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Abstract

Under certain hypotheses on the Banach space X, we show that the set of N -homogeneous polynomials
from X to any dual space, whose Aron–Berner extensions are norm attaining, is dense in the space of all
continuous N -homogeneous polynomials. To this end we prove an integral formula for the duality between
tensor products and polynomials. We also exhibit examples of Lorentz sequence spaces for which there
is no polynomial Bishop–Phelps theorem, but our results apply. Finally we address quantitative versions,
in the sense of Bollobás, of these results.
© 2012 Elsevier Inc. All rights reserved.
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0. Introduction

The Bishop–Phelps theorem [8] states that for any Banach space X, the set of norm attaining
bounded linear functionals is dense in X′, the dual space of X. Since the appearance of this re-
sult in 1961, the study of norm attaining functions has attracted the attention of many authors.
Lindenstrauss showed that there is no Bishop–Phelps theorem for linear bounded operators [21].
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Nevertheless, he proved that the set of bounded linear operators (between any two Banach spaces
X and Y ) whose second adjoints attain their norm, is dense in the space of all operators. This re-
sult was later extended for multilinear operators by Acosta, García and Maestre [4]. These kinds
of results are referred to as Lindenstrauss type theorems. It is worth mentioning that a Bishop–
Phelps theorem does not hold in general even for scalar-valued bilinear forms [2]. Moreover,
Choi showed in [11] that there is no Bishop–Phelps theorem for scalar-valued bilinear forms on
L1[0,1] × L1[0,1]. On the other hand, Finet and Payá [18] proved a Bishop–Phelps theorem for
operators from L1[0,1] to L∞[0,1]. As a consequence, we see that positive results for operators
from a Banach space X to its dual X′, do not imply positive results for bilinear forms on X × X.

In the context of homogeneous polynomials, where there is no Bishop–Phelps theorem ei-
ther, the symmetric structure presents an additional difficulty. In [7] Aron, García and Maestre
showed a polynomial Lindenstrauss theorem for the case of scalar-valued 2-homogeneous poly-
nomials. This was extended to vector-valued 2-homogeneous polynomials by Choi, Lee and
Song [13]. The aim of this work is to show a polynomial Lindenstrauss theorem for arbitrary
degrees.

To achieve our goal, we first present an integral representation formula for the duality between
tensor products and polynomials. Namely, if X is a Banach spaces whose dual is separable and
has the approximation property, we see in Theorem 2.2 that any element in the tensor product

(
⊗̃N,s

πs
X)

⊗̃
πY is associated to a regular Borel measure on (BX′′ ,w∗) × (BY ′′ ,w∗), for any Ba-

nach space Y . This integral formula somehow extends those given in [19,20]. In Theorem 2.3, we
apply our integral representation to prove a Lindenstrauss theorem for homogeneous polynomi-
als from Banach spaces X satisfying the hypotheses above, into any dual space (and, therefore,
for scalar-valued homogeneous polynomials on X). For instance, our result is valid for Banach
spaces X with shrinking bases. Preduals of Lorentz sequence spaces d∗(w,1) (see Section 3) are
typical examples of spaces in which there is no polynomial Bishop–Phelps theorem. Neverthe-
less, our polynomial Lindenstrauss theorem applies since they have shrinking bases. In particular,
those spaces with w ∈ �2 do not satisfy the scalar-valued polynomial Bishop–Phelps theorem for
any degree N � 2, but satisfy the polynomial Lindenstrauss theorem for every degree (see Exam-
ple 3.1). Moreover, for many admissible sequences w, we show that there exists some 1 < r < ∞
such that the same happens for �r -valued polynomials on d∗(w,1) of any degree N � 1 (see
Proposition 3.4 and the subsequent comments).

Bollobás [9] showed a quantitative version of the Bishop–Phelps theorem (see Section 4 for
details). It seems natural to wonder about the validity of the corresponding quantitative versions
of Lindenstrauss type theorems, which we call Lindenstrauss–Bollobás theorems. For linear op-
erators, it is shown [3, Example 6.3] that no such result holds in general. We see that there is
no Lindenstrauss–Bollobás theorem in the (scalar or vector-valued) multilinear and polynomial
settings (see Propositions 4.4 and 4.6). We remark that the bilinear scalar-valued case is not
a mere translation of the counterexample exhibited in [3] for operators. Here, the authors fol-
low the ideas of [21] to show that the theorem fails for the identity map from X = c0 to Y ,
a renorming of c0 such that Y ′′ is strictly convex. This example cannot be modified to obtain a
counterexample for bilinear mappings. Also, our construction provides a new counterexample
for the Lindenstrauss–Bollobás theorem for operators.

For further reading on polynomials and multilinear mappings on infinite dimensional Banach
spaces we refer the reader to [17] and [23]. An excellent survey on denseness of norm attaining
mappings can be found in [1], see also the references therein.
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1. Preliminaries

Throughout this paper X denotes a Banach space, while X′, BX and SX denote respectively
the topological dual, the closed unit ball and the unit sphere of X. For X1, . . . ,XN and Y Banach
spaces, L(X1, . . . ,XN ;Y) stands for the space of continuous N -linear maps Φ : X1 × · · · ×
XN −→ Y endowed with the supremum norm

‖Φ‖ = sup
{∥∥Φ(x1, . . . , xN)

∥∥: xj ∈ BXj
, 1 � j � N

}
.

If X1 = · · · = XN = X we simply write L(NX;Y). A function P : X −→ Y is said to be a
(continuous) N -homogeneous polynomial if there is a (continuous) N -linear map

Φ : X× N· · · ×X −→ Y

such that P(x) = Φ(x, . . . , x) for all x ∈ X. We denote by P(NX;Y) the Banach space of all
continuous N -homogeneous polynomials from X to Y endowed with the supremum norm

‖P ‖ = sup
x∈BX

‖Px‖.

A polynomial P in P(NX;Y) is said to be of finite type if there exist {x′
j }mj=1 in X′ and

{yj }mj=1 in Y such that P(x) = ∑m
j=1 x′

j (x)Nyj for all x in X. The subspace of all finite type

N -homogeneous polynomials is denoted by Pf (NX;Y). When Y = K is the scalar field, K = R

or C, we omit it and write for instance L(NX), P(NX) or Pf (NX).
We say that a linear operator T ∈ L(X;Y) attains its norm (or is norm attaining) if there exists

a ∈ BX such that ‖T (a)‖ = ‖T ‖. Also, a multilinear operator Φ attains its norm if there exists an
N -tuple (a1, . . . , aN) ∈ BX1 × · · · × BXN

such that ‖Φ(a1, . . . , aN)‖ = ‖Φ‖. Analogously, P ∈
P(NX;Y) attains its norm if there exists a ∈ BX such that ‖P(a)‖ = ‖P ‖. When it is opportune
we write NAP(NX;Y) to denote the set of all norm attaining N -homogeneous polynomials
of P(NX;Y).

Polynomials in P(NX) can be considered as continuous linear functionals on the symmetric
projective tensor product as follows. Given a symmetric tensor u in

⊗N,s
X, the symmetric

projective norm πs of u is defined to be

πs(u) = inf

{
m∑

j=1

|λj |‖xj‖N : u =
m∑

j=1

λjx
N
j , (λj )

m
j=1 ⊂ K, (xj )

m
j=1 ⊂ X

}
.

We denote the completion of
⊗N,s

X with respect to πs by
⊗̃N,s

πs
X. Then,

P
(N

X
) =

(⊗̃N,s

πs

X
)′

isometrically, where the identification is given by the duality
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LP (u) := 〈u,P 〉 =
∞∑

j=1

λjP (xj ),

for P ∈ P(NX) and u ∈ ⊗̃N,s

πs
X, u = ∑∞

j=1 λjx
N
j . Also, for polynomials with values in a dual

space Y ′ we have the isometric isomorphism

P
(N

X;Y ′) =
((⊗̃N,s

πs

X
)⊗̃

π
Y

)′
. (1)

Here the duality is given by

LP (u) := 〈u,P 〉 =
∞∑

k=1

∞∑
j=1

λk,jP (xk,j )(yk) (2)

for any P ∈ P(NX;Y ′) and u = ∑∞
k=1 vk ⊗ yk , where (yk)k ⊂ Y and (vk)k ⊂ ⊗̃N,s

πs
X, with

vk = ∑∞
j=1 λk,j x

N
k,j for all k.

Recall that the canonical (Arens) extension of a multilinear function is obtained by weak-
star density as follows (see [5] and [16, 1.9]). Given Φ ∈ L(X1, . . . ,XN ;Y), the mapping Φ :
X′′

1 × · · · × X′′
N −→ Y ′′ is defined by

Φ
(
x′′

1 , . . . , x′′
N

) = w∗ − lim
α1

. . . lim
αN

ϕ(x1,α1 , . . . , xN,αN
) (3)

where (xj,αj
)αj

⊆ X is a net w∗-convergent to x′′
j ∈ X′′

j , j = 1, . . . ,N . For N = 1 this recovers
the definition of the bitranspose of a continuous operator.

The Aron–Berner extension [6] of a polynomial P ∈ P(NX;Y) is the polynomial P ∈
P(NX′′;Y ′′), defined by P(x′′) = Φ(x′′, . . . , x′′), where Φ is the unique symmetric N -linear
mapping associated to P . We also have ‖P‖ = ‖P‖, see [15].

2. Integral representation of tensors and the polynomial Lindenstrauss theorem

As a consequence of the principle of local reflexivity, given a Banach space X whose dual X′
is separable and enjoys the approximation property, it is possible to find a sequence of finite rank
operators (Tn)n on X such that both Tn −→ IdX and T ′

n −→ IdX′ in the strong operator topology
[10, pp. 288–289]. In fact, the existence of such a sequence is actually equivalent to X′ being
separable with the approximation property. Clearly, we also have supn ‖Tn‖ < ∞,

T ′′
n

(
X′′) ⊆ JX(X) and T ′′

n

(
x′′) w∗−−−→

n→∞ x′′ for all x′′ ∈ X′′, (4)

where JX : X −→ X′′ is the canonical inclusion.

Lemma 2.1. Let X,Y be Banach spaces and suppose that X′ is separable and has the ap-
proximation property. Then, for each polynomial P ∈ P(NX;Y ′) there exists a norm-bounded
multi-indexed sequence of finite type polynomials
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(Pn1,...,nN
)(n1,...,nN )∈NN ⊂Pf

(N
X;Y ′)

such that the Aron–Berner extension of P is given by the iterated limit

P
(
x′′)(y′′) = lim

n1→∞ . . . lim
nN→∞Pn1,...,nN

(
x′′)(y′′), (5)

for each x′′ ∈ X′′ and y′′ ∈ Y ′′.

Proof. Consider a sequence of finite rank operators (Tn)n on X such that both Tn and T ′
n con-

verge to the respective identities in the strong operator topology. Let Φ be the symmetric N -linear
form associated to P and fix x′′ ∈ X′′. Combining (3) with (4) we can compute the Aron–Berner
extension of P as

P
(
x′′) = w∗ − lim

n1→∞ . . . lim
nN→∞Φ

(
T ′′

n1

(
x′′), . . . , T ′′

nN

(
x′′))

= w∗ − lim
n1→∞ . . . lim

nN→∞Φ ◦ (Tn1 , . . . , TnN
)
(
x′′, . . . , x′′).

The result now follows taking, for each (n1, . . . , nN) ∈ N
N , the homogeneous polynomial

Pn1,...,nN
: X −→ Y ′ given by Pn1,...,nN

= Φ ◦ (Tn1 , . . . , TnN
). �

Now we prove the integral representation for the elements in the tensor product (
⊗̃N,s

πs
X)

⊗̃
πY ,

which should be compared with [20, Theorem 1] and [19, Remark 3.6]. As usual, we consider
BX′′ and BY ′′ endowed with their weak-star topologies, which make them compact sets.

Theorem 2.2. Let X,Y be Banach spaces and suppose that X′ is separable and has the approx-

imation property. Then, for each u ∈ (
⊗̃N,s

πs
X)

⊗̃
πY there exists a regular Borel measure μu on

(BX′′ ,w∗) × (BY ′′ ,w∗) such that ‖μu‖ � ‖u‖π and

〈u,P 〉 =
∫

BX′′×BY ′′

P
(
x′′)(y′′)dμu

(
x′′, y′′), (6)

for all P ∈ P(NX;Y ′).

Proof. We first prove the formula for finite type polynomials. Finite type polynomials from X

to Y ′ can be seen as an isometric subspace of C(BX′′ × BY ′′), identifying a polynomial P =∑m
j=1(x

′
j )

N (·)y′
j with the function

(
x′′, y′′) �→

m∑
i=1

x′′(x′
j

)N
y′′(y′

j

) = P
(
x′′)(y′′). (7)

On the other hand, from duality (1) we have isometrically

(⊗̃N,s

X
)⊗̃

Y ↪→
((⊗̃N,s

X
)⊗̃

Y
)′′ = (

P
(N

X;Y ′))′
.

πs π πs π
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Therefore, each u ∈ (
⊗̃N,s

πs
X)

⊗̃
πY defines a linear functional on P(NX;Y ′) which can be re-

stricted to a linear functional Λu on the space of finite type polynomials. Note that

Λu(P ) = 〈u,P 〉

for P ∈Pf (NX;Y ′) and that ‖Λu‖ � ‖u‖πs . Since Pf (NX;Y ′) is a subspace of C(BX′′ ×BY ′′),
we extend Λu by the Hahn–Banach theorem to a continuous linear functional on C(BX′′ × BY ′′)
preserving the norm. Now, by the Riesz representation theorem, there is a regular Borel measure
μu on (BX′′,w∗) × (BY ′′ ,w∗) such that ‖μu‖ � ‖u‖π and

Λu(f ) =
∫

BX′′×BY ′′

f
(
x′′, y′′)dμu

(
x′′, y′′)

for f ∈ C(BX′′ × BY ′′), where we still use Λu for its extension to C(BX′′ × BY ′′). In particular,
we can consider f = ∑m

i=1(x
′
j )

N ⊗y′
j and its identification (7), so we obtain the integral formula

(6) for finite type polynomials.
Now, take P ∈ P(NX;Y ′). By Lemma 2.1, there exists a norm bounded multi-indexed se-

quence of finite type polynomials (Pn1,...,nN
)(n1,...,nN )∈NN satisfying equation (5). Since we have

already proved the integral formula for finite type polynomials we have

〈u,Pn1,...,nN
〉 =

∫
BX′′×BY ′′

Pn1,...,nN

(
x′′)(y′′)dμu

(
x′′, y′′),

for all (n1, . . . , nN) ∈ N
N . As the sequence (Pn1,...,nN

)(n1,...,nN )∈NN is norm bounded, we may
apply N -times the bounded convergence theorem to obtain

lim
n1→∞ . . . lim

nN→∞〈u,Pn1,...,nN
〉 = lim

n1→∞ . . . lim
nN→∞

∫
BX′′×BY ′′

Pn1,...,nN

(
x′′)(y′′)dμu

(
x′′, y′′)

=
∫

BX′′×BY ′′

P
(
x′′)(y′′)dμu

(
x′′, y′′).

It remains to show that 〈u,P 〉 = limn1→∞ . . . limnN→∞〈u,Pn1,...,nN
〉. This follows from the

fact that 〈 · ,P 〉 and limn1→∞ . . . limnN→∞〈 · ,Pn1,...,nN
〉 are linear continuous functions on

(
⊗̃N,s

πs
X)

⊗̃
πY which coincide on elementary tensors. Hence, the proof is complete. �

We are now ready to prove our Lindenstrauss theorem for homogeneous polynomials.

Theorem 2.3. Let X, Y be Banach spaces. Suppose that X′ is separable and has the approxima-
tion property. Then, the set of all polynomials in P(NX;Y ′) whose Aron–Berner extension attain
their norm is dense in P(NX;Y ′).

Proof. Given Q ∈ P(NX;Y ′) consider its associated linear function LQ ∈ ((
⊗̃N,s

πs
X)

⊗̃
πY )′,

defined as in (2). The Bishop–Phelps theorem asserts that, for ε > 0 there exists a norm attaining



D. Carando et al. / Journal of Functional Analysis 263 (2012) 1809–1824 1815
functional L = LP such that ‖LQ − LP ‖ < ε, for P some polynomial in P(NX;Y ′). Since
‖LQ − LP ‖ = ‖Q − P‖, once we prove that P is norm attaining the result follows.

We take u ∈ (
⊗̃N,s

πs
X)

⊗̃
πY such that ‖u‖π = 1 and |LP (u)| = ‖LP ‖ = ‖P‖. By Theo-

rem 2.2, there exists a regular Borel measure μu on BX′′ such that

〈u,P 〉 =
∫

BX′′×BY ′′

P
(
x′′)(y′′)dμu

(
x′′, y′′) and ‖μu‖ � ‖u‖π = 1. (8)

Then,

‖P‖ = ∣∣LP (u)
∣∣ �

∫
BX′′×BY ′′

∣∣P (
x′′)(y′′)∣∣d|μu|

(
x′′, y′′) � ‖P‖‖μu‖ � ‖P‖.

In consequence,

‖P‖ =
∫

BX′′×BY ′′

∣∣P (
x′′)(y′′)∣∣d|μu|

(
x′′, y′′). (9)

In particular, ‖μu‖ = 1 and |P (x′′)(y′′)| = ‖P‖ almost everywhere (for μu). Hence P attains its
norm. �

Banach spaces with shrinking bases satisfy the hypotheses of the theorem. Examples of non-
reflexive Banach spaces with shrinking bases are preduals of Lorentz sequence spaces, which
will be treated in the next section. As an immediate consequence, we state the scalar version of
the previous result.

Corollary 2.4. Let X be a Banach space whose dual is separable and has the approximation
property. The set of all polynomials in P(NX) whose Aron–Berner extension attains the norm is
dense in P(NX).

It should be noted that there are Banach spaces which do not satisfy the hypotheses of Theo-
rem 2.3 and Corollary 2.4, for which the polynomial Lindenstrauss theorem holds. For example,
Theorem 2.7 in [12] states that, if X has the Radon–Nikodým property, then the set of norm
attaining polynomials from X to any Banach space Y is dense in P(NX,Y ), for any N ∈ N. As
a consequence, �1 (whose dual is not separable) satisfies a polynomial Bishop–Phelps theorem,
which is stronger than the polynomial Lindenstrauss theorem.

3. Examples on preduals of Lorentz sequence spaces

Lorentz sequence spaces and their preduals are classical Banach spaces that proved useful
to get a better understanding of some problems related to norm attaining operators and nonlin-
ear functions. In fact, it is d∗(w,1), a predual of a Lorentz sequence space d(w,1), on which
the first counterexample to the Bishop–Phelps theorem for bilinear forms and 2-homogeneous
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scalar-valued polynomials [2] was modeled. Moreover, the set of N -homogeneous polynomi-
als attaining the norm is dense in P(Nd∗(w,1)) if and only if the weight w is not in �N , [24,
Theorem 3.2]. Also, there is an analogous result for multilinear forms [24, Theorem 2.6].

We recall the definition and some elementary facts about Lorentz sequence spaces (see [22,
Chapter 4.e] for further details). Let w = (wi)i∈N be a decreasing sequence of nonnegative real
numbers with w1 = 1, limwi = 0 and

∑
i wi = ∞. Such sequences are called admissible. If

1 � s < ∞ is fixed, the Lorentz sequence space d(w, s) associated to an admissible sequence
w = (wi)i∈N is the vector space of all bounded sequences x = (x(i))i such that

‖x‖w,s :=
( ∞∑

i=1

x∗(i)swi

)1/s

< ∞,

where x∗ = (x∗(i))i is the decreasing rearrangement of (x(i))i . The norm ‖ · ‖w,s makes d(w, s)

a Banach space which is reflexive if and only if 1 < s < ∞.
For s = 1, i.e., in the nonreflexive case, the dual space of d(w,1) is denoted by d∗(w,1) and

consists of all bounded sequences x such that

‖x‖W := sup
n

∑n
i=1 x∗(i)
W(n)

< ∞,

where W(n) = ∑n
i=1 wi . The predual of the Lorentz space d(w,1), denoted by d∗(w,1), is the

subspace of d∗(w,1) of all the sequences x satisfying

lim
n→∞

∑n
i=1 x∗(i)
W(n)

= 0.

If X denotes any of the spaces d∗(w,1), d(w,1), d∗(w,1), the condition w1 = 1 is equivalent
to the assumption that ‖ei‖ = 1 for all i in N, where ei stands for the canonical i-th vector of X.
For any admissible sequence w, X is contained in c0 as a set and therefore, for each element
x ∈ X there exists an injective mapping σ :N−→N such that x∗ is of the form x∗ = (|x(σ (i))|)i .

If w ∈ �r , 1 < r < ∞, a direct application of Hölder’s inequality shows that the canonical
inclusion �r∗ ↪→ d(w,1) is a bounded operator. By transposition and restriction, both mappings

d∗(w,1) ↪→ �r and d∗(w,1) ↪→ �r (10)

are also bounded. The geometry of the unit ball of d∗(w,1) (more precisely the lack of extreme
points) plays a crucial role in the proof of [24, Theorem 2.6] and [24, Theorem 3.2], and also
in our results below. The fundamental property of these spaces [24, Lemma 2.2] is that any
x ∈ Bd∗(w,1), satisfies the following condition:

∃n0 ∈ N and δ > 0 such that ‖x + λen‖W � 1, ∀ |λ| � δ and n � n0. (11)

Finally, preduals of Lorentz sequence spaces have shrinking basis. Then, at the light of Corol-
lary 2.4 and [24, Theorem 3.2], for w ∈ �N , the polynomial Lindenstrauss theorem holds for
d∗(w,1) but the polynomial Bishop–Phelps theorem does not.



D. Carando et al. / Journal of Functional Analysis 263 (2012) 1809–1824 1817
Example 3.1. Let w be an admissible sequence in �M , M � 2. Then, the set of norm-attaining
N -homogeneous polynomials on d∗(w,1) is not dense in P(Nd∗(w,1)) for any N � M , while
the set of those whose Aron–Berner extension attains the norm is dense for every N .

In particular, the above example shows that there exists a Banach space satisfying the poly-
nomial Lindenstrauss theorem and failing the scalar-valued polynomial Bishop–Phelps theorem
for N -homogeneous polynomials, for all N (just take w ∈ �2). Now we show that, given any
admissible sequence w ∈ �r , 1 < r < ∞, there exists a Banach space Y such that the set of
norm attaining N -homogeneous polynomials fails to be dense in P(Nd∗(w,1);Y ′) for all N � 2
(while the polynomial Lindenstrauss theorem holds for any N ). In order to do so, we state as
lemmas two useful results. The proof of the first one is similar to those of [24, Lemma 3.1] and
[21, Proposition 4].

Lemma 3.2. In the complex case, let X be a Banach sequence space and Y be strictly convex.
If P ∈ P(NX;Y) attains the norm at some point satisfying condition (11) for some n0 ∈ N, then
P(en) = 0, for all n � n0.

As we have already mentioned, condition (11) is satisfied by any a in the unit ball of d∗(w,1).
Therefore, the previous lemma applies to every norm attaining polynomial from d∗(w,1) to
any strictly convex Banach space. The proof of the following result can be extracted from [24,
Theorem 3.2].

Lemma 3.3. For the real case, let w be an admissible sequence in �N , N � 2, and take M the
smallest natural number such that w ∈ �M . Suppose that p ∈ P(Nd∗(w,1)) attains its norm at
a ∈ Bd∗(w,1) and let φ be the symmetric N -linear form associated to p.

(i) If p(a) > 0 then lim supn φ(a, . . . , a, en,
M. . . , en) � 0.

(ii) If p(a) < 0 then lim infn φ(a, . . . , a, en,
M. . . , en) � 0.

Proposition 3.4. Let w be an admissible sequence and suppose M is the smallest natural number
such that w ∈ �M (we assume such an M exists). Then, NAP(Nd∗(w,1);�M) is not dense in
P(Nd∗(w,1);�M), for any N ∈ N.

Proof. The complex case. Since w ∈ �M , we consider Q : d∗(w,1) −→ �M given by Q(x) =
(x(i)N )i , which is a well defined and continuous polynomial by (10). Suppose that Q is
approximable by norm attaining polynomials. Thus, for fixed 0 < ε < 1 there exists P ∈
NAP(Nd∗(w,1);�M) such that ‖P − Q‖ < ε and therefore |‖P(en)‖ − ‖Q(en)‖| < ε for
all n ∈N. By Lemma 3.2, there exists n0 such that P(en) = 0 for all n � n0. Hence, 1 =
‖Q(en)‖ < ε, for all n � n0, and the result follows by contradiction.

The real case. Now, we consider Q : d∗(w,1) −→ �M the continuous polynomial defined
by Q(x) = (x(1)N−1x(i))i . Suppose that Q is approximable by norm attaining polynomials
and fix ε > 0. Norm one M-homogeneous polynomials (on �M ) are uniformly equicontinuous.
Therefore, we can take P ∈NAP(Nd∗(w,1);�M) close enough to Q such that

‖q ◦ Q − q ◦ P‖ < ε
(NM)!

(NM)NM
(12)

for every norm one polynomial q ∈P(M�M).
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Let a ∈ Bd∗(w,1) be such that ‖P(a)‖ = ‖P‖ and consider the norm one M-homogeneous
polynomial qP,a : �M −→R given by

qP,a(x) =
∑

i

λM
i x(i)M,

where λi = 1 if P(a)(i) � 0 and λi = −1 otherwise. Note that qP,a ◦ P : d∗(w,1) −→ R is an
NM-homogeneous polynomial attaining its norm at a, with qP,a ◦ P(a) = ‖P‖M . Also,

qP,a ◦ Q(x) = x(1)M(N−1)
∑

i

λM
i x(i)M, for all x ∈ d∗(w,1),

and then ‖qP,a ◦ Q‖ = ‖Q‖M . Let φ and ψ be the symmetric NM-linear forms associated to
qP,a ◦ P and qP,a ◦ Q, respectively. By (12), we have ‖φ − ψ‖ < ε.

Since qP,a ◦ P(a) > 0, Lemma 3.3 gives that

lim sup
n

φ
(
a, . . . , a, en,

M. . . , en

)
� 0. (13)

On the other hand,

(
NM

M

)
ψ

(
a, . . . , a, en,

M. . . , en

) = λM
n a(1)M(N−1). (14)

Suppose that M is even. Since ‖φ − ψ‖ < ε, combining (13) and (14) we obtain

∣∣a(1)
∣∣M(N−1) =

(
NM

M

)
lim
n

ψ
(
a, . . . , a, en,

M. . . , en

)
�

(
NM

M

)
ε. (15)

Therefore,

‖Q‖M = ‖qP,a ◦ Q‖ � ‖qP,a ◦ P‖ + ε
(NM)!

(NM)NM

<
∣∣qP,a ◦ Q(a)

∣∣ + 2ε
(NM)!

(NM)NM

�
∣∣a(1)

∣∣M(N−1)
∑

i

∣∣a(i)
∣∣M + 2ε

� ε

((
NM

M

)∑
i

wM
i + 2

)
.

Since the last inequality is valid for all ε > 0, we get that ‖Q‖ = 0, which is a contradiction.
Now suppose that M is odd. We give the proof for N even, the remaining case being analo-

gous. Without loss of generality, we may assume that a(1) � 0.
Note that qP,a ◦ P also attains its norm at −a and qP,a ◦ P(−a) = ‖P‖M . By Lemma 3.3,

lim supφ
(−a, . . . ,−a, en,

M. . . , en

)
� 0.
n
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Then lim infn φ(a, . . . , a, en,
M. . . , en) � 0 and therefore, by (13),

lim
n

φ
(
a, . . . , a, en,

M. . . , en

) = 0. (16)

If λn = 1 for infinitely many n’s, using (14) and the limit above we again obtain |a(1)|M(N−1) <(
NM
M

)
ε. Thus, we may proceed as in the previous case to get ‖Q‖ = 0, a contradiction.

Suppose that λn = 1 for only finitely many n’s. Since

(
NM

M

)
ψ

(−a, . . . ,−a, en,
M. . . , en

) = −λM
n a(1)M(N−1),

we have (
NM

M

)
lim sup

n
ψ

(−a, . . . ,−a, en,
M. . . , en

) = ∣∣a(1)
∣∣M(N−1)

.

Together with (16), this implies that |a(1)|M(N−1) <
(
NM
M

)
ε. Thus, we again derive that ‖Q‖ = 0,

whence the result follows by contradiction. �
The previous proposition shows that, given any admissible sequence w in �r , 1 < r < ∞,

there exists a dual space Y ′ such that P(Nd∗(w,1);Y ′) satisfies the polynomial Lindenstrauss
theorem, but not the Bishop–Phelps theorem, for all N ∈N. This somehow extends Example 3.1.

In the complex case, the proof of Proposition 3.4 works if we consider �r instead of �M

for M < r < ∞. In other words, NAP(Nd∗(w,1);�r) is not dense in P(Nd∗(w,1);�r), for
any N ∈ N and M � r < ∞. Also, taking Z a renorming of c0 such that its bidual is strictly
convex, the polynomial Q considered above is well defined from d∗(w,1) to Z′′ regardless of w

belonging to some �r . In consequence, NAP(Nd∗(w,1);Z′′) is not dense in P(Nd∗(w,1);Z′′),
for any N ∈ N and any admissible sequence w. On the other hand, the polynomial Lindenstrauss
theorem holds in all these situations.

4. On a quantitative version of the Lindenstrauss theorem

There is a quantitative version of the Bishop–Phelps theorem, due to Bollobás [9] which states
that, for any Banach space X, once we fix a linear functional ϕ ∈ SX′ and x̃ ∈ SX such that ϕ(x̃)

is close enough to 1, it is possible to find a linear functional ψ ∈ SX′ attaining its norm at some
a ∈ SX , such that, simultaneously, x̃ is close enough to a and ϕ is close enough to ψ .

Suppose we have Banach spaces X and Y , for which the Bishop–Phelps theorem holds for
L(X;Y), L(NX;Y) or P(NX;Y). Is it possible to obtain a quantitative version of the theorem
in any of these situations? This question was first posed and studied in the context of linear
operators by Acosta, Aron, García and Maestre [3]. The authors show that a Bishop–Phelps–
Bollobás theorem holds for L(�1;Y) if and only if Y has AHSP (approximate hyperplane series
property). This last property is satisfied by finite-dimensional Banach spaces, L1(μ) for a σ -
finite measure μ, C(K) spaces and uniformly convex Banach spaces. In particular, L(�1, �∞)

satisfies the Bishop–Phelps–Bollobás theorem. Continuing this line of research, Choi and Song
extended the question to the bilinear case [14]. Here the authors show that there is no Bishop–
Phelps–Bollobás theorem for scalar bilinear forms on �1 × �1, in contrast to the positive result
for L(�1, �∞). This should be compared to the already mentioned results of [11] and [18].
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As stated in the introduction, the corresponding quantitative version of Lindenstrauss theorem
for operators was addressed in [3]. We devote this section to show that there is no Lindenstrauss–
Bollobás theorem for multilinear mappings and polynomials on preduals of Lorentz sequence
spaces. Before going on, some definitions are in order.

Following [3], we say that the Bishop–Phelps–Bollobás theorem holds for L(X;Y), if for any
ε > 0 there are η(ε),β(ε) > 0 (with β(t)−−→

t→0
0) such that given T ∈ SL(X;Y) and x̃ ∈ SX with

‖T (x̃)‖ > 1 − η(ε), there exist S ∈ SL(X;Y) and a ∈ SX satisfying:

∥∥S(a)
∥∥ = 1, ‖a − x̃‖ < β(ε) and ‖S − T ‖ < ε.

Regarding Lindenstrauss–Bollobás type theorems, we say that the theorem holds for L(X;Y)

if, with ε, η and β as above, given T ∈ SL(X;Y) and x̃ ∈ SX with ‖T (x̃)‖ > 1 − η(ε), there exist
S ∈ SL(X;Y) and a ∈ SX′′ satisfying:

∥∥S′′(a)
∥∥ = 1, ‖a − x̃‖ < β(ε) and ‖S − T ‖ < ε.

More generally, we say that the Lindenstrauss–Bollobás theorem holds for L(NX1, . . . ,XN ;Y),
if given Φ ∈ L(NX1, . . . ,XN ;Y) of norm 1, and x̃j ∈ SXj

, j = 1, . . . ,N , with ‖Φ(x̃1, . . . , x̃N )‖>

1 − η(ε), there exist Ψ ∈ SL(NX1,...,XN ;Y) and aj ∈ SX′′
j
, j = 1, . . . ,N , satisfying that all the

Arens extensions of Ψ attain the norm at (a1, . . . , aN), ‖aj − x̃j‖ < β(ε) for j = 1, . . . ,N and
‖Φ − Ψ ‖ < ε. The polynomial version of the Lindenstrauss–Bollobás theorem can be stated by
analogy.

Remark 4.1. Regarding the multilinear Lindenstrauss–Bollobás theorem, we could have required
a formally weaker condition on Ψ : that merely one of its Arens extensions attain its norm at
(a1, . . . , aN). We do not know if the Lindenstrauss–Bollobás theorem corresponding to this con-
dition is equivalent to the former one. Anyway, we will see in Proposition 4.4 than even this
weaker form of the theorem fails.

As in Section 3, a Banach space with few extreme points will provide us with the proper
environment to construct our counterexamples. We state as a lemma the following known result
whose proof is similar to those of [24, Lemma 2.2] and [21, Proposition 4].

Lemma 4.2. Let X1, . . . ,XN be Banach sequence spaces and let Y be a strictly convex Ba-
nach space. If Φ ∈ L(NX1, . . . ,XN ;Y) attains its norm at (a1, . . . , aN) ∈ BX1 × · · · × BXN

with a1, . . . , aN satisfying (11), then there exists n0 ∈ N such that Φ(en1, . . . , enN
) = 0, for all

n1, . . . , nN � n0.

Our next lemma shows that elements in Bd∗(w,1) which are close to elements in Bd∗(w,1),
satisfy condition (11).

Lemma 4.3. Let w be an admissible sequence. Let z ∈ Bd∗(w,1) and suppose there exists x ∈
d∗(w,1) such that ‖z − x‖W < 1

2 . Then, z satisfies (11), that is: there exist δ > 0 and n0 ∈ N

such that

‖z + λen‖W � 1, for all |λ| � δ and all n � n0.
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Proof. If there exists i ∈ N so that z∗(i) = 0 then z ∈ d∗(w,1) and the result follows. Then,
we may suppose z∗(i) > 0, for all i ∈ N. Choose ρ > 0 such that ‖z − x‖W < ρ < 1

2 . Since
x ∈ d∗(w,1), there exists n1 ∈N such that, for all n � n1,

∑n
i=1 x∗(i)
W(n)

< ρ and

∑n
i=1(z − x)∗(i)

W(n)
< ρ.

Then,

n∑
i=1

z∗(i) �
n∑

i=1

(z − x)∗(i) +
n∑

i=1

x∗(i) < 2ρW(n), (17)

for all n � n1.
Let n2 be the smallest natural number satisfying n2 > n1 and z∗(n2) < z∗(n2 − 1). By (17)

and the choice of ρ we may take δ > 0 such that

z∗(n2) + δ < z∗(n2 − 1) and

∑n
i=1 z∗(i) + δ

W(n)
< 1, for all n � n1.

Let σ : N −→ N be an injective mapping satisfying z∗ = (|z(σ (i))|)i and take n0 > max{σ(1),

. . . , σ (n2)}. Let us show that ‖z + λen‖W � 1 for all |λ| < δ and all n � n0. Note that if n � n0,
then |z(n)| � z∗(n2) and

∣∣z(n) + λ
∣∣ <

∣∣z(n)
∣∣ + δ � z∗(n2) + δ < z∗(n2 − 1) � z∗(n1) � · · · � z∗(1).

If m < n2, then

m∑
i=1

(z + λen)
∗(i) =

m∑
i=1

z∗(i) � W(m).

On the other hand, if m � n2,

m∑
i=1

(z + λen)
∗(i) �

m∑
i=1

z∗(i) +
m∑

i=1

(λen)
∗(i) �

m∑
i=1

z∗(i) + δ < W(m).

Thus, the result follows. �
Now we are ready to show that there is no Lindenstrauss–Bollobás theorem for multilinear

forms or multilinear operators on preduals of Lorentz sequence spaces.

Proposition 4.4. Let w be an admissible sequence in �r , for some 1 < r < ∞. There is no
Lindenstrauss–Bollobás theorem in the following cases:

(a) for L(Nd∗(w,1)), if N � r ;
(b) for L(Nd∗(w,1);�r), if N ∈ N.
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Proof. (a) Fix N � r . Since w ∈ �r , we may consider φ ∈ L(Nd∗(w,1)) defined by φ(x1, . . . ,

xN) = ∑∞
i=1 x1(i) · · ·xN(i). Suppose that the Lindenstrauss–Bollobás theorem holds.

Take 0 < ε < 1, η(ε) and β(ε) as in the definition and let x̃1, . . . , x̃N ∈ Bd∗(w,1) be such that
|φ(x̃1, . . . , x̃N )| > ‖φ‖−η(ε). Then, there exists a multilinear mapping ψ ∈ L(Nd∗(w,1)), with
‖φ −ψ‖ < ε, whose Arens extensions attain the norm at (a1, . . . , aN) ∈ Bd∗(w,1) ×· · ·×Bd∗(w,1)

and

‖aj − x̃j‖W < β(ε), for all 1 � j � N.

With ε sufficiently small, Lemma 4.3 implies that each aj satisfies (11). By Lemma 4.2,
ψ(en, . . . , en) = 0 for n large enough. Since φ(en, . . . , en) = 1 and ‖φ − ψ‖ < ε, we get a con-
tradiction and the statement follows.

(b) Fix N � 1. Since w ∈ �r , the multilinear mapping Φ ∈ L(Nd∗(w,1);�r) given by
Φ(x1, . . . , xN) = (x1(i) · · ·xN(i))i∈N, is well defined. Now, the result follows reasoning as be-
fore. �

Note that if w ∈ �2, then d∗(w,1) provides us with an example of a Banach space on which
the Lindenstrauss–Bollobás theorem fails for scalar multilinear forms of any degree other that 1.
Also, part (b) of the previous proof shows that, for w ∈ �r , the canonical inclusion d∗(w,1) ↪→ �r

cannot be approximated by linear mappings whose bitransposes are norm attaining. This example
should be compared with [3, Example 6.3].

Finally, we observe that in the proof of Proposition 4.4 it is enough to assume that just one of
the Arens extensions of ψ attains its norm.

Now, we focus our attention on the polynomial version of the Lindenstrauss–Bollobás theo-
rem. The following result extends Lemma 3.3 and its proof can be extracted from that of [24,
Theorem 3.2].

Lemma 4.5. For the real case, let w be an admissible sequence in �N , N � 2 and take M the
smallest natural number such that w ∈ �M . Suppose that p ∈ P(Nd∗(w,1)) attains its norm at
a ∈ Bd∗(w,1) which satisfies condition (11) and let φ be the symmetric N -linear form associated
to p.

(i) If p(a) > 0 then lim supn φ(a, . . . , a, en,
M. . . , en) � 0.

(ii) If p(a) < 0 then lim infn φ(a, . . . , a, en,
M. . . , en) � 0.

Proposition 4.6. Let w be an admissible sequence and suppose M is the smallest natural number
such that w ∈ �M (we assume such an M exists). There is no Lindenstrauss–Bollobás theorem in
the following cases:

(a) for P(Nd∗(w,1)), for all N � M ;
(b) for P(Nd∗(w,1);�M), for all N ∈N.

Proof. (a) The complex case. Since w ∈ �M , for any N � M we can define q ∈ P(Nd∗(w,1))

by q(x) = ∑∞
x(i)N . The result is obtained by contradiction proceeding as in Proposition 4.4.
i=1
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The real case. Suppose that the Lindenstrauss–Bollobás theorem holds and define q ∈
P(Nd∗(w,1)) by

q(x) = x(1)N−M
∞∑
i=1

(−1)ix(i)M.

Given 0 < ε < 1, η(ε) and β(ε) as in the definition, take x̃ ∈ Bd∗(w,1) such that |q(x̃)| > ‖q‖ −
η(ε). Then there exist p ∈ P(Nd∗(w,1)) and a ∈ Bd∗(w,1) such that,

∣∣p(a)
∣∣ = ‖p‖ = ‖p‖, ‖a − x̃‖W < β(ε) and ‖p − q‖ < ε2.

Let φ and ψ be the symmetric N -linear forms associated to p and q , respectively. By Lemma 4.3,
we may choose ε sufficiently small so that a satisfies (11) and ‖φ − ψ‖ < ε.

If p(a) > 0, Lemma 4.5 (i) implies that

lim sup
n

φ
(
a, . . . , a, en,

M. . . , en

)
� 0.

On the other hand, it is easy to see that
(
N
M

)
ψ(a, . . . , a, en,

M. . . , en) = (−1)na(1)N−M and then

lim sup
n

(
N

M

)
ψ

(
a, . . . , a, en,

M. . . , en

) = ∣∣a(1)
∣∣N−M

.

Now, we proceed as in Proposition 3.4 and obtain ‖q‖ = 0, which is a contradiction.
If p(a) < 0 the result follows using Lemma 4.5 (ii).
(b) The complex case. Note that Q(x) = (x(i)N )i∈N defines an element in P(Nd∗(w,1);�M).

Now, we proceed as in Proposition 4.4.
The real case. Following the lines of the real case in (a), we can proceed as in the proof of

Proposition 3.4 combining Lemma 4.3 and Lemma 4.5. �
As we did in the previous section, we may consider a Banach space Z obtained by a renorming

of c0 so that Z′′ is strictly convex. Then, for any admissible sequence w and any N ∈ N, the proof
given in Proposition 4.4 (b), remains true for L(Nd∗(w,1);Z). The same happens with the proof
of the complex case of Proposition 4.6 (b) for P(Nd∗(w,1);Z).
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