and p2. In this case, it proves both propositions and returns

the introduction form of the conjunction (conj r1 r2).

ZU064-05-FPR paper 9 December 2014 11:37

Mtac: A Monad for Typed Tactic Programming in Coq 13

01 Definition prop-tauto :=
02 mfix f (p : Prop) : #p :=
03 mmatch p as p’ return #p’ with
04 | True ⇒ ret I
05 | [p1 p2] p1 ∧ p2 ⇒
06 r1 ← f p1;
07 r2 ← f p2;
08 ret (conj r1 r2)
09 | [p1 p2] p1 ∨ p2 ⇒
10 mtry
11 r1 ← f p1; ret (or introl r1)
12 with ⇒
13 r2 ← f p2; ret (or intror r2)
14 end
15 | ⇒ raise NotFound
16 end.

Fig. 7. Mtactic for a simple propositional tautology prover.

• p is a disjunction of p1 and p2. In this case, it tries to prove the proposition p1, and if
that fails, it tries instead to prove the proposition p2. The corresponding introduction
form of the disjunction is returned (or introl r1 or or intror r2).

• Otherwise, it raises an exception, since no proof could be found.

Extending to First-Order Logic. We now extend the previous prover to support first-
order logic. This extension requires the tactic to keep track of a context for hypotheses,
which we model as a list of (dependent) pairs pairing hypotheses with their proofs. More
concretely, each element in the hypothesis context has the type dyn = Σp : Prop. p. (In
Coq, this is encoded as an inductive type with constructor Dyn p x, for any x : p.)

Figure 8 shows the first-order logic tautology prover tauto. The fixed point takes the
proposition p and is additionally parameterized over a context (c : list dyn). The first three
cases of the mmatch are similar to the ones in Figure 7, with the addition that the context
is passed around in recursive calls.

Before explaining the cases for→, ∀ and ∃, let us start with the last one (line 29), since
it is the easiest. In this last case, we attempt to prove the proposition in question by simply
searching for it in the hypothesis context. The search for the hypothesis p′ in the context c
is achieved using the Mtactic lookup shown in Figure 9. lookup takes a proposition p and a
context, and traverses the context linearly in the hope of finding a dependent pair with p as
the first component. If it finds such a pair, it returns the second component. Like the Mtactic
search2 from §3.1, this simple lookup routine depends crucially on the ability to match the
propositions in the context syntactically against the p for which we are searching.

Returning to the tautology prover, lines 15–18 concern the case where p = p1 → p2.
Intuitively, in order to prove p1 → p2, one would (1) introduce a parameter y witnessing
the proof of p1 into the context, (2) proceed to prove p2 having y : p1 as an assumption, and
(3) abstract any usage of y in the resulting proof. The rationale behind this last step is that
if we succeed proving p2, then the result is parametric over the proof of p1, in the sense
that any proof of p1 will suffice to prove p2. Steps (1) and (3) are performed by two of the

ZU064-05-FPR paper 9 December 2014 11:37

14 B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski and V. Vafeiadis

01 Definition tauto’ :=
02 mfix f (c : list dyn) (p : Prop) : #p :=
03 mmatch p as p’ return #p’ with
04 | True ⇒ ret I
05 | [p1 p2] p1 ∧ p2 ⇒
06 r1 ← f c p1 ;
07 r2 ← f c p2 ;
08 ret (conj r1 r2)
09 | [p1 p2] p1 ∨ p2 ⇒
10 mtry
11 r1 ← f c p1 ; ret (or introl r1)
12 with ⇒
13 r2 ← f c p2 ; ret (or intror r2)
14 end
15 | [p1 p2 : Prop] p1 → p2 ⇒
16 ν (y:p1).
17 r ← f (Dyn p1 y :: c) p2;
18 abs y r
19 | [A (q:A → Prop)] (∀ x:A. q x) ⇒
20 ν (y:A).
21 r ← f c (q y);
22 abs y r
23 | [A (q:A → Prop)] (∃ x:A. q x) ⇒
24 X ← evar A;
25 r ← f c (q X);
26 b ← is evar X ;
27 if b then raise ProofNotFound
28 else ret (ex intro q X r)
29 | [p’:Prop] p’ ⇒ lookup p’ c
30 end.

Fig. 8. Mtactic for a simple first-order tautology prover.

Definition lookup (p : Prop) :=
mfix f (s : list dyn) : #p :=

mmatch s return #p with
| [x s’] (Dyn p x) :: s’ ⇒ ret x
| [d s’] d :: s’ ⇒ f s’
| ⇒ raise ProofNotFound
end.

Fig. 9. Mtactic to look up a proof of a proposition in a context.

operators we haven’t yet described: nu and abs (the former is denoted by the νx binder).
In more detail, the three steps are:

Line 16: It creates a parameter y : p1 using the constructor nu. This constructor has type

nu : ∀(A B : Type). (A→#B)→#B

(where A and B are left implicit). It is similar to the operator with the same name in
Nanevski (2002) and Schürmann et al. (2005). Operationally, νx : τ. f (which is notation
for nu (λx : τ. f)), creates a parameter y with type τ , pushes it into the local context, and

ZU064-05-FPR paper 9 December 2014 11:37

Mtac: A Monad for Typed Tactic Programming in Coq 15

executes f{y/x} (where ·{·/·} is the standard substitution) in the hope of getting a value
of type B. If the value returned by f refers to y, then it causes the tactic execution to
fail: such a result would lead to an ill-formed term because y is not bound in the ambient
context. This line constitutes the first step of our intuitive reasoning: we introduce the
parameter y witnessing the proof of p1 into the context.

Line 17: It calls tauto′ recursively, with context c extended with the parameter y, and with
the goal of proving p2. The result is bound to r. This line constitutes the second step.

Line 18: The result r created in the previous step has type p2. In order to return an element
of the type p1→ p2, we abstract y from r, using the constructor

abs : ∀(A : Type) (P : A→ Type) (y : A).
P y→#(∀x : A. P x)

(with A,P implicit). Operationally, abs y r checks that the first parameter y is indeed a
variable, and returns the function

λx : A. r{x/y}

In this case, the resulting element has type ∀x : p1. p2, which, since p2 does not refer
to x, is equivalent to p1→ p2. This constitutes the last step: by abstracting over y in the
result, we ensure that the resulting proof term no longer mentions the ν-bound variable
(as required by the use of nu in line 16).

Lines 19–22 consider the case that the proposition is an abstraction ∀x : A. q x. Here,
q is the body of the abstraction, represented as a function from A to Prop. We rely on
Coq’s use of higher-order pattern unification (Miller, 1991) to instantiate q with a faithful
representation of the body. The following lines mirror the body of the previous case, except
for the recursive call. In this case we don’t extend the context with the parameter y, since it
is not a proposition. Instead, we try to recursively prove the body q replacing x with y (that
is, applying q to y).

If the proposition is an existential ∃x : A. q x (line 23), then the prover performs the
following steps:

Line 24: It uses Mtac’s evar constructor to create a fresh unification variable called X .
Line 25: It calls tauto′ recursively, replacing x for X in the body of the existential.
Lines 26–28: It uses Mtac’s is evar mechanism to check whether X is still an uninstan-

tiated unification variable. If it is, then it raises an exception, since no proof could be
found. If it is not—that is, if X was successfully instantiated in the recursive call—then
it returns the introduction form of the existential, with X as its witness. The instantiation
of X may happen during the unification process happening inside the mmatch in the
call to lookup. That is, if the conclusion of the goal we want to prove includes X , and
there is a hypothesis H having the same shape than the goal, but having some term t
instead of X , then X gets instantiated with t.

Now we are ready to prove an example, where P : nat→ Prop:

Definition exmpl : ∀P x. P x→∃y. P y := run(tauto []).

The proof term generated by run is

exmpl = λP x (H : P x). ex intro P x H

ZU064-05-FPR paper 9 December 2014 11:37

16 B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski and V. Vafeiadis

3.3 Inlined Proof Automation

Due to the tight integration between Mtac and Coq, Mtactics can be usefully employed
in definitions, notations and other Coq terms, in addition to interactive proving. In this
respect, Mtac differs from the related systems such as VeriML (Stampoulis & Shao, 2010)
and Beluga (Pientka, 2008), where, to the best of our knowledge, such expressiveness is not
currently available due to the strict separation between the object logic and the automation
language.

In this section, we illustrate how Mtactics can be invoked from Coq proper. To set the
stage, consider the scenario of developing a library for n-dimensional integer vector spaces,
with the main type vector n defined as a record containing a list of nats and a proof that
the list has size n:

Record vector (n : nat) := Vector {
seq of : list nat;

: size seq of = n}.

One of the important methods of the library is the accessor function ith, which returns the
i-th element of the vector, for i < n. One implementation possibility is for ith to check
at run time if i < n, and return an option value to signal when i is out of bounds. The
downside of this approach is that the clients of ith have to explicitly discriminate against
the option value. An alternative is for ith to explicitly request a proof that i < n as one of
its arguments, as in the following type ascription:

ith : ∀n:nat.vector n→∀i:nat.i < n→ nat

Then the clients have to construct a proof of i < n before invoking ith, but we show that
in some common situations, the proof can be constructed automatically by Mtac, and then
passed to ith.

Specifically, we describe an Mtactic compare, which automatically searches for a proof
that two natural numbers n1 and n2 satisfy n1 ≤ n2. compare is incomplete, and if it fails
to find a proof, because the inequality doesn’t hold, or because the proof is too complex, it
raises an exception.

Once compare is implemented, it can be composed with ith as follows. Given a vector
v whose size we denote as vsize v, and an integer i, we introduce the following notation,
which invokes compare to automatically construct a proof that i+1 ≤ vsize v (equivalent
to i < vsize v).

Notation ”[’ith’ v i]” :=
(@ith v i (run (compare (i+1) (vsize v))))

The notation can be used in definitions. For example, given vectors v1,v2 of fixed size 2,
we could define the inner product of v1 and v2 as follows, letting Coq figure out automati-
cally that the indices 0,1 are within bounds.

Definition inner prod (v1 v2 : vector 2) :=
[ith v1 0] × [ith v2 0] + [ith v1 1] × [ith v2 1].

ZU064-05-FPR paper 9 December 2014 11:37

Mtac: A Monad for Typed Tactic Programming in Coq 17

Program Definition compare (n1 n2 : nat) : #(n1 ≤ n2) :=
r1 ← to ast [] n1;
r2 ← to ast (ctx of r1) n2;
match cancel (ctx of r2) (term of r1) (term of r2)

return #(n1 ≤ n2) with
| true ⇒ ret (@sound n1 n2 r1 r2)
| ⇒ raise NotLeqException
end.

Next Obligation. ... Qed.

Fig. 10. Mtactic for proving inequalities between nat’s.

If we tried to add the summand [ith v1 2]× [ith v2 2], where the index 2 is out of bounds,
then compare raises an exception, making the whole definition ill-typed. Similarly, if
instead of vector 2, we used the type vector n, where n is a variable, the definition will
be ill-typed, because there is no guarantee that n is larger than 1. On the other hand, the
following is a well-typed definition, as the indices k and n are clearly within the bound
n+ k+1.

Definition indexing n k (v : vector (n+ k+1)) :=
[ith v k]+ [ith v n].

We proceed to describe the implementation of compare, presented in Figure 10. compare

is implemented using two main helper functions. The first is the Mtactic to ast which
reflects the numbers n1 and n2. More concretely, to ast takes an integer expression, and
considers it as a syntactic summation of a number of components. It parses this syntactic
summation into an explicit list of summands, each of which can be either a constant
or a free variable (subexpressions containing operations other than + are treated as free
variables).

The second helper is a CIC function cancel which cancels the common terms from the
syntax lists obtained by reflecting n1 and n2. If all the summands in the syntax list of n1 are
found in the syntax list of n2, then it must be that n1 ≤ n2 and cancel returns the boolean
true. Otherwise, cancel doesn’t search for other ways of proving n1≤ n2 and simply returns
false to signal the failure to find a proof. This failure ultimately results in compare raising
an exception. Notice that cancel can’t directly work on n1 and n2, but has to receive their
syntactic representation from to ast (in the code of compare these are named term of r1

and term of r2, respectively). The reason is that cancel has to compare names of variables
appearing in n1 and n2, and has to match against the occurrences of the (non-constructor)
function +, and such comparisons and matchings are not possible in CIC.

Alternatively, we could use mmatch to implement cancel in Mtac, but there are good
reasons to prefer a purely functional Coq implementation when one is possible, as is the
case here. With a pure cancel, compare can return a very short proof term as a result
(e.g., (sound n1 n2 r1 r2) in the code of compare). An Mtac implementation would have
to expose the reasoning behind the soundness of the Mtactic at a much finer granularity,
resulting in a larger proof.

We next describe the implementations of the two helpers.

ZU064-05-FPR paper 9 December 2014 11:37

18 B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski and V. Vafeiadis

Data Structures for Reflection. There are two main data structures used for reflecting
integer expressions. As each expression is built out of variables, constants and +, we
syntactically represent the sum as term containing a list of syntactic representations of
variables appearing in the expression, followed by a nat constant that sums up all the
constants from the expression. We also need a type of variable contexts ctx, in order to
determine the syntactic representation of variables. In our case, a variable context is simply
a list of nat expression, each element standing for a different variable, and the position of
the variable in the context serves as the variable’s syntactic representative.

Definition ctx := list nat

Record var := Var of nat

Definition term := (list var)×nat

Example 1. The expression n = (1+x)+(y+3) may be reflected using a variable context
c = [x,y], and a term ([Var 0,Var 1],4). Var 0 and Var 1 correspond to the two variables
in c (x and y, respectively). 4 is the sum of the constants appearing in n.

Example 2. The syntactic representations of 0, successor constructor S, addition and an
individual variable, may be given as the following term constructors. We use .1 and .2 to
denote projections out of a pair.

Definition syn zero : term := ([], 0).

Definition syn succ (t : term) := (t.1, t.2 + 1).

Definition syn add (t1 t2 : term) :=
(t1.1 ++ t2.1, t1.2 + t2.2).

Definition syn var (i : nat) := ([Var i], 0).

In prose, 0 is reflected by an empty list of variable indexes, and 0 as a constant term; if
t is a term reflecting n, then the successor S n is reflected by incrementing the constant
component of t, etc.

We further need a function interp that takes a variable context c and a term t, and
interprets t into a nat, as follows.

interp vars (c : ctx) (t : list var) :=
if t is j :: t’ then

if (vlook c j, interp c t’) is (Some v, Some e)

then Some (v + e) else None

else Some 0.

interp (c : ctx) (t : term) :=
if interp vars c t.1 is Some e
then Some (e + t.2) else None.

First, interp vars traverses the list of variable indices of t, turning each index into a natural
number by looking it up in the context c, and summing the results. The lookup function
vlook c j is omitted here, but it either returns Some j-th element of the context c, or None

if c has fewer than j elements. Then, interp simply adds the result of interp vars to the con-
stant part of the term. For example, if the context c = [x,y] and term t = ([Var 0,Var 1],4),
then interp c t equals Some (x+ y+4).

ZU064-05-FPR paper 9 December 2014 11:37

Mtac: A Monad for Typed Tactic Programming in Coq 19

Record ast (c : ctx) (n : nat) :=
Ast {term of : term;

ctx of : ctx;
: interp ctx of term of = Some n ∧ prefix c ctx of}

Definition to ast : ∀ c n. #(ast c n) :=
mfix f c n :=

mmatch n with
| 0 ⇒ ret (Ast c 0 syn zero c ...)
| [n’] S n’ ⇒

r ← f c n’;
ret (Ast c (S n’) (syn succ (term of r))

(ctx of r) ...)
| [n1 n2] n1 + n2 ⇒

r1 ← f c n1; r2 ← f (ctx of r1) n2;
ret (Ast c (n1 + n2)

(syn add (term of r1) (term of r2)) (ctx of r2) ...)
| ⇒

ctx index ← find n c;
ret (Ast c n (syn var ctx index.2) ctx index.1 ...)

end.

Fig. 11. Mtactic for reflecting nat expressions.

Reflection by to ast. The to ast Mtactic is applied twice in compare: once to reflect n1,
and again to reflect n2. Each time, to ast is passed as input a variable context, and extends
this context with new variables encountered during reflection. To reflect n1 in compare,
to ast starts with the empty context [], and to reflect n2, it starts with the context obtained
after the reflection of n1. This ensures that if the reflections of n1 and n2 encounter the
same variables, they will use the same syntactic representations for them.

The invariants associated with to ast are encoded in the data structure ast (Figure 11).
ast is indexed by the input context c and the number n to be reflected. Upon successful
termination of to ast, the term of field contains the term reflecting n, and the ctx of field
contains the new variable context, potentially extending c. The third field of ast is a proof
formalizing the described properties of term of and ctx of.

Referring to Figure 11, the Mtactic to ast takes the input variable context c and the
number n to be reflected, and traverses n trying to syntactically match the head construct of
n with 0, S or +, respectively. In each case it returns an ast structure containing the syntactic
representation of n, e.g.: syn zero, syn succ or syn add, respectively. In the n1 + n2 case,
to ast recurses into n2 by using the variable context returned from reflection of n1 as an
input, similar as in compare. In each case, the Ast constructor is supplied a proof that we
omit but can be found in the sources. In the default case, when no constructor matches, n
is treated as a variable. The Mtactic find n c (omitted here), searches for n in c, and returns
a ctx×nat pair. If n is found, the pair consists of the old context c, and the position of n
in c. If n is not found, the pair consists of a new context in which n is cons-ed to c, and the
index k, where k is the index of n in the new context. to ast then repackages the context
and the index into an ast structure.

ZU064-05-FPR paper 9 December 2014 11:37

20 B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski and V. Vafeiadis

Fixpoint cancel vars (s1 s2 : list var) : bool :=
if s1 is v :: s1’ then v ∈ s2 &&

cancel vars s1’ (remove var v s2)
else true.

Definition cancel (t1 t2 : term) : bool :=
cancel vars t1.1 t2.1 && t1.2 ≤ t2.2.

Fig. 12. Algorithm for canceling common variables from terms.

Canceling Common Variables. The cancel function is presented in Figure 12. It takes
terms t1 and t2 and tries to determine if t1 and t2 syntactically represent two ≤-related
expressions by cancelling common terms, as we described previously. First, the helper
cancel vars iterates over the list of variable representations of t1, trying to match each one
with a variable representation in t2 (in the process, removing the matched variables by
using yet another helper function remove vars, omitted here). If the matching is successful
and all variables of t1 are included in t2, then cancel merely needs to check if the constant
of t1 is smaller than the constant of t2.

We conclude the example with the statement of the correctness lemma of cancel, which
is the key component of the soundness proof for compare. We omit the proof here, but it
can be found in our Coq files.

Lemma sound n1 n2 (a1 : ast [] n1) (a2 : ast (ctx of a1) n2) :
cancel (term of a1) (term of a2)→
n1 ≤ n2.

In prose, let a1 and a2 be reflections of n1 and n2 respectively, where the reflection of a1

starts in the empty context, and the reflection of a2 starts in the variable context returned
by a1. Then running cancel in the final context of a2 over the reflected terms of a1 and a2

returns true only when it is correct to do so; that is, only when n1 ≤ n2.

4 Operational Semantics and Type Soundness

In this section we present the operational semantics and type soundness of Mtac. The pre-
sentation here differs from the one in the original conference version of this article (Ziliani
et al., 2013) in that here we give a more accurate treatment of Coq’s unification variables
and the “contextual types” assigned to them. After presenting the rules of the semantics
(§4.1), we provide more motivation for the use of contextual types (§4.2), before giving
details of the type soundness proof (§4.3). Along the way, we motivate by example a
number of our design decisions.

4.1 Rules of the Semantics

First, some preliminaries. We write A,B,C for CIC type variables, τ for CIC types, ρ for
CIC type predicates (functions returning types), e for CIC terms, f for CIC functions, and
t for Mtactics, i.e., CIC terms of type #τ for some type τ . The operational semantics of

ZU064-05-FPR paper 9 December 2014 11:37

Mtac: A Monad for Typed Tactic Programming in Coq 21

Mtac defines the judgment form

Σ;Γ ` t (Σ′; t ′)

where Γ is the typing context containing parameters and (let-bound) local definitions, and Σ

and Σ′ are contexts for unification variables ?x. Both kinds of contexts contain both variable
declarations (standing for parameters and uninstantiated unification variables, respectively)
and definitions (let-bound variables and instantiated unification variables, respectively).
The syntax for contexts is

Γ ::= · | Γ,x : τ | Γ,x : τ := e

Σ ::= · | Σ,?x : τ[Γ] | Σ,?x : τ[Γ] := e

These contexts are needed for weak head reduction of CIC terms (Σ;Γ ` e whd
 e′), but also

for some of Mtac’s constructs. The types of unification variables are annotated with a “local
context”, as in τ[Γ], in which Γ should bind a superset of the free variables of τ . The reason
for having such local contexts will be discussed below (§4.2).

As is usual in Coq, we omit function arguments that can be inferred by the type inference
engine (typically, the type arguments). In some cases, however, it is required, or clearer, to
explicitly flesh out all of the arguments, in which case we adopt another convention from
Coq: prepending the @ symbol to the function being applied.

We assume that the terms are well-typed in their given contexts and we ensure that this
invariant is maintained throughout execution. Tactic computation may either (a) terminate
successfully returning a term, ret e, (b) terminate by throwing an exception, raise e, (c)
diverge, or (d) get blocked. (We explain the possible reasons for getting blocked below.)
Hence we have the following tactic values:

Definition 1 (Values). v ∈ Values ::= ret e | raise e .

Figure 13 shows our operational semantics. The first rule (EREDUC) performs a CIC
weak head reduction step. As mentioned, weak head reduction requires both contexts
because, among other things, it will unfold definitions of variables and unification variables
in head position. For a precise description of Coq’s standard reduction rules, see §4.3 of
Coq’s Reference Manual (The Coq Development Team, 2012).

The next seven rules, concerning the semantics of Mtac fixed points, bind, and mtry,
are all quite standard.

The most complex rule is the subsequent one concerning pattern matching (EMMATCH).
It matches the term e with some pattern described in the list ps. Each element psi of ps is
a pair containing a pattern p and a body b, abstracted over a list of (dependent) variables
x : τ . Since patterns are first-class citizens in CIC, psi is first reduced to weak head normal
form in order to expose the pattern and the body. The normalization relation is written
whd
 ∗ and, as with the weak head reduction relation, it requires the two contexts. Then, we
replace each variable x with a corresponding unification variable ?y in p, and proceed to
unify the result with term e. For this, the context Σ is extended with the freshly created
unification variables ?y. For each ?yk, the type τk is created within the context Γ′k, which
is the original context Γ extended with the variables appearing to the left of variable xk in
the list x : τ . After unification is performed, a new unification variable context is returned

ZU064-05-FPR paper 9 December 2014 11:37

22 B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski and V. Vafeiadis

Σ;Γ ` t whd
 t ′

Σ;Γ ` t (Σ; t ′)
EREDUC

Σ;Γ `mfix f t (Σ; f (mfix f) t)
EFIX

Σ;Γ ` t (Σ′; t ′)
Σ;Γ ` bind t f (Σ′;bind t ′ f)

EBINDS
Σ;Γ ` t (Σ′; t ′)

Σ;Γ `mtry t f (Σ′;mtry t ′ f)
ETRYS

Σ;Γ ` bind (ret e) f (Σ; f e)
EBINDR

Σ;Γ `@bind τ τ ′ (@raiseτ e) f (Σ;@raiseτ ′ e)
EBINDE

Σ;Γ `mtry (ret e) f (Σ;ret e)
ETRYR

Σ;Γ `mtry (raise e) f (Σ; f e)
ETRYE

Σ;Γ ` psi
whd
 ∗ Ptele (x : τ) (Pbase p b)

∀k. Γ′k = Γ,x1 : τ1, . . . ,xk−1 : τk−1
Σ,?y : τ[Γ′];Γ ` p{?y[idΓ′]/x} ≈ e . Σ′

∀ j < i. ps j does not unify with e

Σ;Γ `mmatch e ps (Σ′;Σ′(b{?y[idΓ′]/x}))
EMMATCH

?x /∈ dom(Σ)

Σ;Γ ` evarτ (Σ,?x : τ[Γ];ret ?x[idΓ])
EEVAR

Σ;Γ ` e whd
 ∗ ?x[σ] (?x :=) /∈ Σ

Σ;Γ ` is evar e (Σ;ret true)
EISVART

Σ;Γ ` e whd
 ∗ e′ e′ not unif. variable

Σ;Γ ` is evar e (Σ;ret false)
EISVARF

Σ;Γ,x : τ ` t (Σ′; t ′)
Σ;Γ ` νx : τ. t (Σ′;νx : τ. t ′)

ENUS
x /∈ FV(v)

Σ;Γ ` (νx. v) (Σ;v)
ENUV

Σ;Γ ` e whd
 ∗ x Γ = Γ1,x : τ,Γ2 x 6∈ FV(Γ2,ρ)

Σ;Γ `@abs τ ρ e e′ (Σ;ret (λy. e′{y/x}))
EABS

(* print s to stdout *)
Σ;Γ ` print s (Σ;ret 〈〉)

EPRINT

Fig. 13. Operational small-step semantics.

that might not only instantiate the freshly generated unification variables ?y, but may also
instantiate previously defined unification variables. (Instantiating such unification variables
is important, for instance, to instantiate the existentials in the tautology prover example
of §3.2). The unification variables appearing in the body of the pattern are substituted
with their definitions, denoted as Σ′(b′), where b′ is the body after substituting the pattern
variables with the unification variables, i.e., b′ = b{?y1[idΓ′1

]/x1}· · ·{?yn[idΓ′n]/xn}. Here,
[idΓ′k

] refers to the identity substitution for variables in Γ′k; its use will be explained in detail
in the discussion of Example 4 (§4.2 below). Finally, we require that patterns are tried in
sequence, i.e., that the scrutinee, e, should not be unifiable with any previous pattern ps j.
In case no patterns match the scrutinee, the mmatch is blocked.

The semantics for pattern matching is parametric with respect to the unification judg-
ment and thus does not rely on any particular unification algorithm. (Our implementation
uses Coq’s standard unification algorithm.) We observe that our examples, however, im-
plicitly depend on higher-order pattern unification (Miller, 1991). Higher-order unification
is in general undecidable, but Miller identified a decidable subset of problems, the so-
called pattern fragment, where unification variables appear only in equations of the form
? f x1 . . . xn ≈ e, with x1, . . . ,xn distinct variables. The ∀ and ∃ cases of the tautology

ZU064-05-FPR paper 9 December 2014 11:37

Mtac: A Monad for Typed Tactic Programming in Coq 23

prover (§3.2) fall into this pattern fragment, and their proper handling depends on higher-
order pattern unification.

Another notable aspect of Coq’s unification algorithm is that it equates terms up to
definitional equality. In particular, if a pattern match at first does not succeed, Coq will
take a step of reduction on the scrutinee, try again, and repeat. Thus, the ordering of
two patterns in a mmatch matters, even if it seems the patterns are syntactically non-
overlapping. Take for instance the search example in §1.1. If the pattern for concatenation
of lists were moved after the patterns for consing, then the consing patterns would actually
match against (many) concatenations as well, since the concatenation of two lists is often
reducible to a term of the form h :: t.

Related to this, the last aspect of Coq’s unification algorithm that we depend on is its
first-order approximation. That is, in the presence of an equation of the form c e1 . . . en ≈
c e′1 . . . e′n, where c is a constant, the unification algorithm tries to equate each ei ≈ e′i.
While this may cause Coq to miss out on some solutions, it has the benefit of being simple
and predictable. For instance, consider the equation

?l++?r ≈ []++(h :: t)

that might result from matching the list []++(h :: t) with the pattern for concatenation
of lists in the search example from §1.1, with ?l and ?r fresh unification variables. Here,
although there exist many solutions, the algorithm assigns ?l := [] and ?r := (h :: t), an
assignment that is intuitively easy to explain.

Coming back to the rules, next is the rule for evarτ , which simply extends Σ with a fresh
uninstantiated unification variable of the appropriate type. Note that it is always possible
to solve a goal by returning a fresh unification variable. But a proof is only complete if it
is closed and, therefore, before QED time, every unification variable has to be instantiated.
The two following rules govern is evar e and check whether an expression (after reduction
to weak head normal form) is an uninstantiated unification variable.

The next two rules define the semantics of the νx binder: the parameter x is pushed
into the context and the execution proceeds until a value is reached. The computed value
is simply returned if it does not contain the parameter, x; otherwise, νx. v is blocked.
The latter rule is for abstracting over parameters. If the first non-implicit argument of abs

weak-head reduces to a parameter, then we abstract it from the second (also non-implicit)
argument of abs, thereby returning a function. In order to keep a sound system, we need
to check that the return type and the local context do not depend on the variable being
abstracted, as discussed below in Example 5.

The astute reader may wonder why we decided to have νx and abs instead of one
single constructor combining the semantics of both. Such a combined constructor would
always abstract the parameter x from the result, therefore avoiding the final check that the
parameter is not free in the result. The reason we decided to keep nu and abs separate is
simple: it is not always desirable to abstract the parameters in the same order in which they
were introduced. This is the case, for instance, in the Mtactic skolemize for skolemizing
a formula (provided in the Mtac distribution). Moreover, sometimes the parameter is not
abstracted at all, for instance in the Mtactic fv for computing the list of free variables of a
term (also provided in the Mtac distribution).

ZU064-05-FPR paper 9 December 2014 11:37

24 B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski and V. Vafeiadis

Finally, the last rule (EPRINT) replaces a printing command with the trivial value 〈〉.
Informally, we also print out the string s to the standard output, although standard I/O is
not formally modeled here.

Example 3. We show the trace of a simple example to get a grasp of the operational
semantics. In this example, Γ = {h : nat}.

let s := (h :: [])++[] in search h s

We want to show that the final term produced by running this Mtactic expresses the fact
that h was found at the head of the list on the left of the concatenation, that is,

in or app (h :: []) [] (or introl (in eq h []))

First, the let is expanded, obtaining

search h ((h :: [])++[])

Then, after expanding the definition of search and β -reducing the term, we are left with
the fixpoint being applied to the list:

(mfix f (s : list A) := . . .) ((h :: [])++[])

At this point the rule for mfix triggers, exposing the mmatch:

mmatch ((h :: [])++[]) with . . .end

Thanks to first-order approximation, the case for append is unified, and its body is exe-
cuted:

mtry il← f (h :: []); ret . . . with ⇒ . . . end (1)

where f stands for the fixpoint. The rule ETRYS executes the code for searching for the
element in the sublist (h :: []):

il← f (h :: []); ret (in or app (h :: []) [] h (or introl il)) (2)

The rule EBINDS triggers, after which the fixpoint is expanded and a new mmatch

exposed:

mmatch (h :: []) with . . . end

This time, the rule for append fails to unify, but the second case succeeds, returning the
result in eq h []. Coming back to (2), il is replaced with this result, getting the expected
final result that is in turn returned by the mtry of (1).

As a last remark, notice how at each step the selected rule is the only applicable one: the
semantics of Mtac is deterministic.

4.2 Unification Variables and Contextual Types

So far we mentioned that unification variables have contextual types, but did not explain
why. To motivate them, consider the following scenario. Suppose we define a function f
as follows:

f := λw : nat. run (evarnat)

ZU064-05-FPR paper 9 December 2014 11:37

Mtac: A Monad for Typed Tactic Programming in Coq 25

When this function is elaborated, it will become λw : nat. ?u[w/w] for some fresh uni-
fication variable ?u : nat[w : nat]. The contextual type of ?u specifies that ?u may only
be instantiated by a term with at most a single free type variable w of type nat, and the
suspended substitution [w/w] specifies how to transform such a term into one that is well-
typed under the current context. (The substitution is the identity at first, because the current
context and the context under which ?u was created are both w : nat.)

Now suppose that we define

g := λx y : nat. f x h := λ z : nat. f z

and then at some point we attempt to solve the following unification problem:

g≈ λx y : nat. x (3)

Should this unification succeed, and if so, what should it instantiate ?u with? First, to solve
the unification goal, Coq will attempt to unify f x ≈ x, and then, after β -reducing f x,
to unify ?u[x/w] ≈ x. This is where the contextual type of ?u comes into play. If we did
not have the contextual type (and suspended substitution) for ?u, it would seem that the
only solution for ?u is x, but that solution would not make any sense at the point where ?u
appears in h, since x is not in scope there. Given the contextual information, however, Coq
will correctly realize that ?u should be instantiated with w, not x. Under that instantiation,
g will normalize to λx y : nat. x, and h will normalize to λ z : nat. z.

In the rules in Figure 13, there are two places where contextual types and suspended
substitutions are relevant: the rule for creation of unification variables (EEVAR) and the rule
for pattern matching (EMMATCH). In EEVAR, the new unification variable ?x is created
with contextual type τ[Γ], where Γ is a copy of the local context coming from the evaluation
judgment. The returned value is ?x applied to the identity suspended substitution idΓ, as
seen in the above example. In EMMATCH, every pattern variable ?yk is created with the
contextual type τk[Γ

′
k]. Γ′k is the context Γ extended with the prior variables in the telescope

x1, . . . ,xk−1. In order to marry the context in the contextual type with the local context Γ,
each unification variable ?yk is applied, as before, with the identity suspended substitution.

There is another, more subtle use of contextual types in EMMATCH: the unification con-
dition. In Mtac, the unification algorithm is in charge of instantiating unification variables.
As we saw in the previous example, it cannot instantiate unification variables arbitrarily,
as it may end up with an ill-typed meta-substitution. For this reason, it uses the suspended
substitution to know how to instantiate the unification variable. Explaining the complex
process of unification in a language like Coq is beyond the scope of this paper, but we can
give an intuitive hint: when Coq faces a problem of the form

?u[y1/x1, . . . ,yn/xn]≈ e

where the y1, . . . ,yn are all distinct, then this equation falls into the pattern fragment dis-
cussed above (Miller, 1991). In this case, the solution to the problem is to invert the
substitution and apply it on the right hand side of the equation, in other words instantiating
?u with e{x1/y1, . . . ,xn/yn} (assuming the free variables of e are in {y1, . . . ,yn}). In the
example (3) above, for instance, at the point where Coq tries to unify ?u[x/w] ≈ x, the
unification problem falls into the pattern fragment and (through inversion) can be solved
by instantiating ?u with x{w/x}, that is, w.

ZU064-05-FPR paper 9 December 2014 11:37

26 B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski and V. Vafeiadis

Contextual types are useful for other reasons as well. In particular, the following exam-
ples show two different potential sources of unsoundness related to the abs constructor.
Fortunately, thanks to contextual types, plus the restrictions enforced by the rule EABS,
neither example presents any risk to the soundness of Mtac.

Example 4. Example showing how contextual types preclude the assignment of different
types to the same term.

01 Definition abs evar (A : Type) :=
02 X ← evar A;

03 f ← @abs Type (λ B. B) A X : #(∀ B : Type. B);

04 ret (f nat, f bool).

In short, this example takes a type A and creates a unification variable X of type A. Then,
it abstracts its type, creating the function f , which is then applied to the types nat and bool.
For readability, we annotated the type of f : ∀B : Type. B, and therefore the returned terms
f nat and f bool have type nat and bool, respectively. However, they both compute to X ,
the unification variable, so at first sight it looks like the same expression can be typed with
different and incompatible types!

No need to panic here, contextual types solve the conundrum! Let’s see what really
happens when we execute the Mtactic. First, note that, in order for the abstraction in line 3
to succeed, the Mtactic should instantiate the argument A with a type variable. Otherwise,
the computation will get blocked, as we are only allowed to abstract variables. So let’s
assume abs evar is executed in a local context with only variable A′ : Type, which is then
passed in as the argument. When executing line 2, the unification variable ?u is created
with contextual type A′[A′ : Type]. Then, the variable X is bound to ?u[A′/A′].

Next, abstracting the type A′ from the unification variable results in

λB : Type. ?u[A′/A′]{B/A′},

which after applying the substitution is equal to

λB : Type. ?u[B/A′].

Variable f is bound to this value, and therefore the value resulting from applying f to
the different types is

(?u[nat/A′],?u[bool/A′]).

Since the type of the unification variable depends on A′, the return type is nat× bool.
But the substitution distinguishes both terms in the pair, so even when they refer to the
same unification variable, they’re actually referring to different interpretations of the value
carried by ?u.

Now, observe that in order to instantiate the unification variable we require a term e
such that, no matter what type τ is substituted for A′, e must have exactly that type (τ).
Of course, such a value does not exist, so ?u cannot be instantiated! More precisely, when
faced with the unification problem

?u[τ/A′]≈ e

ZU064-05-FPR paper 9 December 2014 11:37

Mtac: A Monad for Typed Tactic Programming in Coq 27

for some term e, Coq’s unification will not have a solution for ?u, as it does not fall into
the higher-order pattern fragment.

Example 5. In this example we show why it is necessary to severely restrict occurrences
of the variable being abstracted.

In the previous example the variable being abstracted occurred only in the term (more
precisely, in the substitution). If it instead occurred in the return type or in the context, then
this could lead to another potential source of unsoundness. To see what can go wrong, let
us consider the following example:

Definition abs dep (A : Type) (x : A) :=
X ← evar nat;

@abs Type (λ . nat) A X : #(Type → nat).

After running the first line of the function, X is bound to the term ?u[A/A,x/x], where
?u is a fresh unification variable with (contextual) type nat[A : Type,x : A]. If we allow the
abstraction of A in X , then we arrive at the ill-typed term

λ B. ?u[B/A,x/x]

Note that x should have as type the first component of the substitution, which is B, but it
has type A instead. For this reason we impose the restriction that the abstracted variable (A
in this case) must not occur anywhere in the context aside from the point where it is bound.
It is not hard to see what goes wrong when the abstracted variable appears in the return
type, so we prohibit this case as well.

It is worth noting that the original implementation of Mtac, described in the conference
version of this article (Ziliani et al., 2013), neglected to check these side conditions and
was thus unsound.

4.3 Proof of Soundness

As mentioned earlier, Mtactic execution can block. Here, we define exactly the cases when
execution of a term is blocked.

Definition 2 (Blocked terms). A term t is blocked if and only if the subterm in reduction
position satisfies one of the following cases:

• It is not an application of one of the # constructors and it is not reducible using the
standard CIC reduction rules (whd).

• It is νx. v and x ∈ FV(v).

• It is abs e e′ and e whd
 ∗ e′′ and (e′′ :) /∈ Γ.

• It is @abs τ ρ e e′ and e whd
 ∗ x and Γ = Γ1,x : τ,Γ2 and x ∈ FV(Γ2,ρ).

• It is mmatch e ps and no pattern in ps unifies with e.

With this definition, we can then establish a standard type soundness theorem for Mtac.

ZU064-05-FPR paper 9 December 2014 11:37

28 B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski and V. Vafeiadis

Theorem 1 (Type soundness). If Σ;Γ ` t : #τ , then either t is a value, or t is blocked, or
there exist t ′ and Σ′ such that Σ;Γ ` t (Σ′; t ′) and Σ′;Γ ` t ′ : #τ .

In order to prove it, we assume the following typing judgment for Coq terms:

Σ;Γ ` e : τ

and also assume the following standard properties:

Postulate 1 (Convertibility). If Σ;Γ ` e : τ and Σ;Γ ` τ ≡ τ ′ (τ and τ ′ are convertible up
to CIC reduction) then

Σ;Γ ` e : τ
′

Postulate 2 (Type preservation of reduction). If Σ;Γ ` e : τ and Σ;Γ ` e whd
 ∗ e′ then

Σ;Γ ` e′ : τ

Postulate 3 (Meta-substitution). If Σ;Γ ` e : τ then Σ;Γ ` Σ(e) : τ .

Postulate 4 (Substitution). If Σ;Γ1,x : τ ′,Γ2 ` e : τ and Σ;Γ1 ` e′ : τ ′ then

Σ;Γ1,Γ2{e′/x} ` e{e′/x} : τ{e′/x}

Postulate 5 (Weakening of meta-context). If Σ;Γ1,Γ2 ` e : τ and Σ;Γ1 ` τ ′ : Type and
?x 6∈ dom(Σ) then

Σ,?x : τ
′[Γ1];Γ1,Γ2 ` e : τ

Postulate 6 (Strengthening). If Σ;Γ1,x : τ,Γ2 ` e : τ ′ and x 6∈ FV(Γ2,e,τ ′) then

Σ;Γ1,Γ2 ` e : τ
′

Postulate 7 (Weakening). If Σ;Γ1,Γ2 ` e : τ ′ and Σ;Γ1 ` τ : Type and x 6∈ dom(Γ1,Γ2)

then

Σ;Γ1,x : τ,Γ2 ` e : τ
′

We also need the following relation between meta-contexts:

Definition 3 (Meta-context extension). We say that Σ′ extends Σ, written Σ′ ≥ Σ, when ev-
ery meta-variable in Σ occurs in Σ′, with the same type, and in case it has been instantiated,
instantiated with the same term. Formally,

Σ
′ ≥ Σ, ∀?x : τ[Γ] ∈ Σ. ?x : τ[Γ] ∈ Σ

′∨ ?x : τ[Γ] := e ∈ Σ
′

∧∀?x : τ[Γ] := e ∈ Σ. ?x : τ[Γ] := e ∈ Σ
′

We postulate that meta-context extension does not alter typechecking:

Postulate 8 (Preservation under meta-context extension). If Σ;Γ ` e : τ and Σ′ ≥ Σ, then

Σ
′;Γ ` e : τ

We require from unification the following:

Postulate 9 (Soundness of unification). If Σ;Γ` e : τ and Σ;Γ` e′ : τ ′ and Σ;Γ` e≈ e′ . Σ′

then

Σ
′;Γ ` e≡ e′ and Σ

′;Γ ` τ ≡ τ
′ and Σ

′ ≥ Σ

ZU064-05-FPR paper 9 December 2014 11:37

Mtac: A Monad for Typed Tactic Programming in Coq 29

We start by proving type preservation:

Theorem 2 (Type preservation). If Σ;Γ ` t (Σ′; t ′) and Σ;Γ ` t : #τ , then Σ′ ≥ Σ and
Σ′;Γ ` t ′ : #τ .

Proof. By induction on the reduction relation. We will expand (some of) the implicit
parameters for clarity.

Case EREDUC: It follows by preservation of reduction (Postulate 2).
Case EFIX: We have t = @mfix τ ′ ρ f t ′′. Remember the type of the fixpoint:

mfix : ∀A P. ((∀x : A. #(P x))→ (∀x : A. #(P x)))→∀x : A. #(P x)

By hypothesis we know t is well-typed, and as a consequence, t ′′ has type τ ′. We have
to show that

Σ;Γ ` f (@mfix τ
′

ρ f) t ′′ : #(ρ t ′′)

It follows immediately from the types of the subterms:

f : (∀x : τ
′. #(ρ x))→ (∀x : τ

′. #(ρ x))

and

mfix f : ∀x : τ
′. #(ρ x)

and t ′′ : τ ′.
Case EBINDS: We have t = @bind τ ′ τ ′′ t ′′ f . By the premise of the rule, there exists t ′′′

such that

Σ;Γ ` t ′′ (Σ′; t ′′′)

Remember the type of bind:

bind : ∀A B. #A→ (A→#B)→#B

We have that t has type #τ ′′. We have to show that

Σ
′;Γ `@bind τ

′
τ
′′ t ′′′ f : #τ

′′

By the inductive hypothesis, we know that Σ′ ≥ Σ and

Σ
′;Γ ` t ′′′ : #τ

′

We conclude by noting that, by Postulate 8 (Preservation under meta-context), the type
of f is not changed in the new meta-context Σ′.

Case EBINDR: We have t = @bind τ ′ τ ′′ (ret e) f . We have to show that

Σ;Γ ` f e : #τ
′′

Immediate by type of f and e.
Case EBINDE: We have t = @bind τ ′ τ ′′ (@raiseτ ′ e) f . We have to show that

Σ;Γ `@raiseτ ′′ e : #τ
′′

Immediate by type of @raiseτ ′′ e.
Cases ETRYS, ETRYR, ETRYE: Analogous to the previous cases.

ZU064-05-FPR paper 9 December 2014 11:37

30 B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski and V. Vafeiadis

Case EMMATCH: We have t = @mmatch τ ′ ρ e ps. The type of mmatch is

mmatch : ∀A P (t : A). list (Patt A P)→#(P t)

By the premises of the rule:

Σ;Γ ` psi
whd
 ∗ Ptele (x : τ ′′) (Pbase p b) (4)

Σ,?y : τ ′′[Γ′];Γ ` p{?y[idΓ′]/x} ≈ e . Σ′ (5)

∀ j < i. ps j does not unify with e (6)

That is, reducing ps leads to a list whose i-th element is a telescope (see §2) abstracting
variables x : τ ′′ from a pattern p and body b. This pattern, after replacing its abstraction
with unification variables, is unifiable with term e, producing a new meta-context Σ′. Ev-
ery unification variable ?yk is created with type τk in a context resulting form extending
the context Γ with the variables to the left of the telescope, that is

Γ
′
k = Γ,x1 : τ1, . . . ,xk−1 : τk−1

We have to show that

Σ
′;Γ ` Σ

′(b{?y[idΓ′]/x}) : #(ρ e)

Given the hypothesis that t is well-typed, we know that

Σ;Γ ` e : τ ′ (7)

Σ;Γ,x : τ ′′ ` p : τ ′ (8)

Σ;Γ,x : τ ′′ ` b : #(ρ p) (9)

Taking Equation 8 and by multiple weakenings of the meta-context we obtain

Σ,?y : τ ′′[Γ′];Γ,x : τ ′′ ` p : τ
′ (10)

By Postulate 4 (Substitution), noting that the variables x cannot appear free in τ ′ or in Γ,

Σ,?y : τ ′′[Γ′];Γ ` p{?y[idΓ′]/x} : τ
′ (11)

Therefore, by Postulate 9 (soundness of unification) and equations 5, 7, and 11, we
obtain that both sides of the unification are convertible under the new context Σ′.
Similarly as before, by Equation 9, weakening of meta-context, and Substitution postu-
late, we obtain

Σ
′;Γ ` b{?y[idΓ′]/x} : #(ρ p{?y[idΓ′]/x})

(noting that ρ actually does not have any xk in its set of free variables).
By convertibility, this is equal to

Σ
′;Γ ` b{?y[idΓ′]/x} : #(ρ e)

We conclude by Postulate 3 (Meta-substitution).
Case EEVAR: We have t = evarτ . It is trivial,

Σ,?x : τ[Γ];Γ ` ret ?x[idΓ] : #τ

and the new meta-context is an extension of Σ.
Cases EISEVART and EISEVARF: Trivial, both return a boolean value.

ZU064-05-FPR paper 9 December 2014 11:37

Mtac: A Monad for Typed Tactic Programming in Coq 31

Case ENUS: Desugaring and making parameters explicit, we have t =@nu τ ′ τ (λx : τ ′. t ′′).
The type of nu is

nu : ∀A B. (A→#B)→#B

Therefore,

Σ;Γ,x : τ
′ ` t ′′ : #τ (12)

By the premise of the rule, Σ;Γ,x : τ ′ ` t ′′ (Σ′; t ′′′). By the inductive hypothesis with
Equation 12,

Σ
′;Γ,x : τ

′ ` t ′′′ : #τ

and Σ′ ≥ Σ. Therefore

Σ
′;Γ ` λx : τ

′. t ′′′ : τ
′→#τ

which allows us to conclude that

Σ
′;Γ ` νx : τ

′. t ′′′ : #τ

Case ENUV: As in the previous case, we have t = @nu τ ′ τ (λx : τ ′. v). We have to show
that

Σ;Γ ` v : #τ

Since t is well-typed, we know that

Σ;Γ,x : τ
′ ` v : #τ

By the premise of the rule, x 6∈ FV(v), and it cannot appear free in τ , so by strengthening
(Postulate 6),

Σ;Γ ` v : #τ

Case EABS: We have t = @abs τ ′ ρ e e′. Remember the type of abs:

abs : ∀A P x. P x→#(∀y : A. P y)

We need to show that

Σ;Γ ` ret (λy : τ
′. e′{y/x}) : #(∀y : τ

′. ρ y)

where, by the premises of the rule, e reduces to x. By preservation of reduction (Postu-
late 2), we know that x has type τ ′, and therefore Γ = Γ1,x : τ ′,Γ2. Also, by the premises
of the rule, x 6∈ FV(Γ2,ρ).
By t being well-typed, we know

Σ;Γ ` e′ : ρ e

which by convertibility is equivalent to (expanding Γ)

Σ;Γ1,x : τ
′,Γ2 ` e′ : ρ x

By weakening (Postulate 7),

Σ;Γ1,x : τ
′,Γ2,y : τ

′ ` e′ : ρ x

and by Postulate 4 (Substitution), noting that by the premise of the rule x does not appear
free in ρ nor in Γ2,

Σ;Γ1,Γ2,y : τ
′ ` e′{y/x} : ρ y

ZU064-05-FPR paper 9 December 2014 11:37

32 B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski and V. Vafeiadis

By weakening,

Σ;Γ,y : τ
′ ` e′{y/x} : ρ y

We can conclude that

Σ;Γ ` λy : τ
′. e′{y/x} : (∀y : τ

′. ρ y)

which is precisely what we have to show.
Case EPRINT: Immediate.

As a corollary, we have the main theorem of this section:

Theorem 1 (Type soundness). If Σ;Γ ` t : #τ , then either t is a value, or t is blocked, or
there exist t ′ and Σ′ such that Σ;Γ ` t (Σ′; t ′) and Σ′;Γ ` t ′ : #τ .

Proof. Since t is well-typed with type #τ , then the following two cases have to occur:
either the head constructor of t is one of the constructors of #—and it is fully applied—or
it is another CIC construct (another constant, a let-binding, etc.).

In the first case we have further three sub-cases:

1. It is a value (of the form ret e or raise e).
2. It is blocked, that is, is of any of the following forms:

• It is νx. v and x ∈ FV(v).

• It is abs e e′ and Σ;Γ ` e whd
 ∗ e′′ and (e′′ :) /∈ Γ.

• It is @abs τ ′ ρ e e′ and e whd
 ∗ x and Γ = Γ1,x : τ ′,Γ2 and x ∈ FV(Γ2,ρ).

• It is mmatch e ps and no pattern in ps unifies with e.

3. There exist a t ′ and Σ′ such that Σ;Γ ` t (Σ′; t ′).

In the first two cases there is nothing left to prove. In the last case we conclude by applying
Theorem 2.

If t’s head constant is another CIC construct, then it either reduces using the standard
CIC reduction rules, in which case the proof follows by preservation of CIC reduction
rules, or it does not reduce and hence it is blocked.

5 Implementation

This section presents a high-level overview of the architecture of our Mtac extension to
Coq, explaining our approach for guaranteeing soundness even in the possible presence of
bugs in our Mtac implementation.

The main idea we leverage in integrating Mtac into Coq is that Coq distinguishes be-
tween fully and partially type-annotated proof terms: Coq’s type inference (or elaboration)
algorithm transforms partially annotated terms into fully annotated ones, which are then
fed to Coq’s kernel type checker. In this respect Coq follows the typical architecture of
interactive theorem provers, ensuring that all proofs are ultimately certified by a small
trusted kernel. Assuming that the kernel is correct, no code outside this kernel may generate
incorrect proofs. Thus, our Mtac implementation modifies only the elaborator lying outside
of Coq’s kernel, and leaves the kernel type checker untouched.

ZU064-05-FPR paper 9 December 2014 11:37

Mtac: A Monad for Typed Tactic Programming in Coq 33

Extending Elaboration. The typing judgment used by Coq’s elaboration algorithm (Sac-
erdoti Coen, 2004; Saı̈bi, 1997) takes a partially type-annotated term e, a local context Γ, a
unification variable context Σ, and an optional expected type τ ′, and returns its type τ , and
produces a fully annotated term e′, and updated unification variable context Σ′.

Σ;Γ `τ ′ e ↪→ e′ : τ . Σ
′

If an expected type τ ′, is provided, then the returned type τ will be convertible to it, possibly
instantiating any unification variables appearing in both τ and τ ′. The elaboration judgment
serves three main purposes that the kernel typing judgment does not support:

1. To resolve implicit arguments. We have already seen several cases where this is
useful (e.g., in §1.1), allowing us to write underscores and let Coq’s unification
mechanism replace them with the appropriate terms.

2. To insert appropriate coercions. For example, Ssreflect (Gonthier et al., 2008) defines
the coercion is true : bool→ Prop := (λb. b = true). So whenever a term of type
Prop is expected and a term b of type bool is encountered, elaboration will insert the
coercion, thereby returning the term is true b having type Prop.

3. To perform canonical structure resolution. Ample examples of canonical structures
can be found in Gonthier et al. (2013a).

We simply extend the elaboration mechanism to perform a fourth task, namely to run
Mtactics. We achieve this by adding the following rule for handling run t terms:

Σ;Γ `#τ ′ t ↪→ t ′ : #τ . Σ′ Σ′;Γ ` t ′ ∗ (Σ′′;ret e)
Σ;Γ `τ ′ run t ↪→ e : τ . Σ′′

This rule first recursively elaborates the tactic body, while also unifying the return type τ

of the tactic with the expected goal τ ′ (if present). This results in the refinement of t to a
new term t ′, which is then executed. If execution terminates successfully returning a term e
(which from Theorem 1 will have type τ), then that value is returned. Therefore, as a result
of elaboration, all run t terms are replaced by the terms produced when running them, and
thus the kernel type checker does not need to be modified in any way.

Elaboration and the apply Tactic. We have just seen how the elaborator coerces the
return type τ of an Mtactic to be equivalent to the goal τ ′, but we did not stipulate in
what situations the knowledge of τ ′ is available. Our examples so far assumed τ ′ was
given, and this was indeed the case thanks to the specific ways we invoked Mtac. For
instance, at the end of §1.1 we proved a lemma by direct definition—i.e., providing the
proof term directly—and in §3.1 we proved the goal by calling the tactic refine. In both
these situations, we were conveniently relying on the fact that Coq passed the knowledge
of the goal being proven into the elaboration of run.

Unfortunately, not every tactic does this. In particular, the standard Coq tactic apply

does not provide the elaborator with the goal as expected type, so if we had written
apply (run (F)), the Mtactic F would have been executed on unknown parameters,
resulting in a different behavior from what we expect. (Specifically, it would have unified
the implicits with the first two pointers appearing in the heap, succeeding only if, luckily,
these are the pointers in the goal.)

ZU064-05-FPR paper 9 December 2014 11:37

34 B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski and V. Vafeiadis

01 Class runner A (t : #A) := { eval : A }.
02
03 Hint Extern 20 (runner ?t) ⇒
04 (exact (Build runner t (run t)))
05 : typeclass instances.

Fig. 14. Type class for delayed execution of Mtactics.

To ensure that information about the goal is available when running Mtactics, alterna-
tively, is it possible to use the apply: tactic (note the colon!) from Ssreflect (Gonthier et al.,
2008). This is what we do in many of the accompanying source files.

One last point about tactics: Mtac is intended as a typed alternative to Ltac for developing
custom automation routines, and it is neither intended to replace the built-in tactics (like
apply) nor to subsume all uses of existing Coq tactics. For example, the OCaml tactic
vm compute enables dramatic efficiency gains for reflection-based proofs (Grégoire &
Leroy, 2002), but its performance depends critically on being compiled. Mtac is inter-
preted, and it is not clear how it could be compiled, given the interaction between Mtac
and Coq unification.

Delaying Execution of Mtactics for Rewriting. Consider the goal from §3.1, after doing
pose F := run (noalias D), unfolding the implicit is true coercions for clarity:

D : def (h1 • (x1 7→ v1 • x2 7→ v2)• (h2 • x3 7→ v3))

F : ∀x y. #((x != y) = true)

(x1 != x2) = true∧ (x2 != x3) = true

Previously we solved this goal by applying the Mtactic F twice to the two subgoals
x1 != x2 and x2 != x3. An alternative way in which a Coq programmer would hope to solve
this goal is by using Coq’s built-in rewrite tactic. rewrite enables one to apply a lemma one
or more times to reduce various subterms of the current goal. In particular, we intuitively
ought to be able to solve the goal in this case by invoking rewrite !(run (F)), where
the ! means that the Mtactic F should be applied repeatedly to solve any and all pointer
inequalities in the goal. Unfortunately, however, this does not work, because—like Coq’s
apply tactic—rewrite typechecks its argument without knowledge of the expected type
from the goal, and only later unifies the result with the subterms in the goal. Consequently,
just as with apply, F gets run prematurely.

Fortunately, we can circumvent this problem, using a cute trick based on Coq’s type
class resolution mechanism.

Type classes are an advanced Coq feature similar to canonical structures, with the crucial
difference that their resolution is triggered by proof search after elaboration (Sozeau &
Oury, 2008). We exploit this functionality in Figure 14, by defining the class runner, which
is parameterized over an Mtactic t with return type τ and provides a value, eval, of the same
type. We then declare a Hint instructing the type class resolution mechanism how to build
an instance of the runner class, which is precisely by running t.

The details of this implementation are a bit of black magic, and beyond the scope of
this paper to explain fully. But intuitively, all that is going on is that eval is delaying

ZU064-05-FPR paper 9 December 2014 11:37

Mtac: A Monad for Typed Tactic Programming in Coq 35

01 Definition MyException (s : string) : Exception.
02 exact exception.
03 Qed.
04
05 Definition AnotherException : Exception.
06 exact exception.
07 Qed.
08
09 Definition test ex e :=
10 mtry (raise e) with
11 | AnotherException ⇒ ret ””
12 | MyException ”hello” ⇒ ret ”world”
13 | [s] MyException s ⇒ ret s
14 end.

Fig. 15. Exceptions in Mtac.

the execution of its Mtactic argument until type class resolution time, at which point
information about the goal to be proven is available.

Returning to our example, we can now use the following script:

rewrite !(eval (F)) .

This will convert the goal to is true true∧ is true true, which is trivially solvable.
In fact, with eval we can even employ the standard apply tactic, with the caveat that eval

creates slightly bigger proof terms, as the final proof term will also contain the unevaluated
Mtactic inside it.

A Word about Exceptions. In ML, exceptions have type exn and their constructors are
created via the keyword exception, as in

exception MyException of string

Porting this model into Coq is difficult as it is not possible to define a type without simulta-
neously defining its constructors. Instead, we opted for a simple yet flexible approach.
We define the type Exception as isomorphic to the unit type, and to distinguish each
exception we create them as opaque, that is, irreducible. Figure 15 shows how to create
two exceptions, the first one parameterized over a string. What is crucial is the sealing
of the definition with Qed, signaling to Coq that this definition is opaque. The example
test ex illustrates the catching of different exceptions.

Controlling the Size of Terms. Some tactics tend to generate unnecessarily big terms.
Take for instance the to ast Mtactic from Figure 11. In the case of an addition, this Mtactic
constructs an instance of the ast structure using the values projected out from calling the
Mtactic recursively. That means that the final proof term will contain several copies of a
structure, one for each projector called on that structure. As a matter of fact, for a type that
admits a term of size n we can end up constructing a term with size as big as n2!

For this reason, Mtac is equipped with three different unit operators: ret, retS, retW.
The first one we have already seen in the rest of the work; the other two are new and are
actually used extensively in the source files. They both reduce the term prior to returning

ZU064-05-FPR paper 9 December 2014 11:37

36 B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski and V. Vafeiadis

it: retS using the simplification strategy from the simpl tactic, and retW using the weak
head reduction strategy.

For instance, run-ning the following terms produces different outputs:

ret (1+1) 1+1

retS (1+1) 2

retW (1+1) S (0+1)

For details on the reduction strategies see The Coq Development Team (2012).

6 Stateful Mtactics

So far, we have seen how Mtactics support programming with a variety of effects, in-
cluding general recursion, syntactic pattern matching, exceptions, and unification, that are
not available in the base logic of Coq. If, however, we compare these to the kinds of
effects available in mainstream programming languages, we will immediately spot a huge
omission: mutable state! This omission is costly: the lack of imperative data structures can
in some cases preclude us from writing efficient Mtactics.

One example is the tautology prover from Section 3.2, whose running time can be
asymptotically improved by using a hashtable. To see this, consider the complexity of
proving the following class of tautologies:

p1→ . . .→ pn→ p1∧ . . .∧ pn

in a context where p1 . . . pn : Prop. First, the tautology prover will perform n steps to
add hypotheses h1 : p1, . . . ,hn : pn to the context. Then, it will proceed to decompose the
conjunctions and prove each pi by searching for it in the context. Since the lookup Mtactic
performs a linear search on the context, the overall execution will take O(n2) steps in total.
Had we used a more clever functional data structure for implementing the context, such
as a balanced tree, we could reduce the lookup time to logarithmic and the total running
time to O(n logn). By using a hashtable to represent the context, however, we can do much
better: we can achieve a constant-time lookup, thereby reducing the total proof search time
to O(n).

Rather than directly adding hashtables to Mtac, in this section, we show how to extend
Mtac with two more primitive constructs: arrays and a hashing operator (§6.1). With these
primitives, we implement a hashtable in Mtac (§6.2) and use it to implement a more
efficient version of the tautology prover (§6.3), obtaining the expected significant speedup
(§6.6).

The model of mutable state that we decided to incorporate to Mtac is very flexible
and allows us to write complex imperative structures, but that comes at a price. First of
all, combining mutable state with parameters (i.e., the nu and abs operators) and syntax
inspection (i.e., the mmatch operator) is tricky and requires special care in the design of
the operational semantics (§6.4). Second, the interactive nature of a proof assistant like
Coq enforces certain constraints (§6.5). Despite these difficulties, the language enhanced
with mutable state remains sound (§6.7).

ZU064-05-FPR paper 9 December 2014 11:37

Mtac: A Monad for Typed Tactic Programming in Coq 37

: Type→ Prop
. . .
hash : ∀A. A→ N→#N
array make : ∀A. N→ A→#(array A)
array get : ∀A. array A→ N→#A
array set : ∀A. array A→ N→ A→#unit
array length : ∀A. array A→ N

Fig. 16. The new array primitives of the # inductive type.

6.1 New Language Constructs

Figure 16 shows the new language constructs, where N stands for binary encoded natural
numbers and array τ is an abstract type representing arrays of type τ (this type will be
discussed later). The new constructs are explained next:

• hash e n takes term e and natural number n and returns the hash of e as a natural
number between 0 and n−1, ensuring a fair distribution.

• array make n e creates an array with n elements initialized to e.
• array get a i returns the element stored in position i in the array a. If the position is

out of bounds, it raises an exception.
• array set a i e stores element e in position i in the array a. If the position is out of

bounds, it raises an exception.
• array length a returns the size of array a. Note that it’s not part of the # inductive

type.

For each of these constructs, the type parameter A is treated as an implicit argument.
In the rest of the section we will use references, which are arrays of length 1. We will

use a notation resembling that of ML: ref e creates a reference of type Ref τ , where e : τ ,
!r returns the current contents of reference r, and r ::= e updates r to e.

6.2 A Dependently-Typed Hashtable in Mtac

The aforementioned primitives are enough to build stateful algorithms and data structures,
in particular a dependently-typed hashtable. We present the hashtable below, introducing
first a required module:

The Array module. Figure 17 presents the wrapper module Array, emulating the one in
OCaml. Besides the four primitive operations on arrays (make, length, get, set), the module
also provides an iterator iter, an array constructor with an initialization function init, a
conversion function from array to list, and a copy function that copies the elements from
the first array into the second one, if there’s enough space, or fails otherwise. We omit the
code for these, but they are standard and can be found in the source files.

The HashTbl module. Figure 18 presents the module HashTbl, which implements a (rudi-
mentary) dependently-typed hashtable. At a high level, given types τ and ρ : τ → Type, a
hashtable maps each key x of type τ to a term of type ρ x. More concretely, it consists of
a pair of references, one containing the load of the hash (how many elements were added),

ZU064-05-FPR paper 9 December 2014 11:37

38 B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski and V. Vafeiadis

Definition t A := array A.

Definition make {A} n (c : A) := array make n c.
Definition length {A} (a : t A) := array length a.
Definition get {A} (a : t A) i := array get a i.
Definition set {A} (a : t A) i (c : A) := array set a i c.

Definition iter {A} (a : t A) (f : N → A → #unit) : #unit := ...
Definition init {A} n (f : N → #A) : #(t A) := ...
Definition to list {A} (a : t A) : #(list A) := ...
Definition copy {A} (a b : t A) : #unit := ...

Fig. 17. The Array module.

and the other containing an array of “buckets”. Each bucket, following the standard open
hashing strategy for conflict resolution, is a list of Σ-types packing a key with its element.
In open hashing, each bucket holds all the values in the table whose keys have the same
hash, which is the index of that bucket in the array.

The hashtable is created with an initial size (initial size) of 16 buckets, and every time
it gets expanded it increases by a factor (inc factor) of 2. The threshold to expand the
hashtable is when its load reaches 70% of the buckets.

The function quick add adds key x, mapped to element y, to the table. It does so by
hashing x, obtaining a position i for a bucket l, and adding the existential package contain-
ing both x and y to the head of the list. Note that this function does not check whether the
threshold has been reached and is thus not intended to be called from the outside—it is just
used within the HashTbl module as an auxiliary function.

The function expand first creates a new array of buckets doubling the size of the original
one, and then it iterates through the elements of the original array, adding them to the new
array. We omit the code of the iterator function iter for brevity.

The function add first checks if the load exceeds the threshold and, if this is the case,
proceeds to expand the table. It then adds the given key-element pair to the table. Finally,
the count of the load is increased by one. Since the load is a binary natural, and for binary
naturals the successor (succ) operation is a function, we force the evaluation of succ load
by simplifying it with retS.

The function find first obtains the bucket l corresponding to the hashed index i of the
key x, and then performs a linear search using the function

List.find (A : Type) (P : A→ Type) (x : A) (l : list {z : A & P z}) : #(P x)

We omit the code of this function since it is similar to the lookup function from §3.2.
Similarly, the function remove removes an element from the hashtable by obtaining the

bucket l of the key x and removing the element using the auxiliary function

List.remove (A : Type) (P : A→ Type) (x : A) (l : list {z : A & P z})
: #(list {z : A & P z})

This function throws the exception NotFound if the element is not in the list.

ZU064-05-FPR paper 9 December 2014 11:37

Mtac: A Monad for Typed Tactic Programming in Coq 39

Definition t A (P : A → Type) :=
(Ref N × Ref (Array.t (list {x : A & P x}))).

Definition initial size := 16.
Definition inc factor := 2.
Definition threshold := 7.

Definition create A P : #(t A P) :=
n ← ref 0; a ← Array.make initial size []; ra ← ref a;
ret (n, ra).

Definition quick add {A P} a (x : A) (y : P x) : #unit :=
let n := Array.length a in i ← hash x n; l ← Array.get a i;
Array.set a i (existT x y :: l).

Definition iter {A P} (h : t A P) (f : ∀ x : A. P x → #unit) : #unit := ...

Definition expand {A P} (h : t A P) : #unit :=
let (, ra) := h in a ← !ra; let size := Array.length a in
let new size := size × inc factor in new a ← Array.make new size [];
iter h (λ x y. quick add new a x y);; ra ::= new a.

Definition add {A P} (h : t A P) (x : A) (y : P x) :=
let (rl, ra) := h in load ← !rl; a ← !ra; let size := Array.length a in
(if threshold × size ≤ 10 × load then expand h else ret tt);;
a ← !ra; quick add a x y;;
new load ← retS (N.succ load); rl ::= new load.

Definition find {A P} (h : t A P) (x : A) : #(P x) :=
let (, ra) := h in a ← !ra;
let size := Array.length a in
i ← hash x size; l ← Array.get a i;
List.find x l.

Definition remove {A P} (h : t A P) (x : A) : #unit :=
let (rl, ra) := h in a ← !ra;
let size := Array.length a in
i ← hash x size; l ← Array.get a i;
l’ ← List.remove x l;
Array.set a i l’;;
load ← !rl; new load ← retS (N.pred load);
rl ::= new load.

Fig. 18. The HashTbl module.

6.3 The Tautology Prover Revisited

The code for the new tautology prover with hashing of hypotheses is listed in Figure 19.
The type used to represent contexts is defined in the first line: it is a dependently-typed
hashtable whose keys are propositions and whose elements are proofs of those proposi-
tions. The prover itself begins on line 3. The cases for the trivial proposition, conjunction
and disjunction (lines 5–17), as well as for ∀ (lines 23–26), are similar to the original

ZU064-05-FPR paper 9 December 2014 11:37

40 B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski and V. Vafeiadis

ones, except that the context is not threaded through recursive calls but rather updated
imperatively.

The implication, existential, and base cases require more drastic changes. The implica-
tion case is modified to extend the hashtable (line 20) with the mapping of parameter x
with hypothesis p1. In order to avoid leaving garbage in the hashtable, the added element
is removed after the recursive call. Since the recursive call may raise an exception, the
removal is performed before re-throwing the exception.

The base case (line 36) is modified to perform the lookup in the hashtable.
Finally, the existential case (line 27), requires a bit of explanation. It starts, as in the

previous prover, by creating a unification variable for the witness X (line 28). Then it
differs substantially. The reason why we need to change its behavior is simple: in the
previous prover we were expecting it to find the solution for the witness by unification
during the lookup in the base case. Since now we have a hash table for the lookup, there is
no unification process going on, and therefore no instantiation for the witness can occur.

Here instead we do the following: we still try to find a solution recursively (line 30) for
when the solution is trivial or does not depend on the witness—for instance, consider the
case ∃p : Prop. p with trivial solution

ex intro (λ p : Prop. p) True I

If no solution is found (i.e., an exception ProofNotFound is raised), then we create another
unification variable for the proof r and return the proof term ex intro q X r (line 34). That
is, we return a proof with a hole, expecting the proof developer to fill the hole later on. For
instance, if we run the tautology prover on the example

∀x : nat. ∃y : nat. y≤ x

then Coq will ask, as a subgoal, for a proof of ?X ≤ x. The proof developer can proceed to
provide the standard proof of 0≤ x, thereby instantiating ?X with 0.

6.4 Operational Semantics

As we mentioned in the introduction of this section, we need to take special care when
combining mutable state with parameters and syntax inspection.

Mutable State and Parameters: The combination of these two features requires us to
adjust the operational semantics for the nu (ν) operator in order to preserve soundness.
More precisely, we need to ensure that if we store a parameter x in an array or reference,
then we shouldn’t be able to read from that location outside the scope of x. Take for instance
the following example:

Definition wrong := r ← ref 0; (ν x:nat. r ::= x);; !r.

In this code, first a reference r is created, then a new parameter x is created and assigned
to r. Later, outside of the scope of x, r is dereferenced and returned. Without checking the
context of the element being returned, the result of this computation would be undefined.

With unification variables we also have this problem—we can encode a similar example
using evar instead of ref and mmatch instead of the assignment. But with unification

ZU064-05-FPR paper 9 December 2014 11:37

Mtac: A Monad for Typed Tactic Programming in Coq 41

01 Definition ctx := HashTbl.t Prop (λ x. x).
02
03 Definition tautoh’ (c : ctx) := mfix f (p : Prop) : #p :=
04 mmatch p as p’ return #p’ with
05 | True ⇒ ret I
06 | [p1 p2] p1 ∧ p2 ⇒
07 r1 ← f p1 ;
08 r2 ← f p2 ;
09 ret (conj r1 r2)
10 | [p1 p2] p1 ∨ p2 ⇒
11 mtry
12 r1 ← f p1 ;
13 ret (or introl r1)
14 with ⇒
15 r2 ← f p2 ;
16 ret (or intror r2)
17 end
18 | [p1 p2 : Prop] p1 → p2 ⇒
19 ν (x:p1).
20 HashTbl.add c p1 x;;
21 mtry r ← f p2; HashTbl.remove c p1;; abs x r
22 with [e] e ⇒ HashTbl.remove c p1;; raise e end
23 | [A (q:A → Prop)] (∀ x:A. q x) ⇒
24 ν (x:A).
25 r ← f (q x);
26 abs x r
27 | [A (q:A → Prop)] (∃ x : A. q x) ⇒
28 X ← evar A;
29 mtry
30 r ← f (q X);
31 ret (ex intro q X r)
32 with ProofNotFound ⇒
33 r ← evar (q X);
34 ret (ex intro q X r)
35 end
36 | [x] x ⇒ HashTbl.find c x
37 end.
38
39 Definition tautoh P :=
40 c ← HashTbl.create Prop (λ x. x);
41 tautoh’ c P.

Fig. 19. Tautology prover with hashing of hypotheses.

variables, the contextual type of the unification variable would prevent us from performing
the instantiation, therefore effectively ensuring that “nothing goes wrong”. For mutable
state, on the other hand, it would be too restrictive to restrict assignments to only include
variables coming from the context where the array was created. Take for instance the
tautology prover: there, in the implication case, the parameter x is added to a hashtable
that was created outside the scope of x.

ZU064-05-FPR paper 9 December 2014 11:37

42 B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski and V. Vafeiadis

Thus, for mutable state we take a different, more “dynamic” approach: before returning
from a νx binder we invalidate all the cells in the state that refer (in the term or in the type)
to x. If later on a read is performed on any such cell, the system simply gets blocked.

Mutable State and Syntax Inspection: The problem with combining mutable state and
the mmatch constructor concerns (lack of) abstraction. In short, we would like to be able
to prevent the user from breaking abstraction and injecting a spurious reference (a location
that is not in the domain of the store or with a different type from the one in the store) in
the execution of a Mtactic, as that would result in a violation of type soundness. However,
we have been unable to find any simple and elegant way of preventing the user from doing
that, and so instead we choose to incur the cost of dynamic safety checks when performing
stateful operations.

In order to understand the problem, let us explain first how it is handled in Haskell, and
why we cannot simply port the same approach to Mtac. In Haskell, the runST command
(Launchbury & Peyton Jones, 1994) enables one to escape the stateful ST monad by
executing the stateful computation inside, much as with Mtac’s run and # monad.

Since runST uses an effectful computation to produce a term of a pure Haskell type,
it is essential to the soundness of runST that its computation runs inside a fresh store.
Moreover, it is important to prevent the user from attempting to access an old reference
within a new call to runST, as in the following code (here in Mtac syntax).

let r := run (ref 0) in run !r

After creating the reference r in the first run, the reference is read in the second. In Haskell,
this situation is prevented by giving runST the following more restrictive type:

∀A. (∀S. ST S A)→ A

where S is a phantom type parameter representing the state and A is the return type of
the monad, which may not mention S. By making the monad parametric in the state type,
the typechecker effectively ensures that the computation being executed can neither leak
any references to nor depend on any references from its environment. For example, in the
code above, the command ref 0 has type ST S (Ref S nat) for some S, but this cannot be
generalized to runST’s argument type (∀S. ST S A) because A = Ref S nat mentions S.

Crucially, Haskell’s built-in abstraction mechanisms also hide the constructor for the
Ref type. That is, in Haskell the user is not entitled to pattern match an element of the Ref

type simply because its constructor is hidden from the user.
Unfortunately, the same techniques will not help us in Mtac. The problem arises from

the following observation: for any constant c with type τ , if Mtac can create it, Mtac can
inspect it. That is, we can always pattern match a term of type τ and get a hold of its head
constant (e.g., c). The same happens with references. Say that we create a new type Ref A
with constructor

cref : ∀A. Loc→ Ref A

Say further that we hide the constructor from the user (by using the module system of Coq),
so that the proof developer is not entitled to write the following code:

mmatch x with [l : Loc] cref l ⇒ . . . end

ZU064-05-FPR paper 9 December 2014 11:37

Mtac: A Monad for Typed Tactic Programming in Coq 43

There is still a way of achieving the same behavior with the following code:

mmatch x with [(c : Loc→ Ref A) (l : Loc)] c l ⇒ . . . end

since, if Mtac is (somehow) allowed to construct a cref, then nothing can prevent it from
matching a meta-variable with a cref.

And this can be disastrous from the perspective of soundness. Imagine, for instance, that
the location of a reference with type A is accessed at type B:

mmatch (x, y) with

| [(c1 : Loc → Ref A) (c2 : Loc → Ref B) l1 l2] (c1 l1, c2 l2) ⇒ !(c2 l1)

end

One option for solving this problem might be to forbid mmatch from pattern matching
an element containing a reference. However, this solution is too strict, as it would disallow
legitimate matches on terms of data types containing references.

Instead, the solution that we have adopted in Mtac is not to hide cref at all, but rather
to bite the bullet and perform the necessary dynamic checks to ensure that the code above
gets blocked. More precisely, under Mtac semantics, the read of c2 l1 will get blocked as it
is reading from the location l1 at a different type (B) from the expected one (A). Similarly,
in the previous example, the attempt to read the reference r in run !r will get blocked since
run !r executes in a fresh store and r is not in the domain of that store.

With these considerations in mind, we can now move on to explain the actual rules. We
extend the judgment from Section 4 to include input and output stores. A store σ is a map
from locations l to arrays annotated with the type τ of their elements. An array element d
is either null or a Coq term:

σ ::= · | l 7→ [d; . . . ;d]τ ,σ

d ::= null | e

The new judgment is

Σ;Γ;σ ` t (Σ′;σ
′; t ′)

On the Coq side, we have an inductive type of locations Loc and an inductive array type,
where the number in carray represents the length of the array:

array : Type→ Type

carray : ∀A. Loc→ N→ array A

Since we need to transform numbers and locations from Coq to ML and vice versa, we
write e for the interpretation of Coq numbers/locations e into ML, and e for the interpreta-
tion of ML numbers/locations e into Coq.

Figure 20 shows the new rules concerning effectful computations. The first rule presents
the aforementioned modifications to the original rule for the νx binder. The changes (high-
lighted) show that, upon return of the νx binder, we invalidate all the arrays whose type
contains x, and all the array positions referring to x. The invalidate judgment is given in
Figure 21.

The second rule performs the hash-ing of a term e, limited by s. The element is hashed
using an ML function hash, which we omit here.

ZU064-05-FPR paper 9 December 2014 11:37

44 B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski and V. Vafeiadis

x /∈ FV(v) invalidate σ x = σ ′

Σ;Γ; σ ` (νx. v) (Σ; σ ′ ;v)
ENUV

h = hash(e) mod s
Σ;Γ;σ ` hash e s (Σ;σ ;ret h)

EHASH

l fresh

Σ;Γ;σ ` array make τ n e (Σ; l 7→ [e; n−2. . . ;e]τ ,σ ;ret (@carray τ l n))
EAMAKE

Σ;Γ ` a whd
 ∗ @carray τ ′ l i < n ei+1 6= null Σ;Γ ` τ ≈ τ ′ . Σ′

Σ;Γ;σ , l 7→ [e1, . . . ,en]τ ` array get a i (Σ′;σ ;ret ei+1)
EAGETR

Σ;Γ ` a whd
 ∗ carray l i≥ n

Σ;Γ;σ , l 7→ [e1, . . . ,en]τ ` array get a i (Σ;σ ;raise OutOfBounds)
EAGETE

Σ;Γ ` a whd
 ∗ @carray τ ′ l i < n Σ;Γ ` τ ≈ τ ′ . Σ′

Σ;Γ;σ , l 7→ [e1, . . . ,en]τ ` array set a i e (Σ′;σ , l 7→ [e1, i−1. . .,e, . . . ,en]τ ;ret 〈〉)
EASETR

Σ;Γ ` a whd
 ∗ carray l i≥ n

Σ;Γ;σ , l 7→ [e1, . . . ,en]τ ` array set a i e (Σ;σ ;raise OutOfBounds)
EASETE

Fig. 20. Operational small-step semantics of references.

invalarr [e1, . . . ,en]τ x = [e′1, . . . ,e
′
n] ∀i ∈ [1,n]. e′i =

{
null if x ∈ FV(e)
ei otherwise

invalidate [] x = []

invalidate (l 7→ aτ ,σ) x = invalidate σ x x ∈ FV(τ)

invalidate (l 7→ aτ ,σ) x = (l 7→ invalarr aτ x, invalidate σ x) x 6∈ FV(τ)

Fig. 21. Invalidation of array positions whose contents are out of scope.

The next rule creates an n-element array initialized with element e. A fresh location
pointing to the new array is appended to the state, and this location, together with n, are
returned as part of the carray constructor.

The next two rules describe the behavior of the getter. In both rules the array is first
weak head-reduced in order to obtain the carray constructor applied to location l. Then the
rules differ according to the case: if the index i is within the bounds of the array, and the
element at index i is defined (i.e., not null), then the type of the array τ is unified with the
type coming from the carray constructor (τ ′), potentially instantiating new meta-variables.
If the index is outside the bounds of the array, an error OutOfBounds is raised.

The two rules for the setter are similar: we first check that the index is within the bounds
and that the type of the array unifies with the one from the constructor, and if so, the
position i of the array is updated. Otherwise, an exception is raised.

ZU064-05-FPR paper 9 December 2014 11:37

Mtac: A Monad for Typed Tactic Programming in Coq 45

20 40 60

0

10

20

30

Number of hypotheses

Ti
m

e
(s

)

list
fmap
hash

Fig. 22. Performance of three different implementations of tautology provers: using a list, a finite
map over a balanced tree, and a hashtable.

6.5 Use Once and Destroy

Allowing state to persist across multiple Mtactic runs is possible but technically chal-
lenging. For the present work, we have favored a simple implementation, and therefore
restricted Mtactics to only use mutable state internally, as in Launchbury & Peyton Jones
(1994).

If we were to consider generalizing to handle persistent state, we would encounter at
least two key challenges. First, since Coq is interactive, the user is entitled to undo and redo
operations. Allowing state to persist across multiple runs would thus require the ability to
rollback the state accordingly. While this is doable using persistent arrays (Baker, 1991)
with reasonable amortized space and time complexity, there is still a technical challenge:
how to know to which state to rollback.

A second challenge arises from the module system of Coq. In particular, a developer
may create references and modify them in different modules. Then, importing a module
from another file should replay the effects in that file in order to ensure a consistent view
of the storage among different modules.

As mentioned above, we decided to leave this problem for future work and throw away
the state after the execution of a Mtactic. While this decision may sound restrictive, it is
flexible enough for us to be able to encode interesting examples, such as the one presented
in this section.

The rule for elaborating the run operator is modified to start the evaluation of the Mtactic
with an empty state:

Σ;Γ `#τ ′ t ↪→ t ′ : #τ . Σ′

Σ′;Γ; [] ` t ′ ∗ (Σ′′;σ ;ret e)

Σ;Γ `τ ′ run t ↪→ e : τ . Σ′′

6.6 A Word on Performance

Despite the various dynamic checks performed by our stateful extensions to Mtactics,
we can obtain a significant speedup by using mutable state. To support our claim, we
implemented three different versions of the tautology prover, using different data structures
(both functional and imperative). Figure 22 shows the time it takes for each prover to solve

ZU064-05-FPR paper 9 December 2014 11:37

46 B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski and V. Vafeiadis

tautologies on an increasing number of hypotheses. The slowest one is the functional prover
from Section 3.2, which takes constant time for extending the context and linear time (in
the size of the context) for lookup.

The second prover uses a functional map implemented with a balanced tree. As keys for
the map we use the natural numbers coming from hashing the hypotheses, similarly to what
the prover from Figure 19 does. Both extending and querying the context take logarithmic
time to compute.

Finally, the third prover is the one presented in this section, which performs both ex-
tension and lookup of the context in amortized constant time. As expected, it greatly
outperforms the other two.

Before moving on to prove soundness of the system, we want to stress that the safety
check done in the getter and setter rules (i.e., the unification of the type of the array with
the one coming from the carray constructor) does not result in a significant performance
cost. In particular, it is possible to cache the results, effectively avoiding the overhead in
the most common cases (which cover almost all of the accesses).

6.7 Soundness in the Presence of State

The soundness theorem must now be extended to consider the store. We start by extending
the definition of blocked terms to consider the new cases:

Definition 4 (Blocked terms). A term t is blocked if and only if the subterm in reduction
position satisfies one of the cases of Definition 2, or:

• It is an array operation (get or set), and the array or the index do not normalize to the
array constructor or a natural number, respectively.
• It is an array operation (get or set), the array and the index normalize to @carray τ l

and i respectively, for some τ , l and i, but either

1. l is not in the state σ , or
2. there exists l 7→ aτ ′ ∈ σ , but τ does not unify with τ ′ or ai = null.

To state the preservation theorem, we need to say what it means for a store to be valid.
A store σ is valid in contexts Γ and Σ if for every array a with element type τ in σ , every
element of a is either null or has type τ . Formally,

Σ;Γ ` · valid

∀ j ∈ [1..n]. e j = null ∨ Σ;Γ ` e j : τ Σ;Γ ` σ valid

Σ;Γ ` (l 7→ [e1, . . . ,en]τ ,σ) valid

We now extend the proof of type preservation, where we need to also ensure preservation
of the validity of the store.

Theorem 3 (Type preservation with references). If Σ;Γ ` t : #τ and Σ;Γ ` σ valid and
Σ;Γ;σ ` t (Σ′;σ ′; t ′), then Σ′;Γ ` t ′ : #τ and Σ′;Γ ` σ ′ valid.

Proof. The proof poses little challenge. We only consider the new or modified cases.

Case ENUV: We have t = νx. v. Since x goes out of scope in the returning term, in order
to have a valid state we need to remove all the arrays with types referring to x, and
invalidate all array positions with contents referring to x. This is precisely what the
invalidate judgment does.

ZU064-05-FPR paper 9 December 2014 11:37

Mtac: A Monad for Typed Tactic Programming in Coq 47

Case EHASH: Trivial, as it is returning a number.
Case EAMAKE: We have t = array make τ ′ n e. Let l be a fresh location. By hypoth-

esis we know that e has type τ ′, so the new store σ ′ = l 7→ [e; n−2. . . ;e]τ ′ ,σ contains an
array of elements of type τ ′. Therefore, the new state is valid, and the returned value
@carray τ ′ l n has type array τ ′.

Case EAGETR: We have t = array get τ ′ a i. By the premise of the rule, a normalizes
to @carray τ ′ l and i to i′ such that l 7→ [e1, . . . ,en]τ ∈ σ for some e1, . . . ,en. Also by
hypothesis, i′ < n, τ unifies with τ ′, and ei 6= null. Therefore, ei has type (convertible
with) τ ′.

Case EAGETE: Trivial.
Case EASETR: We have t = array set τ ′ a i e. As in the EAGETR case, we also have

that a whd
 ∗ @carray τ ′ l and there exist e1, . . . ,en such that l 7→ [e1, . . . ,en]τ ∈ σ . We

need to show that Σ;Γ ` σ ′ valid, where σ ′ = l 7→ [e1, i−1. . .,e, . . . ,en]τ ,σ . By hypothesis
and the premises of the rule, we know that e has type τ ′, unifiable with τ . Therefore,
updating location i cannot invalidate the store.

Case EASETE: Trivial.

As before, our main theorem follows as an immediate corollary:

Theorem 4 (Type soundness with references). If Σ;Γ ` t : #τ and Σ;Γ ` σ valid, then
either t is a value, or t is blocked, or there exist t ′, Σ′ and σ ′ such that Σ;Γ;σ ` t
(Σ′;σ ′; t ′) and Σ′;Γ ` t ′ : #τ and Σ′;Γ ` σ ′ valid.

As a second corollary, we have that the new rule for run t (in §6.5) is also sound: since
the initial empty store under which t is run is trivially valid, Theorem 4 tells us that the
type τ of t is preserved, and hence that the returned term e has type τ .

7 Related Work

Languages for Typechecked Tactics. In the last five years there has been increasing
interest in languages that support safe tactics to manipulate proof terms of dependently
typed logics. Delphin (Poswolsky & Schürmann, 2009), Beluga (Pientka, 2008; Pientka &
Dunfield, 2008; Cave & Pientka, 2012), and VeriML (Stampoulis & Shao, 2010, 2012) are
languages that, like Mtac, fall into this category. By “safe” we mean that, if the execution
of a tactic terminates, then the resulting proof term has the type specified by the tactic.

But, unlike Mtac, these prior systems employ a strict separation of languages: the com-
putational language (the language used to write tactics) is completely different from the
logical language (the language of proofs), making the meta-theory heavier than in Mtac.
Indeed, our proof of type soundness is completely straightforward, as it inherits from CIC
all the relevant properties such as type preservation under substitution. Having a simple
meta-theory is particularly important to avoid precluding future language extensions—
indeed, extensions of the previous systems have often required a reworking of their meta-
theory (Stampoulis & Shao, 2012; Cave & Pientka, 2012).

Another difference between these languages and Mtac is the logical language they sup-
port. For Delphin and Beluga it is LF (Harper et al., 1993), for VeriML it is λHOL (Baren-
dregt & Geuvers, 2001), and for Mtac it is CIC (Bertot & Castéran, 2004). CIC is the only

ZU064-05-FPR paper 9 December 2014 11:37

48 B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski and V. Vafeiadis

one among these that provides support for computation at the term and type level, thereby
enabling proofs by reflection (e.g., see §3.3). Instead, in previous systems term reduction
must be witnessed explicitly in proofs. To work around this, VeriML’s computational
language includes a construct letstatic that allows one to stage the execution of tactics,
so as to enable equational reasoning at typechecking time. Then, proofs of (in-)equalities
obtained from tactics can be directly injected in proof terms generated by tactics. This is
similar to our use of run in the example from §3.3, with the caveat that letstatic cannot be
used within definitions, as we did in the inner prod example, but rather only inside tactics.

In Beluga and VeriML the representation of objects of the logic in the computational
language is based on Contextual Modal Type Theory (Nanevski et al., 2008a).2 Therefore,
every object is annotated with the context in which it is immersed. For instance, a term t
depending only on the variable x is written in Beluga as [x. t], and the typechecker enforces
that t has only x free. In Mtac, it is only possible to perform this check dynamically,
writing an Mtactic to inspect a term and rule out free variables not appearing in the set
of allowed variables (the interested reader may find an example of this Mtactic in the Mtac
distribution). On the other hand, the syntax of the language and the meta-theory required
to account for contextual objects are significantly heavier than those of Mtac.

Delphin shares with Mtac the νx : A binder from (Schürmann et al., 2005; Nanevski,
2002). In Delphin, the variable x introduced by this binder is distinguished with the type
A#, in order to statically rule out offending terms like νx : A. ret x. In Mtac, instead, this
check gets performed dynamically. Yet again, we see a tension between the simplicity of
the meta-theory and the static guarantees provided by the system. In Mtac we favor the
former.

Of all these systems, VeriML is the only one that provides ML-style references at the
computational level. Our addition of mutable state to Mtac is clearly inspired by the work
of Stampoulis & Shao (2010), although, as we do not work with Contextual Modal Type
Theory, we are able to keep the meta-theory of references quite simple.

Beluga’s typechecker is constantly growing in complexity in order to statically verify the
completeness and correctness of tactics (through coverage and termination checking). If a
tactic is proved to cover all possible shapes of the inspected object, and to be terminating,
then there is no reason to execute it: it is itself a meta-theorem one can trust. This concept,
also discussed below, represents an interesting area of future research for Mtac.

Finally, a key difference between Mtac and all the aforementioned systems is the ability
to program Mtactics interactively, as shown at the end of §3.1. None of the prior systems
support this.

Proof Automation Through Lemma Overloading. At heart, one of the key ideas of Mtac
is to get tactic execution to be performed by Coq’s type inference engine. In that sense,

2 The contextual types of CMTT are not to be confused with the lightweight “contextual types”
that Mtac assigns to unification variables (§4.2). In Mtac, we only use contextual types to
ensure soundness of unification, inheriting the mechanism from Coq. Mtac’s contextual types
are essentially hidden from the user, whereas in VeriML and Beluga they are explicit in the
computational language.

ZU064-05-FPR paper 9 December 2014 11:37

Mtac: A Monad for Typed Tactic Programming in Coq 49

01 Structure tagged heap := Tag {untag :> heap}.
02 Definition default tag := Tag.
03 Definition ptr tag := default tag.
04 Canonical Structure union tag h := ptr tag h.
05
06 Structure form (s : list ptr) := Form {
07 heap of :> tagged heap;
08 : def heap of → uniq s ∧
09 ∀ x. x ∈ s → x ∈ dom heap of}.
10
11 Canonical Structure union form s1 s2 h1 h2 :=
12 Form (s1 ++ s2) (union tag (h1 • h2)) ...
13
14 Canonical Structure ptr form A x (v : A) :=
15 Form [:: x] (ptr tag (x 7→ v)) ...
16
17 Canonical Structure default form h :=
18 Form [::] (default tag h) ...

Fig. 23. Scan tactic in lemma overloading style.

Mtac is closely related to (and indeed was inspired by) Gonthier et al.’s work on lemma
overloading using canonical structures (Gonthier et al., 2013a).

However, as explained in the introduction, whereas Mtac supports a functional style
of programming, the style of programming imposed by lemma overloading is that of
(dependently-typed) logic programming. For instance, Figure 23 shows the scan algorithm
from §3.1 rewritten using canonical structures. Without going into detail, the structure
(a.k.a. record) form in line 9 is the backbone of the tactic. The (tagged) heap heap of is the
input to the algorithm, and the list of pointers s and the (unnamed) axiom are the output
of the algorithm. The “tagging” of the heap (lines 1 to 4) is required in order to specify an
order in which the canonical instance declarations in lines 13 to 20 (much like type class
instances in Haskell) should be considered during canonical instance resolution.

The reason for using a parameter of the structure (s) to represent one of the outputs of
the algorithm is tricky to explain. More generally, knowing where to place the inputs and
outputs of overloaded lemmas, and how to compose them together effectively, requires
deep knowledge of the unification algorithm of Coq. In fact, the major technical contribu-
tion of Gonthier et al. (2013a) is the development of a set of common “design patterns”
to help in dealing with these issues. For instance, in order to encode the noalias tactic as
a composition of several overloaded lemmas, Gonthier et al. employ a rather sophisticated
“parameterized tagging” pattern for reordering of unification subproblems.

In contrast, the Mtac encoding of noalias is entirely straightforward functional program-
ming. Admittedly, the operational semantics of Mtac’s mmatch construct is also tied to
the unification algorithm of Coq, and the lack of a clear specification of this algorithm is
an issue we hope to tackle in the near future. But, crucially, the high-level control flow of
Mtactics is easy to understand without a detailed knowledge of Coq unification.

ZU064-05-FPR paper 9 December 2014 11:37

50 B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski and V. Vafeiadis

That said, there are some idioms that canonical structures support but Mtactics do not.
In particular, their logic programming style makes them openly extensible (as with Haskell
type classes, new instances can be added at any time), whereas Mtactics are closed to
extension. It also enables them to be applied in both backward and forward reasoning,
whereas Mtactics are unidirectional.

Typechecked Tactics Through Reflection. There is a large, mostly theoretical, body
of work on using the theory of a proof assistant to reason about tactics written for the
same proof assistant. The high-level idea is to reflect (a fraction of) the object language
of the proof assistant into a Term datatype inside the same proof assistant. Tactics are
then constructed using this datatype, and can be verified just like any other procedure built
inside the proof assistant. If the tactic is proven to be correct, then it can be safely used as
an axiom, without having to spend time executing it, or checking its result.

While this idea is appealing, the circularity that comes from reasoning about the logic of
a proof assistant within itself endangers the soundness of the logic, and therefore special
care must be taken. In theory, one can avoid this circularity by restricting the objects of the
language that can be reflected, and by establishing a hierarchy of assistants: an assistant
at level k can reason about tactics for the assistant at level k− 1 or below.3 This concept
is discussed in depth theoretically in Allen et al. (1990); Howe (1993); Constable (1992);
Pollack (1995); Harrison (1995); Artëmov (1999). More recently, Devriese & Piessens
(2013) provide, to the best of our knowledge, the first attempt of implementing it, but
without arriving yet at a practical and sound implementation.

More pragmatically, the programming language Agda suports a lightweight implemen-
tation of reflection.4 It does so with two primitives, quoteGoal and unquoteGoal. The
first one reflects the current goal into a Term datatype, and the second one solves the
current goal by the proof term that results from interpreting a term of the same datatype.
This mechanism avoids the circularity problem mentioned before in two ways: first, as
mentioned above, by restricting the object language supported and, second, by dynamically
typechecking the proof term before solving a goal with it. That is, like in Mtac, a tactic is
never trusted, and therefore cannot be used as an axiom. An example of proof automation
using Agda’s reflection mechanism, and its limitations, can be found in van der Walt &
Swierstra (2013).

All of the aforementioned works require tactics to be written using a de Bruijn encoding
of objects, in contrast to the direct style promoted in Mtac. In Agda this can be annoying,
but not fatal. However, if tactics have to be proven correct, as in Devriese & Piessens
(2013), then the overhead of verifying a tactic quickly negates the benefit of using it.
Another disadvantage is that tactics are restricted to use the pure language of the assistant,
and therefore cannot use effects like non-termination and mutable state.

Recent work by Malecha et al. (2014) restricts the use of reflection to reflective hints.
Hints are lemmas reflected into an inductive datatype, similar to what the reflection mech-
anism of Agda does, packed together with a proof of soundness. These hints are then used

3 This is reminiscent of the universe level hierarchy in Type Theory.
4 http://wiki.portal.chalmers.se/agda/pmwiki.php?n=ReferenceManual.
Reflection

ZU064-05-FPR paper 9 December 2014 11:37

Mtac: A Monad for Typed Tactic Programming in Coq 51

by a specialized auto tactic that reflects the goal and tries to prove it automatically using
the reflective hints. This work shares with the reflection mechanism of Agda the de Bruijn
encoding of terms, but, unlike in Devriese & Piessens (2013), the soundness proof is local
to the hint: the auto tactic will be in charge of performing the recursion, so the effort
required to verify a hint is significantly smaller. Unlike Mtac, this work does not aim at a
full language for meta-programming.

Simulable Monads. Claret et al. (2013) present Cybele , a framework for building more
flexible proofs by reflection in Coq. Like Mtac, it provides a monad to build effectful
computations, although these effects are compiled and executed in OCaml. Upon success,
the OCaml code creates a prophecy that is injected back into Coq to simulate the effects
in pure CIC. On the one hand, since the effects Cybele supports must be replayable inside
CIC, it does not provide meta-programming features like Mtac’s mmatch, nu, abs, and
evar, which we use heavily in our examples. On the other hand, for the kinds of effectful
computations Cybele supports, the proof terms it generates ought to be smaller than those
Mtac generates, since Cybele enforces the use of proof by reflection. The two systems thus
offer complementary benefits, and can in principle be used in tandem.

Effectful Computations in Coq. There is a large body of work incorporating or modeling
effectful computations in Coq. Concerning the former, in Armand et al. (2010) the kernel
of Coq is extended to handle machine integers and persistent arrays (Baker, 1991). As
discussed in Section 6, in Mtac we favored the more generic reference model à la ML, and
we did not need to modify the kernel.

Concerning the latter, there are two different approaches when it comes to modeling
state in Coq. The more traditional one, exemplified by Nanevski et al. (2008c,b, 2010);
Miculan & Paviotti (2012), is to encapsulate the effectful computations in a monad, and
provide two different views of it. Inside the prover, this monad performs the computation
in an inefficient functional (state-passing) way: easy to verify, but slow to execute. Then,
the verified code is extracted into a programming language with imperative features (typ-
ically Haskell or OCaml) using the efficient model of imperative computation that these
languages provide.

Vafeiadis (2013) argues that the monadic style of programming imposed by the previous
approach is inconvenient, as it drags all functions that use stateful operations into the
monadic tarpit, from which they cannot escape even if they are observably pure. He pro-
poses an alternative called adjustable references, to enable the convenient use of references
within code that is not observably stateful. An adjustable reference is like an ML reference
cell with the addition of an invariant ensuring that updates to the cell are not observable. As
with the previous approach, the code written in the prover is extracted into efficient OCaml
code.

In contrast to the above approaches, stateful Mtactics do not offer any formal model for
reasoning about code that uses references. State is restricted to the language of Mtactics,
whose operational behavior cannot be reasoned about within Coq itself.

ZU064-05-FPR paper 9 December 2014 11:37

52 B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski and V. Vafeiadis

Acknowledgments

We are deeply grateful to Chung-Kil Hur for suggesting the Mendler-style encoding of
mfix, to Arnaud Spiwack for suggesting the use of telescopes for representing patterns,
and to Georges Gonthier for the neat type class trick for delaying execution of Mtactics.
We would also like to thank Jesper Bengtson and Jonas Jensen, who tested an earlier
version of Mtac and gave useful feedback that helped us in polishing the implementation, as
well as Nils Anders Danielsson, Scott Kilpatrick, Antonis Stampoulis, and the anonymous
reviewers of our ICFP 2013 paper for their very helpful comments. This research was par-
tially supported by the Spanish MINECO projects TIN2010-20639 Paran10 and TIN2012-
39391-C04-01 Strongsoft, AMAROUT grant PCOFUND-GA-2008-229599, and Ramon
y Cajal grant RYC-2010-0743.

References

Allen, Stuart F., Constable, Robert L., Howe, Douglas J., & Aitken, William E. (1990).
The semantics of reflected proof. LICS.

Armand, Michaël, Grégoire, Benjamin, Spiwack, Arnaud, & Théry, Laurent. (2010).
Extending Coq with imperative features and its application to SAT verification. ITP.

Artëmov, Sergei N. (1999). On explicit reflection in theorem proving and formal
verification. CADE.

Baker, Henry G. (1991). Shallow binding makes functional arrays fast. SIGPLAN Notices,
26(8), 145–147.

Barendregt, Henk, & Geuvers, Herman. (2001). Proof-assistants using dependent type
systems. Robinson, Alan, & Voronkov, Andrei (eds), Handbook of automated reasoning.

Bertot, Yves, & Castéran, Pierre. (2004). Interactive Theorem Proving and Program
Development: Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science. An EATCS Series. Springer.

Boutin, Samuel. (1997). Using reflection to build efficient and certified decision
procedures. TACS.

Cave, Andrew, & Pientka, Brigitte. (2012). Programming with binders and indexed data-
types. POPL.

Chlipala, Adam. (2011a). Certified programming with dependent types. MIT Press. http:
//adam.chlipala.net/cpdt/.

Chlipala, Adam. (2011b). Mostly-automated verification of low-level programs in
computational separation logic. PLDI.

Claret, Guillaume, del Carmen González Huesca, Lourdes, Régis-Gianas, Yann, & Ziliani,
Beta. (2013). Lightweight proof by reflection using a posteriori simulation of effectful
computation. ITP.

Constable, Robert L. (1992). Metalevel programming in constructive type theory. Pages
45–93 of: Broy, Manfred (ed), Programming and mathematical method. NATO ASI
Series, vol. 88.

Devriese, Dominique, & Piessens, Frank. (2013). Typed syntactic meta-programming.
ICFP.

Gonthier, Georges. (2008). Formal proof — the four-color theorem. Notices of the AMS,
55(11), 1382–93.

ZU064-05-FPR paper 9 December 2014 11:37

Mtac: A Monad for Typed Tactic Programming in Coq 53

Gonthier, Georges, Mahboubi, Assia, & Tassi, Enrico. (2008). A small scale reflection
extension for the Coq system. Tech. rept. INRIA.

Gonthier, Georges, Ziliani, Beta, Nanevski, Aleksandar, & Dreyer, Derek. (2013a). How
to make ad hoc proof automation less ad hoc. JFP, 23(4), 357–401.

Gonthier, Georges, Asperti, Andrea, Avigad, Jeremy, Bertot, Yves, Cohen, Cyril, Garillot,
François, Le Roux, Stéphane, Mahboubi, Assia, O’Connor, Russell, Ould Biha, Sidi,
Pasca, Ioana, Rideau, Laurence, Solovyev, Alexey, Tassi, Enrico, & Théry, Laurent.
(2013b). A machine-checked proof of the odd order theorem. ITP.

Grégoire, Benjamin, & Leroy, Xavier. (2002). A compiled implementation of strong
reduction. ICFP.

Harper, Robert, Honsell, Furio, & Plotkin, Gordon. (1993). A framework for defining
logics. J. ACM, 40(1), 143–184.

Harrison, John. (1995). Metatheory and reflection in theorem proving: A survey and
critique. Technical Report CRC-053. SRI Cambridge, Millers Yard, Cambridge, UK.

Howe, Douglas J. (1993). Reflecting the semantics of reflected proof. Cambridge
University Press.

Hur, Chung-Kil, Neis, Georg, Dreyer, Derek, & Vafeiadis, Viktor. (2013). The power of
parameterization in coinductive proof. POPL.

Klein, Gerwin, Andronick, June, Elphinstone, Kevin, Heiser, Gernot, Cock, David, Derrin,
Philip, Elkaduwe, Dhammika, Engelhardt, Kai, Kolanski, Rafal, Norrish, Michael,
Sewell, Thomas, Tuch, Harvey, & Winwood, Simon. (2010). seL4: Formal verification
of an operating-system kernel. CACM, 53(6), 107–115.

Launchbury, John, & Peyton Jones, Simon L. (1994). Lazy functional state threads. PLDI.
Leroy, Xavier. (2009). Formal verification of a realistic compiler. CACM, 52(7), 107–115.
Malecha, Gregory, Chlipala, Adam, & Braibant, Thomas. (2014). Compositional

computational reflection. ITP.
Mendler, Nax Paul. (1991). Inductive types and type constraints in the second-order

lambda calculus. Annals of Pure and Applied Logic, 51(1–2), 159–172.
Miculan, Marino, & Paviotti, Marco. (2012). Synthesis of distributed mobile programs

using monadic types in coq. ITP.
Miller, Dale. (1991). Unification of simply typed lamda-terms as logic programming.

ICLP.
Nanevski, Aleksandar. (2002). Meta-programming with names and necessity. ICFP.
Nanevski, Aleksandar, Pfenning, Frank, & Pientka, Brigitte. (2008a). Contextual modal

type theory. ACM Trans. Comput. Logic, 9(3).
Nanevski, Aleksandar, Morrisett, J. Gregory, & Birkedal, Lars. (2008b). Hoare type theory,

polymorphism and separation. JFP, 18(5-6), 865–911.
Nanevski, Aleksandar, Morrisett, Greg, Shinnar, Avi, Govereau, Paul, & Birkedal, Lars.

(2008c). Ynot: Dependent types for imperative programs. ICFP.
Nanevski, Aleksandar, Vafeiadis, Viktor, & Berdine, Josh. (2010). Structuring the

verification of heap-manipulating programs. POPL.
Pientka, Brigitte. (2008). A type-theoretic foundation for programming with higher-order

abstract syntax and first-class substitutions. POPL.
Pientka, Brigitte, & Dunfield, Joshua. (2008). Programming with proofs and explicit

contexts. PPDP.

ZU064-05-FPR paper 9 December 2014 11:37

54 B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski and V. Vafeiadis

Pollack, Robert. (1995). On extensibility of proof checkers. TYPES.
Poswolsky, Adam, & Schürmann, Carsten. (2009). System description: Delphin – a

functional programming language for deductive systems. ENTCS, 228, 113–120.
Sacerdoti Coen, Claudio. (2004). Mathematical knowledge management and interactive

theorem proving. Ph.D. thesis, University of Bologna.
Saı̈bi, Amokrane. (1997). Typing algorithm in type theory with inheritance. POPL.
Schürmann, Carsten, Poswolsky, Adam, & Sarnat, Jeffrey. (2005). The ∇-calculus.

Functional programming with higher-order encodings. TLCA.
Sozeau, Matthieu. (2007). Subset coercions in Coq. TYPES.
Sozeau, Matthieu, & Oury, Nicolas. (2008). First-class type classes. TPHOLs.
Stampoulis, Antonis, & Shao, Zhong. (2010). VeriML: Typed computation of logical terms

inside a language with effects. ICFP.
Stampoulis, Antonis, & Shao, Zhong. (2012). Static and user-extensible proof checking.

POPL.
The Coq Development Team. (2012). The Coq Proof Assistant Reference Manual – Version

V8.4.
Vafeiadis, Viktor. (2013). Adjustable references. Pages 328–337 of: Blazy, Sandrine,

Paulin-Mohring, Christine, & Pichardie, David (eds), Interactive theorem proving.
Lecture Notes in Computer Science, vol. 7998. Springer Berlin Heidelberg.

van der Walt, Paul, & Swierstra, Wouter. (2013). Engineering proof by reflection in Agda.
Implementation and Application of Functional Languages.

Ševčı́k, Jaroslav, Vafeiadis, Viktor, Zappa Nardelli, Francesco, Jagannathan, Suresh,
& Sewell, Peter. (2013). CompCertTSO: A verified compiler for relaxed-memory
concurrency. J. ACM, 60(3), 22:1–22:50.

Ziliani, Beta, Dreyer, Derek, Krishnaswami, Neelakantan R., Nanevski, Aleksandar, &
Vafeiadis, Viktor. (2013). Mtac: A monad for typed tactic programming in Coq. ICFP.

