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On the Computational Studies of Deterministic
Global Optimization of Head Dependent

Short-Term Hydro Scheduling
Ricardo M. Lima, Marian G. Marcovecchio, Augusto Queiroz Novais, and Ignacio E. Grossmann

Abstract—This paper addresses the global optimization of the
short term scheduling for hydroelectric power generation. A
tailored deterministic global optimization approach, denominated
sHBB, is developed and its performance is analyzed. This ap-
proach is applied to the optimization of a mixed integer nonlinear
programming (MINLP) model for cascades of hydro plants, each
one with multiple turbines, and characterized by a detailed rep-
resentation of the net head of water, and a nonlinear hydropower
generation function. A simplified model is also considered where
only the linear coefficients of the forebay and tailrace polynomial
functions are retained. For comparison purposes, four case studies
are addressed with the proposed global optimization strategy and
with a commercial solver for global optimization. The results show
that the proposed approach is more efficient than the commercial
solver in terms of finding a better solution with a smaller opti-
mality gap, using less CPU time. The proposed method can also
find alternative and potentially more profitable power production
schedules. Significant insights were also obtained regarding the
effectiveness of the proposed relaxation strategies.

Index Terms—Global optimization,mixed integer nonlinear pro-
gramming (MINLP), short term hydro scheduling.

NOMENCLATURE

A. Indices and sets

Hydro plants.

Pairs of upstream and downstream plants.

Grid points for the relaxations of bilinear terms.

Turbines.

Pairs of plants and turbines.

Grid points for the relaxation of .

Grid points for supporting hyperplanes.
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Time periods to build wrap around constraints.

Turbines with identical features in the same plant.

B. Parameters

Coefficients for the forebay level polynomials.

Coefficients for the tailrace level polynomials.

Grid points for the partition scheme for .

Water head [m].

Minimum water head [m].

Maximum water head [m].

Start-up cost of turbine in plant [m.u.].

Maximum power of turbine in plant [MW].

Minimum outflow of turbine in plant when in
operation .

Maximum outflow of turbine in plant ].

Grid points for the partition scheme for .

Target for the maximum storage of the reservoir
of plant at the end of the time horizon .

Target for the minimum storage in plant at the
end of the time horizon .

Initial storage of the reservoir of plant [%].

Conversion factor from to .

Forecast natural water inflow of plant .

Average generation efficiency
.

Forecast price of energy in period [m.u./MWh].

Time delay between plant and plant [h].

Penstock head losses as a fraction of the net head.

Constant, where .

C. Variables

Start-up cost of unit in plant in period [m.u.].

Total water discharge of plant in period
.
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Disaggregated variable for .

Dummy variable defined as
.

Tailrace level of plant in period [m].

Overestimator variable for .

Convex-hull variable for water head [m].

Forebay level of plant in period [m].

Convex-hull variable for water head [m].

Convex-hull variable for water head [m].

Power output of unit in plant in period
[MW].

Dummy variable given by .

Total power output of plant in period [MW].

Profit [m.u.].

Water discharge of unit , plant , period .

Convex-hull variable for flow .

Total water discharge in plant in period
.

Spillage in plant in period .

Volume of the reservoir in plant .

if turbine of plant is online in period ,
otherwise 0.

Boolean variable to establish whether a term in
the disjunction is true.

Convex-hull 0–1 variable to assign partition.

0–1 variable to assign partition.

I. INTRODUCTION

H YDRO power generation is the most widely used form of
renewable energy, presenting several advantages as com-

pared with other sources: no fuel consumption, long life, and no
direct waste or CO emissions [1]. Hydro power plants play an
important role in the electricity power sector due to their tech-
nical characteristics, reduced operating costs, and their capa-
bility of integration with other renewable energy sources. In lib-
eralized electricity power sectors, their technical characteristics
provide enough flexibility to participate in the day-ahead elec-
tricity markets, as well as to be used by the grid operator to help
matching the overall demand and supply. Hydro power plants
with pumping capabilities may also store energy, which when
integrated with wind power farms increases the relevance of the
latter in the power sector. However, a major drawback is that
their production is restricted to the availability of water, which
may be a problem in dry years. For example in Portugal by the
end of June 2012 the total hydro power generation in 2012 had a
reduction of 64.9% when compared with 2011 for the same pe-
riod [2]. Within the framework of a deregulated power sector,
the management of a cascade of hydro plants that participates

in the day-ahead market involves the scheduling of the hydro
power production for a forecast of hourly prices and energy de-
mand, which involves the determination of the startup time of
the turbines, duration of operation, the discharged flow, and the
respective power produced in order to maximize the operational
profit [3]. This problem is denominated as the short-term hydro
scheduling (STHS) problem. STHS may be posed as a single
problem, for example as for those generating companies that
own only hydro plants, or it may be a subproblem integrated
within a larger problem where thermal units and/or wind power
generators are involved.
In theory, optimization models for the STHS problem are sto-

chastic and nonlinear due to the uncertainty on the: 1) natural
inlet flowrates; 2) electricity demand; and 3) electricity prices;
and due to the nonlinear relationship between the power pro-
duced and the following variables: 1) flow discharged; 2) net
water head; and 3) turbine efficiency. In addition, in order to
capture the startups and shutdowns, and regions of operation of
hydro plants, STHS models involve binary variables, resulting
in an overall complexmixed-integer nonlinear stochastic model.
The methodologies to address uncertainty in decision support
models and the corresponding advantages in the context of elec-
tricity markets are discussed in [4]. Since stochastic models can
become large, requiring tailored decomposition algorithms and
extensive computational times to solve, it is imperative to use
as a starting basis a rigorous and computationally efficient de-
terministic model, which is the major goal of the paper.
This work addresses the deterministic global optimization

of head dependent STHS problems using cascades of hydro
plants. Mixed-integer linear programming (MILP) models have
received a good deal of attention in the literature for the STHS,
due to the possibility of: 1) modeling several operating con-
straints such as ramp constraints or restricted operating regions;
2) using piecewise linear approximation submodels to replace
nonlinearities of hydro power functions; and 3) using increas-
ingly efficient MILP solvers such as GUROBI and CPLEX. A
detailed MILP model from the point of view of operational con-
straints is proposed in [5]. These authors considered several of
these constraints, and used a simplified linear model to approx-
imate the nonlinear hydro generation function, where the tur-
bines within the plant are considered to have identical charac-
teristics and are aggregated into one single unit. A more accu-
rate piecewise linear sub-model was proposed in [3] to approx-
imate the nonlinear relationship between the power output, the
net water head, and the water discharged within the hydro gen-
eration function. This sub-model was further improved in [6] by
including interpolations between the piecewise functions and by
adopting a tighter continuous relaxation. The aforementioned
authors have recognized the importance of developing accurate
models to describe the hydro power generation function. Their
approach has relied on replacing the nonlinearities by piecewise
linear approximations represented by sub-MILP models, at the
cost of adding extra continuous and binary variables, and equa-
tions. The advantage of the MILP approach relies on the fact
that it eliminates the numerical difficulties of nonlinear prob-
lems such as initialization, convergence and presence of local
solutions. The main disadvantage is that the piecewise linear ap-
proximations are not exact, and therefore, the results obtained
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are approximate. This means, that for example in the STHS, the
volumes of water in the reservoirs or the power generated pro-
files calculated from MILP models can show deviations from
the real values.
An alternative approach involves building nonlinear models

where the nonlinearities are considered explicitly. The main ad-
vantage of this approach is that the models are more accurate,
i.e. they provide predictions of the variables with a smaller error
than the one with linear approximations. The main sources of
nonlinearities in STHS are the following: 1) the hydro power
generation function; 2) the relation between the forebay level
and the volume of water in the reservoir; and 3) the relation be-
tween the tailrace level and the total water discharged by the
plant. In general, the power generated by a turbine is given by
the following equation [7]:

(1)

where denotes the output power of turbine from plant
in the time period , is a constant, is the efficiency of the
generator, is the efficiency of the turbine, the flow dis-
charged by turbine and the net water head. Assuming that

and are constants as proposed in [8], (1) involves a bi-
linear term that is well known to give rise to nonconvexities that
may lead NLP solvers to find local solutions [9]. The relations
between the forebay and tailrace levels on one hand, and the
volume of water in the reservoir and the total water discharged
by the plant on the other handmay be represented by linear func-
tions, or more complex polynomial functions [7], [8]. The level
of detail used in the definition of these functions is most dictated
by the need to increase accuracy, which in some cases may have
a significant impact on the economic analysis of the systems.
Detailed nonlinear expressions have been recently included

in STHS models with different levels of assumptions [7], [8],
[10]–[12]. Nonlinear programming (NLP) models involving
continuous variables and nonlinear equations have been also
used to model the STHS [13]. However the lack of binary
variables restrict the utilization of startup costs or the enforce-
ment of some operational constraints. Mixed-integer nonlinear
programming (MINLP) models have been recently proposed
for the STHS where detailed nonlinear expressions are con-
sidered [7], [8], [10]–[12], [14]. The introduction of these
nonlinearities, even using simplified equations as in [13], may
lead to nonconvex MINLP models with multiple local optima.
Therefore, MINLP solvers that rely on convexity assumptions
may not guarantee global optimality of the solutions, or fail to
find a feasible solution.
In terms of solution approaches, Lagrangian relaxation

(LR) is the most popular approach for solving large scale
hydrothermal problems. The superior performance of LR is due
to the decomposition of the original model into sub-problems,
and the quality of the calculated bounds [15], [16]. A clear
and concise review of the advantages and drawbacks of LR
is given in [16]. LR has been also applied to the solution of
the STHS problems [11], [17]–[19]. However, for a cascade
of hydro plants the spatial-temporal interaction between the
plants requires additional linking variables when compared
with thermal systems. Additional decomposition algorithms

involve for example the bi-level decompositions based on two
levels of detail [10].
The direct solution of the STHS problem has also relied on

dynamic programming methods [20], [21], and on LP-based
branch and bound (B&B) solvers for MILP problems [3],
[5], [6], [15]. The recent trend on using nonlinearities in the
STHS models, and their solution using MINLP solvers has led
to the solution of nonconvex MINLP problems with solvers
developed for convex MINLP problems [12], [14]. The current
technology to solve MINLP problems is not as mature as the
technology to solve MILP’s. However, several algorithms are
available [22]–[24], and implemented into commercial or open
MINLP solvers such as DICOPT [25], -ECP and SBB in
GAMS, AAOA in AIMMS, MINOPT [26], and BONMIN
[27]. Recently, significant advancements have also been made
in the development of theory and algorithms for the deter-
ministic global optimization of NLP and MINLP problems
[9], [28]–[30]. This is currently an active area of research in
which there are available several solvers, such as BARON [31],
LINDOGlobal [32], and Couenne [33], which can address the
deterministic global solution of NLP and MINLP problems.
The objective of this work is to address the solution of STHS

problems defined by MINLP models using a deterministic
global optimization approach. The main contributions of this
work are the following: 1) implementation of a spatial B&B
algorithm to address the global optimization within a pre-spec-
ified tolerance of a detailed STHS MINLP model; 2) use of
specific types of constraints suggested by the STHS MINLP
model formulation, namely symmetry breaking constraints
(SBC), applied to the binary variables associated with the
status of the turbines; 3) a specific partition scheme for the
relaxation of bilinear terms with semi-continuous variables; 4)
comparison of the proposed approach for STHS models with a
global optimization solver.
This work is motivated by the current trend to develop more

detailed MINLP models for the STHS, and is supported by the
following advancements: 1) global optimization for nonconvex
MINLP problems; 2) availability of affordable multiple threads
computer hardware; and 3) increasing sophistication of MILP
solvers as a result of the implementation of new cuts based on
polyhedral theory, as well as to the inclusion of heuristics and
meta-heuristics within the MILP solvers that help finding in-
teger solutions [34]–[36].

II. PROBLEM STATEMENT

Given is a set of hydro plants in cascade that produce elec-
tricity for the day-ahead market. Some plants can store water in
a reservoir, while others are run-of-the-river plants. Each plant
has a set of turbines with a maximum output flow and power
generated, linked to the same reservoir. The problem is to deter-
mine the start and duration of operation of each turbine, and the
respective power output that maximize the operating profit, sub-
ject to the limits of the reservoirs, the mass balances of water,
and the operating limits of the turbines. Each reservoir has as
inputs a deterministic natural inflow and the discharge from up-
stream plants, and as outputs the flow discharged by each turbine
linked to the reservoir. The profit is calculated as the difference
between the revenues of selling electricity minus the start-up



LIMA et al.: COMPUTATIONAL STUDIES OF DETERMINISTIC GLOBAL OPTIMIZATION 4339

costs of the turbines. The value of the water is not considered in
the profit, since the volume of each reservoir at the end of the
time horizon must be greater than or equal to the initial volume.
The system is considered as an electricity price taker, with the
price of electricity following a given hourly profile. The time
horizon is equal to one day, discretized in periods of one hour.
For each pair of plants there is a time delay between the
total flow discharged from plant to plant . The system does
not have to match a specific demand pattern, since all energy
produced is delivered, without considering electrical network
constraints.
The STHS problem is formulated as a deterministic problem

that can be used as a basis for a stochastic programming model
in which uncertainties of forecasted prices can be taken into
account with an accurate nonlinear model.

III. MINLP MODEL

In this work an MINLP model is proposed for STHS based
on the specific hydro parts of the test cases described in [8]. The
main mathematical features of this model are the following: 1)
the utilization of a nonlinear function for the calculation of the
power generated; and 2) the use of polynomial functions to cal-
culate the forebay and tailrace levels. In the current model it is
also assumed that each plant may have multiple turbines linked
to the same reservoir. Therefore, binary variables are used to ac-
count for their startup costs and to enforce ranges of operation.
Note that with some exceptions, for example [10] and [11], there
are few works in the literature that address multiple turbines per
hydro plant.
The objective function of the problem is the maximization of

the operational profit of the cascade of hydro plants given by
the difference between revenues obtained by selling energy and
startup costs:

(2)

where , , and are, respectively, the electricity price
in the time period , the power produced by plant , and the
startup cost of the turbine in plant in the same period. The
startup cost is given by the following equations:

(3)

(4)

where the is the startup cost of turbine in the plant ,
and is a binary variable that denotes the on/off status of
the turbine. Note that in (4), the initial condition for is
not considered as a fixed initial state. The initial condition is set
equal to the condition of the final period, which is a variable.
The forebay level of each plant in the time period is cal-

culated using fourth degree polynomials as a function of the
volume of water stored

(5)

In the MINLP model adopted in this work the forebay level is
not considered constant, unlike most of the work reported in the
literature [11], [20]. The tailrace level of each plant in the time

period is calculated using also fourth degree polynomials as a
function of the total discharged water

(6)

The total output flow of water from plant in the time period
is equal to the total discharged flow by the turbines of plant ,

, plus the spillage flow, :

(7)

where the total discharged flow is equal to the sum of the indi-
vidual discharged flow of each turbine in plant

(8)

The volume of water stored in each plant in each time period
results from the mass balance involving the volume of water in
the time period , the total discharged flow from plant , the
water inflow from the upstream plants and the natural inflow of
water:

(9)
where denotes the volume of water in the reservoir of plant
in the time period , is a unit conversion factor, is the
deterministic natural inflow of water, represents the total
outflow of water of plant , denotes the total outflow of the
upstream plant in the time period that arrives to plant in
the time period , having elapsed a time , which is the time
delay for the total output flow from plant to plant , and the
set defines the plants upstream of plant . In the above
equations a wrap-around operator around the time horizon is
used to account for the flows of the upstream plants that have a
time delay. The power generated by each turbine is defined as a
nonlinear function of three variables: 1) the output flow, ;
2) the forebay level, ; and 3) the tailrace level, :

(10)

with , where and denote the ap-
proximate average generation efficiency, and the penstock head
losses, respectively. The power generated by each plant is given
by the following equation:

(11)

The following two inequalities enforce a minimum and a max-
imum value for the water discharged by turbine in plant ,
when :

(12)

(13)

while the maximum power that can be generated by turbine in
plant is given by the constraint

(14)
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In this work, the volume of water in each reservoir at the end of
the time horizon is set equal to the initial volume:

(15)

In the above equation, is a parameter of the model, which
means that it can be replaced by a different value that will not
change the structure of the model, or the applicability of the
proposed solution strategy. Therefore, instead of , a min-
imum final volume calculated in a previous step from a planning
model can be used in (15). These planning models usually com-
prise hydrothermal systems, and involve larger time horizons
than STHS models in order to mitigate end effects in the initial
periods. In general, they account for uncertainty in natural water
inflows, energy demand and prices, and typically rely on solu-
tion approaches based on stochastic dual dynamic programming
[37], [38]. Their solutions provide marginal values for the water
in the reservoirs during the time horizon, and target values for
the initial and final volumes to be used in daily scheduling prob-
lems. The utilization of these models is out of the scope of this
work, and therefore without loss of generality, is assumed
as the minimum volume at the end of the day.

A. Simplified MINLP Model

The proposed MINLP model can be simplified by neglecting
in (5) and (6) the terms of the polynomial function of order
greater than one, leading to the linear relationships:

(16)

(17)

This is a straightforward approximation to the original polyno-
mial functions, which is used here with the objective of com-
paring the computational performance of MINLP models with
and without polynomial functions. Note that better approxima-
tions of the equations may be obtained by adjusting the coeffi-
cients of the linear equation with the original data. However, this
is out of the scope of this paper. Therefore, a simplified model
(S-MINLP) is proposed by replacing (5) and (6) with (16) and
(17) in the MINLP model.

B. MILP Model

In this section an alternative model is proposed by further
simplifying the power generation function. Here, the variations
on the net water head are neglected, i.e. the difference between
the forebay and tailrace levels is assumed to be constant, and
denoted by . is defined as the difference between the av-
erage forebay level calculated for the lower and upper values
of the variable , and the average tailrace level calculated for
the lower and upper values of . With these assumptions the
power generated is given by the following equation:

(18)

In this case, the simplified MILP (S-MILP) model does involve
neither bilinear terms nor polynomial functions. This means that
from the originalMINLP, (5), (6), and (10) are removed and (18)
is added.

Fig. 1. Overview diagram of the proposed sHBB algorithm.

IV. SOLUTION APPROACH

A deterministic global optimization strategy denominated
spatial Hydro B&B (sHBB) is developed in this section for the
STHS.A typical approach to solve deterministic nonlinearSTHS
problems involves the formulation of an MILP problem that
approximates the nonlinear behavior of the system, where the
nonlinearities are replaced by piecewise linear approximation
sub-models [3], [6]. Likewise, the approach proposed in this
work implies also the formulation of an MILP problem from
the original MINLP. However, here the formulation relies on
the construction of convex linear regions to substitute the non-
linear equations leading to an MILP overestimator problem
(MILP-OEP). The solution of the MILP-OEP provides an
upper bound on the profit of the system, while simultaneously
measuring the quality of the solution of the MINLP model. The
solutionvectorof theMILP-OEP is thenusedasa startingpoint to
solve the original MINLPmodel. TheMINLP problem provides
a lowerboundon theprofit, anda solution to theoriginal problem.
After the resolution of the MILP-OEP and MINLP problems,

the lower and upper bounds on the profit are available that bound
the global optimal solution. If the gap between these bounds is
within a pre-specified tolerance the search stops, otherwise a spa-
tial B&B framework is applied. A simplified diagram of the pro-
posed sHBB is illustrated in Fig. 1. The B&B algorithm in sHBB
is similar to the basicB&Bprocedure usedbyMILP solvers to re-
duce the gap between the linear relaxation and integer solutions.
However, sHBB is tailored for hydro systems, and in addition,
performs branching on the continuous instead of the binary vari-
ables. The constraints of the MILP-OEP provide a tight linear
overestimation of the nonconvex region of the original MINLP
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Fig. 2. Power generated as function of and for the first time period
of a specific turbine from one plant used in the case studies.

problem, and hence a valid upper bound on the profit in each
node of the sHBB tree. The MILP-OEP is built over the re-
laxation of the nonlinearities, whereby the bilinear terms and
polynomial functions are replaced by polyhedral envelopes that
overestimate the feasible region of the original problem.

A. Relaxation of the Bilinear Terms

The bilinear terms in the MINLP and S-MINLP models are
present in the power generation function expressed by (10).
In this equation, the variables involved are , and

, which can bemanipulated defining a new variable
, , and thus the bilinear terms to be tackled

are defined as , , , which leads to
the following linearized equation for the hydro power genera-
tion function used in the MILP-OEP:

(19)

The relaxation of the bilinear terms is built employing the
convex envelopes proposed in [39], whereby in the MILP-OEP,

is replaced by the following inequalities, the
well-known McCormick inequalities:

(20)

(21)

(22)

(23)

These inequalities provide a convex envelope for each bilinear
term associated with turbine , in plant and period . The con-
cept of convex envelope derived from the above inequalities is
illustrated in Figs. 2 and 3. In Fig. 2 the nonlinear relationship
between the power generated, the turbined flow of water, and
the water head is depicted, while in Fig. 3 a projection of the
convex envelopes is presented for a fixed value of the power
generated. The data used in these figures is based on the input
data of one of the case studies.
The error introduced by the relaxation, defined as

, may be reduced by considering the convex envelopes

Fig. 3. Projection of the relationship between and for a constant
from Fig. 2, and the convex envelope defined by (20)–(23).

Fig. 4. Relaxation of the nonlinear function using McCormick envelopes de-
fined over partitions of the variable .

built over a partition of the domain of the variables as
suggested in [29]. This concept is shown in Fig. 4, where three
partitions over the domain of are defined.
The formal definition of the convex envelopes presented in

Fig. 4 built over a partition scheme with grid points is
defined by the following disjunction:

(24)

where is a boolean variable to establish whether the dis-
junctive term of the partition with index is true. This dis-
junction can be re-written as a sub-MILP model by using a
convex-hull reformulation [40]:

(25)

(26)
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(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

Increasing the number of partitions reduces the gap between
and , but also increases the number of equations

and continuous and binary variables, and consequently the com-
putational time associated with the solution of the MILP-OEP.
In the context of an hydrothermal model, Cerisola et al. [41]
have recently proposed the same type of linear approximation
using piecewiseMcCormick planes. However, they use a Big-M
reformulation, instead of the convex-hull. Preliminary results
have shown that in the problems studied in this work the convex-
hull provides a tighter relaxation than the Big-M reformulation.

B. Relaxation of the Polynomial Functions

In this work two polynomial relaxations (PR) are considered
for building linear envelopes for the polynomial functions: 1)
PR1-based on the determination of the inflection points of the
polynomials that are nonconvex and nonconcave and calcula-
tion of off-set values to be included in the linear over and under
estimators functions; and 2) PR2-built by replacing each uni-
variate nonlinear power function of the polynomial function by
a new variable, and then for each univariate nonlinear power
function an overestimation model is built. The two relaxations
are rigorous in the sense that the linearizations do not cut-off
any part of the polynomial functions. However, PR1 requires a
pre-processing step to identify the characteristics of the polyno-
mial functions, while PR2 does not.
An analysis of the properties of the polynomial functions was

made in order to determine the sign of the second derivative
through the identification of the inflection points, and hence the
polynomial functions that are concave, convex, and nonconvex
and nonconcave. Valid over- and under-estimators for the con-
cave and convex polynomial functions are built using piecewise

linear approximations between the bounds of the variables and
hyperplanes at given points. Due to space limitations, only the
construction of these estimators are presented for the concave
polynomials associated with the tailrace level. The under-esti-
mators are built over a partition with grid points , where the
estimator value is represented by . In order to simplify the
equations, is defined first as

(37)

The piecewise underestimation is as follows:

(38)

(39)

(40)

(41)

The over estimators are built using the supporting hyperplanes:

(42)

An equivalent rationale is employed to build under and over es-
timators for the concave polynomial functions for the forebay
levels. As discussed in [16] on the applicability of piecewise
linear functions for hydrothermal models, these functions pro-
vide an approximation of the real function. However, in this
work, they are used to predict bounds.

C. Specific Details and Remarks

The length of the interval of the variables is known to have
an impact on the tightness of the relaxation provided by MILP-
OEP. Therefore, it is important to eliminate infeasible regions
out of the domain of the variables. In this work, a pre-processing
step is performed in order to contract the bounds of the variables
involved in a nonlinear term of the MINLP by solving two LP
problems for each of these variables, whereby a variable is min-
imized/maximized subject to the constraints of the MILP-OEP.
Through this procedure, the lower and upper bounds of the vari-
ables are tightened. The formulation of the MILP-OEP is im-
proved by enforcing symmetry breaking constraints over the
binary variables for the turbines with identical specifica-
tions that operate in parallel and are linked to the same reservoir.
These constraints are represented by

(43)

where represents the subsets of turbines with the same
characteristics in the same plant. The sHBB algorithm solves
an MILP-OEP and an MINLP model at each node of the tree.
The branching process involves splitting the feasible region of
the MILP-OEP based on the largest error of the relaxations
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TABLE I
COMPARISON BETWEEN SHBB AND BARON FOR THE DETAILED MINLP

P-Profit, G-Gap, T-CPU time, PR1, PR2-Polynomial relaxations. The terminal criteria are set to 0.5% gap and to a maximum CPU time of 10 800 s.

for the bilinear terms and for the polynomial functions. If this
error is associated with a bilinear term, the respective semi-con-
tinuous variable is split into two regions in the middle
point, , of the interval , and two new prob-
lems are generated, leading to two new nodes. Note that the
variable is a semi-continuous variable defined as

, which in this work is taken into account
when the above convex envelopes are built. This provides a
tighter relaxation of the bilinear terms, which is not taken into
account for example in the solver BARON.
If is chosen for the branching, the following procedure

is applied on each node: 1) the bounds of are updated, and
consequently the grid used in the relaxation is updated; 2) the
SBC induces an additional bound contraction scheme, which is
applied to the turbines in the same plant with identical charac-
teristics of the turbine selected to make the branch. If in one of
the generated nodes, the upper bound of is changed, then
the upper bounds of the turbines for are also updated:

(44)

Similarly, for the node where the lower bound is updated, the
following bounds are enforced:

(45)

3) If theMILP-OEP is solved to optimality within the maximum
CPU time set to solve the MILP-OEP, one additional partition is
added to the piecewise partition scheme of all variables
in the two new generated nodes; otherwise the number of par-
titions of the two new generated nodes is set to the number of
partitions of the precedent node, and the number of partitions
is not increased any further. Other details of the sHBB imple-
mentation include: 1) the selection of the next node to solve is
made based on the node with the largest upper bound; 2) the
MILP-OEPs are solved within a specified CPU time limit. If
the problem is solved to optimality, then the upper bound in the
node is given by the integer solution; otherwise, the best bound
obtained is used as a valid upper bound in the node; and 3) the
lower bound of the objective function of the MINLP problem,
i.e., a solution of the original problem, is obtained by fixing the
binary variables associated with the turbines at the value of the
MILP-OEP solution, if they are equal to one, leaving the vari-
ables equal to zero free and solving a reduced MINLP problem.
This MINLP problem provides a valid lower bound on the ob-
jective function at a low computational cost since the number
of free binary variables is reduced. This approach proved to be

a better option than to fix all the binary variables and solve an
NLP problem.

V. COMPUTATIONAL EXPERIMENTS

The computational performance of the proposed models and
of the global optimization algorithm are evaluated in this sec-
tion. We considered four test cases presented in [8] involving
cascades of hydro plants with different number of plants,
turbines and cascade topology: Case 1–4 plants, 24 turbines;
Case 2–5 plants, 22 turbines; Case 3–7 plants, 29 turbines; Case
4–6 plants, 44 turbines. The configuration of the cascades and
the topological, reservoir and hydro data are the same as those
published in [8]. The size of the four models is presented in
Appendix A. The models and the global optimization algorithm
are implemented in GAMS [42] and solved on a computer with
an Intel Core i7@3.07 GHz CPU, 64 bits, and 8 Gb of RAM.
The solvers used are CPLEX 12.4, GAMS/DICOPT 23.8 and
BARON 11.1. Table I summarizes the computational perfor-
mance of sHBB and BARON for Cases 1, 2, 3 and 4 for the
detailed MINLP (the indicated CPU time set for sHBB preclude
the time spent on bound tightening, which was respectively
21, 15, 23 and 31 min). The termination criteria are set to a
0.5% gap and a maximum CPU time of 10 800 s. For sHBB,
the table presents the results with the polynomial relaxations
PR1 and PR2, showing that optimality gaps below 0.5% gap
are obtained in Cases 1, 2 and 3, in short CPU times, i.e., all
below 404 s and 65 s for PR1 and PR2, respectively. However,
for the larger Case 4, the performance decreases and solutions
with an optimality gap below 0.5% are not reached within
10 800 s. The results obtained with BARON, show that for
Case 3 it has difficulty in finding a positive lower bound, and
that overall, comparing BARON with the proposed approach,
sHBB is found to achieve smaller optimality gaps. BARON is
only able to solve Case 1 for the specified optimality gap in
106 s, while for Cases 2, 3, and 4 it cannot reach solutions for
a 0.5% optimality gap within 10 800 s, which highlights the
better performance of sHBB.
The results obtained with the S-MINLP with sHBB and

BARON present the same trend as obtained with the detailed
MINLP, but in general with shorter CPU times and smaller
optimality gaps for sHBB, see Table II. Comparing the results
of the MINLP model with the approximations for the poly-
nomial functions, and without them, S-MINLP, it is clear that
the bilinear terms have a major influence on the observed gaps
between the lower and upper bounds of the objective function.
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TABLE II
COMPARISON BETWEEN SHBB AND BARON FOR THE

S-MINLP. THE TERMINAL CRITERIA ARE SET TO 0.5% GAP
AND TO A MAXIMUM CPU TIME OF 10 800 S

P-Profit, G-Gap, T-CPU time.

TABLE III
MINLP MODELS SOLVED WITH DICOPT, AND S-MILP WITH

CPLEX. THE TERMINAL CRITERIA ARE SET TO A MAXIMUM CPU
TIME OF 10 800 S, AND A 0.5% GAP FOR CPLEX

P-Profit, T-CPU time.

Fig. 5. Case 2 production schedule obtained with sHBB.

This is supported by the small differences between the perfor-
mance of sHBB and BARON with the MINLP and S-MINLP
models. In order to assess the objective function values obtained
with sHBB, a local solver for MINLP problems, DICOPT, is
used to solve the detailed MINLP and S-MINLP models. The
two models are solved either per se, or including the SBC in
order to check the effect of these constraints (see Table III).
This table shows the SBCs to have an all-round strong impact

Fig. 6. Case 2 production schedule obtained with BARON.

Fig. 7. Case 2 production schedule obtained with S-MILP.

on the performance of DICOPT. This is explained by the
symmetry breaking imposed by these constraints during the
solution of the master problem within DICOPT. Within sHBB
these constraints have also an important role on the solution
of the MILP-OEP problem and on the solution of the MINLP
problem used to calculate the lower bound in each node.
As for the S-MILP model, the CPU times required for solving

it with CPLEX are significantly lower than the ones obtained
with the global optimization approach, but the SBC still show a
positive impact on the CPU times.

A. Scheduling Results

Figs. 5–7 illustrate the power production schedule for Case 2
obtained with sHBB, BARON and the S-MILP model, respec-
tively. These schedules display the same general trend. How-
ever a thorough analysis shows differences on the turbines ac-
tivated and respective water flows. For example, the S-MILP
does not activate the turbines from plant H6 in the periods 4, 5
and 6, but does so in the remaining two schedules. As a con-
sequence, different operating conditions in terms of the profile
of the volume of water in the reservoir H6 and the spillage of
the downstream run of the river plant H7 are obtained with each
model (see Figs. 8 and 9).
An interesting result concerns the maximum power output

during the peak hours of the day obtained with the different
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Fig. 8. Case 2 water volumes of reservoir H6 obtained by solving the MINLP
problem with sHBB, and the S-MILP problem with CPLEX.

Fig. 9. Case 2 spillage of run of the river plant H7 obtained by solving the
MINLP problem with sHBB, and the S-MILP problem with CPLEX.

approaches for the highest electricity prices. The S-MILP
model exhibits the highest power output during this period
when compared with the sHBB and BARON, but that did not
correspond to a higher profit, 1 363 801 m.u. with the S-MILP
versus 1 372 403 m.u. with the detailed MINLP using sHBB.
An important remark is that the analysis and comparison

of the results obtained should take into consideration that
the models have different levels of accuracy and constraints.
For example, the detailed MINLP model relates the forebay
and tailrace levels with the volume and water discharged,
respectively, leading to a variable net water head, while in the
S-MILP the net water head is constant. In order to illustrate this
feature, the detailed MINLP model was solved considering the
schedule of the units fixed to the solution of the S-MILP model.
More specifically, the variables , , and are fixed,
reducing the MINLP to an NLP problem that is completely
defined, i.e. with no degrees of freedom. A careful analysis
of the resulting model shows that after fixing these decision
variables the remaining variables can be calculated in the
following sequence: , , , , , and ,
and . For the sake of expediency, the corresponding NLP
problem of each case was solved with the solver CONOPT.
For the four cases the solver returned the problem as infeasible

at the structure analysis stage and indicated the violation of
the maximum power generated by some turbines. In all cases
the schedule from the S-MILP model leads to an infeasible
schedule using the MINLP model because it forces the turbines
to generation values above their limit. This evidence was vali-
dated by introducing slack variables in (14) and in the objective
function, which confirmed the violation of the maximum limits
of the turbines. These results demonstrate that for a specific
cascade state, the S-MILP model may incorrectly predict a
power generation that is higher than the system maximum gen-
eration limit. In this specific case, the S-MILP model considers
the water head constant through the time horizon, when in fact
due to the water discharges it will change during the 24 hours.
The relative merit of eachmodel in terms of accuracy depends

on the nonlinearities involved in the real process, and the as-
sumptions and level of detail of the approximations made. From
the point of view of profit, the main drawback of the MINLP
lies in the possibility of having the global solution cut-off when
it is solved with a local solver, therefore, leading to a signifi-
cantly sub-optimal profit gain. This provided the motivation for
the application of global optimization strategies as proposed in
this work.
Analyzing the daily profit of 1 372 403 m.u. found with the

proposed approach for Case 2 of MINLP-PR1, it represents a
higher profit of 2468 m.u. per day compared to DICOPT with
SBC (1 369 935 m.u.), amounting to an additional yearly profit
of 900 820m.u. Similar analysis can bemade for the other cases,
where the use of sHBB always results in a positive gain. The
exception is Case 4, where DICOPT despite being a non-global
solver, and thus lacking of global optimality guarantees for non-
convex problems, obtained a higher profit. This is most likely
a result of the integer cuts that were implemented, forcing the
algorithm to fix a different combination of binary variables on
each iteration, which are missing in sHBB.
Therefore, for most cases sHBB is able to find better solutions

than a non-global solver, with the advantage of guaranteeing
that no other solution can be found that improves the objective
function above the corresponding optimality gap.

VI. CONCLUSIONS

In this paper a tailored global optimization algorithm, sHBB,
is proposed for the STHS of a cascade of hydro plants. A non-
convex MINLP model for the operation of the cascade is pro-
posed and an overestimator model formulated, which is based
on a relaxation framework for the polynomial functions de-
scribing the forebay and tailrace levels, as well as for the bi-
linear terms in the power generation function. The overall per-
formance of the proposed approach is the result of the combina-
tion of several algorithmic implementations, such as a specific
dynamic partition relaxation of the bilinear terms exploiting the
semi-continuous characteristics of one of the variables, and of
the symmetry breaking constraints shown to play an important
role in the solution of the MILP overestimator problem.
One relevant conclusion, in the case of sHBB, is establishing

the bilinear terms as the nonlinear functions that contribute the
most for the gap between the lower and the upper bound. This
assessment arises from comparing the approximation errors and
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TABLE IV
SIZE OF THE MODELS, MINLP/MILP-OEP/S-MILP-OEP

MILP-OEP—Overestimation model of the original MINLP model with PR1
at the root node. S-MILP-OEP—Overestimation model of the S-MINLP
model at the root node.

final gaps obtained with sHBB for the detailed MINLP and sim-
plified model, S-MINLP. This means that in the case studies
presented, the polynomials of 4th order can be replaced by the
linear approximations without introducing a significant error.
Another important result obtained with sHBB is the identi-

fication of alternative power production schedules, which are
associated with higher profits, a possibility worth of further
investigation.
The proposed algorithm was found to exhibit better computa-

tional performance than a current available standard global op-
timization solver and provide better solutions than a non-global
MINLP solver, and thus representing a valid contribution for
the application of deterministic global optimization to power
systems.

APPENDIX A

Table IV lists the size of the models, MINLP/MILP-OEP/S-
MILP-OEP.
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