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Abstract In order for plants to use water efficiently, stomata must ensure an

appropriate balance between CO2 demands for photosynthesis and water loss

through transpiration. To achieve this, stomatal conductance (gs) often correlates

with mesophyll photosynthetic rates. However, the underlying mechanisms and

signals that promote this relationship are currently unknown. Stomata and photo-

synthesis respond to a number of environmental cues; however, the dynamics and

magnitude of these responses are not identical, with stomatal responses generally an

order of magnitude slower than mesophyll photosynthesis. The resulting discon-

nection between stomatal conductance and photosynthetic rate means that under

naturally fluctuating environmental conditions water use efficiency (WUE) can be

far from optimal. Manipulation of stomatal behaviour provides an obvious mecha-

nism for producing plants with improved WUE; however, before such an approach

is possible we must first understand the hierarchy of stomatal responses to varying

environmental parameters, the mechanisms behind these complex signalling path-

ways, and how stomatal behaviour is tuned to mesophyll photosynthetic rates

or capacity.

1 Introduction

Plants require sufficient CO2 to enter the leaf for photosynthesis while conserv-

ing water to avoid dehydration and metabolic disruption. As the leaf is almost

impermeable to water and CO2, almost all of the water transpired as well as the

CO2 absorbed pass through stomatal pores (Cowan and Troughton 1971; Jones

1992) and therefore stomata are essential to plant water and carbon status.

Additionally stomata also play key roles in nutrient uptake and evaporative

cooling of the leaf tissue (Morison 2003). The transpirational loss of water

through stomata is unavoidable because of the plant’s need to expose internal

cell surfaces to the external air surrounding the leaf for photosynthetic CO2

uptake. Only about 2% of the water taken up by a plant is used for biochemical

reactions, with the remaining 98% being lost by evaporation from the cell

surfaces (Morison 2003). The rate of diffusion of gases into or out of the leaf

from/to the surrounding environment depends upon the concentration gradient

and the resistance of diffusion along the pathway (see Weyers and Meidner

1990). For water loss from the mesophyll cells inside the leaf, the major
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pathway is therefore from the mesophyll cell wall through the substomatal

cavity to the stomatal pore and then out through the layer of air immediately

surrounding the leaf (boundary layer) to the mixed air stream. The pathway for

CO2 uptake is essentially the same but in reverse, with an additional resistance

component represented by the entry into the mesophyll cell chloroplasts. The

resistance of the stomatal pathway depends on the geometry of the pores as well

as their density (or frequency). Although the pore area may represent only a

small fraction (between 0.5 and 3%) of the total leaf area when fully open,

evaporation rates can be equivalent to 50% of that of a wet surface of the same

area due to edge effects of diffusion (Willmer and Fricker 1996). Modelling

stomatal conductance based on pore geometry, Weyers and Lawson (1997)

illustrated that the main determinant of gs was pore aperture, while stomatal

density makes a smaller contribution, although greater than that of depth or

length. Stomata and their function therefore, play a central role in determining

the amount of carbon gained per unit water lost, known as plant “water use

efficiency (WUE)”.

Crop breeders and scientists are under growing pressure to produce crop

plants with increased yields (or even sustained yield) and greater water and nutrient

use efficiency to meet the increasing demand for food and sustainable fuel for the

ever-expanding global population. Future plants must also have the ability to

maintain production in predicted future climates of increased atmospheric CO2

concentration, increased temperature and reduced water availability. The regu-

latory role of stomatal control over water loss and CO2 uptake for photosynthesis

makes these cells an obvious target for manipulation for improving WUE in future

crops plants. However, before such an approach is possible, we must first be able

to understand the complex signalling and response pathways and mechanisms

that enable stomata to respond to environmental stimuli and to mesophyll demands

for CO2 and the interaction and hierarchy of responses that obviously exist in

guard cells.

1.1 Stomatal Function, Plant Productivity and Water
Use Efficiency

In order for stomata to function effectively (maximising CO2 uptake while mini-

mising water loss), they respond to changes in external conditions and internal

signals (Raschke 1978). Environmental factors can influence stomatal behaviour

either directly or indirectly (Wong et al. 1979). Direct factors are those affecting the

guard cells themselves, while indirect effects are those affecting stomatal behaviour

by influencing the photosynthesis of the mesophyll (Willmer and Fricker 1996).

Typically, stomatal pores in C3 and C4 plants open with light the extent of which

has been shown to be wavelength specific (see Kuiper 1964), low CO2 concentra-

tions and high humidity (linked with temperature and the driving force of water

loss), while closure is induced under conditions of darkness, high CO2 concentration
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(see Sect. 2.1), low humidity and high temperatures (see reviews by Assmann 1993;

Willmer and Fricker 1996; Outlaw 2003; Vavasseur and Raghavendra 2005;

Shimazaki et al. 2007). There are exceptions to these typical stomatal responses

dependent upon the photosynthetic mechanisms employed (discussed in further

detail in Sect. 3).

Changes in stomatal aperture are driven by changes in turgor pressure of guard

cells (Heath 1938) due to the accumulation of ions and/or solutes (Imamura 1943;

Fujino 1967; Outlaw 1983), which increases the osmotic potential and lowers the

water potential of guard cells (Weyers and Meidner 1990; Willmer and Fricker

1996). Stomatal conductance (gs) to water and CO2 is dependent upon stomatal

characters such as density (number of stomata per unit leaf area) and stomatal

aperture (pore width), both of which are influenced by environmental conditions

surrounding the leaf, including gas concentrations, relative humidity and tempera-

ture. The number, size and distribution of stomata vary both between and within

species (Tichà 1982) and are often dependent upon environmental growth condi-

tions (Weyers et al. 1997; Weyers and Lawson 1997). Anatomical features of

stomata and their influence on gas exchange and photosynthesis will be considered

in Sect. 4. Considerable heterogeneity in stomatal characters, behaviour and func-

tion has also been demonstrated at several levels, from spatial patterns on individual

leaves to whole leaves within plants, and also species differences (Lawson 1997;

Weyers and Lawson 1997). An understanding of the nature of stomatal heteroge-

neity and its origins may be important as this could provide plants with some

functional advantages or disadvantages with respect to photosynthesis or WUE

(e.g. stomatal patchiness; Mott and Peak 2007).

To improve WUE, two approaches are immediately obvious. The first is to

improve photosynthetic carbon assimilation/growth rate and yield without the

need for increased water loss by the plant. Numerous studies have altered expres-

sion of targeted plant enzymes to identify their control on carbon assimilation. Such

studies have targeted Calvin cycle enzymes (Harrison et al. 1998; Haake et al. 1999;

Henkes et al. 2001; Raines 2003; Lefebvre et al. 2005; Suzuki et al. 2007) and also

photorespiratory enzymes (Wingler et al. 1999). Single enzyme transformations

have demonstrated that enhanced photosynthetic rates are possible, for example,

increased. Sedoheptulose-1,7-bisphosphatase activity resulted in tobacco plants

with improvements in carbon assimilation by 6–12% (Lefebvre et al. 2005). The

inclusion of thermostable Rubisco activase improved photosynthetic rates in Ara-

bidopsis (Kurek et al. 2007); however, increasing Rubisco content in rice plants

showed no enhancement in photosynthetic rate (Suzuki et al. 2009).

The potential outcomes of targeting more than one enzyme have recently been

modelled by Zhu et al. (2007). The second approach is to breed plants with an

altered stomatal conductance (Jones 1976, 1977). Increased stomatal conductance

could remove stomatal limitation on photosynthesis and increase carbon uptake,

while reduced stomatal conductance (particularly under water stress conditions)

could increase water use but at the expense of carbon gain. However, before

contemplating the potential of altering stomatal conductance to increased WUE,

the extent to which stomata limit photosynthesis under the plant natural growth
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environmental must first be determined (Jones 1987). It has been reported for

several C3 species that removal of stomatal limitation increases photosynthetic

rates by only 10–20% and that in C4 species this is even less (Farquhar and

Sharkey 1982; Jones 1985). Under drought stress conditions metabolic limitation

of photosynthesis may be much greater than that caused by reduced stomatal

aperture (Lawlor 2002). A third less-obvious approach for increasing WUE which

would include selecting plants with stomata that respond more rapidly to the

fluctuating environmental conditions that plants experience in the field environ-

ment could be envisaged. However, before such an approach is attempted, we

must first understand the mechanisms and response(s) of stomata to varying

environmental factors and the combination of such changes, and the mechanisms

by which stomatal conductance relates to mesophyll photosynthesis. In the fol-

lowing sections we will examine anatomical and physiological aspects of stoma-

tal function in relation to photosynthetic carbon assimilation. It is worth noting

that commercially grown wheat varieties with increased WUE have been identi-

fied using an innovative isotope discrimination screen (D13C and d18O), which
provides information on photosynthesis, transpiration and stomatal behaviour

(see Rebetzke et al. 2006; Condon et al. 2007; Ripullone et al. 2008). In another

case, mutants of the ERECTA gene (which “regulates transpiration efficiency”)

were isolated in Arabidopsis using a similar carbon isotope screening technique

(Masle et al. 2005).

2 Stomata Responses to Environmental Parameters

Environmental variables such as light, [CO2] and temperature are often considered

to have the greatest influence on photosynthetic rates, as well as direct and indirect

impacts on stomatal behaviour. Despite CO2 concentration in nature remaining

relatively stable, stomata are often assessed relative to [CO2] because internal CO2

concentration (Ci), which is ultimately controlled by external CO2 concentration

and photosynthetic carbon assimilation rates, is often believed to provide a key

controlling mechanism linking stomatal behaviour with mesophyll photosynthetic

rates (see Mott 2009). We have not attempted to review the vast amount of literature

currently available on these areas of research but refer readers to two recent

comprehensive reviews examining stomatal responses to CO2 (Vavasseur and

Raghavendra 2005) and light (Shimazaki et al. 2007).

2.1 Stomatal Responses to CO2 Concentration

It is well-accepted that stomatal conductance responds to CO2, a necessary require-

ment if plants are to optimise water use with carbon demand. In short-term

responses, stomata generally reduce aperture with increased CO2 concentration
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and open under lowered CO2 concentrations (in both darkness and light). The

signalling and response mechanisms that underlie stomatal responses to CO2 have

proven difficult to identify until recently. Hashimoto et al. (2006) demonstrated that

stomata of the Arabidopsis high leaf temperature 1 mutants (hrt1-1 and hrt1-2)
have reduced ability to control stomatal movements in response to altering CO2

concentrations, indicating that HT1 kinase is an important regulator of stomatal

responses to CO2. Several reports have also postulated an interactive role between

ABA and stomatal CO2 responses (for details see Vavasseur and Raghavendra

2005). Long-term exposure to elevated CO2 concentrations may result in (1) physi-

ological acclimation of stomata, for example reduced sensitivity to CO2 concentra-

tion compared with those observed under short-term fluctuations (e.g. Berryman

et al. 1994; Xu et al. 1994; Lodge et al. 2001; Maherali et al. 2002); (2) changes in

anatomy (Woodward 1987; McElwain and Chaloner 1995; McElwain et al. 1995);

and (3) attenuated responses to environmental parameters other than [CO2]

(Ainsworth and Rogers 2007). Since the first reports of decreasing aperture with

elevated CO2 concentration (Freudenberger 1940; Heath and Russell 1954), numer-

ous researchers and laboratories have studied the effects of both short- and long-term

responses of stomatal aperture to increasing and decreasing CO2 concentrations

(e.g. Raschke 1972) and illustrated a variety of responses that appear to be species

dependent (e.g. Maherali et al. 2002) or independent (e.g. Morison 1985) of the

plants photosynthetic pathway or biochemistry. Different stomatal responses to

CO2 have been reported for the same species from different laboratories; for

example, Tuba et al. (1994) reported little change in Triticum aestivum stomatal

sensitivity when grown at elevated CO2 concentration, but a lack of sensitivity could

not be confirmed in later studies by Šantrůček and Sage (1996). Stomatal responses

to CO2 do, however, appear to be governed by growth conditions. For example Vicia
faba plants grown under ambient CO2 concentrations in a growth chamber had

enhanced CO2 responses compared with plants grown in glass house conditions,

which was reported to be an intrinsic property of the guard cells (Frechilla et al.

2002), although combined effects of differing light and humidity could also explain

these results. Additionally, plants grown under well watered conditions or in envir-

onments with low evaporative demands have been shown to have reduced sensitivity

to CO2 (Mansfield and Atkinson 1990; Mansfield et al. 1990; Mansfield 1994). It is

believed that CO2 sensing occurs within the guard cells themselves, as CO2

responses have been demonstrated in epidermal peels (Fitzisimons and Weyers

1986) and it is generally accepted that guard cells sense Ci rather than atmospheric

CO2 (Ca) (Mott 1988). However, recent work on transgenic plants may provide

evidence that stomata respond to Ca rather than Ci as stomata closed in response to

increases inCa and at ambientCa stomatal conductance was similar in both wild type

(WT) and transgenic plants despite elevated Ci concentrations due to reduced

photosynthetic rates (von Caemmerer et al. 2004; Baroli et al. 2008). Stomatal

sensitivity to Ca has recently been the focus of an evolutionary study on WUE

(see Brodribb et al. 2009) (see below).
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2.2 Stomatal Responses to Light

The relationship between light, photosynthesis and stomatal conductance is often

discussed in association with the complex interactions with Ci. This is fuelled by the

fact that guard cells have two light response components. The first of these light

response components is the photosynthesis-independent blue light response, which

is associated with rapid opening and is sensed by the guard cells (Zeiger et al. 2002;

Kinoshita and Shimazaki 1999; Shimazaki et al. 2007) while the second is thought

to be a photosynthetic mediated response (often termed the red light response),

which saturates at rates similar to mesophyll photosynthesis (see Sharkey and

Raschke 1981). The red light response is often believed to be a Ci response

operating through mesophyll consumption of CO2 (e.g. see Roelfsema et al.

2002). Support for a Ci driven red light response comes from experiments

conducted on albino leaves or leaves treated with an inhibitor of carotenoid

synthesis, in which stomata responded to blue light, but failed to open under red

illumination (Roelfsema et al. 2006). Additional support for a CO2-induced red

light response comes from mutant plants that lack a CO2 response; these mutants

respond to blue light but show no response to red light (Hashimoto et al. 2006;

Marten et al. 2008). However, several studies have argued against a direct

Ci stomatal-driven response to red light; for example stomata were shown to

respond to red light even when Ci was held constant (Messinger et al. 2006; Lawson

et al. 2008; Wang et al. 2008). Sharkey and Raschke (1981) confirmed the work of

Wong et al. (1979) and reported that stomatal responses to Ci were too low to

account for the large changes observed under light. The site of perception for the

stomatal red light response is controversial, with some studies suggesting the

involvement of guard cell photosynthesis (see Lawson 2009) while others suggest

a mesophyll driven signal (Mott 2009). The influence of such mesophyll driven

signals on stomatal behaviour has implications for the correlation between stomatal

function and photosynthetic capacity (Sect. 3).

The blue light response of stomata has been reported to have faster dynamics

than the red light response (although this could be species dependent) and is

believed to be involved in rapid dawn opening (Zeiger et al. 1985) and in response

to sunflecks (Kirschbaum et al. 1988). However, in tobacco leaves subjected to step

increases in red or red and blue light, no difference in rate of stomatal opening was

observed (Fig. 1). Only the intensity of the irradiation influenced the rates of

opening, and interestingly the final conductance achieved was closely related to

the initial rate of opening (Fig. 1). Lawson et al. (2008) reported a similar correla-

tion between red light induced rate of opening and final conductance in plants with

differing photosynthetic capacity owing to differing activities of the Calvin cycle

enzyme sedoheptulose-1,7-bisphosphatase (SBPase). These data demonstrate the

importance of the dynamics of stomatal responses on the final conductance

obtained and highlight the potential of manipulating stomatal response in order to

control gs and WUE.
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2.3 Temperature Response of Stomata

Variations in leaf and air temperature can alter the rate of transpiration, which will

have a direct effect on plant WUE (Šantrůček and Sage 1996), plant productivity

(Morison 1993) and crop yield (Lu et al. 2000). In species that lack CO2 concentrating

mechanisms, increasing temperature can cause indirect effects due to metabolic

increases in photorespiration and respiration relative to photosynthetic rates,

bringing about a rise in internal CO2 concentration which, if stomata are sensitive

to Ci, will bring about stomatal closure (Ball et al. 1987; Willmer and Fricker

1996). Stomatal responses to temperature are variable, depending upon the

species and growth conditions (Sage and Sharkey 1987; Aphalo and Jarvis

1991). The effect of temperature on stomata is complicated by the consequential

change in leaf�air vapour pressure deficit (VPD) (Hall et al. 1976; Šantrůček and

Sage 1996; Willmer and Fricker 1996). At constant VPD, some species show

increased gs with an increasing temperature (Šantrůček and Sage 1996), while

others show no change (Aphalo and Jarvis 1991). As temperature increases,

gs will generally decline as a result of increased VPD, although both C3 (Sage

and Sharkey 1987; Kudoyarova et al. 2007) and C4 (Dwyer et al. 2007) species

have been reported to increase gs with temperature despite increasing VPD. These

observations have been attributed to an overriding effect of temperature on gs that
is independent of VPD (Sage and Sharkey 1987; Dwyer et al. 2007) or increased

hydraulic conductance in well watered soils (Kudoyarova et al. 2007). Tempera-

ture dependent increases in gs have been attributed to increase metabolic activity

in guard cell respiration and increase proton pumping, independent of mesophyll

photosynthesis (Lu et al. 2000). Understanding the impact of temperature and the

combined effect of temperature, CO2 and humidity on stomatal behaviour is critical

to understanding optimal stomatal conductance and plant WUE. Additionally, long

term growth under elevated temperature and/or CO2 concentration may result in

Fig. 1 Relationship between

final stomatal conductance

and initial rate of opening

in tobacco in response to

either red or blue light.

Leaves were acclimated to

100 mmol m�2 s�1 followed

by step changes in irradiance

at different intensities. Open

symbol shows stomatal

responses to red light, and

close symbol blue light
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stomatal acclimation, which could counterbalance the expected future increases

in WUE as demonstrated and predicted from short-term studies (Šantrůček and

Sage 1996).

2.4 Stomatal Responses Under Fluctuating Environmental
Conditions

Stomatal responses to environmental signals such as light, CO2 and VPD have been

extensively studied under steady state conditions, but rarely do they vary in

isolation under natural conditions (Lawson and Morison 2004). Fewer studies

have examined dynamic stomatal behaviour in a natural environment, where

multiple signals must be integrated and speed of response can be critical to both

daily carbon gain and WUE (Raschke 1970; Kirschbaum et al. 1988; Knapp 1993;

Tinoco-Ojanguren and Pearcy 1993; Cardon et al. 1994; Allen and Pearcy 2000;

Lawson and Morison 2004; Noe and Giersch 2004). The disconnection in the time

response of stomatal opening and photosynthetic response was examined in detail

by Pearcy and co-workers, who studied photosynthetic behaviour to sunflecks in

plant canopies and demonstrated that stomatal opening in response to a light signal

continued long after the signal had ceased (Kirschbaum et al. 1988; Pearcy 1990).

An example of stomatal opening in response to light in Fig. 2 shows the difference

in the rate of increase in stomatal conductance and CO2 assimilation rate and

highlights the dilemma faced by plants in coordinating the two processes. The

duration and intensity of sun (or shade) flecks influence the response of both gs and A,
as illustrated in Fig. 3. After a period of low light, an increase in irradiance does not

result in an immediate increase in A, but shows an initial increase followed by a

delay before maximum A is achieved (see Fig. 3a). This lag period is due to both

mesophyll induction (involving light regulation of enzymes and metabolite pools)

as shown in Fig. 3a and, depending on the duration of the sun fleck, changes in

stomatal aperture (Fig. 3b). Although the increase of gs in response to a light

increase during sun flecks is faster than the decreasing response to a drop in light,

stomatal movements can take up to tens of minutes and can “overshoot” –

continuing to open after the fleck has passed (Kirschbaum et al. 1988; Tinoco-

Ojanguren and Pearcy 1993). Most work has indicated that the main control of

assimilation during the first 10 min of induction is with the biochemical control of

assimilation rate and that stomata do not cause a major limitation (Barradas and

Jones 1996; Fig. 3a). However, in sun flecks greater than 10 min, stomatal aperture

can limit assimilation rate (Fig. 3b).

The effect(s) of shade flecks on gs and A are less well studied. Decreased light

intensity for a period of 5 min or less greatly decreases the A rate and has little

impact on stomatal behaviour; therefore, on restoration of the light, identical A rates

can be achieved prior to the shade fleck (Fig. 3c). However, during sunflecks longer

than about 8 min, gs will decrease and continue to decrease for a further 5–8 min
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after the shade fleck has been removed, which restricts restoration of A for about

15 min (Fig. 3d). The examples used here illustrate the potential fluctuating changes

in stomatal behaviour relative to A, the responses of which are dependent not only

on the duration but also on the intensity of the flecks, proportional change

in irradiance relative to the starting irradiance (see, Lawson 1997), as well as the

species studied. When scaled up to the plant or crop level, the impact of the

disproportional change in gs and A can result in significant decreases in plant

WUE (see Sect. 6). Increasing stomatal response times to fluctuating environmental

parameters could potentially decrease lag times and reduce the amount of time

stomata restrict carbon assimilation. Additionally, such improvements would

reduce the time periods in which plants lose water unnecessarily because of a

greater stomatal conductance than is required for the potential carbon gain at that

time (e.g. during a shade fleck).

Fig. 2 Examples of changes

in (a) CO2 assimilation rate,

(b) leaf conductance and (c)

intercellular CO2 with time

after a step change in

irradiance from 100 to

1,000 mmol quanta m�2 s�1.

for wild type (open circle)
and transgenic tobacco with

reduced Rubisco (anti-Ssu,

closed circles). Ambient

CO2 and water vapour were

maintained at 380 mmol

mol�1 and 23 mmol mol�1.

Leaf temperature was

maintained at 25�C. Arrows
indicate when light was

increased from 100 to

1,000 mmol quanta m�2 s�1

and returned to 100 mmol

quanta m�2 s�1. (Figure

reproduced from von

Caemmerer et al. (2004) by

permission of Society of

Experimental Biology (http://

www.sebiology.org) &

Oxford University Press)
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Although under controlled environmental conditions, within-leaf patterns of

photosynthesis often correlate with stomatal behaviour (Weyers et al. 1997), in

natural fluctuating environments, there is significantly greater within-leaf variation

in stomatal conductance and photosynthetic rates, the patterns of which often show

no correlation (Weyers and Lawson 1997). The observed variation and lack of

correlation between stomatal conductance and assimilation rate over individual

leaves of Phaseolus vulgaris were attributed to the differences in the induction

times for stomata and photosynthesis to respond and keep track of variable condi-

tions (Lawson and Weyers 1999). The rate of stomatal opening and closing reflects

the kinetics of multiple processes such as signal transduction, water movement, the

establishment of osmotic potential, as well as the influence of the mechanical

properties of guard cells and is therefore a complex kinetic function (Kirschbaum

et al. 1988; Cardon et al. 1994; Franks and Farquhar 2007). It is clear that the

kinetics of stomatal responses (and resulting gs) to certain environmental

Fig. 3 The effect of sun and shade flecks on CO2 assimilation rate and stomatal conductance. (a)

and (b) Sun flecks: PPFD was increased from 230 to 615 mmol m�2 s�1 at time zero for (a) 5 min,

(b) 15 min, (c) and (d) Shade flecks: PPFD was decreased from 615 mmol m�2 s�1 at time zero.

Measurements of assimilation rate (solid circles) and stomatal conductance (open circles) made

every 5 s with cuvette CO2 maintained at 357 mmol mol�1, temperature 25�C and VPD 1.34 kPa
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parameters are not consistent across species (see Hetherington and Woodward

2003; Sharkey and Raschke 1981) and that direct and indirect responses are

significantly influenced by the type of photosynthetic pathway (Huxman and

Monson 2003).3

2.5 Night Time Stomatal Conductance

It is generally accepted that stomata close in response to darkness, although

significant night time stomatal conductances, which can result in 5–30% of the

daily water loss (Snyder et al. 2003), have been observed in a range of species (see

Donovan et al. 1999; Daley and Phillips 2006; Caird et al. 2007), including C3 and

C4 photosynthetic types. Rates of up to 90% of day time conductances have been

reported, although rates of water loss depend on VPD, which is generally much

lower during the night (Caird et al. 2007). As night time stomatal conductance

allows water loss with no carbon gain, and with reduced leaf cooling requirements,

the benefit for the plant is at present still unclear (Caird et al. 2007). It has been

suggested that night time stomatal conductance could enhance nutrient uptake

(Donovan et al. 2001; Caird et al. 2007) or oxygen delivery to respiring cells

(Daley and Phillips 2006), repair xylem embolism (Rogiers et al. 2009) and/or

could enhance early morning/predawn stomatal opening that has the potential to

maximise carbon uptake when temperature and VPD are lower (Caird et al. 2007).

However, it appears that rates of night time conductance are correlated with

day time stomatal conductance. Night time stomatal conductance could not only

have significant impacts on plant water status and WUE, but also has important

implications for pollutant uptake (e.g. ozone, Grulke et al. 2004) and isotope

signatures for determining environmental impacts on transpiration rates (Barbour

et al. 2005).

3 Stomatal Interactions with Photosynthesis

3.1 Photosynthetic Pathways and Stomatal Function

Most reviews on stomatal function are C3-centric, most likely as a result of the bias

toward stomatal research on C3 plants, as they tend to have larger stomata to work

with. In this section, we briefly examine some of the key differences in stomatal

behaviour between C3, C4 and Crassulation Acid Metabolism (CAM) plants. The

global distribution of C3, C4 and CAM plants is unequal, driven by global variation

in environmental variables. C3 plants are the most widely distributed plants,

dominating the temperate regions of the world and covering an estimated 87.4 mil-

lion km2 compared with 18.8 million km2 for C4 species (Still et al. 2003).
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Plants with the C4 photosynthetic pathway appeared about 8 million years ago and

tend to dominate in warmer, dryer habitats at 21–23� latitudes (Sage et al. 1999),

representing less than 4% of all plant species. CAM plants occurred earlier in

evolution in the carboniferous and differ greatly in stomata behavioural patterns,

opening in darkness and remaining closed during the light period (Osmond 1978;

Black and Osmond 2003). In CAM plants, stomata open at night for net CO2 uptake

catalysed by phosphoenolpyruvate carboxylase (PEPC), which is stored in the

vacuole as malic acid. During the light period, decarboxylation of vacuole acids

releases CO2 behind closed stomata, enabling high CO2 concentration to develop

for refixation by Rubisco (Cockburn et al. 1979). Stomata remain closed during the

light period, except during late afternoon (termed phase IV), when reduced acid

concentration and optimal conditions (namely water supply) permit stomata to

reopen to perform C3 photosynthetic CO2 fixation. Until recently, stomatal beha-

viour in CAM plant has been associated with changing Ci concentration due to the

action of PEPC at night and decarboxylation during the day (Cockburn et al. 1979;

Spalding et al. 1979); however, von Caemmerer and Griffiths (2009) demonstrated

that stomata of Kalanchoe species did not respond when Ci was manipulated.

Stomata of a particular CAM species, Tillandsia recurvata, have been shown to

be sensitive and directly responsive to changes in ambient air humidity during

nocturnal CO2 fixation. Changes in stomatal aperture were shown to be a direct

response to changes in humidity and not to bulk tissue water conditions of the

leaves (Lange and Medina 1979). The induction of CAM in the facultative CAM

plantMesembryanthemum crystallinum has been shown to abolish the stomatal blue

light response, which is apparent when the plant is in C3 mode (Mawson and Zaugg

1994), a response that has been linked to the a lack of light-induced formation of

zeaxanthin (Tallman et al. 1997). Zeaxanthin has previously been linked with blue

light responses in guard cells (Zeiger and Zhu 1998; Frechilla et al. 1999). Stomata

of Portulacaria afra have been shown to have typical blue and red light responses

when in C3 mode, both of which become undetectable in CAM mode (Lee and

Assmann 1992). However, red light response was lacking in M. crystallinum even

in C3 mode (Mawson and Zaugg 1994). Studies on the rate of opening in response to

a decrease in CO2 concentration in the CAM plants Kalenchoe daigremontiana and
Kalanchoe pinnata showed that the rate of opening in the dark was as rapid as

in the light during Phase IV of the CAM cycle, where CO2 is fixed primarily via

C3 photosynthesis, indicating that energy can be sourced via mitochondrial respira-

tion or stored carbohydrate (von Caemmerer and Griffiths 2009). The fact that

stomata and photosynthesis are temporally segregated in CAM plants provides an

ideal opportunity to use such systems to examine stomatal responses in isolation

from mesophyll C3 metabolite production or demands (von Caemmerer and

Griffiths 2009).

Stomatal function and behaviour in C4 plants are more similar to those of

C3 plants than of CAM plants, although differences in magnitude and sensitivity

to light and CO2 have been reported between C3 and C4 species (Huxman and

Monson 2003; Maherali et al. 2002). For example, several studies have demon-

strated that stomata of C4 plants have greater sensitivity to Ci than C3 species
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(Dubbe et al. 1978; Sharkey and Raschke 1981; Ramos and Hall 1982), although

Morison and Gifford (1983) reported similar sensitivities. It would, however, be

interesting to see if such reported differences in sensitivity hold true if stomatal

response was measured as a function of Ca rather than Ci. C3 species have also

been reported to be less prone to closure than C4 when light was decreased or CO2

increased (Akita and Moss 1972). Stomatal acclimation to CO2 responses have

been observed in C3 forbs but not in C3 or C4 grasses (Maherali et al. 2002). In

response to severe drought, reduced stomatal aperture could limit photosynthesis

to a greater degree in C4 plants than in C3, due to the fact that C4 photosynthesis

operates closer to the Ci inflection point and there is a steep photosynthetic

response with increasing Ci at low Ci (see Ghannoum 2009). Additionally,

C3 and C4 plants have been reported to differ in their diurnal periodicity of

opening, with maximum gs reported for C3 plants at 10 am, while for C4 plants

the maximum is at 12 noon (Das and Santakurmari 1977), suggesting that low

light levels and low temperature promote stomatal opening in C3 plants compared

with C4.

Dissimilar sensitivity could be due to different sensory or signalling mechanisms

or differences in anatomical features. The more evolutionary advanced dumb-bell

shaped guard cells (often found in grasses and C4 species) are able to open more

rapidly compared with kidney shaped guard cells (Hetherington and Woodward

2003; Franks and Farquhar 2007). The speed of stomatal opening in grasses

is believed to have evolved to increase photosynthesis and WUE (Grantz and

Assmann 1991; Huxman and Monson 2003). The physical explanation for the

reported increased speed and efficiency is due the dumb-bell shape of the guard

cells enabling a greater magnitude of change in stomatal aperture with relatively

small changes in turgor (Raschke 1975) which “maximise the potential of stomata

to track changes in environmental conditions” (Hetherington andWoodward 2003).

Both opening and closing movements of stomata are active energy consuming

steps and according to Assmann and Zeiger (1987) ATP synthesis by either

mitochondria or chloroplasts could accommodate the energetic requirements of

stomatal opening. The fact that dumb-bell type guard cells require small changes in

guard cell turgor would also imply smaller energy requirements (Hetherington and

Woodward 2003).

Differences in anatomical features have also been observed between C4 plants,

which have reportedly a high stomatal density on the upper leaf surface (relative

to the lower leaf surface) compared with C3 plants (e.g. Das and Santakurmari

1977). Environmental growth conditions also influence stomatal responses; for

example, sun and shade leaves differ in their response to light (Turner 1979) and

also stomata on upper and lower surfaces will differ in their response to light,

mostly likely due to the fact that their growth microenvironments are different

(Pemadasa 1981). Additionally, we often quote that the stomata of C3 (and C4)

plants are closed in darkness; however, as discussed above, night time stomatal

conductance has been observed in a diverse range of both C3 and C4 species (see

Caird et al. 2007).

278 T. Lawson et al.



3.2 Correlation Between Stomatal Conductance
and Photosynthetic Capacity

Across species and under a variety of growth conditions, plants regulate their

transpiration and photosynthetic rates in parallel, maintaining a balance between

stomatal and photosynthetic capacity. This results in the conservation of the ratio

of Ci to Ca (Wong et al. 1979, 1985; Hetherington and Woodward 2003). This

empirical direct correlation between photosynthesis and stomatal conductance was

central to initial models of stomatal control of photosynthesis (Farquhar and Wong

1984; Ball et al. 1987) and has been carried over to more recent models (Dewar

2002; Buckley et al. 2003). However, the underlying regulatory mechanisms are

still unclear.

3.2.1 Evidence for and Against a Mesophyll Driven Signal

Guard cells may respond to photosynthetic demand by direct sensing of Ci or Ci/Ca

(Ball and Berry 1982; Mott 1988; Roelfsema et al. 2002). Contrary to the predictions

of the above mentioned models, transgenic plants with impairments in different

steps of the photosynthetic process maintain normal stomatal conductances, resulting

in elevated Cis and bringing into question the postulated Ci control of stomatal

movement (for review see von Caemmerer et al. 2004). Alternatively, it has been

proposed that guard cells sense the metabolic status of the mesophyll via a diffusible

factor that is a product of photosynthetic activity in the mesophyll (Wong et al. 1979;

Mott et al. 2008) and that stomatal aperturewould be inversely proportional to the pool

size of such diffusible factor (Farquhar andWong 1984). Possible metabolites include

ATP, NADPH, or ribulose bisphosphate (RuBP), the concentration of which depends

strongly on the balance between chloroplast electron transport and the carboxylation

reaction catalysed by Rubisco (Messinger et al. 2006).

The first suggestion of a mesophyll driven signal on stomatal behaviour was

proposed by Heath and Russell in 1954. These researchers separated an indirect Ci

effect from a direct light effect on stomatal behaviour and suggested that there was

an indirect effect transmitted from either the epidermal cells or the mesophyll cells

by a chemical or an electrical signal (Heath and Russell 1954). The influence of

mesophyll on stomatal behaviour was illustrated by Lee and Bowling (1992) who

demonstrated different behaviour patterns in isolated epidermis of Commelina
communis compared with intact leaves. In the same study, the authors reported

that epidermis incubated with mesophyll cells showed greater opening responses

that those incubated without mesophyll cells or when mesophyll cells were kept

in the dark. These results suggested that a product of photosynthesis (which they

named stomatin) aided stomatal opening, although the compound was never iden-

tified. They ruled out D-glucose, sucrose, malic acid and ATP (Lee and Bowling

1992). Guard cell membrane hyperpolarization by light and CO2 in intact leaves,
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but not in isolated epidermis or leaves treated with photosynthetic inhibitors,

provided further evidence for a mesophyll driven signal (Lee and Bowling 1993).

In a viewpoint paper, Lee and Bowling (1995) collated evidence for mesophyll

influence on stomatal opening and concluded that the stomatal mechanism was

controlled by command and operations and that “command originates in the

mesophyll cells and operation in the guard cells”. However, from studies with

transgenic plants with impaired photosynthesis, it is clear that the rate of opening is

not influenced by the current rate of photosynthesis (Fig. 4) ((von Caemmerer et al.

2004; Baroli et al. 2008).

A recent publication by Mott et al. (2008) has revised the potential for a

mesophyll driven signal. Isolated epidermal peels grafted onto mesophyll (from

the same species or another leaf) showed rapid reversible responses to light and

CO2. Mott and coworkers put forward two working hypotheses to explain the

findings: (1) something produced by the mesophyll sensitises the guard cells to

light and CO2; (2) stomata respond to a signal generated in the mesophyll in

response to light and CO2. Their findings supported the second hypothesis.

Fig. 4 Relationship between stomatal conductance and CO2 assimilation rate in wild type and

transgenic tobacco plants impaired in photosynthesis by a decrease in Rubisco function (anti-Ssu

plants). Data are redrawn from (Baroli et al. 2008; www.plantphysiol.org: Copyright American

Society of Plant Biologists) and plants were grown under elevated CO2 in environmentally

controlled chambers and conductance and photosynthesis measurements were performed under

ambient CO2. Filled circles, wild type; open diamond, mean � SE (n ¼ 4) from low light (LL)

grown anti-Ssu plants; open square, mean � SE (n ¼ 4) of medium light (ML)-grown anti-Ssu

plants, open circle, mean � SE (n ¼ 5) from ML-grown anti-Ssu plants assayed in red/blue light

(redrawn from von Caemmerer et al. 2004; www.jxb.oxfordjournals.org: Copyright Society of

Experimental Biology). Arrows link data from anti-Ssu plants with the mean � SE of 4–5 wild

type plants grown and assayed under identical conditions at the same time. The solid line
represents linear regression fit of all wild type data (y ¼ 0.0217 (�0.00069) � x, R ¼ 0.90).

Each data point not showing error bars corresponds to an individual plant. Error bars represent SE
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3.3 Involvement of Guard Cell Photosynthesis
in Stomatal Responses

The fact that guard cells contain functional chloroplasts (Willmer and Fricker 1996;

Lawson et al. 2003), carry out linear electron transport (Hipkins et al. 1983;

Shimazaki and Zeiger 1985; Willmer and Fricker 2006; Lawson et al. 2002),

possess many of the main Calvin cycle enzymes (Zemel and Gepstein 1985;

Shimazaki and Zeiger 1985; Gotow et al. 1988; Shimazaki et al. 1989) and guard

and mesophyll cell photosynthetic efficiency correlate closely (Lawson et al. 2002,

2003) has provided attractive but controversial alternative sensory and/or regu-

latory mechanisms allowing stomatal behaviour to track mesophyll photosynthetic

performance and explain the close correlation between mesophyll photosynthesis

and stomatal conductance (Lawson 2009). Guard cell chloroplasts could contribute

to stomatal behaviour in several different ways. Electron transport in guard cells,

coupled to the production of ATP and/or reductants, is required for osmoregulation

(Schwartz and Zeiger 1984; Shimazaki and Zeiger 1985; Tominaga et al. 2001).

ATP produced through either linear (Shimazaki and Zeiger 1985; Lawson et al.

2002, 2003) or cyclic electron transport (Lurrie 1977) could provide sufficient ATP

to drive ion exchange during stomatal opening. Although the exact mechanisms of

ATP export from the chloroplast for use in the cytosol are unclear, specific ATP

transporters have recently been identified that may provide an explanation for this

mechanism (for detail see Weber and Fischer 2007). Tominaga et al. (2001)

conducted experiments on epidermal peels of Commelina benghalensis under red
light with and without inhibitors of oxidative phosphorylation (oligomycin)

and photosystem II (DCMU) and demonstrated that under red light ATP produced

during photophosphorylation was utilised by the plasma membrane H+-ATPase for

H+ pumping. Several independent studies have demonstrated the use of ATP and

NADPH from photosynthetic electron transport for the reduction of oxaloacetate

(OAA, from starch breakdown or imported) and 3-phosphoglycerate (3-PGA, from

guard cell CO2-fixation or imported from the cytosol) which is subsequently

exported to the cytosol via a 3-PGA-triose phosphate shuttle (Shimazaki et al.

1989; Ritte and Raschke 2003).

Guard cell chloroplasts also act as a starch storage facility which provides a

second mechanism by which guard cell chloroplasts could contribute to coordinate

stomatal movements. Carbon skeletons produced from starch breakdown are used

to produce malate via PEPC and CO2 fixation within the guard cells (Willmer and

Dittrich 1974; Raschke and Dittrich 1977; Schnabl et al. 1982; Willmer 1983;

Outlaw 1990). As alluded above, OAA (provided from starch breakdown) is

reduced to malate (Rao and Anderson 1983; Scheibe et al. 1990) and malate

accumulation has been correlated with stomatal aperture (Allaway 1973; Pearson

1973; Pearson and Milthorpe 1974; Vavasseur and Raghavendra 2005). The third

and controversial mechanism concerns CO2 fixation by the Calvin cycle within

guard cell chloroplasts, and the use of end products in stomatal movements (see

Outlaw 2003; Lawson 2009). Although the presence of Calvin cycle enzymes has
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been clearly demonstrated (Zemel and Gepstein 1985; Shimazaki and Zeiger

1985; Gotow et al. 1988; Shimazaki 1989), numerous reports have questioned

the functional capacity of the Calvin cycle for producing osmotica (Outlaw et al.

1979, 1982; Outlaw 1982, 1987, 1989; Tarczynski et al. 1989). On the other hand,

several studies have reported that the Calvin cycle represents a major sink for the

products of photosynthetic electron transport (Cardon and Berry 1992; Lawson

et al. 2002, 2003) and incorporation of 14CO2 into 3-PGA (Gotow et al. 1988).

Photosynthetic dependence of sucrose accumulation has also been demonstrated

in epidermal peels of V. faba exposed to red illumination (Poffenroth et al. 1992).

The reported contribution of osmotica produced for carbon reduction within the

guard cells for stomatal opening ranges from 2% (Reckmann et al. 1990) suggest-

ing that rates are too low for any functional significance (Outlaw 1989) to 40%

(Poffenroth et al. 1992) representing a significant source of osmotica for guard

cell function. Guard cell chloroplast function in stomatal movements provides an

attractive hypothesis for several reasons: firstly, the guard cell chloroplasts are

ideally and conveniently located (as such mechanisms would be required to be in

proximity to the stomatal guard cells); secondly, the functional role of these

highly conserved guard cell chloroplasts remains elusive; and finally, a mecha-

nism for stomatal movements and behaviour linked to the guard cell chloroplasts

would provide an ideal link between stomatal behaviour and the tight correlation

observed with mesophyll photosynthetic rates, with both being governed by

chloroplast performance.

However, work on photosynthetic transgenic plants with impaired carboxylation

(von Caemmerer et al. 2004) or RuBP regeneration (Lawson et al. 2008) has shown

that despite similar decreases in photosynthesis in the mesophyll as well as in the

guard cells, stomata can achieve equivalent or even greater gs than wild type plants.
These data clearly demonstrate that guard cell photosynthesis is not essential for

stomatal function, but may play a subtle role in stomatal opening rate and final

conductance under red light conditions (Lawson et al. 2008).

3.4 Sucrose as Signal Between Photosynthesis
and Stomatal Behaviour

Reports suggesting relatively low levels of Calvin cycle activity and sucrose

production in guard cell chloroplasts led to the alternative suggestion that sucrose

produced by mesophyll photosynthesis could provide osmotica for stomatal move-

ments, and thereby link stomatal behaviour with photosynthetic rates (Lu et al.

1995, 1997; Ritte et al. 1999; Outlaw and De Vleighere-He 2001; Kang et al.

2007a). Hite et al. (1993) showed that guard cells could act as carbon sinks,

importing sucrose via plasma membrane transporters (Stadler et al. 2003). Sucrose

import into the guard cells not only provides an osmoticum for stomatal opening but

can also provide a “transpiration-linked, photosynthetic-dependent passive mecha-

nism for modulation of stomatal aperture size” (Kang et al. 2007a). The guard
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cell apoplastic sucrose can also exert an osmotic effect, which can drive stomatal

closure, acting as a possible signal between mesophyll assimilation rate and

transpiration (Kang et al. 2007a). Under photosynthetic conditions, sucrose accu-

mulation in the guard cell apoplast driven by transpiration is sufficient to diminish

stomatal aperture. The guard cell apoplastic sucrose is a product of recent meso-

phyll photosynthesis (Lu et al. 1997); Outlaw and co-workers have hypothesised

that its concentration is correlated with the rate of photosynthesis as well

as transpiration (Outlaw and De Vleighere-He 2001) providing a signal that

prevents further stomatal opening when photosynthesis and transpiration are high

(Kang et al. 2007a). However, such a mechanism may only be possible in apoplastic

phloem loaders (Kang et al. 2007b). It is also difficult to see how this mechanism

works in maintaining high photosynthetic rates, as under the hypothesis proposed,

limited CO2 supply as a result of preventing stomatal opening would potentially

increase mesophyll demand for CO2.

3.5 ROS Signalling in Stomata and Relationship
with Photosynthesis

Reactive oxygen species (ROS) result from the incomplete reduction of molecular

oxygen. They include superoxide, hydrogen peroxide, singlet oxygen and the

hydroxyl radical. Besides being unavoidable toxic by-products of metabolism and

environmental stress, ROS play a central role as messengers in the signal transduc-

tion chain leading to the acclimation response to stress (Van Breusegem et al. 2008;

Pfannschmidt et al. 2009). In particular, hydrogen peroxide has been shown to

mediate ABA-induced stomatal closure and it is thought that the source of H2O2 is

the guard cells themselves (reviewed in Wang and Song 2008). MAP kinases have

recently been implicated in the down stream function of ROS activity to regulate

guard cell ABA signalling positively (Jammes et al. 2009). Chloroplasts are

considered to be the primary sources of ROS in plant cells (Asada 2006) and

ROS production in the chloroplasts of guard cells has been observed in response

to ozone treatment (Joo et al. 2005). However, whether and to what extent chloroplast-

generated ROS contribute directly to the signal transduction that leads to stomatal

movements has not been defined (Wang and Song 2008). In fact, H2O2 generated at

the guard cell plasma membrane by the action of NADPH oxidase has emerged as a

major player in ABA-mediated signal transduction in guard cells. H2O2 is required

to initiate stomatal closure (Wang and Song 2008). In Arabidopsis, mutations in

two of the ten NADPH oxidase subunits, AtrbohD and AtrbohF, abolish ABA-

induced ROS production and stomatal closure and the effect of the mutations is

cancelled by the exogenous addition of H2O2 (Kwak et al. 2003). The signal

transduction cascade involving ABA and ROS has been shown to include cytosolic

Ca2+ transients, G proteins, protein kinases and phosphatases, phosphatidic acid and

transcription factors (Wang and Song 2008; Pham and Desikan 2009; Cho et al.

2009; Zhang et al. 2009). In rice, a zinc-finger transcription factor named DST
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(for drought and salt tolerance), which accumulates H2O2, has been recently shown

to negatively regulate stomatal closure by direct modulation of the genes related to

H2O2 homeostasis (including peroxidases), with plants lacking DST exhibiting

increased stomatal closure and reduced stomatal density, resulting in enhanced

tolerance to drought (Huang et al. 2009).

Scavenging and prevention of excess production of ROS are integral features

of cellular metabolism (Niyogi 2000). ROS are detoxified in plant cells by a

combination of enzymatic reactions involving superoxide dismutases, ascorbate

peroxidases, catalases and glutathione peroxidases, as well as small antioxidant

molecules, such as ascorbate and glutathione. Detoxification of ROS is essential

for normal stomatal movements. An Arabidopsis mutant lacking a glutathione

peroxidase (AtGPX3) exhibits enhanced production of H2O2 in guard cells and

reduced WUE, whereas plants overexpressing AtGPX3 showed increased WUE

and were less sensitive to water stress (Miao et al. 2006). Ascorbate peroxidase

(APX1) deficient Arabidopsis plants, which show reduced photosynthetic rates

compared to wild type plants, also show abnormal stomatal conductances, in

particular with respect to light-to dark transitions, although their response to

exogenous ABA applications appears normal (Pnueli et al. 2003).

3.6 Role for Respiration

Although the relationship between gs and A is key to examining WUE, the effect of

respiration (by either guard or mesophyll cells) may play an important role in

contributing to stomatal sensory or signalling mechanisms in response to changing

environmental parameters (Lawson 2009). Guard cells are known to contain

numerous mitochondria (Willmer and Fricker 1996; Vavasseur and Raghavendra

2005) and high metabolic fluxes through the catabolic pathway have been reported

(Hampp et al. 1982). Raghavendra and colleagues have suggested that ATP pro-

duced through oxidative phosphorylation is important for stomatal movements

(Raghavendra and Vani 1989; Parvathi and Raghavendra 1997). The application

of inhibitors of oxidative phosphorylation such as KCN has revealed an impaired

stomatal response to light induced opening (Schwartz and Zeiger 1984). Transgenic

tomato plants with reductions in mitochondrial fumarate hydratase (fumarase)

activity (Nunes-Nesi et al. 2007) and malate dehydrogenase (Nunes-Nesi et al.

2005) show reductions in stomatal aperture and CO2 limitation of photosynthesis

(Nunes-Nesi et al. 2007). Additionally, Lu et al. (2000) demonstrated a positive

correlation between stomatal conductance and guard cell respiration rates in

Pima cotton. A role for respiratory ATP in stomatal opening in CAM plants has

also recently been demonstrated (von Caemmerer and Griffiths 2009). It has

been suggested that both the photosynthetic and respiratory pathways in guard

cells are important in stomatal function (Asai et al. 2000) and that the relative

importance of each pathway maybe altered if either one is restricted (see Parvathi

and Raghavendra 1997).
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4 Environmental Control of Stomatal Development

and the Role of Photosynthesis

The developmental control underpinning the coordination between stomatal con-

ductance and photosynthesis is not well understood. Developmental changes during

the life span of the leaf have been shown to be independent of the photosynthetic

capacity of the plant. For example, Jiang and Rodermel (1995) showed that

stomatal conductance followed similar developmental changes with leaf age in

antisense small subunit Rubisco (anti-Ssu) plants and wild type tobacco plants

despite their different photosynthetic rates. Similarly, it was shown that, despite

the very different photosynthetic capacities, the leaf and stomatal developmental

response to growth light environment in anti-SSu and wild type plants was similar,

resulting in fewer stomata per leaf area in leaves developed under low compared to

high light in both genotypes (Baroli et al. 2008).

4.1 The Genetic Pathway of Stomatal Development

Recent work in Arabidopsis has substantially advanced our understanding of the

genetics of stomatal differentiation (see Nadeau 2009; Bergmann and Sack 2007

and references therein). The process appears to be highly regulated and involves a

series of cell divisions which are asymmetrical and oriented so as to ensure correct

stomatal spacing by preventing the formation of adjacent stomata. The stomatal

developmental pathway begins when a protodermal cell in the epidermis of the

unfolding leaf converts to a meristemoid mother cell, which then undergoes an

asymmetric cell division producing a small meristemoid cell and a larger sister cell.

The meristemoid cell can undergo several self-renewing asymmetric divisions

before differentiating into a guard mother cell, which then divides symmetrically

and further differentiates to form the pair of mature guard cells that surround the

stoma. The asymmetry of cell divisions in the stomatal lineage was shown recently

to be determined by the intracellular distribution of the product of the BREAKING

OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL) gene (Dong et al.

2009). Cell–cell signalling in response to positional cues during stomatal develop-

ment is mediated by the putative cell surface receptors TOO MANY MOUTHS

(TMM) and members of the ERECTA family of leucine-rich repeat containing

receptor kinases (ER, ERL1 and ERL2). These are proposed to interact with the

small secretory peptides EPIDERMAL PATTERNING FACTORS (EPF) 1 and 2,

produced by stomatal precursors, which may act as mobile positional signals

(Hara et al. 2007; Hunt and Gray 2009). Activation of the receptors stimulates a

mitogen-activated protein kinase (MAPK) cascade starting with the MAPKKK

YODA (YDA), which in turn activates MKK4/MKK5 and MPK3/MPK6 (Wang

et al., 2007a, b). This MAPK cascade negatively regulates stomatal development,
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and it may target three structurally related transcription factors belonging to the

basic helix-loop-helix (bHLH) family SPEECHLESS (SPCH), which acts as a

positive regulator of the initial asymmetric cell division of the meristemoid,

along with MUTE and FAMA, which control meristemoid differentiation and

guard cell morphogenesis, respectively. In addition, MYB transcription factors

(MYB124, MYB88 and FOUR LIPS) are also involved in the final fate transitions

of the stomatal differentiation pathway.

The importance of identifying the pathways regulating stomatal differentiation in

order to develop plants with greater water use efficiencies has recently been reviewed

byWang et al. (2007a, b). However, changes in anatomical stomatal characters do not

always result in changes in stomatal conductance and/or increase WUE (Lawson and

Morison 2004; Lawson 2009). This has been demonstrated in Arabidopsis plants

over-expressing STOMATAL DENSITY AND DISTRUIBTUION 1 (SDD1) gene,

which conveyed a 40% reduction in stomatal density, while the sdd1-1 mutants

(Berger and Altmann 2000) increased density by 300% relative to the wild type.

Yet both plants showed similar stomatal conductance and assimilation rates as WT

plants. Decreases in density were compensated for by greater apertures and vice versa
(Bussis et al. 2006).

4.2 Interaction Between Stomatal Development Genes
and Environmental Signals

While considerable knowledge exists on the effect of environmental factors such as

light intensity and CO2 concentration on the signalling mechanisms determining

stomatal pore aperture, very little is known about their effects on the modulation of

stomatal development. Moreover, it is not clear whether the stomatal lineage cells

perceive the environmental stimuli directly (Casson and Gray 2008). However,

links are starting to be established between the stomatal developmental genes and

other known regulators of gene expression in response to environmental conditions.

The bHLH-leucine zipper transcription factor SCREAM1 (SCRM1) has been

shown recently to interact directly with and specify the sequential actions of

SPCH, MUTE and FAMA (Kanaoka et al. 2008). SCRM1 was previously identified

as INDUCER OF CBF EXPRESSION 1 (ICE1), a regulator of the expression of

cold-induced genes. Another point of environmental regulation of stomatal pattern-

ing may be the MAP kinase cascade (Wang et al. 2007a, b), as its components

MKK4, MKK5, MAPK3 and MAPK6 have previously been shown to play a role in

the environmental stress response, with MAPK3 and MAPK6 directly involved

in osmotic stress (Nakagami et al. 2005). Recent work with photoreceptor mutants

in Arabidopsis has placed the YDA gene downstream of a developmental cascade

involving the master regulator of photomorphogenesis COP1, the red light photo-

receptors phytochrome A and phytochrome B and the blue-light photoreceptor

cryptochrome, indicating that the three photoreceptors act additively to promote

stomatal development in response to light quality (Kang et al. 2009).
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4.3 Systemic Signals and Control of Stomatal Density
in Response to the Environment

The stomatal density (the number of pores per unit area) and the stomatal index

(number of guard cells relative to total epidermal cells) on the leaf epidermis are

regulated during leaf expansion by humidity, temperature, CO2 concentration and

light intensity and once determined they remain unchanged for the lifetime of the

leaf (Casson and Gray 2008). Light intensity and CO2 concentration are the two

most studied environmental variables with respect to their effects on stomatal

differentiation. In general, both stomatal density and index are higher in plants

grown in full sunlight or at high light intensities than in plants grown in shade

(Willmer and Fricker 1996; Schoch et al. 1984; Boccalandro et al. 2009; Casson

et al. 2009). Although exceptions have been recorded (notably, in free-air CO2

enrichment (FACE) experiments, see Ainsworth and Rogers 2007) many species

acclimate to increases in CO2 levels by decreasing their stomatal density. This has

been observed to occur during the past two centuries in industrial Europe, under

laboratory conditions and through plant evolution (Woodward 1987; Hetherington

and Woodward 2003), so much so that stomatal density is used as a proxy of paleo-

CO2 levels (Chaloner and McElwain 1997). Because the response to environmental

conditions that controls stomatal patterning occurs before leaf expansion, this accli-

mation process must require the integration of signals at the whole plant level. In fact,

experiments in which developing and mature leaves were subjected to different light

intensities and CO2 concentrations have demonstrated that the stomatal pattern of

developing leaves is influenced by the conditions experienced by the mature leaves

(Schoch et al. 1980; Lake et al. 2001; Thomas et al. 2004; Driscoll et al. 2006;

Miyazawa et al. 2006). In Arabidopsis, growth of mature leaves at elevated CO2

resulted in a 20–30% decrease (relative to control plants grown at ambient CO2) in

stomatal index in developing leaves that were exposed to ambient CO2 levels.

Conversely, in reciprocal experiments where mature leaves were exposed to ambient

CO2 and the developing leaves to elevated CO2, the stomatal index was increased

in developing leaves (Lake et al. 2001). Similar results have been reported for light

intensity in Chenopodium album (Yano and Terashima 2001).

So far, only the HIGH CARBON DIOXIDE (HIC) gene of Arabidopsis has been

identified as having a role in modulating changes in stomatal index in response to

elevated CO2 (Gray et al. 2000). When exposed to elevated levels of CO2, HIC

mutant plants showed a significant increase in stomatal index, whereas the parental

ecotype showed a small decrease. HIC is expressed in guard cells and shares high

homology with the Arabidopsis KCS1 gene, a 3-ketoacyl CoA synthase involved

in the production of very long chain fatty acids found in the cuticular waxes. The

mechanism by which HIC affects stomatal patterning in response to CO2 is

unknown. It is possible that a cuticular wax or an intermediate is a signalling

compound that influences stomatal development. Alternatively, HIC may indirectly

affect stomatal patterning in response to CO2 by altering the permeability to water,

CO2, or another signalling compound within the epidermis.
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The nature of the stomatal differentiation signal that is transported from mature

leaves to developing leaves is also not clear. Carbohydrate accumulation and sugar

signalling are involved in plant development and cell cycle control (Rolland et al.

2006). However, the fact that increased light intensity and elevated CO2 both

enhance rates of photosynthesis and sugar content of mature leaves, but exert

opposite effects on the stomatal density of new leaves, argues against a photosyn-

thetic nature of the signal. Consistent with this is the observation that the levels of

sugars increased in mature and developing leaves when they were exposed to high

CO2 and decreased with shade treatment (Coupe et al. 2006). Based on the linear

correlation between carbon isotope discrimination values and stomatal density

found in cowpeas subjected to different CO2, water and phosphorus environments,

Sekiya and Yano (2008) proposed that the Ci/Ca ratio may be involved in the

systemic signalling that determines stomatal density. However, transgenic tobacco

plants with decreased Rubisco content show a normal response of stomatal density

to light intensity despite maintaining a high Ci/Ca (Baroli et al. 2008), suggesting

that, at least when light intensity is the environmental stimulus, the Ci/Ca ratio

would not be part of the signalling mechanism. In experiments in which CO2

concentration, irradiance and water pressure deficit were varied in mature leaves

independently of the conditions around the developing leaves, the stomatal index of

the developing leaves was positively and highly correlated with the stomatal

conductance of the mature leaves and independent of their net photosynthesis

(Miyazawa et al. 2006). This result suggests that it is not the carbohydrate produc-

tion but the transpiration rates of mature leaves that could influence stomatal

development, independently of photosynthesis, by controlling the delivery rates

of hormones, such as cytokinins and abscisic acid, that are transported through the

xylem from the roots to the expanding leaves. Boonman et al. (2007) have recently

shown that cytokinin delivery through the xylem is dependent on transpiration rates

in Arabidopsis and tobacco and they suggest that cytokinin import rate into the leaf

could be a signal for photosynthetic acclimation to environmental variables such as

light intensity.

4.4 Hydraulic Conductance Correlates with Stomatal Behaviour

Stomatal density and size are not the only anatomic features of the leaf that can

exert control over stomatal behaviour. Hydraulic conductivity, which is a measure

of the efficiency of water transport within leaves, has been shown to correlate with

maximum stomatal conductance (Brodribb and Holbrook 2004; Brodribb et al.

2005; Nardini and Salleo 2005; Brodribb and Jordan 2008) as well as stomatal

sensitivity to perturbations in VPD (Franks and Farquhar 1999). Evidence exists

for a hydraulic influence on both long-term adaptation of maximum conductance

as well as short-term stomatal responses (Brodribb and Jordan 2008). It has

been suggested that species with a high hydraulic conductance might be more
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buffered and therefore respond less to changes in VPD (Franks and Farquhar

1999). However, there is considerable species–species variation in the physiolog-

ical influence that plant hydraulic conductance exerts over leaf conductance

(Sperry 2000; Meinzer 2002). A strong correlation exists between maximum

leaf hydraulic conductance and leaf anatomical characters including vein density,

stomatal pore area index and palisade thickness (Aasamaa et al. 2001; Sack and

Frole 2006). These observations indicate that hydraulic efficiency is highly

adapted (Brodribb and Holbrook 2004), with implications for evolutionary coor-

dination between gas exchange and hydraulic capacity (Franks and Farquhar

1999; Brodribb and Field 2000). The relationship between anatomical characters

and hydraulic conductivity could provide a means for paleo-reconstruction

of stomatal behaviour/sensitivity in past climatic environments (Brodribb and

Jordan 2008).

5 Stomatal Manipulation to Improve Water Use Efficiency

Since altering stomatal anatomical features such as density and size may not

necessarily always result in plants with increased WUE, modifications in stomatal

behavioural characteristics may provide an alternative strategy (Nilson and

Assmann 2007). To exploit such an opportunity, we first need to gain a solid

understanding of stomatal metabolism for engineering drought resistance in future

crop plants. Several studies have demonstrated the potential of such an approach by

examining plants with increased or decreased amounts of a single enzyme and

shown an alteration in stomatal conductance. Zea mays plants with increased

amount of NADP-malic enzyme demonstrated signs of drought resistance with

decreased stomatal conductance (Laporte et al. 2002). Increased drought resistance

has also been demonstrated in Arabidopsis plants with alterations in guard cell

membrane transporters (Klein et al. 2004), calcium dependent protein kinases (Ma

and Wu 2007), aquaporin genes (Cui et al. 2008) and ABA biosynthesis or ABA

sensitivity (Jakab et al. 2005; Wang et al. 2005; Yang et al. 2005). Hu et al (2006)

established drought tolerance in rice over-expressing SNAC1 (STRESS-RESPON-

SIVE NAC 1, which encodes a NAC transcription factor). NAC genes play impor-

tant roles in developmental processes, auxin signalling, defense and abiotic stress

responses. Recently, a previously unknown zinc finger protein DST (drought and salt

tolerance) has been identified as a regulator of stomatal closure through modula-

tion of H2O2 signalling pathways in guard cells (Huang et al. 2009), providing

possible new avenues of enhanced drought and salt tolerance in rice. Understanding

the mechanisms involved in stomatal sensing/signalling pathways in response

to changing CO2 may play a fundamental role in plant WUE as illustrated in a

recent study exploring the evolution of stomatal sensitivity to CO2 (Brodribb et al.

2009). Plant species with reduced CO2 sensitivity (such as ferns) had a reduced

WUE compared to CO2 sensitive angiosperms, suggesting that atmospheric CO2
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concentration is an evolutionary driving force for optimising WUE (Brodribb et al.

2009). However, in order to increase WUE, a combination of alterations in stomatal

function and photosynthetic capacity may be required. For example, increased

WUE in the Erectamutants was not only because of modifications to cell expansion

and division and stomatal density but also because of alterations in leaf diffusive

properties and mesophyll photosynthetic capacity (Masle et al. 2005).

It is also worth bearing in mind that any modifications in stomatal (or photo-

synthetic) capacity and behaviour would require testing in a field situation, with

fluctuating environmental conditions, predation and competition. For example,

ABA over-sensitive Arabidopsis mutants with reduced gs could not compete for

water with WT plants (Basco et al. 2008). Although such findings have implica-

tions for screening protocols, they may not be so critical for monocultures of

crops.

The potential to identify genes involved in stomatal responses to various

environmental stresses/factors has recently been explored using various “-omic”

approaches (Leonhardt et al. 2004; Coupe et al. 2006). Using microarray techno-

logies, Leonhardt et al (2004) showed reductions in guard cell metabolism when

Arabidopsis leaves were sprayed with ABA. Such findings agreed with earlier

studies that reported decreased PEPC transcripts under drought conditions

(Kopka et al. 1997). A functional proteomic study in Arabidopsis guard cells

protoplasts by Zhao et al. (2008) identified new proteins and signalling pathways

required for ABA responses in guard cells. Analysis of functional groups of genes

revealed only a 1.9% higher representation of photosynthetic genes in mesophyll

and guard cells. Transcriptomics analysis has also been used to identify transcrip-

tional factors that are necessary for mediating stomatal movement in response to

light (Gray 2005; Casson and Gray 2008) and water deficit (Cominelli et al. 2005).

Such information is critical in helping to determine the link between mesophyll

photosynthesis and guard cell behaviour. For example, a comparative proteomic

study between mesophyll and guard cells in Brassica napus revealed functional

differentiation between the two cell types. Expression patterns from guard cells

were enriched with proteins involved in respiration, transport, transcription, cell

structure and signalling, while proteins involved in photosynthesis, starch synthesis

and defense mechanisms were more prevalent in mesophyll cells (Zhu et al. 2009).

Although such approaches are invaluable in the information they provide on

stomatal signalling and response mechanisms, to date most studies have relied

upon the use of guard cell protoplasts. There are two main concerns with the use

of protoplasts; firstly, the isolation procedure will inevitable result in cellular

damage, resulting in the production of ROS, which are known to be involved in

signal transduction pathways and alteration of gene expression (Galvez-Valdivieso

et al. 2009). Secondly, the isolation of guard cells from the mesophyll will imme-

diately remove the potential of any mesophyll-driven signalling event. A third

(most likely less important) point is the use of bulk samples removing possible

identification of heterogeneity between guard cells, as it is well established that

considerable variation in stomatal behaviour is apparent over individual leaves

(Weyers and Lawson 1997).
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6 Scaling-Up: From Leaf to Canopy

In this chapter, we have focused on stomatal and photosynthetic responses at the

leaf level, reporting results mainly obtained from leaf cuvette gas exchange mea-

surements. An appreciation of the dynamic role of stomata in photosynthetic

physiology and WUE at the canopy/crop level (or beyond) is essential for a

mechanistic understanding of ecosystem carbon and water fluxes and can be

predicted with consideration of models and scaling processes. At the same time,

modelling and attempts to scale-up must also pay due regard to the intricacy and

variation often found at smaller scales (Weyers et al. 1997). A full review of scaling

measurements from the leaf to canopy level is beyond the scope of this chapter and

its authors; however, in this section we briefly highlight some of the problems and

complexities associated with scaling processes.

Under constant environmental conditions, leaves are tightly coupled with the

atmosphere and transpiration is proportional to gs; however, in the open air the

relationship becomes more complex because of additional resistance pathways

between stomatal and the bulk atmosphere that feedback on ecosystem evapotrans-

piration (Bernacchi et al. 2007). Carbon and water fluxes from a vegetation canopy

can be predicted using leaf scale parameters by “bottom-up” scaling, using the

parallel sum of individual leaf measurements within a canopy structure and taking

into account the microenvironment surrounding leaves (Jarvis 1993). A prerequisite

for such approaches is knowledge of the variation of parameters throughout

the canopy, making such models impractical for regional or global applications

(Kruijt et al. 1997). Alternatively, canopy fluxes can be measured directly using

eddy covariance techniques and are characterised as “big leaf” models using a

“top-down” approach (Kruijt et al. 1997). The degree of influence of leaf or canopy

conductance on evaporation to the bulk atmosphere depends on boundary layer

conductance and efficiencies of heat and mass transfer between the canopy

“surface” and bulk atmosphere (Jarvis and McNaughton 1986; McNaughton and

Jarvis 1991). Coupling between stomatal behaviour and the bulk atmosphere

depends upon the relative size and structure of the boundary layer, and as boundary

layer influences become large, stomatal influences become less important (Jarvis

and McNaughton 1986). The influence of stomatal conductance on transpiration

gained at one scale can be used to predict what may happen at another scale only if

the coupling between saturation deficit at the leaf surface and that of the air outside

the leaf boundary layer is known and similar at the two scales (Jarvis and

McNaughton 1986). As scale increases, the importance of stomatal behaviour on

flux parameters tends to decrease; for example, if the ratio of stomatal conductance

to boundary layer conductance is large, only crude models of stomatal responses to

environmental variables are required; however, better models are needed if this

ratio is small. However, when water stress causes stomatal closure, the importance

of leaf conductance increases and more reliable estimates of stomatal responses to

changing environmental parameters are required (McNaughton and Jarvis 1991).

Vegetation type and canopy structure may also significantly impact on large
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scale predictive models of transpiration, photosynthesis and WUE. Irrespective of

whether the canopy is constructed of a single species or mixed population, signifi-

cant variation in stomatal behaviour and transpiration will exist between leaves and

between plants that make up the canopy, leading to local differences in saturation

deficit and coupling between leaf surfaces and the bulk atmosphere. The impact of

changing environmental conditions on stomatal behaviour in different plant species

will also contribute to local differences. For example, decreases in soil water status

will reduce stomatal conductance which will differentially influence photosynthesis

and transpiration in C3 and C4 species (Jarvis and McNaughton 1986). Recently,

Bernacchi et al. (2007) demonstrated close coupling of stomatal conductance with

ecosystem evapotranspiration in a soybean crop grown in the field under elevated

CO2. Experiments conducted over four growing seasons demonstrated an average

decrease in gs by 10% with elevated CO2 which correlated with an 8.6% decrease

in evapotranspiration, clearly demonstrating a close coupling of stomatal conduc-

tance with ecosystem evapotranspiration, which was not driven by changes in

growth. Such findings demonstrated that despite system feedbacks, changing gs of
upper canopy leaves can modify the transfer of water vapour to the bulk atmo-

sphere, as well as illustrate the importance of stomatal responses to changing

climatic conditions on ecosystem evapotranspiration (Bernacchi et al. 2007). The

response of gs to elevated CO2 is a critical parameter for large scale ecosystem

models of photosynthesis and transpiration, as many of the modelling approaches

incorporate the Ball et al. (1987) model of stomatal conductance in which

stomatal conductance is dependent on the sensitivity of gs to CO2 concentration,

assimilation rate and relative humidity which would alter with any acclamatory

response (Ainsworth and Rogers 2007). However, it is clear from field based

FACE experiments that CO2 effects on stomatal conductance are very much

species specific and dependent on the photosynthetic pathways used (Ainsworth

and Rogers 2007).

The continual fluctuation in input energy into a canopy via sun and shade

flecks also impacts on the accuracy of scaling models, via spatial heterogeneity in

stomatal conductance and rate of photosynthesis. The lack of detailed spatial

resolution results in many “big-leaf” models overestimating canopy photosynthetic

rates. By fractionating the canopy into sun and shade-lit proportions, De Pury and

Farquhar (1997) were able to scale photosynthesis from leaves to canopies avoiding

the errors associated with big-leaf models.

There are many other considerations and complexities that we have not covered,

including the influence of scaling on time and fluctuating dynamics of leaf level

measurements and the errors associated with these measurements (Buckley et al.

2003). Temporal and spatial variations and fluctuations in environmental variables

will influence the minute-to-minute responses of stomata and photosynthesis with

varying degrees of spatial resolution and each of these will have an error associated

with them. Such spatial–temporal regulation at the leaf level also has implications

for measurement collection protocols and sample sizes.
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7 Conclusion

A detailed understanding of stomatal behaviour in relation to photosynthesis

is essential to understand the impacts of changing climate on plant performance

and WUE. In this chapter, we have examined stomatal behaviour in response to

several key environmental parameters, and highlighted the differences observed

between different photosynthetic pathways. We have tried to emphasise the role

of stomata in determining mesophyll CO2 assimilation rates and the impact

of fluctuating environmental parameters on both photosynthesis and stomatal

behaviour. Although we often consider stomatal function to be key to controlling

CO2 and H2O fluxes, the importance and impact of anatomical features such as

stomatal density and size should not be overlooked. Increasing developments and

advancements in modern techniques such as proteomics and transcriptomics are

providing novel and exciting approaches in the quest to understand the complex and

plastic responses that are apparent in stomatal function. By combining modern

approaches with traditional plant physiological procedures and employing a holistic

approach, we are becoming closer to determining the link that correlates stomata

function with photosynthesis which will improve our ability to model and predict

ecosystem-level responses to carbon and water fluxes.
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