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We give a complete proof of the following theorem:

Every de Bruijn sequence of order n in at least three symbols can be extended to a
de Bruijn sequence of order n + 1. Every de Bruijn sequence of order n in two symbols
can not be extended to order n + 1, but it can be extended to order n + 2.

© 2011 Elsevier B.V. All rights reserved.

A (non-cyclic) de Bruijn sequence of order n in a k-
symbol alphabet is a sequence of length kn + n − 1 such
that every sequence of length n occurs exactly once as a
consecutive substring [2,12]. See [3] for a fine presentation
and history.

In this note we give a complete proof of the following
theorem:

Theorem 1. Every de Bruijn sequence of order n in at least three
symbols can be extended to a de Bruijn sequence of order n + 1.
Every de Bruijn sequence of order n in two symbols can not be
extended to order n + 1, but it can be extended to order n + 2.

An indirect proof of part of Theorem 1 was first given
by Leach in [11] with a topological and measure-theoretic
argument on the set of real numbers corresponding to lim-
its of frequency distribution sequences. In [7] Flaxman et
al. use the graph-theoretical characterization of de Bruijn
sequences to show that the extensions always exist in al-
phabets with at least three symbols. However, their proof
is incomplete because it misses out part of the argument,
the demonstration of the property of strong connectedness
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of the corresponding graph. Also, it does not cover the ex-
tension result for the two-symbol alphabet.

Nota bene. The possibility of constructing de Bruijn se-
quences of order n + 1 from those of order n has been
considered in several algorithms for the two-symbol al-
phabet, see the survey of Fredricksen [6]. However, instead
of producing de Bruijn extensions, these constructions join
maximal cycles obtained as an application of Lempel’s ho-
momorphism [10]. Efficient implementations of these con-
structions are given in [4,1].

Notation and preliminaries. Recall that a hamiltonian cy-
cle of a graph is a cycle in which each vertex of the graph
occurs exactly once. An eulerian cycle is a cycle in which
each edge of the graph occurs exactly once. A graph that
admits an eulerian cycle is called eulerian. An undirected
graph is connected if for every pair of vertices, there is a
path between them. A directed graph is strongly connected
if for every pair of vertices there is a directed path be-
tween them. A directed graph is regular if each vertex has
the same number of incoming and outgoing edges as all
other vertices. Given a directed graph G , its line graph is
a directed graph whose vertices are the edges of G , and
whose edges correspond to the directed paths of length
two of G .
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For a sequence w we denote its length |w| and we
number the positions of w from 1 to |w| The symbol at
position i of a sequence w is denoted by w[i], and seg-
ments of w are denoted by w[i . . . j], for 1 � i � j � |w|.
A de Bruijn graph of order n, which we denote by Gn ,
is a graph whose vertices are all sequences of length n,
and the edges link overlapping sequences w, v such that
w[2 . . .n] = v[1 . . .n − 1]. The edges of Gn can be labeled
with sequences of length n + 1, such that the edge (w, v)

is labeled with w[1]v = w(v[n]). Then, each possible se-
quence of length n + 1 in k symbols appears in exactly one
edge of Gn . Moreover, the line graph of Gn is exactly Gn+1.
The label of a path v1, . . . , vt in Gn is the sequence that
contains as subsequences exactly the sequences v1, . . . , vt ,
in that order, namely, v1[1]v2[1] . . . vt−1[1]vt . Note that
the label of a path of length t is a sequence of length t +
n − 1. If we take a path of length t in Gn and consider
the set of t − 1 traversed edges, it is easy to see that they
form a path that has the same label in Gn+1. The label of a
hamiltonian cycle in Gn is a de Bruijn sequence of order n,
and the label of an eulerian cycle in Gn is a de Bruijn se-
quence of order n + 1, because an eulerian cycle in Gn is a
hamiltonian cycle in Gn+1.

We will base the proof of Theorem 1 in the characteri-
zation of eulerian directed graphs by I.J. Good [9], which
states that a directed graph is eulerian if and only if it
is strongly connected and the in-degree and out-degree of
each vertex coincide.

Proposition 2 (Folklore). A directed graph G in which each ver-
tex has its in-degree equal to its out-degree is strongly connected
if and only if its underlying undirected graph is connected.

Proof. The implication from left to right is immediate.
Fix G and let d(v) be the in and out-degree of vertex v
in G . Let u be an arbitrary vertex of G . Let U be the set
of vertices that are accessible from u, that is, the smallest
set such that (1) u ∈ U , and (2) for every edge (v, w) ∈ G ,
if v ∈ U then w ∈ U . Note that, by definition, there is a
directed path from u to each of the vertices in U . Let G ′
be the subgraph of G induced by U . It is clear that each
vertex v in G ′ has out-degree d(v), because every outgo-
ing edge in G that has its first endpoint in U is in G ′ by
condition (2). Also, the in-degree of each vertex v in G ′ is
less than or equal to d(v) because G ′ is a subgraph of G .
Since the sum of the in-degrees is the same as the sum
of the out-degrees in G ′ , the in-degree of vertex v in G ′
must also be d(v). Therefore, if w /∈ G ′ , then there is no
edge in G , in any direction, that connects w to any ver-
tex v in G ′ (because that would make the in- or out-degree
of v greater than d(v)). Since the underlying graph of G
is connected, there is no such w , which implies G ′ = G .
Since every vertex in G ′ is accessible from u, every vertex
in G is accessible from u. Since this is valid for any u, G is
strongly connected. �
Lemma 3. A hamiltonian cycle in a de Bruijn graph over an al-
phabet of at least three symbols can be extended to an eulerian
cycle in the same graph.

Proof. Let H be a hamiltonian path in Gn . Let I be the
graph resulting of removing the edges in H from Gn . We
first prove that the underlying undirected graph of I is
connected. For an arbitrary pair of vertices u, v , we recur-
sively define below a sequence of pairs ui ,vi , for 0 � i � n,
satisfying the following properties:

(1) u = u0 and v = v0.
(2) For each i < n, there is an edge from ui to ui+1 in I .

Analogously for vi .
(3) The last i symbols of ui and vi coincide.

Let u0 = u and v0 = v . For 0 � i < n, let ai+1 be such
that setting ui+1 = ui[2 . . .n]ai+1 and vi+1 = vi[2 . . .n]ai+1
make the edges (ui, ui+1) and (vi, vi+1) not belong to H .
Such a symbol ai+1 exists because each vertex has exactly
one of its (at least three) outgoing edges used in H . By
definition the edges (ui, ui+1) and (vi, vi+1) are in Gn but
not in H , hence they are in I . If the last i < n symbols of vi
and ui coincide, so do the last i + 1 symbols of ui+1 and
vi+1, because they are the last i symbols of ui plus ai+1.
By condition (3), vn = un , thus, u and v belong to the same
connected component of the underlying undirected graph
of I . Since this is valid for any pair u,v , the underlying
undirected graph of I is connected.

Since Gn and H are regular, I is also regular. Then, by
Proposition 2, I is strongly connected. These two proper-
ties ensure I is eulerian. Adding an eulerian cycle of I to H
gives the desired extension. �
Observation 4. Lemma 3 fails if the alphabet has just two sym-
bols.

Proof. Consider the de Bruijn graph of order 1. It has just
one hamiltonian cycle. The removal of this cycle leaves the
two points of the graph disconnected. As argued by Lem-
pel in [10], the same failure occurs at every order, because
removing a hamiltonian cycle from the graph leaves the
self-loops (that always exist in the vertices of the form an)
isolated in the residual graph. �
Lemma 5. A hamiltonian cycle in a de Bruijn graph in two sym-
bols can be extended to an eulerian cycle in the de Bruijn graph
of the next order.

Proof. Let H be a hamiltonian cycle in Gn . Since Gn+1 is
the line graph of Gn , H corresponds to a simple cycle in
Gn+1 that goes through half of the points of Gn+1. Let I
be the graph that results from removing the edges in H
from Gn+1. We first prove that the underlying undirected
graph of I is connected. Let us call the two symbols of the
alphabet 0 and 1. Note that for any sequence s of n sym-
bols, H contains exactly one of the two vertices s0 and s1
of Gn+1. This is because s corresponds exactly to one ver-
tex in Gn , and s0 and s1 correspond to its outgoing edges.
Since H is a hamiltonian cycle in Gn , exactly one of these
edges is used in H . This in turn implies that any vertex
in Gn+1 has exactly one successor in H and one succes-
sor not in H . For an arbitrary pair of vertices u, v in Gn+1,
we recursively define below a sequence of pairs ui , vi , for
0 � i � n + 1, satisfying the following properties:
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(1) For each i, at least one of ui or vi is not in H .
(2) There is an edge from u to u0, and there is an edge

from v to v0.
(3) For each i � n, there is an edge from ui to ui+1 in I .

Analogously for vi .
(4) The last i symbols of ui and vi coincide.

Let u0 be any successor of u and v0 be the successor of
v not in H . For 0 � i � n, if vi /∈ H , let ai+1 be such
that ui[2 . . .n + 1]ai+1 is not in H . Otherwise, let ai+1
be such that vi[2 . . .n + 1]ai+1 is not in H . Set ui+1 =
ui[2 . . .n + 1]ai+1 and vi+1 = ui[2 . . .n + 1]ai+1. By defi-
nition, at least one of the endpoints of both (ui, ui+1) and
(vi, vi+1) is not in H , so both edges are in I . Moreover,
at least one of ui+1 and vi+1 is not in H . If the last i < n
symbols of vi and ui coincide, so do the last i + 1 symbols
of ui+1 and vi+1, because they are the last i symbols of ui
plus ai+1. By condition (4), un+1 = vn+1, thus, u and v be-
long to the same connected component of the underlying
undirected graph of I . Since this is valid for any pair u,v ,
the underlying undirected graph of I is connected.

Every vertex in I has its in-degree equal to its out-
degree, because it is a cycle subtracted from a regular
graph. So, by Proposition 2, I is strongly connected. These
two properties ensure I is eulerian. Adding an eulerian cy-
cle in I to H gives the desired extension. �

We are now ready to give the proof of the already
stated Theorem 1:

Theorem 1. Every de Bruijn sequence of order n in at least three
symbols can be extended to a de Bruijn sequence of order n + 1.
Every de Bruijn sequence of order n in two symbols can not be
extended to order n + 1, but it can be extended to order n + 2.

Proof. De Bruijn sequences of order n correspond exactly
to the hamiltonian cycles in de Bruijn graphs Gn . In turn,
the hamiltonian cycles in Gn+1 are exactly the eulerian cy-
cles in Gn . Now the first assertion follows from Lemma 3
and the second from Observation 4 and Lemma 5. �
Definition 6. An infinite sequence in an alphabet of at least
three symbols is an infinite de Bruijn sequence if it is the in-
ductive limit of extending de Bruijn sequences of order n,
for each n. In case of a two-symbol alphabet, an infinite
de Bruijn sequence is the limit of extending de Bruijn se-
quences of order 2n, for each n.

Corollary 7. Infinite de Bruijn sequences exist over any alpha-
bet.

Question 1. Theorem 1 raises naturally the question of giv-
ing efficient algorithms to construct extensions of de Bruijn
sequences and infinite de Bruijn sequences. According to
the proof of Lemmas 3 and 5, the extension problem is
just to construct an eulerian cycle in the remaining graph.

Any of the known algorithms for eulerian cycles is us-
able, even the ancient algorithm of Fleury [8]. However,
this may not be the most efficient way of proceeding.

Question 2. Let occ(w, s) = #{ j: s[ j . . . j + |w| − 1] = w}
be the number of occurrences of a sequence w in a
sequence s. For each order n and each length � < n,
what are the maximum and minimum values attained by
the frequencies occ(w, s[1 . . . i])/i, for all sequences w of
length �, extended de Bruijn sequences s of order n, and
all i � n?

In [5] Cooper and Heitsch address the problem for � = 1
in the lexicographically least classical de Bruijn sequence.
The range of frequencies in extended de Bruijn sequences
may be tighter.
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