
Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

2014, Vol. 90(3) 290–319

� 2014 The Society for Modeling and

Simulation International

DOI: 10.1177/0037549713518586

sim.sagepub.com

Modeling and simulation of software
architecture in discrete event system
specification for quality evaluation

Verónica Bogado1,2, Silvio Gonnet1 and Horacio Leone1

Abstract
Software quality is an important issue in software engineering. The evaluation of software architecture is crucial to
achieve quality scenarios, which reduces development and maintenance costs. This work presents a discrete event simu-
lation environment for the software architecture assessment considering both functional and quality aspects. Discrete
event system specification (DEVS) formalism and the underlying framework are used to specify the simulation elements.
DEVS is based on the system theory and follows the engineering and object-oriented fundamentals to construct com-
plex dynamic systems. The proposed environment is built in a modular and hierarchical way that provides scalability and
reusability advantages. Although the proposal is focused on three quality attributes and a few metrics, this approach
enables the definition of new elements and metrics related to other quality attributes that can be visible at runtime. A
traditional architecture illustrates the proposal, where preliminary computational experiments for this real software sys-
tem and concrete quality scenarios demonstrate the feasibility of the integrated simulation environment for the software
architecture evaluation. In addition, a discussion shows how the results could help architects make design decisions to
improve software quality during development.

Keywords
Discrete event system specification, software architecture, quality attribute, software quality evaluation, simulation
environment

1. Introduction

Software quality has become a critical issue because it

affects systems development costs, delivery schedules, and

user satisfaction.1,2 Functional and structural quality must

be considered to improve the overall quality of software

products.3,4 Structural quality focuses on the principles of

software architecture (SA), where quality attributes are

important. Quality attributes are non-functional require-

ments (NFRs, also known as quality requirements) that the

system has to include and that are beyond the functionality

of the software (functional requirements, FRs)3 (e.g.,

availability, performance). SA plays a key role in the qual-

ity evaluation because it allows an early study of the sys-

tem from operational and structural perspectives. The SA

is the structure or structures of the system, which comprise

software elements, the externally visible properties of

those elements, and the relationships among them.3 SA is

the fundamental organization of a software embodied in

its components, their relationships, the interaction with the

environment, and the main decisions guiding its design

and evolution.5 In other words, SA constitutes a graspable

model for how a software system is structured and how its

components work together to provide support for some

software qualities. The SA is developed during the earliest

phases of the system production and accompanies the sys-

tem throughout its lifetime; SA reduces costs, improves

quality, supports delivery against requirements, and

reduces risk.3,6 Furthermore, SA is the first stage in which

quality requirements could be addressed, and the early

design decisions on which the architecture is based will

greatly affect the resulting system.7 Therefore, SA evalua-

tion is crucial to obtain results that can be applied to

1INGAR, Instituto de Desarrollo y Diseño (UTN-CONICET), Argentina
2Departamento Ingenierı́a en Sistemas de Información, Facultad Regional

Villa Marı́a, UTN, Argentina

Corresponding author:

Verónica Bogado, INGAR, Instituto de Desarrollo y Diseño (UTN-

CONICET), Avellaneda 3657, S3002 GJC Santa Fe, Argentina.

Email: vbogado@santafe-conicet.gov.ar

achieve quality requirements. The main challenge is to

assure stakeholders that the candidate architecture is capa-

ble of supporting the current and future business goals

related to the FRs and NFRs.8

SA evaluation consists of quantifying some qualities,

and it can be performed by using a qualitative or quantita-

tive approach or a mix of both.9 Most approaches employ

the Markov Decision Process,10,11 Queueing Theory,12 or

Petri Nets.13 However, several issues must be improved:

(i) formalisms introduce the complexity of the technique in

the model and, consequently, stakeholders must operate on

a low level of abstraction; (ii) these approaches have some

limitations in representing software elements; and (iii)

these approaches do not consider FRs in the models.

Including FRs in the architecture specification implies an

early emphasis on behavioral aspects. The system func-

tionality is supported by its architecture through the inter-

actions among its elements, acting as a vehicle through

which system qualities are achieved. Quality attributes

cannot be achieved without a unified vision of the architec-

ture, all its elements, and their relationships. For example,

to address performance requirements, it may be necessary

to consider the execution time of each component and the

time spent in intercomponent communication.6 In this

way, Use Case Maps (UCMs14) notation has gained popu-

larity within the software domain. UCMs are models that

relate FRs to structural elements, that is, causal scenarios

related to architectural entities.15 UCMs can help architects

to understand emergent behavior of complex and dynamic

systems, but it is an informal notation requiring other for-

mal techniques for a dynamic evaluation.16

In this context, it is essential to supplement traditional

techniques and tools with novel approaches oriented to the

structural and functional quality that can be easily adapted

to new demands of software designs. This work proposes

a generic simulation environment for SA evaluation based

on a Discrete Event System Specification (DEVS) frame-

work to aid architects in the analysis of software quality

attributes. A SA specified using UCM notation defines the

input elements to obtain the simulation model and its back-

ground with the purpose of simulating the system operation

at any stage of its development. The evaluation can be con-

ducted under several conditions and collects measures

related to quality attributes that are visible at runtime. Thus,

concrete simulation environments are built from SAs fol-

lowing a set of rules defined in this work, hiding the formal-

ism from the architect. The simulation has shown to be a

powerful instrument for studying the system behavior and

providing statistics related to features of the system under

study. Furthermore, the DEVS framework provides instru-

ments to build an adaptable simulation environment,17

where the elements are built following the principles of

modularity and hierarchy. This high level of abstraction

enables us to suitably represent the concepts of the SA

domain. This approach is achieved by developing two main

parts of the DEVS frame: the model and the experimental

frame (EF). The model represents the SA elements and

some required parameters related to the quality attributes

that will be measured. The model has been proposed and

described in a first version in previous works,18,19 and the

features and capabilities are extended in this work. The EF

is the operational formulation of the objectives. The con-

struction of the EF is as important as the model for this

environment because it will introduce quality goals associ-

ated with software quality attributes and will calculate qual-

ity indicators for each attribute to be analyzed. Therefore,

the concepts of the architectural domain are translated into

elements of the simulation model, and the background that

interacts with the system is modeled as elements of the EF.

The quality attributes that have been previously studied

include performance, reliability, and availability. Several

works have considered these attributes to be critical to soft-

ware quality. Performance is a dominating user require-

ment in the software industry and is perhaps the most

studied aspect in this area. Reliability is another important

aspect of the software. Several studies have addressed

reliability as the major factor in software quality because

this attribute quantifies failures that can make a powerful

system inoperative.20 Reliability is related directly to avail-

ability, which is typically measured as a factor of its relia-

bility. In this sense, one attribute is a consequence of the

other, with higher reliability indicating a greater availabil-

ity. In software development, quantitative information to

make decisions is critical. Studying SA to improve the

design can impact development and maintenance costs and

avoid errors that could affect the systems’ users. Although

quality indicators for three attributes are included into this

proposal, this approach could be scalable to other quality

attributes visible at runtime, such as security.

The remainder of this paper is organized as follows:

Section 2 analyzes related works; Section 3 briefly describes

SA and the related concepts required to analyze quality

attributes; Section 4 describes the discrete event modeling

and simulation (M&S) framework applied to software qual-

ity evaluation; Section 5 presents the simulation model and

specifies each simulation element using DEVS; Section 6

explains the importance of the EF in the SA evaluation con-

text and how to build it according to the quality objectives

and describes the entire simulation environment; Section 7

briefly describes the implementation of the simulation envi-

ronment; Section 8 illustrates the contribution with a case

study that describes a traditional SA for a particular system,

the simulation model, its configuration, and results, explain-

ing how to use this information to make design decisions;

and Section 9 presents conclusions and future work.

2. Related work

In recent years, the use of SA to predict quality attributes

and the validation of requirements represented as quality

Bogado et al. 291

scenarios have become more critical in software develop-

ment. In the software engineering literature, there are sev-

eral approaches that support architects; some approaches

are theoretical rather than empirical. We can also find

methods based on scenarios for a qualitative analysis.7 To

place our proposal into context, we prefer to organize

related contributions into three areas: (i) works related to

SA evaluation based on quality attributes measurement;

(ii) works related to SA evaluation that also consider func-

tional aspects (UCM proposal); and (iii) works based on

simulation techniques.

In the first related area, there are contributions that

study a particular quality attribute and others that consider

a set of attributes. For example, some proposals employ

the Markov Decision Process to evaluate the system relia-

bility;10 more recent works include performance and secu-

rity in the analysis.11 Other authors have proposed the

application of Queueing Theory to measure performance12

as the most common application because performance is

the most visible attribute and the easiest to be modeled at

runtime. Petri Nets evaluate different quality attributes,

such as security, performance, and reliability, and have

been important contributions in this area.13 The aforemen-

tioned techniques make a quantitative study of specific

quality attributes with mathematical fundamentals, which

is very important for precision in the final results.

However, critical studies have shown some limitations of

these types of techniques because they appear to be too

restrictive from the modeling viewpoint.21 These

approaches have some restrictions related to representing a

number of situations about ‘‘real-world’’ systems; further-

more, they incorporate the complexities of the technique

in the model, losing abstraction capabilities. Markov

Process approaches have two main aspects that must be

improved: the representation of the states that only include

components from the architectural model, losing other

important aspects of the architectural domain, and the ana-

lytical resolution of the models that requires specific infor-

mation (such as transition probabilities, quantitative data

for each component, etc.).21 Queueing Theory provides a

good performance assessment, but it is difficult to repre-

sent other aspects of the software quality, such as security,

reliability, etc. Petri Nets have limitations related to com-

plex system modeling as it is very difficult to solve the

resulting net. Petri Nets require simplification of the mod-

eled problem, but this simplification may cause a loss of

important information related to the real problem (in this

case, features of the software system that is being ana-

lyzed), affecting the final results.22 On the other hand,

empirical techniques have increasing importance, where

architectural prototyping has been proposed.23 This type of

technique requires extra effort and costs to build a proto-

type of the software system at the beginning of the soft-

ware development process. Finally, in this first group of

related work, we can find contributions that propose an ad

hoc assessment of the SA qualities, because it is difficult

to exclude subjectivity and informality from the analysis.24

Currently, enterprises emphasize the importance of

including functional aspects in the evaluation of SA, which

in most cases have been focused only on non-functional

aspects. Therefore, in this second group of related works,

we can find some contributions that include functionality

in the architectural models. The Software Engineering

Institute (SEI) has proposed advances in this area by devel-

oping Arche.25 This tool permits the analysis of perfor-

mance (using Fixed Priority Scheduling) and modifiability

(using Graph Theory) from an architecture that considers

functional aspects.26 Moreover, other approaches based on

UCMs have been proposed to add behavior to the architec-

tural structures in the analysis. Because UCMs is an infor-

mal notation, related works have proposed the use of

Queueing Theory to analyze system performance, but they

are only focused on this attribute.27

The last group of related contributions employs simula-

tion techniques. RAPIDE language is an antecessor of the

DEVS approach and is focused on interface connection

architectures, where public interfaces are translated into

actions.28 RAPIDE provides a formal specification to find

violations in the interfaces, testing the complete specifica-

tion, the correctness, and the performance analysis of dis-

tributed time-sensitive systems. However, this method

does not consider scenarios or functionalities that a soft-

ware element provides and does not capture the internal

complexity of software elements. The limitations of the

aforementioned techniques lead to describe the problem of

SA evaluation by mixing several techniques, causing a

sophisticated simulation development. However, this com-

plexity of the techniques obscures the problem that is

being resolved. DEVS appears to be a simple and more

scalable simulation approach to tackle the SA evaluation

problem.17 DEVS has been shown to be a very flexible

formalism in many other domains, for example traditional

applications29 or the study of physical system quality.30

Furthermore, some authors have developed domain-

specific M&S using OO-DEVS.31 That work proposes the

application of specific design patterns (Composite,

Facxade, Observer) to an astronomical observatory system.

Although the approach appears to be at a high level of

software design, it is mainly focused on a lower level

design. Thus, the evaluation is not performed immediately

after the requirements specification. On the other hand, the

approach is not mainly focused on the SA evaluation in

terms of software quality in a general form; rather, it

develops specific-domain metrics for astronomy observa-

tory systems.

SA design is a challenging problem that requires ele-

ments to represent different types of software systems and

many domain aspects that can change over time. This

dynamic feature requires flexible conceptual tools that can

be adapted to new requirements. Thus, this work proposes

292 Simulation: Transactions of the Society for Modeling and Simulation International 90(3)

a DEVS-based simulation environment to analyze SAs by

measuring quality attributes from a UCM model. This pro-

posal is very close to requirement specifications and can

be applied at the earliest stages of software development,

taking a high-level design employing UCM notation as an

input. The concept of UCMs is based on capture FRs, tak-

ing into account the architectural elements responsible for

derived functionality. This work provides continuity to

very preliminary proposals in which only the performance

attribute was considered,18,19 adds new features to the ini-

tial model, and presents a set of reports that can be used by

architects to make decisions. This proposal includes the

discrete event simulation advantages in the architectural

design context, resulting in a novel and adaptable approach

to evaluate software quality. Although early SA evaluation

is more common than late assessment, the proposed simu-

lation environment can be applied at any stage with differ-

ent purposes, that is, for quality prediction (early) or

analysis (late).

3. Software architecture and quality
attributes abstractions

SA evaluation requires structural, functional, and quantita-

tive information that can be used to obtain quality indica-

tors. Several contributions have proposed specific

language and good practices to design SAs.3,4,5,8 The SEI

suggests the use of quality scenarios to specify quality

requirements from which to build an appropriate design.3

This design can be specified using several notations,

including Unified Modeling Language (UML) and UCMs,

among others. The UCM is a model that provides a

dynamic view of the architectural model by adding func-

tional aspects under the concept of responsibility.14,32

Thus, the architecture not only includes NFRs but also

FRs. These concepts are captured in the Software

Architecture Evaluation Model (SAEM, Figure 1).

The SAEM captures concepts that specify a dynamic

view of the SA, elements, and their relationships by add-

ing one more granularity level to the responsibilities.

Furthermore, UCM concepts are integrated with quantita-

tive aspects related to quality. This model represents the

following entities: responsibility (Functional aspects,

Figure 1), simple and composite components, connection

mechanisms, and the relationships among these artifacts.

These elements model the SA view (SAView, Figure 1)

and are the Structural aspects (Figure 1).

An architectural element (ArchitecturalElement,

Figure 1) is an abstract concept that represents structures

with a presence at runtime, providing a dynamic view of

the system. Two important specialized concepts are

included, namely component (Component, Figure 1) and

connection mechanism (ConnectionMechanism, Figure 1).

Moreover, the components can be classified into two

types: simple (SimpleComponent, Figure 1) and complex

(CompositeComponent, Figure 1). A simple component is

a software entity that could have some runtime presence

(e.g., a process) and is in charge of a set of responsibilities.

The composite component can be composed of both sim-

ple and composite components, and responsibilities are

delegated to each component. The forms of interaction of

the software elements, such as the components, are the

connection mechanisms. If the connection mechanisms are

complex connectors, they could also have assigned

responsibilities.

A responsibility (Responsibility, Figure 1) represents

the smallest executable unit in this software model.

Moreover, a responsibility is the unit of measurement

because it can be associated with a number of parameters

(QAParameter, Figure 1). These parameters are used to

Architectural Element

Component

Simple Component Composite Component

Responsibility

QA Parameter Measure

Connec�on Mechanism
Connects -components

1..*1
Are_communicated_by

-connectors
* 1

In_charge
-responsibili�es
1..*

-architectural Components

1..*

Has -parameters
1..*1

Are_assigned

-responsibili�es1..*

Quality Indicator

Requires
-measures-reference Values

1..*1..* Uses
-measures -indicators
1..* 1..*

SAView
Structures
-architectural Elements-view

1..*1..*

Func�onal aspects

Structural aspects

Quan�ta�ve aspects

Path Element

Path

Start Point End Point

Causes

-fulfilled Element

-ac�vated Element

*

* 3..*

Is_composed

-paths*

Figure 1. SAEM: software architecture evaluation concepts and their relationships.

Bogado et al. 293

model the behavior of different dynamic aspects that can

be found in a software at the execution time. These para-

meters are related to different quality metrics that provide

measures (Measure, Figure 1) related to quality indicators

(QualityIndicator, Figure 1). The parameters can be used

to create statistics according to the architect’s interests,

which allow for quality objectives to be accomplished. In

this way, the SAEM includes numerical quality attribute

values that provide quantitative analysis capabilities

(Quantitative aspects, Figure 1).

The UCM is composed of paths that may traverse com-

ponents (Path, Figure 1). A path is interpreted as a visual

representation of a scenario (Functional aspects, Figure 1).

Paths are routes along which chains of causes and effects

propagate through the system. The start point of the path is

a waiting place for a stimulus (StartPoint, Figure 1). Its

immediate effect is the execution of the first responsibility

along the path. This in turn is a cause relative to the next

point along the path (relationship Causes, Figure 1); this

pattern continues as the causes accumulate to result in each

next effect. The path ends where the end bar is reached

(EndPoint, Figure 1). The path is considered progressive in

the terms of each point (responsibility) along it advances

the path toward the end.15

A discrete event approach applied to evaluate software

quality from the SA requires a set of steps. Figure 2 shows

the process and elements associated with this approach,

from the user’s requirements (FRs and NFR) to the soft-

ware quality evaluation. This process includes several

activities, some of which must be completed by the

architect.

The first activity involves the synthesis of SA and the

information needed to evaluate its quality guided by the

user requirements (Synthesize the software system,

Figure 2). The SA is represented by a UCM model (prod-

uct SA UCM, Figure 2). This model is a required input to

apply the proposed evaluation approach and provides

instances of the elements that have been captured in the

SAEM, as we have described. These elements are trans-

lated into simulation elements using the SAEM and a set

of transformation rules that define the correspondence

between SA elements and simulation elements in DEVS

(activity Translate SA concepts into simulation elements,

Figure 2). Consequently, the simulation model for the

paths of the given SA view is obtained (Simulation Model

(SAVSM)-DEVS, Figure 2). This view is a particular case

(instance) of the generic simulation model (SAVSM) speci-

fied using DEVS formalism in this contribution.

Process to evaluate SA using DEVS aproach
SA

E
D

EV
S-

ap
pr

oa
ch

A

rc
hi

te
ct

Translate SA concepts into
simulation elements

Integrate the simulation
environment (DEVS-Suite)

Run the simulation

FR

Quality
Scenarios (NFR)

Synthesize the software
system

SA UCM

Add an EF

Design Decisions

Conceptual
Model (SAEM)

Simulation
Model (SAVSM)-

DEVS

Experimental
Frame (SAEEF)-

DEVS

Simulation
Environment (SAESE)

Implementation

Configure the
experimental settings Evaluate the results

Figure 2. Discrete event system specification (DEVS) process to evaluate software quality.

294 Simulation: Transactions of the Society for Modeling and Simulation International 90(3)

On the other hand, the environment that interacts with

the software system is modeled in the EF. The EF includes

information taken from the requirements specification,

particularly from quality scenarios, which enable the start

and end points of paths in the UCM (Figure 1). This model

provides the elements to build an EF adapted to the quality

goals (activity Add an EF and product Experimental

Frame (SAEEF)-DEVS, Figure 2), which define quality

measures that are relevant to the system. This EF is speci-

fied using DEVS formalism and it is added to the simula-

tion environment to ‘‘give life’’ to the software system

that is being simulated.

Both the simulation model and EF are integrated into

the simulation environment (product Simulation

Environment (SAESE) Implementation, Figure 2). The

architect must configure the experimental settings (para-

meters) and run the simulation (Figure 2). Finally, the

architect validates the quality scenarios and makes deci-

sions that can improve the system design using the infor-

mation provided by the execution of the simulation model

(activity Evaluate the results, Figure 2). These design

decisions can modify the SA and its elements or responsi-

bilities to achieve the quality goals.

Although this approach is mainly useful during the early

stages of the software development, it can be applied at any

stage. If a project is new, the view of the SA can be obtained

from user requirements and quality scenarios (NFRs) to

identify elements of the architecture and FRs to extract

responsibilities and the causalities among them. If the proj-

ect is intended to modify an implemented system in use, the

architecture can be obtained by employing tools such as the

SWAG Kit (SA Group, http://www.swag.uwaterloo.ca/

swagkit/) or ‘‘manually’’ (ad hoc) by reconstructing the

architecture elements and identifying the responsibilities.

3.1 Software quality metrics

In this work, metrics related to three quality attributes that

can be measured at runtime are discussed: performance,

availability, and reliability. In our model, the responsibilities

are the main providers of quantitative information, as shown

in Table 1. Indirect metrics can be calculated from the infor-

mation that responsibilities provide. These indirect metrics

are quality indicators of the system, or per intermediate com-

ponents that contain the involved responsibilities (Table 2).

4. Discrete event modeling and
simulation and discrete event system
specification fundamentals in the
software architecture evaluation
context

DEVS is a formalism for simulating discrete event sys-

tems. Furthermore, DEVS defines the system behavior and

structure and has a conceptual framework (Figure 3),

which is composed of three entities:17 a Model (system

specifications, structures, and behaviors required to gener-

ate data comparable to data from the real world), a

Simulator (a computation system that executes the instruc-

tion of the model giving life to it), and an EF (conditions

under which the system is observed, allowing for the

experimentation and validation of the model). These enti-

ties are linked by two types of relationships (Figure 3):

Modeling to represent the system and validate the model

with the real world and Simulation to assure the simulator

correctness. This contribution is focused on the simulation

modeling in the SA evaluation domain. Thus, we have

developed a generic simulation model and EF (Figure 3).

The simulator is provided by DEVSJAVA, which is

embedded in DEVS-Suite 2.1 (http://acims.asu.edu/soft-

ware/devs-suite), encapsulating this part of the frame from

the other two.33 Keeping three independent entities pro-

vides some benefits; for example, the same model can be

executed by different simulators, or several experiments

can be changed to study different situations.

The simulation environment follows the guidelines sug-

gested by Zeigler et al.17 and other authors.34 Atomic and

coupled models are employed to represent the software

entities with different levels of complexity (Figure 4). The

concept Responsibility (Figure 1) is represented by an

atomic parallel DEVS in the simulation model that models

the actual functionality (RM, Figure 4). An additional

atomic model is introduced to represent embedded prob-

lems in the responsibility that can cause failures (FG,

Figure 4). The parameters (QAParamenter, Figure 1) are

allocated in these elements as fixed parameters, which are

used during the simulation to calculate quality indicators

(QualityIndicator, Figure 1). The calculation of these

metrics is explained in Section 6 (Stat elements responsi-

ble for the statistics). SimpleComponent and

ConnectionMechanism (Figure 1) are specified as coupled

Table 1. Measures taken from each responsibility.

ID Metric Description

rta Turnaround time per request Time that a responsibility requires to answer a request (responsibility execution).
fdt Downtime per failure Time that responsibility stays ‘‘failed’’ each time a failure occurs.
frt Recovery time per failure Time that a responsibility needs to return to a normal operation after a failure has occurred.
fn Number of Failures Number of failures that have happened to the moment in a responsibility.

Bogado et al. 295

http://www.swag.uwaterloo.ca/swagkit/

models called SC and CM respectively, whose elements

are one or more responsibilities. These elements can be

parts of CompositeComponent (Figure 1), which is speci-

fied as a hierarchical DEVS called CC, which can be com-

posed by instances of CC, CM, and SC (Figure 4). These

architectural elements are structured by a view (SAView,

Figure 1), which is translated into a hierarchical DEVS

(SAVSM) and represents the simulation model. Finally, the

whole environment is on the top of the hierarchy (SAESE,

Figure 4), where the simulation model (SAVSM) and

experimental frame (SAEEF) are components of it. The

two DEVS models employed in this work are the atomic

parallel model and coupled model.

4.1 Atomic Parallel DEVS

The Atomic Parallel DEVS model has multiple ports to

receive values at the same time. It differs from a classic

DEVS in allowing all imminent components to be acti-

vated and to send their outputs to other components.

Instead of having a single input per port it has a bag of

inputs, with the possible multiple occurrences of its ele-

ments and it has a confluent transition function to solve

collisions between internal and external events. The speci-

fication of this DEVS is as follows:17

DEVS = (X , Y , S, δext, δint, δcon, λ, ta) ð1Þ

Table 2. Indicators for the software architecture evaluation.

Metric Description Used direct metric

Average turnaround time of the system Average time that the system
(software) requires to answer to a
request.

rta
Number of requests

Average throughput of the system Average number of request served per
time unit in the system (software).

Number of requests
Total time

Total downtime of the system Total time that the system (software)
has been offline, considering only the
downtimes.

fdt

Total unavailable time of the system Total time that the system (software)
has been offline, considering the
downtimes and recovery times.

fdt
frt

Total uptime (available) of the system Total time that the system (software)
has been online.

fdt
Total time

Total number of failures of the system Total amount of failures occurred in
the system (software).

fn

Average turnaround time per responsibility Average time that a responsibility
requires to answer to a request.

rta
Number of requests per responsibility

Average throughput per responsibility Average number of requests served
per time unit in the responsibility.

Number of requests per responsibility
Total time

Average downtime per responsibility Average time that a responsibility has
been ‘‘failed’’.

fdt
fn

Number of failures per responsibility Number of failures occurred in a
responsibility.

fn

Model

Simulator
Experimental
Frame Source

System

Modeling
relationship

Simulation
relationship

DEVSJAVA
Implementation
(DEVS-Suite)

SA View - Simulation
Model (SAVSM)

SA Evaluation -
Experimental Frame

(SAEEF)

SA Evaluation - Simulation
Environment (SAESE)

Figure 3. Discrete event system specification (DEVS) modeling and simulation framework in software architecture evaluation
context, based on Zeigler et al.17

296 Simulation: Transactions of the Society for Modeling and Simulation International 90(3)

where

X = {(p, v)|p∈ IPorts, v∈Xp} is the set of input ports and

values;

Y = {(p, v)|p∈OPorts, v∈ Yp} is the set of output ports and

values

S is the set of states;

δext: Q×X� S is the external transition function, where

Q is the set of total states: Q = {(s, e)| s∈ S, 0

≤ e≤ ta(s)}, where e is elapsed time in s;

δint: S� S is the internal state transition function;

δcon: Q×Xb� S is the confluent transition function;

λ: S� Y is the output function;

ta: S�R0
+ is the time advance function.

4.2 Coupled DEVS

A coupled DEVS model specifies which models become

components of it and how they are connected. It is defined

as follows:17

N = (X , Y ,D, fMd jd ∈Dg,EIC,EOC, IC) ð2Þ

where

X = {(p, v)|p∈ IPorts, v∈Xp} is the set of input ports and

values;

Y = {(p, v)|p∈OPorts, v∈Yp} is the set of output ports and

values;

D is the set of component names;

Md represents the component models, d∈D;

EIC 4 {((N, ipN),(d, ipd))|ipN∈ IPorts, d∈D, ipd∈
IPortsd} is the external input coupling;

EOC 4 {((d, opd),(N, opN))|opN∈OPorts, d∈D, opd∈
OPortsd} is the external output coupling;

IC 4 {((a, opa),(b, ipb))|a, b∈D; opa∈OPortsa; ipb∈
IPortsb} is the internal coupling.

5. Simulation model for the software
architecture evaluation: dynamic
software view

The simulation model represents the required elements to

evaluate the quality of software through its architecture by

employing a UCM model. This model is described using a

bottom-up approach, from the leaf-elements of Figure 4 to

the simulation model.

5.1 Responsibility: RM atomic model

RM is an atomic model that represents one FR that must

be satisfied by a component of the SA (Figure 1). The

SA Evaluation - Simulation Environment
(SAESE)

SA View -Simulation Model
(SAVSM)

Responsibility
(RM)

Failure Generator
(FG)

SA Evaluation -Experimental Frame
(SAEEF)

SA Evaluation -
Generator
(SAEG)

SA Evaluation -
Acceptor
(SAEA)

SA Evaluation -
Transducer

(SAET)

SA Evaluation -
Performance

Stat Calculator
(SAEPS)

SA Evaluation -
Availability Stat

Calculator
(SAEAS)

SA Evaluation -
Reliability Stat

Calculator
(SAERS)

1 1

11 n

Connection Mechanism
(CM)

Simple Component
(SC)

Composite Component
(CC)

n

nn nn

n nn n

hierarchical relationship (n means 1 or more
elements)

specialization relationship (Is an element)

A A
A A A

A A A

C C

C

C C

C

A atomic parallel DEVS

C coupled DEVS

Figure 4. Hierarchy of simulation elements (SA Evaluation – Simulation Environment).

Bogado et al. 297

responsibility is the smallest unit of the dynamic elements

in the SAEM, so it is the basis on which to build more

complex dynamic elements. RM takes base measures used

to calculate quality indicators (Table 1).

We propose to model responsibility behavior with five

phases (Figure 5): inactive, active, executing, failed, and

recovering. RM is in phase inactive when the system is not

providing the functionality. RM is in phase active when

the system is ready to provide the functionality. The

responsibility assumes executing when the system is actu-

ally providing the functionality. If for some reason the sys-

tem cannot provide the functionality, the responsibility

goes to phase failed. From here, the responsibility moves

automatically to recovering, which represents the recovery

process that might be required when a failure interrupts

the execution. RM has two input ports (Figure 1): prip and

intfailip. Port prip is connected to the output ports of other

responsibilities for representing the causal relationship

between them. Thus, if two responsibilities are connected

by a link Causes, then the output port (srop) of the fulfilled

responsibility (fulfilledElements, Figure 1) is linked to port

prip of the activated responsibility (activatedElements,

Figure 1). Port intfailip is linked to the failures generator rep-

resenting the problems that might occur in the responsibility.

In this model, a state is indicated by one of the

described phases, a sigma value, and a finite queue of

requests (sequence requests), defined in (5). RM is initia-

lized in inactive (Figure 5), the passive state of waiting for

a request. When a request (requesti) arrives at prip (exter-

nal transition with x = (prip, requesti), Figure 5), RM

changes to active, a transitory state (σ = 0). This transitory

state generates an output indicating that the execution of a

responsibility has been started (internal transition with y =

(stateop, activated), Figure 5). RM then evolves to the

executing phase and remains there during the time

required to process the request if non-failure occurs. The

time that the responsibility requires to execute a response

to a request is specified by the internal transition between

active and executing. The time is computed by function

executionTime(), which follows a probability distribution

according to the features of the responsibility in a particu-

lar system; this parameter is set by the architect, otherwise

it is assumed uniform by default. After processing the

request, RM returns to the initial state (inactive) if the

queue of pending requests is empty; otherwise, the RM

stays in the executing stage processing the next request.

When RM is in executing, it can stop its execution due

to a failure. To model the behavior of the internal failures,

this DEVS can be coupled to a failure generator (FG). The

failure event (failk) arrives at intfailip (external transition

with x = (intfailip, failk), Figure 5). Therefore, RM changes

to state failed, where the time in this state is defined by the

function downtime(failk). This function defines the down-

time according to the particular failure and responsibility,

following a defined behavior set by the architect (or uni-

form as the default). Once this time is over, RM changes to

recovering. The responsibility can immediately recover

from a failure (σ = 0) or can require additional time to

return to the normal execution. This time is defined by the

function recoveryTime(), which returns time values

according to the failure and responsibility, following a

probability distribution defined by the architect (by

default, this behavior is uniform). We have assumed that

the responsibility involves the task of defining its execu-

tion time and its recovery time when a failure occurs,

depending on its features. However, the downtime due to

failure is defined by the type of the failure, which is speci-

fied at the moment in which the failure is generated

by FG.

RM is in charge of emitting three types of output values

related to the requests (data of interest for other entities of

the model), to its state, and to the values used for

requesti

requesti

failk
failnumj (failure number)

tami,j (turnaround time for request i)

dtimek,j (time in failed due to a failure k)

rtimek,j (time needed to recover from a failure k)

[activated|finished]

External transition
Internal transition

RM: Atomic DEVS

intfailip

srop

inactive

executing

recovering

failedactive

σ=0

x=(prip,requesti)

x=(intfailip,failk)

prip

rtop

dtop

taop

stateop

failop

y=(dtop,dtimek,j)^
(failop,failnumj)

y=(rtop,rtimek,j)

y=(taop,tami,j)^
(srop,requesti)

y=(stateop,activated)

y=(taop,tami,j)^
(srop,requesti)^
(stateop,finished)

x=(prip,requesti)

y=(rtop,rtimek,j)

Figure 5. RM (responsibility), atomic discrete event system specification (DEVS) with state transition diagram including the
interface, structure, and dynamics.

298 Simulation: Transactions of the Society for Modeling and Simulation International 90(3)

measuring quality attributes. srop (Figure 5) emits the

requests to the next responsibility determined by the rela-

tionship Causes (Figure 1). Each event is sent when the

responsibility finishes processing the request (internal

transitions with y = (srop, requesti), Figure 5). stateop

sends the value activated to indicate that the responsibility

has started the activity (internal transition with y = (sta-

teop, activated), Figure 5), and the value finished to indi-

cate that it returns to state inactive when no requests are

pending (internal transition with y = (stateop, finished),

Figure 5). The other output ports are used to send mea-

sures (Table 1) to the entities of the EF that are in charge

of calculating quality indicators. In this way, a value that

indicates the turnaround time for a request (tami,j) is sent

to SAEPS from taop (internal transitions with y = (taop,

tami,j), Figure 5), the time (dtimek,j) that the responsibility

was ‘‘failed’’ due to a failure is sent to SAEAS from dtop

(internal transition with y = (dtop, dtimek,j), Figure 5), the

time needed to recover (rtimek,j) from a ‘‘failed’’ situation

is sent to SAEAS using rtop (internal transitions with y =

(rtop, rtimek,j), Figure 5), and the number of the failure k

(failnumj) is sent to SAERS using failop (internal transition

with y = (failop, failnumj), Figure 5).

The Responsibility is formally specified in DEVS as

follows:

RM = XRM ; YRM ; SRM ; δext;RM ; δint;RM ; δcon;RM ; λRM ; taRM

� �

ð3Þ

where

XRM = f p, vð Þjp∈RIP, v∈XRM, pg ð4Þ

is the set of input ports and values. RIP = {prip, intfailip}

is the set of input ports, XRM,prip = {requesti|i = 1..n} is the

set of requests (i is the request ID and n is the number of

requests), XRM,intfailip = {failk |k = 1..q} is the set of the fail-

ures (k is the failure ID and q is the number of failures).

SRM = inactive, active, executing, failed, recoveringf g
×R0

+ ×XRM, prip* ð5Þ

is the set of sequential states. XRM,prip
* is a sequence of

requests.

YRM = f p, vð Þjp∈ROP, v∈ YRM,pg ð6Þ

is the set of output ports and values. ROP = {srop, stateop,

taop, dtop, rtop, failop} is the set of output ports, YRM,srop

= {requesti|i = 1..n} is the set of requests, YRM,stateop =

{activated, finished} is the set of responsibility macro

states, YRM,taop = {tami,j| i = 1..n, tami,j∈R0
+} is the set of

turnaround times for requests i by the responsibility (j =

responsibility ID), YRM,dtop={dtimek,j|k = 1..q, dtimek,j

∈R0
+} is the set of times that the responsibility was failed

due to a failure k, YRM,rtop = {rtimek,j| k = 1..q,

rtimek,j∈R0
+}+} is the set of times required by the

responsibility to recover from a failure k, and YRM,failop =

{failnumj| failnumj∈ Z0
+} is the set of number of failures

in the responsibility.

External transition function (δext, RM):

δext,RM((inactive, σ, requests), e,(prip, requesti)) = (active,

0, add(requests, requesti))

where σ is the time remaining in the state, e is the elapsed

time in the state and add(requests, requesti) is a function

that returns a sequence with the value requesti appended to

the queue (sequence) requests.

δext,RM((executing, σ, requests), e, (intfailip, failk)) =

(failed, dtime, requests)

where dtime = downtime(failk) that returns a value that rep-

resents the time that the responsibility will be unavailable

because of the failure failk.

δext,RM((executing, σ, requests), e, (prip, requesti)) =

(executing, σ-e, add(requests, requesti))

Internal transition function (δint, RM):

δint,RM(active, σ, requests) = (executing, etime,

rem(requests))

where etime = executionTime(get(requests)), a function

that calculates time execution following a probability dis-

tribution. Function get(requests) returns the first element

of the sequence requests. Function rem(requests) removes

the first element of the sequence requests, and returns the

updated sequence.

δint,RM(executing, σ, requests) = (inactive, N, requests), if

requests is empty.

δint,RM(executing, σ, requests) = (executing, etime, rem(re-

quests)), if requests is not empty

where etime = executionTime(get(requests)).

δint,RM(failed, σ, requests) = (recovering, rtime, requests)

where rtime = recoveryTime(), which calculates the time

required to return to a normal state following a probability

distribution.

δint,RM(recovering, σ, requests) = (inactive, N, requests),

if requests is empty.

δint,RM(recovering, σ, requests) = (executing, etime,

rem(requests)), if requests is not empty

where etime = executionTime(get(requests)).

Confluent transition function (δcon, RM):

δcon,RM(s,ta(s), x) = δext,RM(δint,RM(s), 0, x)

Output function (λRM):

λRM(active, σ, requests) = (stateop, activated)

λRM(executing, σ, requests) = (stateop, finished) ^ (taop,

tami,j) ^ (srop, requesti), if requests is empty

λRM(executing, σ, requests) = (taop, tami,j) ^ (srop,

requesti), if requests is not empty

λRM(failed, σ, requests) = (failop, failnumj) ^ (dtop,

dtimek,j)

λRM(recovering, σ, requests) = (rtop, rtimek,j)

Time advance function (taRM):

taRM (s) = σ.

Bogado et al. 299

The quantitative aspects in the conceptual model

(Figure 1) are modeled as fixed parameters of the atomic

model or as measures. Thus, adding parameters to RM will

allow for the evaluation of quality attributes under differ-

ent scenarios of the system. QAParameter (Figure 1) is

represented in this DEVS as fixed parameters, which are

used to model the behavior of the execution time and the

recovery time (ref_execution_time and ref_recovery_time).

They reference values that are defined according to a

probability distribution; they could represent a mean value

(e.g., exponential) or a limit (e.g., uniform).

5.2 Failure generator: FG atomic model

A system failure occurs when the system no longer deli-

vers a service consistent with the specification, where such

the failure is observable by the users, either humans or

other systems.3 In this way, the Failure Generator (FG,

Figure 6) was included into the simulation model to repro-

duce failures that can be introduced by a fault or error of

developers or by other sources. In this model, we consider

situations that cause system problems, where there is a

downtime associated with the failure.

The architect can choose whether to include this ele-

ment. We prefer to keep the FG (Figure 6) decoupled from

the responsibility (RM, Figure 5) to obtain a more flexible

model. The situation where the responsibility does not

have failures is modeled without this element. However, if

the architect needs to model different scenarios where the

software elements can fail, the corresponding responsibil-

ity can be related to an instance of this element. Although

a failures generator can be modeled in the EF, a generator

per responsibility allows the treatment of failures follow-

ing the principle of modularity. This principle assumes

that the failures of each software element (responsibility)

are independent from other responsibilities, that develo-

pers or other sources introduce errors in an independent

form in each responsibility, and that the complexity of the

responsibility is different from the others, depending on

the type of functionality it represents.

Figure 7 shows an instance of RM (r1) coupled to an

instance of FG (fgr1) to introduce the probability of fail-

ure. Another concept associated with a failed system is the

time required to repair it. In the simulation model, this

time can be considered by setting the corresponding para-

meters (ref_recovery_time) in the responsibility.

FG is coupled to the responsibility associated with it by

its input and output ports (Figure 7). FG has an input port

(Figure 6), rstateip, which receives the state values sent by

the responsibility associated to it. When the responsibility

is active, this generator can emit failures for each given

time period. The values are emitted using the output port,

failop, and represent failures (failk). FG remains in phase

active until the responsibility returns to a passive phase

(inactive). Internally, this element changes from active to

active each time, by an internal transition, to emit the fail-

ures. This interval of time is defined by the function

timeBetweenFail(). The formal specification of this

r1:RM
inactive

executing

recovering

failedactive

��� failop
rtop

srop
prip

dtop
failip

taop
stateop

failkfgr1:FG
failop

rstateip
inactive

active

[activated|finished]

Figure 7. Failure generator (instance of FG) and its relationship
with the responsibility (instance of RM).

[activated|finished]

failk

FG: Atomic DEVS

rstateip

failop

inactive

active

x=(rstateip,activated)

x=(rstateip,finished)

y=(failop,failk)

External transition
Internal transition

Figure 6. FG, atomic discrete event system specification (DEVS) with state transition diagram including the interface, structure, and
dynamics.

300 Simulation: Transactions of the Society for Modeling and Simulation International 90(3)

element as parallel atomic model is provided in Appendix

A, Section A.1.

5.3 Architectural elements: SC, CM, and CC
coupled models

In this work, we propose three architectural elements that

are necessary to build a SA: a simple component, connec-

tion mechanism, and composite component. Their structure

and interfaces conform to a hierarchical representation,

where each one can be modeled as a coupled DEVS with

its own internal components.

The simple component in the SA domain is in charge of

a set of responsibilities (In_charge, Figure 1). The respon-

sibilities are linked among them by a cause–effect relation-

ship, where the fulfilled responsibilities activate other

responsibilities by sending requests. Therefore, a coupled

model called SC is defined to model this structure and

behavior (Figure 8), where the relationships between the

simple component and their responsibilities can be repre-

sented as a hierarchy of DEVS models. The responsibil-

ities, or instances of RM, are linked through their input/

output ports following cause–effect relationships specified

in the SA model.

The input interface of SC (Figure 8) propagates the val-

ues to the internal components (responsibilities). The inter-

face has a port called peip that receives requests (requesti)

from the previous elements (instances of SC, CM, or CC

according to the SA) and is connected to the input ports of

the corresponding responsibilities (instances of RM). The

requests that arrive at this port indicate that the previous

elements have finished their execution to answer to the

initial request. The output interface is represented by a set

of output ports (Figure 8) and propagates events generated

by the components of this model (instances of RM) to

other simulation elements. SC has five output ports: seop

emits events to the successor elements (requesti) from the

corresponding responsibility, which is the last in the causal

flow; taop returns the corresponding turnaround time

(tami,j – metric calculated in each responsibility); dtop pro-

pagates the emitted values from the dtop of each responsi-

bility; rtop propagates the emitted values from the dtop of

each responsibility; and failsop propagates the emitted val-

ues from the failop of each responsibility. The last four

ports send measures, which are propagated following the

hierarchy of elements to SAVSM that sends these values to

the EF to calculate the system metrics.

SC has a set of components (DSC), where each compo-

nent is an instance of RM (MSC). The responsibilities are

connected using the ports defining the internal couplings

(ICSC), which obey the causal relationship between respon-

sibilities. If each responsibility has the possibility of fail-

ures, SC can also have components that are instances of

FG (MSC), which are coupled as explained in the previous

section. The responsibilities that are part of a simple com-

ponent compound a set of causal flows. The first responsi-

bilities of that causal flow are connected to input port peip

of SC (EICSC), the last responsibilities of the causal flow

are linked to output port seop of SC, and all responsibil-

ities are connected to the corresponding output ports that

propagate the measures defining the external output cou-

plings (EOCSC).

Another software element is the connection mechan-

ism, which could be included into a SA model depending

SC: Coupled DEVS

failop

seop

rtop

r1:RM
inactive

executing

recovering

failedactive

��� failop

rtop

stateop
srop

prip

dtop
failip

taop

r2:RM
inactive

executing

recovering

failedactive

��� failop

rtop

stateop
srop

prip

dtop
failip

taop

dtop

rm:RM
inactive

executing

recovering

failedactive

��� failop

rtop

stateop
srop

prip

dtop
failip

taop

taop

to r3

from rm-1

………………………….

peip

from previous elements
(instances of SC, CM or

CC)

to next elements
(instances of other SC,

CM or CC)

to SAEEF
(using the

corresponding ports of
SAVSM)

Figure 8. SC, simple component with a set of responsibilities considering that they are free of failures.

Bogado et al. 301

on the level of detail that the architect wants to represent

in the model. There are many approaches, but the use of

this element is not standardized. The connection mechan-

ism (ConnectionMechanism, Figure 1) represents a con-

nector between two software components and, like the

simple component in the architectural model, might be in

charge of a set of responsibilities. In this work, we have

decided to include this element, providing more flexibility

in the simulation model, which decouples elements to

provide more tools to the architect at the moment of

modeling the architecture to be evaluated. The specifica-

tion follows the same principles written for the simple

component, resulting in a coupled model called CM. The

last architectural element is the composite component

(CompositeComponent, Figure 1). This element is a com-

ponent that can contain a set of other simple or composite

components. The interface of this component is the same

as the simple component, with equal ports. The interface

only differs in the type of elements that can be coupled,

including instances of SC, CM (if it is used to connect the

components of the architecture), and other instances of

CC. Because these two elements are similar to the simple

component, we omitted a detailed description and the

mathematical definition in this work.

5.4 SA view – simulation model: SAVSM
hierarchical model

The SA view has a set of software elements; it is the high-

est level of abstraction. The view is translated into a hier-

archical model and defined as the previous coupled model.

This entity represents the simulation model for the SA

view (Figure 9). The components of this DEVS are

instances of simple components (SC), composite compo-

nents (CC), or connection mechanisms (CM), where CC

can have instances of other coupled models (SC, CM, or

CC), SC, and CM that can contain instances of RM (atomic

DEVS) or FG (atomic DEVS). The components of the

simulation model are related through the corresponding

couplings creating this complex model (SAVSM), which

communicates with the environment. The environment is

represented under the concept of the experimental frame

(SAEEF – explained in the next section).

6. Experimental frame for the software
architecture evaluation: system
environment

The EF represents the environment that interacts with the

evaluated system and is used to simulate the dynamic view

of software to obtain data produced by the system under

specified conditions. Zeigler et al.17 have suggested three

elements: Generator (provides input segments to the sys-

tem), Transducer (observes and analyzes the system output

segments), and Acceptor (monitors experiments to verify

the desired conditions). Therefore, the EF for the SA eva-

luation acts as a stimulus provider, a measurement calcula-

tor, and an observer, where these types of elements were

adapted to the context of the SA evaluation.

6.1 SAE generator: SAEG atomic model

The generator is in charge of producing events that feed

the simulation model (stimulus). The output events repre-

sent requests that the users or external systems ask to the

simulated software system. The generation of events

(requests) is conducted in a random way following a prob-

ability distribution. The architect should choose the most

appropriate distribution. Formally, the requests generator

is an atomic DEVS called SAEG specified in Appendix A,

Section A.2. To represent the interface (Figure 10), we

to SAEEF

ccx:CC

scm+1:SC

scm+r:SC

seop

failop
rtop

peip

dtop

taop

sc1:SC

r1:RM

rn:RM

seop

taop

failop
rtop

peip

dtop

SAVSM: Hierarchical DEVS
esop

rfailop

erip

rrtop

rdtop

rtaop

cc1:CC

sc2:SC

scm:SC

dtop

seop

taop

failop
rtop

peip

to next element

from previous element

…………………………………………….

from SAEEF

Figure 9. SAVSM (SA view), hierarchical discrete event system specification (DEVS) that represents the simulation model.

302 Simulation: Transactions of the Society for Modeling and Simulation International 90(3)

have defined an input port, ssip, that receives the values of

a control variable that drives the simulation and an output

port (rop) from which this element emits the requests

(requesti) to the system that is being evaluated. Initially,

the generator is in phase inactive, where it stays until

value start arrives at ssip. Then, SAEG passes to busy

(Figure 10), the phase in which the active system remains

until another external event (stop value that arrives at ssip)

indicates the end of the operation, thus returning to state

inactive again (Figure 10). The internal transitions in busy

generate the outputs. This element includes the function

timeBetweenRequest(), which is responsible for calculating

the time that elapses between output event generations.

This function employs one fixed parameter, ref_mtbr, to

specify the mean time between failures.

6.2 SAE performance stat calculator:
SAEPS atomic model

This simulation element calculates metrics related to sys-

tem performance and is an atomic parallel DEVS called

SAEPS. The interface and dynamics are formally defined

in Appendix A, Section A.3 (Figure 11). This element has

a port that receives values of a control variable, ssip, and a

port, rtaip, that receives the turnaround time measure of

the responsibility j after ‘‘serving’’ the request i (tami,j).

The other two ports, sentreqip and procreqip, receive the

request when it is sent by SAEG and after finishing the

causal flow in the system (a response was given), respec-

tively. Thus, the corresponding times are verified. SAEPS

remains in inactive until an external event (start) arrives

and then changes to the phase calculating (Figure 11),

where it continues receiving inputs from rtaip, sentreqip,

and procreqip until another external event indicates the

end of the simulation (stop value from ssip). At this point,

the state changes to resultant (Figure 11), and then to

inactive again. This entity is mainly driven by external

transitions, as shown in Figure 11. SAEPS first records

base measures of each responsibility (adding the values

tami,j to rtatimes), sent requests in srequests and processed

requests in prequests, and then returns indicators. An inter-

nal transition occurs when this element is in state resul-

tant, changing to inactive immediately (Figure 11). A port

for each system indicator is defined (Figure 11), staop and

sthop to emit stam (system turnaround time) and

sthm (system throughput) (Table 2). These metrics are

calculated by functions computeSystemAvgTa() and

computeSystemThr(), respectively. Furthermore, a log

tracking with information per responsibility to calculate

performance metrics related to each responsibility is main-

tained (Table 2).

6.3 SAE reliability stat calculator:
SAERS atomic model

This simulation element uses information related to fail-

ures with the purpose of analyzing the reliability of the

software. In this way, this element calculates the total fail-

ures per responsibility and the total failures of the system.

These indicators can show the system weaknesses and the

level of reliability. This element is defined as an atomic

model called SAERS (Figure 12), and its structure and

dynamics are similar to SAEPS (specified in Appendix A,

Section A.4). SAERS has a port that receives values of a

control variable, ssip, and a port that receives the failures

from each responsibility when they occur, rfailip. This

simulation element initiates in inactive; when start arrives

at ssip, it changes to calculating, where it keeps listening

to the failure messages sent by each responsibility of the

architectural view (simulation model). SAERS creates a

register of the failures by adding these values to rfails.

When stop arrives at ssip, this element changes to

SAEG: Atomic DEVS

ssip

rop

inactive

busy

[start/stop]

requesti

x=(ssip,start)

x=(ssip,stop)

y=(rop,requesti)

External transition
Internal transition

Figure 10. SAEG, atomic discrete event system specification (DEVS) with state transition diagram including the interface, structure,
and dynamics.

Bogado et al. 303

resultant and then to inactive again, returning the system

failures (sfm, Table 2) using port sfailsop. Internally,

SAERS has a log tracking of the reliability information per

responsibility (Table 2).

6.4 SAE availability stat calculator:
SAEAS atomic model

This simulation element takes information about the down-

time, uptime, and recovery time of each responsibility to

calculate quality indicators that show the time in which the

system is available and the time in which it is unavailable.

This atomic DEVS is called SAEAS (Figure 13, specified

in Appendix A, Section A.5). The input interface has ports

for receiving values of a control variable, ssip, and values

for the calculation of availability indicators, rdowntimeip,

rrecovtimeip, and rfailip. rdowntimeip receives values of

the time during which a responsibility was not executing

due to a failure (dtimek,j), rrecovtimeip receives the time

that a responsibility is needed to recover from a failed state

(rtimek,j), and rfailip receives the number of failures that

occurred in a responsibility (failnumj). This element works

like SAEPS and SAERS and saves the values in internal

records (rfails, rdowntimes, rrecovtimes) to be used in the

calculations. When stop arrives at ssip, it changes to resul-

tant and then automatically to inactive again, returning the

indicators using savailop and sunavailop (system uptime-

sam- and unavailable time-suam, Table 2). Furthermore,

this element has a log tracking of availability information

per responsibility (Table 2).

6.5 SAE acceptor: SAEA atomic model

The acceptor controls the beginning and the end of the

simulation (Figure 14). The end condition may be set by

the architect. In the basic case, the condition is the

SAEPS: Atomic DEVS

ssip

staop

sthop

rtaip
stam (system turnaround time)

sthm (system throughput)

[start|stop]

procreqip

sentreqip

requesti

requesti

tami,j

x=(ssip,start)

x=(ssip,stop)y=(staop,stam)^
(sthop,sthm)

External transition
Internal transition

inactive
calculating

resultant

σ=0

x=(rtaip,tami,j)|
(sentreqip,requesti)|
(procreqip,requesti)

Figure 11. SAEPS, atomic DEVS with state transition diagram including the interface, structure, and dynamics.

SAERS: Atomic DEVS

x=(ssip,start)
ssip

sfailsoprfailip

y=(sfailop,sfm)

sfm (number of system
failures)

[start|stop]

failnumj

x=(ssip,stop)

External transition
Internal transition

inactive calculating

resultant

σ=0

x=(rfailip,failnumj)

Figure 12. SAERS, atomic discrete event system specification (DEVS) with state transition diagram including the interface,
structure, and dynamics.

304 Simulation: Transactions of the Society for Modeling and Simulation International 90(3)

simulation time during which the system behavior is

observed; in other cases, system constraints could be built

by more complex conditions. We have included this com-

ponent in the EF to encapsulate the experimental condi-

tions in a simulation element, which provides: flexibility

(conditions may be changed or be more complex) and

dynamic control (the simulation end can be set by the

architect according to the needs). In DEVS, this element is

specified as an atomic parallel model called SAEA

(Appendix A, Section A.6). SAEA has an input port, sip,

which receives start to indicate the beginning of the eva-

luation (simulation). Phase inactive is passive, while active

is a transitory state that indicates the environment is ready

for the simulation. Finally, phase simulating (Figure 14)

indicates that the evaluation is being processed, where the

system is observed and the metrics are calculated. Two

possible internal transitions can occur: one when the entity

immediately passes from the active transitory state to

simulating, and another when the simulation time has

elapsed passing from simulating to inactive. The acceptor

emits events to stop the execution when the objectives are

achieved in the studied system.

6.6 SAE experimental frame: SAEEF coupled model

The EF is formally defined as a coupled model called

SAEEF, where the external interfaces, components and

their relationships are shown in Figure 15. SAEEF is

coupled with SAVSM to interact, providing a stimulus to

the system and obtaining information that can be useful to

analyze the quality of the software.

SAEEF has a set of input ports and values, where the

input ports propagate the values to the corresponding com-

ponents. This simulation element has six input ports

(Figure 15): procreqip receives the output requests from

esop (output port of SAVSM); rtaip, rfailip, rdowntimeip,

SAEAS: Atomic DEVS

ssip

savailoprdowntimeip

rrecovtimeip

rfailip

sunavailop
y=(savailop,sam) ^
(sunavailop,suam)

x=(ssip, start)

x=(ssip, stop)

[start|stop]

failnumj

rtimek,j

dtimek,j
sam (system uptime)

suam (system downtime)

External transition
Internal transition

inactive
calculating

resultant

σ=0

x=(rdowntimeip,dtimek,j)|
(rrecovtimeip, rtimek,j)|

(rfailip,failnumj)

Figure 13. SAEAS, atomic discrete event system specification (DEVS) with state transition diagram including the interface,
structure, and dynamics.

SAEA: Atomic DEVS ssop

inactive active

simulating

x=(sip, start)

y=(ssop,start)y=(ssop,stop)

start

[start|stop]

sip
External transition
Internal transition

Figure 14. SAEA, atomic discrete event system specification (DEVS) with state transition diagram including the interface, structure,
and dynamics.

Bogado et al. 305

and rrecovetimeip receive values required to calculate

quality metrics from the corresponding ports of SAVSM

(rtaop, rfailop, rdtop, and rrtop, respectively); and sip

receives the initial signal to begin the evaluation. These

values are sent to the corresponding components of this

model, which are defined in the external input couplings

(EICSAEEF). The set of components that are part of this EF

are references to instances of atomic components defined

in the previous sections (MSAEEF,d, whose components

are saea, saeg, saeps, saers, and saeas, as shown in

Figure 15). The relationships among these components are

defined as internal couplings (ICSAEEF). As another part of

the interface, this DEVS has a set of output ports and val-

ues, where the output ports propagate the events generated

by the components of the frame to other entities (external

or internal to the simulation environment). This element

has six output ports (Figure 15): staop to emit the system

turnaround time; sthop to emit system throughput; sfailsop

to send a message with the total failures of the system;

savailop to send a message with the total time that the sys-

tem was available (uptime); sunavailop to send a message

with the total downtime of the system; and rop to send

messages (requesti) to the system. The external output

couplings (EOCSAEEF) specify which element provides the

values and from which ports the values are propagated to

other entities.

The entire environment has two parts that interact to

fulfill the specified goals, as we have described in Section

4, Figure 4. This simulation environment is represented as

a hierarchical model called SAESE (SA Evaluation –

Simulation Environment), which includes an instance of

SAVSM and an instance of SAEEF. The specification of

interfaces, components, and corresponding couplings are

defined in a similar form as previous coupled models, so

we have omitted the mathematical specification here.

7. Implementation and testing of the
simulation environment

As introduced in Section 4, the proposed simulation envi-

ronment is modeled in two main conceptual parts: a simu-

lation model for SA evaluation and an EF for SA

evaluation. These entities are decoupled from the simula-

tor, which is taken from the DEVSJAVA implementation

that encapsulates this part from the others.33 DEVSJAVA

(DEVS-Suite 2.1) is a library that provides a set of

packages to implement DEVS models. A modeling pack-

age contains class devs, which is a superclass of the

classes Atomic and Coupled, and class Digraph that inher-

its from the last class. Furthermore, there are two specia-

lized classes –ViewableAtomic (extended from class

Atomic) and ViewableDigraph (extended from class

Digraph) – which add the user interface to the basic mod-

els. Therefore, the proposed simulation elements of the SA

Evaluation – Simulation Environment (Figure 4), Software

Architecture View – Simulation Model and Software

Architecture Evaluation – Experimental Frame, are imple-

mented using this set of libraries and the JAVA program-

ming language. The simplest elements are responsibilities,

which are atomic DEVS in the simulation model (formal

specification); therefore, this concept is implemented as a

subclass of the class ViewableAtomic. In this way, the

internal, external, and confluent transition functions, and

the output function are rewritten according to the specifi-

cation of RM, which defines the corresponding parameters.

When failures are taken into account, one failure generator

is coupled to each responsibility. Failure generator is

another atomic DEVS (FG) implemented as a subclass of

the class ViewableAtomic. The other elements of the simu-

lation model (SC, CM, and CC) are more complex struc-

tures being coupled and hierarchical DEVS. Therefore,

Performance
metrics

Reliability
metrics

Availability
metrics

to SAVSM

start

from SAVSM SAEEF: Coupled DEVS
staop

rop

rtaip

sthop

sip

procreqip

rrecovtimeip

rfailip

rdowntimeip

sfailsop

savailop

ssopsip

saea:SAEA

i t

i

saeg:SAEG
ropssip

i t

saeps:SAEPS

i t

i
staop

sthop
ssip

sentreqip
procreqip

rtaip

sunavailop

saers:SAERS

sfailsop
ssip

rfailip

i t

i

saeas:SAEAS

sunavailop

savailop
rrecovtimeip
rdowntimeip

ssip

rfailip

i t

i

Figure 15. SAEEF, coupled discrete event system specification (DEVS) that represents the experimental frame.

306 Simulation: Transactions of the Society for Modeling and Simulation International 90(3)

they are implemented as subclasses of class

ViewableDigraph, where each one is composed of

instances of the corresponding elements. Finally, the SA

view (SAVSM), which represents the highest level of the

SA, is implemented using the class ViewableDigraph,

which contains instances of the implementations of SC,

CM, or CC with the corresponding couplings. In the EF,

the simplest simulation elements (atomic DEVS), such as

generator (SAEG), acceptor (SAEA), and stat calculators

(SAEPS, SAEAS, SAERS) are implemented as subclasses

of the class ViewableAtomic. The more complex simula-

tion elements (SAEEF and SAESE) are implemented as

subclasses of the class ViewableDigraph.

DEVS-Suite (2.1) provides a Parallel DEVS simulator,

which is encapsulated from the model and the EF. In this

way, the three parts of the DEVS framework allow for the

realization of the simulation. Furthermore, this DEVS-

Suite provides support for automating the design of

experiments in combination with animated models and

generating data trajectories at runtime. This environment

allows for the instantiation of the implemented DEVS, the

structural validation of the simulation elements, and the

dynamics of each element through manual tests. Moreover,

this application provides tools for designing and imple-

menting experiments and for testing the ports (interfaces of

the models), and provides graphical assistance to visualize

the internal changes (states and parameters) and the events

that are sent between elements. This tool allowed us to

conduct unit tests (each simulation element – atomic) and

integration tests (each complex element – coupled) for an

internal verification of the operation, and validation tests

for external results.

8. Case study

With the purpose of understanding the entire simulation

environment for the evaluation of a SA and attempting not

to confuse the reader with the complexity of the SA, a

clear architecture was selected to illustrate the proposal.

The idea was to appreciate how a SA view is translated

into an executable model inside of a simulation environ-

ment and to focus on the EF, which is an important part to

evaluate the software quality.

A real software system, its SA, actual setting, historical

data, and expert opinion were used to analyze the simula-

tion model (SAVSM) and to validate the results of the

simulation. Firstly, we specified the part of the system to

be analyzed (subsystem), FRs, NFRs, and quality scenar-

ios. Then we obtained the SA view of the system, its ele-

ments, and relationships. The responsibilities were taken

from FRs and were assigned to the architectural elements

building the UCM. This view was translated into SAVSM,

the experimental frame (SAEEF) was added to the simula-

tion model to build the simulation environment, and the

required information (setting parameters) was set to run

the simulation.

8.1 Software architecture: application

The studied system is a software management tool com-

monly used by software factories or other organizations to

control their systems licenses. The license manager soft-

ware (LM), provided by a software factory, controls where

and how their software products are able to run (clients).

This system has a clear architecture, where each element

is clearly defined. Moreover, this system is a traditional

example of a SA design, where the two main parts are the

server (LMServer) and client (LMClient). Each one has a

set of components represented by a pipe and filter pattern

whose responsibilities define a causal flow of execution.

The problem was limited to model the main elements

required to understand the concepts presented in the simu-

lation model (Figure 16): view, simple and composite

components, and responsibility. To have a comprehensible

model, connectors were omitted in this example because

they only have the responsibility of passing information

from one filter to the next. However, they can be easily

included in a more detailed simulation model as instances

of CM, which can be applied as SC. The proposed simula-

tion model provides the required elements to introduce

these entities in the evaluation for careful study.

The server is focused on the creation of software

licenses (license file generator, LMServer in Figure 16).

This composite element was designed with a pipe and fil-

ter pattern, which is applied to represent the elements that

participate in this process by implementing the transforma-

tion of a sequence of three filter components (Creator,

Codifier, and Encryptor). Component Creator takes the

input data (organization name, license date, days counter,

license time, etc.) needed to generate the software license

and creates a plain text file with these data. Component

Codifier is in charge of generating a unique identifier

(hash) that depends on the content of the input file, and

saves this identifier with input file information in another

text file. Component Encryptor takes as input the hash file

with the private key and generates the encrypted file with

the digital firm that certifies the authentication of this final

document. Therefore, the source provides the data for the

license and the sink receives a file that includes the data,

hash (identifier) and the digital firm (Enterprise). Table 3

presents the responsibilities of the SA components of

LMServer (Creator, Codifier, and Encryptor).

The other composite component, LMClient (Figure 16),

represents the client subsystem, which has three compo-

nents or filters (Decryptor, Authenticator, Recorder).

Decryptor is in charge of decrypting the received file that

was generated by the server component. This is a plain text

file that contains license data and a digital firm, which is

encrypted with a unique identifier inside (hash). Therefore,

Bogado et al. 307

this component decrypts the firm with the public key and

sends the file with this information to the following compo-

nent. Authenticator receives the file and the identifier (hash).

Then, this component subtracts the identifier (hash) using

the content of the file by following an algorithm and then

compares these two identifiers. The authenticator then sends

the file and the result to the next component. Recorder takes

the authenticated information (file and result) and updates

the license information in the client database if the result is

correct; otherwise, this component blocks the user system,

when an error in the license data is detected. Table 3 details

the responsibilities of these SA elements.

Figure 16 shows the SA view using the UCM notation.

This model represents the entities that have a presence at

runtime. In particular, architectural components responsi-

ble for a ‘‘process’’ and their responsibilities, which are

extracted from the specified functionalities, represent

executable units. The UCM represents the architectural

elements with functional aspects, considering not only

quality requirements, but also FRs. The responsibilities

have causal relationships. Stimulus begins an execution

flow and obtains a result as response.

The system is online in a server, waiting for the signal

that indicates the system must start the process of valida-

tion of the license for a client. An external system controls

the dates; if the customer has not paid the licenses, the sys-

tem blocks the clients using another part of the system in

charge of it. However, if the customer has paid the license

on time, this subsystem is activated and a request to gener-

ate the updated license (license extension) is sent to this

subsystem (LM System), which then initiates the license

validation process.

Figure 16. Use Case Map model of the software architecture view of the LM system.

Table 3. Elements of the software architecture (SA) of the LM system and their assigned responsibilities.

Elements of the SA Responsibilities

Composite Simple ID Description

LMServer Creator r1 Receiving the license data.
r2 Creating a plain text file

Codifier r3 Generating an unique identifier (hash)
r4 Saving the identifier and input data in other plain text file

Encryptor r5 Encrypting the license file
LMClient Decryptor r6 Receiving the license file

r7 Decrypting the digital firm with the public key (from client side)
Authenticator r8 Authenticating data comparing the corresponding information

r9 Sending the data with a report
Recorder r10 Receiving the authenticated data

r11 Saving the corresponding data in a DB (information about the correct or error data)

308 Simulation: Transactions of the Society for Modeling and Simulation International 90(3)

The LM subsystem is essential to the correct operation

of the licenses control system. Thus, it is important to ana-

lyze its behavior to find problems that can cause more

latency or errors that prevent the correct execution of the

key components. Errors might block the systems under

control, causing problems to the customers, especially

when their systems are critical for the organization.

Figures 17 and 18 show two important quality scenarios

that the SA must fulfill, which have been specified follow-

ing the template suggested by the SEI.3 These scenarios

allow architects to delimit the subsystem that will be eval-

uated, making explicit the portion of the system that is

being stimulated. Figure 17 shows a scenario where an

external user is a source of stimuli and the artifact is the

entire system. This user requests authentication and the

system should answer in a specified turnaround time.

This situation represents a typical performance scenario.

Figure 18 presents an availability scenario that describes a

failure in the process of the LM system, and the time dur-

ing which LM is unavailable.

8.2 Simulation model and experimental settings

The SA is translated into a discrete event simulation

model. Four types of elements are identified in the SA of

the designed system: view, composite components, simple

components, and responsibilities. Following a bottom-up

viewpoint, we transformed the elements from atomic to

more complex structures. The smallest architectural units

are the responsibilities, so each instance of Responsibility

is translated into an instance of RM in the simulation

model (SAVSM). Responsibilities are connected using their

corresponding ports to represent the causal relationships

between them (the UCM model). In this way, these cou-

plings build more complex structures. Each instance of

SimpleComponent in the SA is represented by an instance

of the SC in the simulation model, with the assigned

responsibilities (instances of RM). These coupled DEVS

are connected using the corresponding ports to compose

another level of complexity, composite components

(instances of CC) that represent the client and server com-

ponents of the architecture. Finally, the view of the LM

system is translated into an instance of SAVSM with two

instances of CC (client and server) as components, which

are coupled using the ports. Finally, the concrete simula-

tion model has four levels (Figure 19): a SA view (LM

System-SAView), 2 composite components (LMServer,

LMClient), 6 simple components (Creator, Codifier,

Encryptor, Decryptor, Authenticator, Recorder), and 11

responsibilities (rj; j = 1..11).

The model assumes that a responsibility can fail as we

have explained in previous sections. We have extended the

simulation model by associating an instance of FG to each

responsibility (Figure 20).

The quantitative aspects are related to the parameters,

which must be set before the simulation based on the study

of previous systems behavior, historical data, and software

development experiences as follows.

• Execution time of reference (ref_execution_time)

was defined using empirical data and following his-

torical information from other software systems and

components. Due to the features of the responsibil-

ity, this time was set following a uniform distribu-

tion between some values.
• Recovery time of reference (ref_recovery_time)

was set to 0 for all responsibilities, assuming that

the recovery is automatic. However, if we added

additional information about recovery time, we

would be able to set it to another value (e.g., some-

times when a failure occurs in a functionality it

might need more time to recover to a normal opera-

tion after the failure has been repaired).
• Mean time between requests (ref_mtbr) was used to

generate the requests that are sent to the system by

external entities, and the mean value was set assum-

ing an exponential distribution. This time is related

to the arrival pattern for external events (requests).
• Mean time between failures (ref_mtbf) was used to

generate failures of each responsibility and was set

assuming an exponential distribution. These values

were set by analyzing the complexity and size,

which can affect the probability of failure of each

responsibility.
• Downtime of reference (ref_downtime) was set con-

sidering failures that commonly occur in this type

of software and the behavior of the time when a

failure occurs. We assumed that the time a respon-

sibility can be ‘‘failed’’ can vary from 0 to a value

Source of stimulus: system/user (external to the system).
Stimulus: periodic requests.
Artifact: LM system (server and client components).
Environment: normal operation.
Response: authenticated license.
Responsemeasure: turnaround time within 55 seconds, less than
5 per service.

Figure 17. Example of a performance scenario.

Source of stimulus: Internal to the system.
Stimulus: a responsibility fails to respond to an input (omission).
Artifact: LM System (process).
Environment: normal operation.
Response: failure event (record it and inform).
Response measure: no more 5 downtime hours.

Figure 18. Example of an availability scenario.

Bogado et al. 309

that depends on the type of the failure and the com-

plexity and size of the responsibility.
• Simulation time (sim_time) was set to three months

due to the features of the system.

Users or other loading factors are modeled in the generator

in the EF, where we can vary the arrival pattern for the

events (request). Therefore, we have assumed that the

requests respond to Poisson arrivals; they arrive more

Figure 19. Simulation Model for the software architecture of the system (without considering failures).

Figure 20. Simulation Model for the software architecture of the system considering failures.

310 Simulation: Transactions of the Society for Modeling and Simulation International 90(3)

frequently in some periods and the load is lower in others.

The load depends on the day, hour, and type of client

licenses. Finally, we have made several replications for

each simulation run using different seeds for the random

generators.

8.3 Simulation results

The simulation of the software system execution provided

information that is needed to make decisions about the

design of the system. This study focused on two concrete

scenarios related to the performance and availability attri-

butes; the simulation shows the behavior of the system and

calculates quantitative information to validate these quality

attributes and to find the possible causes that can affect the

measures. The reports show information not only to vali-

date the quality scenarios specified in the previous section

but also information to analyze each responsibility (atomic

element). This information helps the architects to deter-

mine if the architecture fulfills the quality requirements

and which are the critical software elements. System mea-

sures are used to decide between different alternatives,

with the better situation being architecture whose measures

are closer to the response measure of the quality scenario.

The first system measure is the average turnaround time

in 3 months, which was 62 seconds. This value indicates

the average time that the system needs to emit a response

to an external stimulus. In the case of the performance sce-

nario, the stimuli are the requests sent by the users/external

systems, during a normal operation of the system, where

the turnaround time is greater than the value defined in the

performance scenario. Figure 21 shows the value specified

in the quality attribute scenario, the average turnaround

time of the system for 10 simulation runs and the accumu-

lated average that indicates the tendency of the system

turnaround time. As can be seen, the system did not

achieve the performance requirement.

Figure 22 shows a detailed report describing the aver-

age turnaround time per responsibility. As can be seen,

responsibility 5 was a critical artifact of the SA because

its turnaround time was greater than the time for the oth-

ers. Therefore, responsibility 5 could be a complex func-

tionality. The same situation could be true for r3 and r7,

and these responsibilities could also be critical

functionalities.

Figure 21. Average turnaround time of the system.

Figure 22. Average turnaround time per responsibility
obtained in an execution.

Bogado et al. 311

The other important metric was the average downtime

of the system (using total downtime of the system); this

value was used to validate the second quality scenario.

After several simulation runs, this indicator value was 3

hours and 30 minutes, indicating the system was unavail-

able for an average of 0.1% of the total time (3 months).

This result indicates that the system was not available

for this amount of time under the defined conditions,

normal operation, and failure probability of each respon-

sibility. Each time a responsibility has a failure, an

inform event will be sent as a response of this stimulus.

Figure 23 shows the measure defined in the scenario and

the values of this metric obtained in 10 simulation runs.

As can be seen, the scenario was not achieved in only

one simulation run; for the other simulations, the down-

time was less than 5 hours over the 3-month period.

Other system metrics that can complete the information

to analyze the availability scenario include the average

number of failures of the system, 37.5 (using the total

number of failures of the system after several runs), and

the average uptime of the system (using the total uptime

of the system after several runs) that provides

Figure 23. System downtime.

Figure 24. (a) Failures per responsibility obtained in an execution. (b) Average downtime per responsibility obtained in an
execution.

312 Simulation: Transactions of the Society for Modeling and Simulation International 90(3)

information to determine the availability (99% of the

total time for this example).

The next reports shows simulation results that can be

used to study information related to this scenario, but at

the responsibility level. Therefore, we can detect problems

in specific elements. The report in Figure 24(a) shows the

failures per responsibility that have occurred during the 3

months the system was operating. This information could

be useful to find the responsibility that has more problems.

Figure 24(b) describes the average downtime per responsi-

bility, indicating the average amount of time (minutes) that

each responsibility was ‘‘failed’’ because of a failure.

The last report in Figure 25 shows the behavior of the

failures during the studied time (3 months of operation)

per responsibility and the time intervals during which each

responsibility was not available. Note that responsibility 1

had two failures (the first two failures), which occurred in

quick succession, making it difficult to visualize the inter-

val between the failures in the figure.

8.4 Discussion

The architect can study the critical elements that might be

causing problems in the design from the results of the

simulation. In the case study, r5 and r7 appeared to be the

most critical responsibilities in the model. These responsi-

bilities had a greater response time than the others, and

they were more likely to have failures. Therefore, to

achieve the specified performance scenario, these respon-

sibilities might be candidates for redesign (e.g., r5 could

be overloaded having the additional functionality of

encrypting and sending the license file). Thus, the architect

must decide if a tactic or pattern can be applied or divided

into two or more responsibilities. Other performance sce-

narios could be validated in a more detailed study (e.g., to

analyze the turnaround time when the system is over-

loaded). The second scenario (availability) with this design

was achieved. The SEI has proposed several approaches to

design decisions. The performance tactics help to control

the time within which a response is generated.3 On the

other hand, if it was necessary to reduce the failures and

downtimes, availability tactics or patterns could be

applied.3,35 Although the specified scenarios are related to

two measures (turnaround time and downtime), other sce-

narios can be added to evaluate the entire system, including

a scenario for each new aspect that we want to analyze.

DEVS provides flexibility and scalability advantages

with mathematical fundamentals to model the simulation

environment and allows us to specify domain-specific

simulation elements. Currently, frameworks for the SA

evaluation must be adapted to the new requirements of the

industry. In this way, there are some features that need to

be analyzed.

i) Simulation model expressiveness. The main

approaches proposed to evaluate SA in a quantitative form

use a low-level notation.10–13 This low level of abstraction

is more limited than notations used in the SA modeling,

for example UCM, UML, etc. Although there is an implicit

mapping from architectural concepts to the elements of the

particular notation, some concepts and features of the SA

language are lost in the transformation due to a lack of

semantics. Techniques such as Queueing Theory represent

components as activity, relationships between components

as a call with a probability associated, Markov chain mod-

els components as states, and relationships between com-

ponents as transitions probabilities between states.21

Therefore, these techniques operate at the component (high

granularity level) and do not consider the complex struc-

ture and interface where the internal behaviors of the com-

ponent are not modeled. Moreover, these techniques are

focused only on quality aspects and exclude other aspects,

such as functional components (the responsibility of each

component). In our proposal, the simulation model was

close to the domain and followed the elements of the UCM

Figure 25. Failure frequency per responsibility and downtime intervals.

Bogado et al. 313

notation and the SA semantic.14 The level of abstraction,

modularity, and hierarchical representation provided by

DEVS provides a potential powerful approach for model-

ing SAs. The elements of SA and the metrics for the quan-

titative evaluation are represented in DEVS, which builds

domain-specific elements to make structural, behavioral,

and quality analysis of the software.

ii) Analysis objectives. Currently, software products

must be adapted to the dynamics of the domain where they

are applied. Software systems are becoming more complex

in order to respond to the new requirements of the organi-

zations that employ these systems. To fulfill these require-

ments, the software industry needs tools that integrate

different perspectives into a more comprehensive evalua-

tion of the designs; these tools must be adaptable to differ-

ent contexts and quality objectives of an evaluation.

Traditional techniques are useful in a particular analysis

objective, such as performance12 or reliability,10 among

others. These approaches often have a model per analysis

and include only one quality attribute. However, a few

works have integrated multiple quality objectives with a

functional view in the same model. The DEVS approach

for the SA evaluation has introduced a support for a trade-

off analysis that contains different quality objectives and

several aspects (functional and non-functional) in the same

analysis. Although it is not focused on complex algorithms

and metrics, this approach proposes a simulation model

that represents the SA concepts with more semantics,

thereby obtaining an integral view of the quality, metrics,

and functional aspects of the software to give support to

the architects to make design decisions.

iii) Scalability. The DEVS framework follows the

object-oriented principles to simplify the implementation

of the formal specification.17 While other approaches are

focused on specific calculus or models (such as those in

Spitznagel and Garlan,12Fukuzawa and Saeki,13 Singh

et al.,21 and Luckham and Vera27), DEVS formalism pro-

vides fundamentals to build the simulation elements in a

modular and hierarchical way, which enables us to suita-

bly represent the concepts of the SA domain that have

the same principles. This type of modeling allows the

proposal to evolve into more specific or/and complex

SAs and quality attribute evaluation. Although this

approach considers three quality attributes and basic ele-

ments of the SA and UCM notation, both the model and

the EF can be extended. New simulation elements can be

added to the simulation model, other components of the

type ‘‘stat’’ could be included into the EF (one for each

quality attribute visible at runtime that we need to ana-

lyze), or new metrics could be defined to analyze other

indicators of the current quality attributes. Due to these

considerations, this approach is focused on the model

and on how to represent elements of the specific domain

of SA evaluation but not on complex algorithms or

calculus.

iv) Reusability. The DEVS framework is based on

the system theory, so the three basic elements (model, EF,

and simulator) and their internal simulation elements can

be formulated in the same manner. These elements are

manipulated as objects, from simple to complex elements,

encapsulating the internal behavior (dynamics) and com-

municating through their interfaces. These features allow

simulation elements to be interchangeable, and the ele-

ments can be reused in different contexts and under sev-

eral conditions of evaluation. Other formalisms, such as

Petri Nets,13 Queuing Theory,12 or the Markov process,10

are not modular and are more specific than DEVS; conse-

quently, the reuse of components becomes more complex.

v) Usability. Low-level notations sometimes obscure

the original model and the SA semantic, making it poten-

tially difficult for the architects to understand and to work

during the system development. In this approach, the simu-

lator encapsulates the complexity of the technique (simula-

tion) and keeps the model in a higher level, while the EF

captures the architect’s objectives and how they impact the

SA model (simulation model). These features and graphi-

cal representation tools could make this approach easier to

be learned and used by architects.

vi) Input parameters. The model needs the estima-

tion of a set of parameters; more accurate parameters will

produce more precise results. These parameters can be

better adjusted to the features of the system. Therefore, it

is important to have a good record of historical data that

must be updated with every new project. In this way, our

approach assumes that architects or experts are able to

specify these initial parameters. This requirement may

represent the main limitation of our approach because

this information may not always be available. However,

specific information can be estimated from historical

data, similar software projects, expert judgment, etc. In

the literature, several approaches oriented to one quality

attribute (e.g., performance, reliability, etc.) suggest dif-

ferent tools to define this usage mode of the system.

For example, Musa suggests the construction of an

operational profile from users/customers, system mode,

and a functional profile36 focused on the reliability.

Nevertheless, our approach has avoided including very

detailed information related to each quality attribute,

such as dependencies between individual points of fail-

ure (reliability) and hardware resources (performance),

to simplify this task.

9. Conclusions and future work

Because most systems do not suitably respond to users’

requirements, the early evaluation of software systems is

an important issue in software engineering. In this context,

software quality plays an important role in system devel-

opment. Early evaluation of software systems is

314 Simulation: Transactions of the Society for Modeling and Simulation International 90(3)

challenging; software companies require early information

to make decisions that improve designs, thereby reducing

development and maintenance costs.

In this paper, a whole simulation environment based on

the novel DEVS approach to evaluate SAs is presented.

This approach has many advantages: it models the soft-

ware system with a high level of abstraction, it provides a

modular and hierarchical way to build blocks in a simula-

tion model, which naturally fits architectural concepts, and

it decouples the simulation model from the simulator,

unlike other simulation techniques. Another important

aspect is the implementation of the EF as a module

decoupled from the other two elements of the frame

(simulation model and simulator), which provides a flex-

ible design to specify the conditions under which the sys-

tem (software) is observed. The importance of the EF has

been enhanced here because it implements the quality

objectives and represents the environment that interacts

with the system, which consequently affects simulation

results directly. We also incorporate an element per qual-

ity attribute for the calculation of metrics following the

quality objectives. Finally, another advantage is the homo-

geneous representation of all simulation elements, includ-

ing both model and EF components.

Despite being initially necessary to understand certain

mathematical principles involved in DEVS formalism and

the underlying M&S framework, adaptability, scalability,

and reusability, as well as the automation of the measure-

ment of indicators, are incorporated in the simulation.

These advantages provide an easier evolution of the simu-

lation environment to incorporate either new structures

(SAVSM or SAEEF) or new indicators (new metrics in the

‘‘stat’’ components in the EF).

Experiments have been automatically executed to test

the simulation model that was obtained from a particular

SA (structure and behavior using the tools provided by

DEVS-Suite). In this work, we presented several examples

of the information that can be calculated from the elements

that compose the architecture, simple and complex metrics

from atomic and coupled elements, while possessing the

capability of adding specific metrics for specific systems.

We believe that the quantitative information (quality

metrics) is notably important but has been given scant atten-

tion in the software industry. Thus, we plan to perform an

exploratory study of particular systems, designing and

implementing specific experiments according to different

quality goals to validate the model under different situations.

Furthermore, this approach can be complemented with other

techniques for specific studies of quality attributes.

Several related issues for future work remain open.

Firstly, we will formalize the process of transformation

following the MDA (Model-driven Architecture) frame-

work.37 Transformation rules must be defined formally

following standards that are widely used, such as QVT

(Query, Views, and Transformations) and MOF (Meta

Object Facility), as proposed by OMG (Object

Management Group). In this way, we will introduce the

generation of DEVS models from UCM notation in the

specific domain of SA evaluation, such as works that

apply MDA to DEVS model generation from UML (state

machines), but with general purposes.38,39 Concerning this

topic, novel approaches could be analyzed to implement

these rules according to the current technology employed

in the area of MDD (Model-driven Development).40

Secondly, the use of the framework for modeling, simula-

tion, and DEVS formalism has the advantage of scalabil-

ity. Thus, other quality attributes that are visible at

runtime will be studied, adding components to the pro-

posed EF and incorporating parameters and ports into the

elements of the simulation model, thereby enabling the

evaluation of other quality aspects and defining new

metrics. Moreover, architectural patterns and other UCM

elements required to model more complex systems should

be studied to include these new dynamic structures in the

simulation model.

Funding

This work was supported by the Consejo Nacional de

Investigaciones Cientı́ficas y Técnicas (CONICET), Universidad

Tecnológica Nacional (25/O144 – UTI1748), and Agencia

Nacional de Promoción Cientı́fica y Tecnológica (PAE-PICT

02315).

References

1. Humphrey W. The software quality profile. Technical report.

Software Engineering Institute, http://resources.sei.cmu.edu/

library/asset-view.cfm?assetID=29088 (2009, accessed 3

November 2013).

2. ISO/IEC 9126-1:2001. Software engineering. Product quality.

Part 1: quality model.

3. Bass L, Clements P and Kazman R. Software architecture in

practice. 3rd ed. Westford, MA: Pearson Education, 2012.

4. Hofmeister C, Nord R and Soni D. Applied software architec-

ture. Stoughton, MA Addison-Wesley, 2000.

5. ISO/IEC/IEEE 42010:2011. Systems and software engineering

- architecture description, ISO/IEC IEEE. 1st ed.

6. Eeles P and Cripps P. The process of software architecting.

Westford, MA: Pearson Education, 2009.

7. Clements P, Kazman R and Klein M. Evaluating software archi-

tectures: methods and case studies. Westford, MA: Addison-

Wesley, 2002.

8. Wojcik R, Bachmann F, Bass L, et al. Attribute-Driven

Design (ADD) version 2.0. Technical report CMU/SEI-2006-

TR-023 ESC-TR-2006-023. SEI, Carnegie Mellon University,

USA, http://www.sei.cmu.edu/reports/06tr023.pdf (2006,

accessed 3 November 2013).

9. Bass L, Klein M and Bachmann F. Quality attribute design

primitives. Technical Note CMU/SEI-2000-TN-017. SEI,

Carnegie Mellon University, USA, http://resources.sei.

cmu.edu/library/asset-view.cfm?assetID=5139 (2000, accessed 3

November 2013).

Bogado et al. 315

http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=29088
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=5139

10. Wang W, Pan D and Chen MH. Architecture-based software

reliability modeling. J Syst Software 2006; 79: 132–146.

11. Sharma V and Trivedi K. Quantifying software performance,

reliability and security: an architecture-based approach.

J Syst Software 2007; 80: 493-509.

12. Spitznagel B and Garlan D. Architecture-based performance

analysis. In: proceedings of the tenth international confer-

ence on software engineering and knowledge engineering,

San Francisco Bay, USA, 1998, pp.146–151.

13. Fukuzawa K and Saeki M. Evaluating Software Architecture

by coloured Petri Nets. In: proceedings of 14th international

conference on software engineering and knowledge engi-

neering, Ischio, Italy, 2002, pp.263-270.

14. Amyot D. Introduction to the user requirement notation:

learning by example. Comput Network 2003; 42: 285-301.

15. Buhr R. Making behaviour a concrete architectural concept.

In proceedings of the 32nd Hawaii international conference

on system sciences, Island of Maui, Hawaii, 1999, pp.1-5.

16. Amyot D and Mussbacher G. User requirements notation:

the first ten years, the next ten years. J Software 2011; 6:

747-768.

17. Zeigler BP, Praehofer H and Kim T. Theory of modeling and

simulation–integrating discrete event and continuous com-

plex dynamic systems. 2nd ed. San Diego, CA: Academic

Press, 2000.

18. Bogado V, Gonnet S and Leone H. An approach based on

DEVS for evaluating quality attributes. In: proceedings of

the XXIX international conference of Chilean Computer

Science Society, Antofagasta, Chile, 2010, pp.110–118.

19. Bogado V, Gonnet S and Leone H. A discrete event simula-

tion model for the analysis of software quality attributes.

CLEI Electron J 2011; 14: paper 3, http://www.clei.cl/cleiej/

paper.php?id=225 (accessed 3 November 2013).

20. Lyu M. Software reliability engineering: a roadmap. In: pro-

ceedings of the conference of future of software engineering,

Minneapolis, USA, 2007, pp.153–170.

21. Singh LK, Tripathi AK and Vinod G. Software reliability

early prediction in architectural design phase: overview and

limitations. J Software Eng Appl 2011; 4: 181–186.

22. Christensen H and Hansen K. An empirical investigation of

architectural prototyping. J Syst Software 2010; 83: 133–142.

23. Galster M, Eberlein A and Moussavi M. Early assessment of

software architecture qualities. In: proceedings of the 2nd

international conference on research challenges in informa-

tion science, Marrakech, Morocco, 2008, pp.81–86.

24. Diaz-Pace A, Kim H, Bass L, et al. Integrating quality-

attribute reasoning frameworks in the ArchE design assis-

tant. In: proceedings of the 4th international conference on

quality of software-architectures: models and architectures,

Karlsruhe, Germany, 2008, pp.171–188.

25. Bachmann F, Bass L and Klein M. Experience using an

expert system to assist an architect in designing for modifia-

bility. In: proceedings of the fourth working IEEE/IFIP con-

ference on software architecture, Oslo, Norway, 2004,

pp.281–284.

26. Petriu D and Woodside M. Software performance models from

system scenarios in use case maps. In: proceedings of the 12th

international conference on computer performance evaluation,

modelling techniques and tools, 2002, pp.141–158.

27. Luckham DC and Vera J. An event-based architecture defini-

tion language. IEEE Trans Software Eng 1995; 21: 717-734.

28. Ntaimo L, Hu X and Sun Y. DEVS-FIRE: Towards an inte-

grated simulation environment for surface wildfire spread

and containment. Simulation 2008; 84: 137–156.

29. Byon E, Pérez E, Ding Y, et al. Simulation of wind farm

maintenance operations using DEVS. Simulation 2011; 87:

1091–1115.

30. Ferayorni AE and Sarjoughian HS. Domain driven simula-

tion modeling for software design. In: proceedings of the

2007 summer computer simulation conference, San Diego,

USA, 2007, pp.113–121.

31. Wirfs-Brock R and McKean A. Object design: roles, responsibil-

ities and collaborations. Boston, MA: Addison-Wesley, 2002.

32. Zeigler B and Sarjoughian H. Introduction to DEVS modeling

and simulation with JAVA: developing component-based simu-

lation models. Lecture, University of Arizona, USA, 2005.

33. Verbraeck A and Valentin E. Design guidelines for simula-

tion building blocks. In: proceedings of the 2008 winter

simulation conference, Miami, USA, 2008, pp.923–932.

34. Scott J and Kazman R. Realizing and refining architectural

tactics: availability. Technical Report CMU/SEI-2009-TR-

006. SEI, Carnegie Mellon University, USA, http://repository.

cmu.edu/sei/50 (2009, accessed 3 November 2013).

35. Musa J. Operational profiles in software-reliability engineer-

ing. IEEE Software 1993; 10: 14–32.

36. Diaz M. Petri nets: fundamental models, verification and

applications. London, UK: ISTE-Wiley, 2009.

37. Kleppe A, Warmer J and Bast W. MDA explained: the model

driven architecture- practice and promise. Boston, MA:

Addison-Wesley, 2003.

38. Mittal S, de la Cruz JM, Risco-Martı́n JL, et al. eUDEVS:

executable UML with DEVS theory of modeling and simula-

tion. Simulation 2009; 85: 750–777.

39. Cetinkaya D, Verbraeck A and Seck MD. MDD4MS: a model

driven development framework for modeling and simulation.

In: proceedings of the 2011 summer computer simulation con-

ference, The Hague, Netherlands, 2011, pp.113–121.

40. Sarjoughian HS and Mahmoodi Markid A. EMF-DEVS

modeling. In: proceedings of the 2012 symposium on theory

of modeling and simulation - DEVS integrative M&S sympo-

sium, Orlando, USA, 2012, Issue 19.

Author biographies

Verónica Bogado received a PhD degree in Engineering

with Information Systems Engineering (2013) from the

Universidad Tecnológica Nacional, Facultad Regional

Santa Fe. She is currently working at the Department of

Information Systems Engineering of the Facultad

Regional Villa Marı́a, Universidad Tecnológica Nacional.

Her current research interests are related to software qual-

ity evaluation, software architecture design, and M&S of

complex systems, particularly DEVS formalism and its

application to software problems.

Silvio Gonnet holds a researcher position at the National

Council for Scientific and Technical Research of

316 Simulation: Transactions of the Society for Modeling and Simulation International 90(3)

http://www.clei.cl/cleiej/paper.php?id=225
http://repository.cmu.edu/sei/50

Argentina (CONICET), working at ‘‘Instituto de

Desarrollo y Diseño’’ (INGAR). In addition, he works as

an assistant professor at ‘‘Universidad Tecnológica

Nacional’’ (UTN). He received an Engineering degree in

Information Systems from UTN, Santa Fe, Argentina, in

1998, and also obtained his PhD degree in Engineering

from ‘‘Universidad Nacional del Litoral’’ (UNL) in 2003.

His research interests are in models to support the engi-

neering design process, software architectures, and seman-

tic web.

Horacio Leone is Full Professor and Dean of the

Department of Information Systems Engineering

(Facultad Regional Santa Fe) at Universidad Tecnológica

Nacional, where he has been since 1989. He also currently

is Research Fellow of the National Council for Scientific

and Technical Research (CONICET) of Argentina at the

Instituto de Desarrollo y Diseño. He received a Chemical

Engineer Degree from Universidad Tecnológica Nacional

in 1981. He obtained his PhD in Chemical Engineering

from the Universidad Nacional del Litoral in 1986. During

1986–1989 he was a Posdoctoral Fellow at the Laboratory

for Intelligent Systems in Process Engineering (LISPE) at

Massachusetts Institute of Technology.

His research interests center on improving the under-

standing of the engineering design process, mainly

through the application of different modeling frameworks

to diverse engineering domains. In the software architec-

ture design process, he has worked on characterizing the

design decisions and the rationale behind them. He has

also explored semantic web applications to supply chain

information systems and enterprise modeling.

Appendix A: Discrete event system
specification of the simulation
environment elements

In this section, the mathematical definition of the compo-

nents of the simulation environment is provided.

A.1. Failure generator: FG

The failure generator FG is defined as an atomic parallel

model as follows:

FG= (XFG, YFG, SFG, δint,FG, δext,FG, δcon,FG, λFG, taFG) ð7Þ

where

XFG = {(p,v) | p ∈ FGIP, v ∈ XFG,p} is the set of input

ports and values. FGIP = {rstateip} is the set of input

ports, XFG,rstateip = {activated, finished} is the set of

responsibility macro states.

YFG = {(p,v) | p ∈ FGOP, v ∈ YFG,p} is the set of output

ports and values. FGOP = {failop} is the set of output

ports, YFG,failop = {failk| k = 1..q} is the set of failures (k is

the failure ID).

SFG = {inactive, active} ×R0
+ is the set of sequential

states.

External transition function (δext,FG):

δext,FG((inactive, σ), e,(rstateip, activated)) = (activated,

timebf)

where timebf =timeBetweenFail() is a function that calcu-

lates time between failures following a probability distri-

bution. The expert has to define the parameter ref_mtbf

used by this function.

δext,FG((active, σ), e,(rstateip, finished)) = (inactive, N)

Internal transition function (δint,FG):

δint,FG(active, σ) = (active, timebf)

where timebf = timeBetweenFail().

Confluent transition function (δcon,FG):

δcon,FG(s, taFG(s), x) = δext,FG(δint,FG(s), 0, x)

Output function (λFG):

λFG(active, σ) = (failop, failk)

Time advance function (taFG):

taFG (s) = σ.

A.2. Software architecture evaluation –
generator: SAEG

The requests generator SAEG (SA Evaluation – Generator)

is defined as an atomic parallel model as follows:

SAEG= (XSAEG, YSAEG, SSAEG, δext, SAEG,

δint, SAEG, δcon, SAEG, λSAEG, taSAEG) ð8Þ

where

XSAEG = {(p,v) | p ∈ SAEGIP, v ∈ XSAEG,p} is the set of

input ports and values, SAEGIP = {ssip} is the set of input

ports, XSAEG,ssip = {start, stop} is a set of control values of

the simulation.

YSAEG = {(p,v) | p ∈ SAEGOP, v ∈ YSAEG,p}is the set of

output ports and values, SAEGOP = {rop} is the set of out-

put ports, YSAEG,rop = {requesti| i = 1..n}.

SSAEG = {inactive, busy } ×R0
+ is the set of states.

External transition function (δext,SAEG):

δext,SAEG((inactive, σ), e,(ssip, start)) = (busy, timebr)

δext,SAEG((busy, σ), e,(ssip, stop)) = (inactive, N)

where timebr = timeBetweenRequest(), function that calcu-

lates random numbers that follow a probability distribution

given by an expert and using an internal fixed parameter:

ref_mtbr.

Internal transition function (δint,SAEG):

δint,SAEG(busy, σ) = (busy, timebr)

Bogado et al. 317

where timebr = timeBetweenRequest().

Confluent transition function (δcon,SAEG):

δcon,SAEG(s, taSAEG(s), x) = δext,SAEG(δint,SAEG(s), 0, x)

Output function (λSAEG):

λSAEG(busy, σ) = (rop, requesti)

Time advance function (taSAEG):

taSAEG (s) = σ.

A.3. Software architecture evaluation –
performance stat: SAEPS

The transducer SAEPS (SA Evaluation – Performance

Stat) is specified as an atomic parallel model as follows:

SAEPS = (XSAEPS, YSAEPS, SSAEPS, δext, SAEPS,

δint, SAEPS, δcon, SAEPS, λSAEPS, taSAEPS) ð9Þ

where

XSAEPS = {(p,v) | p ∈ SAPSIP, v ∈ XSAEPS,p} is the set of

input ports and values. SAPSIP = {rtaip, sentreqip, pro-

creqip, ssip} is the set of input ports, XSAEPS,rtaip = {tami,j|

i = 1..n, j = 1..m, tami,j∈R0
+} is the set of turnaround

times for requests i by the responsibility j (m is the number

of responsibilities), XSAEPS,sentreqip = XSAEPS,procreqip =

{requesti| i =1..n} is the set of requests, XSAEPS,ssip={start,

stop} is the set of the simulation control values.

YSAEPS = {(p,v) | p ∈ SAPSOP, v∈YSAEPS,p} is the set of

output ports and values. SAPSOP = {staop, sthop} is the

set of output ports, YSAEPS,staop = stam, YSAEPS,sthop = sthm;

stam, sthm ∈ R0
+ , where stam = computeSystemAvgTa()

(system turnaround time) and sthm = computeSystemThr()

(system throughput).

SSAEPS = {inactive, calculating, resultant}

×R0
+ ×XSAEPS,rtaip

*×XSAEPS,sentreqip
*×XSAEPS,procreqip

*

is the set of states.

External transition function (δext,SAEPS):

δext,SAEPS((inactive, σ, rtatimes, srequests, prequests), e,

(ssip, start)) = (calculating, N, rtatimes, srequests,

prequests)

δext,SAEPS((calculating, σ, rtatimes, srequests, prequests),

e, ((rtaip, tami.j,1),.,(rtaip, tami,j,c1))) = (calculating, N,

add(rtatimes, tami.j), srequests, prequests) "tami.j∈
{tami.j,1, ., tami.j,c1}

δext,SAEPS((calculating, σ, rtatimes, srequests, prequests),

e, (sentreqip, requesti)) = (calculating, N, rtatimes,

add(srequests, requesti), prequests)

δext,SAEPS((calculating, σ, rtatimes, srequests, prequests),

e, ((sentreqip, requesti,1),., (sentreqip, requesti,c2))) =

(calculating, N, rtatimes, srequests, add(prequests,

requesti) "requesti∈ {requesti,1, ., requesti,c2}

δext,SAEPS((calculating, σ, rtatimes, srequests, prequests), e,

(ssip, stop)) = (resultant, 0, rtatimes, srequests, prequests)

Internal transition function (δint,SAEPS):

δint,SAEPS(resultant, σ, rtatimes, srequests, prequests) =

(inactive, N, rtatimes, srequests, prequests)

Confluent transition function (δcon,SAEPS):

δcon,SAEPS(s, taSAEPS(s), x) = δext,SAEPS(δint,SAEPS(s), 0, x)

Output function (λSAEPS):

λSAEPS(resultant, σ, rtatimes, srequests, prequests) =

(staop, stam) ^ (sthop, sthm)

Time advance function (taSAEPS):

taSAEPS(s) = σ.

A.4. Software architecture evaluation –
reliability stat: SAERS

The transducer SAERS (SA Evaluation – Reliability Stat) is

specified as an atomic parallel model as follows:

SAERS = (XSAERS, YSAERS, SSAERS, δext, SAERS, δint, SAERS,

δcon, SAERS, λSAERS, taSAERS) ð10Þ

where

XSAERS = {(p,v) | p ∈ SARSIP, v ∈ XSAERS,p} is the set of

input ports and values. SARSIP = {rfailip, ssip} is the set of

input ports, XSAERS,rfailip{failnumj| j = 1..m, failnumj∈ Z0
+}

is the set of number of failures in the responsibility j (m is

the number of responsibilities), XSAERS,ssip = {start, stop} is

the set of the simulation control values.

YSAERS = {(p,v) | p ∈ SARSOP, v∈Y SAERS,p} is the set of

output ports and values. SARSOP = {failsop} is the set of

output ports, YSAERS,sfailsop = sfm, sfm ∈ Z0
+ , sfm =

computeSystemFailures(), being the number of failures for

the whole system.

SSAERS = {inactive, calculating, resultant}

×R0
+ ×XSAERS,rfailip

* is the set of states.

External transition function (δext,SAERS):

δext,SAERS((inactive, σ, rfails), e, (ssip, start)) = (calculat-

ing, N, rfails)

δext,SAERS((calculating, σ, rfails), e, ((rfailip, fail-

numj,1),.,(rfailip, failnumj,c3))) = (calculating, N,

add(rfails, failnumj)) "failnumj∈ {failnumj,1,., failnumj,c3}

δext,SAERS((calculating, σ, rfails), e, (ssip, stop)) = (resul-

tant, 0, rfails)

Internal transition function (δint,SAERS):

δint,SAERS(resultant, σ, rfails) = (inactive, N, rfails)

Confluent transition function (δcon,SAERS):

δcon,SAERS(s, taSAERS(s), x) = δext,SAERS(δint,SAERS(s), 0, x)

Output function (λSAERS):

λSAERS (resultant, σ, rfails) = (sfailsop, sfm)

Time advance function (taSAERS):

taSAERS(s) = σ.

318 Simulation: Transactions of the Society for Modeling and Simulation International 90(3)

A.5. Software architecture evaluation –
availability stat: SAEAS

The transducer SAEAS (SA Evaluation – Availability Stat)

is specified as an atomic parallel model as follows:

SAEAS = (XSAEAS, YSAEAS, SSAEAS, δext, SAEAS, δint, SAEAS,

δcon, SAEAS, λSAEAS, taSAEAS) ð11Þ

where

XSAEAS = {(p,v) | p ∈ SAASIP, v ∈ XSAEAS,p} is the set of

input ports and values. SAASIP = {rfailip, rdowntimeip,

rrecovtimeip, ssip} is the set of input ports, XSAEAS,rfailip =

{failnumj| j = 1..m, failnumj∈ Z0
+} being j the responsibil-

ity ID, XSAEAS,rdowntimeip={dtimek,j| k = 1..q, j= 1..m,

dtimek,j∈R0
+} is the set of times that the responsibility j

was failed due to a failure k, XSAEAS,rrecovtimeip= {rtimek,j| k

= 1..q, j = 1..m, rtimek,j∈R0
+} is the set of times needed by

the responsibility j to recover from a failure k, XSAERS,ssip =

{start, stop} is the set of the simulation control values.

YSAEAS = {(p,v) | p ∈ SAASOP, v ∈ YSAEAS,p} is the set of

output ports and values. SAASOP = {savailop, snoavailop}

is the set of output ports, YSAEAS,savailop= sam,

YSAEAS,sunavailop = suam; sam, suam ∈ R0
+ being the cal-

culated availability metrics (system uptime and down-

time), where sam = computeSystemUptime() and suam =

computeSystemDowntime().

SSAEAS = {inactive, calculating, resultant} ×R0
+

XSAEAS,rfailip
*×XSAEAS,rdowntimeip

*×XSAEAS,rrecovtimeip
* is

the set of states.

External transition function (δext,SAEAS):

δext,SAEAS((inactive, σ, rfails, rdowntimes, rrecovtimes), e,

(ssip, start)) = (calculating, N, rfails, rdowntimes,

rrecovtimes)

δext,SAEAS((calculating, σ, rfails, rdowntimes, rrecovtimes),

e, ((rfailip, failnumj,1),.,(rfailip, failnumj,c4))) = (calculat-

ing, N, add(rfails, failnumj), rdowntimes, rrecovtimes)

"failnumj∈ {failnumj,1, ., failnumj,c4}

δext,SAEAS((calculating, σ, rfails, rdowntimes, rrecovtimes),

e, ((rdowntimeip, dtimek,j,1),., (rdowntimeip, dtimek,j,c5))

= (calculating, N, rfails, add(rdowntimes, dtimek,j), rre-

covtimes) "dtimek,j∈ {dtimek,j,1, ., dtimek,j,c5}

δext,SAEAS((calculating, σ, rfails, rdowntimes, rrecovtimes),

e, ((rrecovtimeip, rtimek,j,1),., (rrecovtimeip, rtimek,j,c6))

= (calculating, N, rfails, rdowntimes, add(rrecovtimes, rti-

mek,j) "rtimek,j∈ {rtimek,j,1, ., rtimek,j,c6}

δext,SAEAS((calculating, σ, rfails, rdowntimes, rrecovtimes),

e, (ssip, stop)) = (resultant, 0, rfails, rdowntimes,

rrecovtimes)

Internal transition function (δint,SAEAS):

δint,SAEAS(resultant, σ, rfails, rdowntimes, rrecovtimes) =

(inactive, N, rfails, rdowntimes, rrecovtimes)

Confluent transition function (δcon,SAEAS):

δcon,SAEAS(s, taSAEAS(s), x) = δext, SAEAS(δint,SAEAS(s), 0, x)

Output function (λSAEAS):

λSAEAS (resultant, σ, rfails, rdowntimes, rrecovtimes) =

(savailop, sam) ^ (snoavailop, suam)

Time advance function (taSAEAS):

taSAEAS(s) = σ.

A.6. Software architecture evaluation –
acceptor: SAEA

The acceptor SAEA (SA Evaluation – Acceptor) is defined

as an atomic parallel model as follows:

SAEA= (XSAEA, YSAEA, SSAEA, δext, SAEA,

δint, SAEA, δcon, SAEA, λSAEA, taSAEA) ð12Þ

where

XSAEA = {(p,v) | p ∈ SAEAIP, v ∈ XSAEA,p} is the set of

input ports and values, SAEAIP = {sip} is the set of input

ports, XSAEA,sip = {start}.

YSAEA = {(p,v) | p ∈ SAEAOP, v ∈ YSAEA,p} is the set of

output ports and values, SAEAOP = {ssop} is the set of

output ports, YSAEA,ssop = {start, stop} is the set of the

simulation control values.

SSAEA = {active, simulating, inactive} ×R0
+ is the set of

sequential states.

External transition function (δext,SAEA):

δext,SAEA((inactive, σ), e, (sip, start)) = (active, 0)

Internal transition function (δint,SAEA):

δint,SAEA(active, σ) = (simulating, sim_time)

where sim_time∈R0
+ is the simulation time.

δint,SAEA(simulating, σ) = (inactive, N)

Confluent transition function (δcon, SAEA):

δcon,SAEA(s, ta SAEA(s), x) = δext,SAEA(δint,SAEA(s), 0, x)

Output function (λSAEA):

lSAEA (active, σ) = (ssop, start)

lSAEA (simulating, s) = (ssop, stop)

Time advance function (taSAEA):

taSAEA (s) = σ.

Bogado et al. 319

