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ABSTRACT: A mathematical modeling framework for the simultaneous batching and scheduling of multiproduct batch plants is
proposed in this work. The scheduling decisions are formulated according to campaign-based operation mode. When a stable
context can be assumed on the time horizon taken into account, this operation mode assures a more efficient production
management. In addition, sequence-dependent changeover times and different unit sizes for parallel units in each stage are
considered. Given the plant configuration and unit sizes, the total amount of each product to be produced and the product
recipes, the proposed approach determines the number of batches that compose the production campaign and their sizes, the
batches assignment to units, the sequencing of batches in each unit for each stage, and the timing of batches in each unit in order
to minimize the campaign cycle time. A solution strategy is proposed to enhance the computational performance of the
simultaneous optimization. The approach capabilities are shown through three numerical examples.

1. INTRODUCTION

The scheduling problem has received considerable attention
from the research community and industry in the last decades
due to the need to improve productivity and reduce costs in the
chemical processing and manufacturing related industries. This
problem represents a decision making process where different
products have to be allocated to different shared and limited
resources in an optimal manner. In the chemical industry there is
a large variety of applications in both batch and continuous
processes, like in pharmaceuticals, basic and specialty chemicals,
and consumer products, etc.
Mathematical programming has become one of the most

widely explored methods for process scheduling problems
because of its rigorousness, flexibility, and extensive modeling
capability. Also, the substantial advances of related modeling and
solution techniques, as well as rapidly growing computational
power have motivated the study and application of this kind of
problems. Extensive details of the various aspects of the
scheduling problem, modeling approach classification, and
solution techniques are presented in the reviews of Floudas
and Lin,1,2 Meńdez et al.,3 Pan et al.,4 Sundaramoorthy and
Maravelias,5 and Maravelias.6

According to Maravelias,6 the scheduling problem in the
context of batch processing involves the following decisions: (i)
selection and sizing of batches to be carried out; (ii) assignment
of batches to process units; (iii) sequencing of batches on units;
and (iv) timing of batches. The former decision is commonly
defined as “batching”. Most scheduling models in the process
systems engineering literature consider a special case of the
problem, where the number and size of batches is fixed; that is,
the batching problem is solved first and then obtained batches are
used as inputs in the scheduling model. Also, there are some
papers that solve both batching and scheduling problems
through hierarchical approaches (Meńdez et al.,7 Schwindt and
Trautmann,8 Neumann et al.9); however, those approaches
cannot guarantee an optimal solution. In contrast, Lim and

Karimi10 formulated a novel model for the simultaneous batching
and scheduling of single-stage batch plants with parallel,
nonidentical units, sequence-dependent changeover times, and
multiple orders per product. They compared their approach with
existing decomposition formulations and showed that the
proposed model is more efficient both in model size (variables
and constraints) and computational performance (nodes,
iterations, and solution times). Prasad and Maravelias11

presented the first approach for simultaneous batching and
scheduling for multistage batch plants. The mixed-integer linear
programming (MILP) model, which considers changeover times
and nonidentical parallel units for each batch stage, is tested with
several objective functions. Since then, some approaches,
considering joint batching and scheduling for multistage batch
plants, were presented.
Sundaramoorthy and Maravelias12 presented a MILP model

for simultaneous batching and scheduling of multistage batch
plants with nonidentical parallel units and variable processing
times. They also included sequence-dependent changeover costs,
and proposed a method that allows improving the computational
performance in large instances fixing certain sequencing variables
and strengthening inequalities based on time-window informa-
tion. In a later work, Sundaramoorthy and Maravelias13 included
storage constraints and provided general classification of storage
policies in multistage processes for showing how their
formulation can be adapted to address different types of
problems. Sundaramoorthy et al.14 presented a MILP model
using discrete-time representation for the batching and
scheduling of multistage batch plants with utility constraints.
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They considered limited storage, but changeover times/costs are
not taken into account. Marchetti et al.15 posed two MILP
formulations for the simultaneous batching and scheduling of
single-stage multiproduct batch facilities. Both models consider
variable processing times and several customer orders per
product with different delivery dates. The two proposed
formulations deal with batch sequencing decisions in a different
manner: one of them rigorously arranges individual batches
assigned to the same unit, while the other sequences clusters of
batches sharing the same product and due date and processed in
the same equipment item. In the last case, grouping batches into
clusters seeks to reduce the number of product changeovers.
Thus, it was able to solve very large problems in an efficient
manner. In a later work, Marchetti et al.16 generalized the
previous formulation to multistage batch plants with non-
identical parallel units.
Usually, demand patterns combined with capacity availability

are used to determine the production policy and the type of
scheduling approach: short-term scheduling or cyclic scheduling.
The former is more appropriate when products with irregular
and/or small demand are produced to meet specific orders, that
is, in a make-to-order production policy. On the other hand, the
second type is used for the production of high-volume products
with relatively constant demand, which lead to a more regular
production mode, more appropriate for a make-to-stock
production policy. It is worth highlighting that all the previous
mentioned works correspond to the first type, that is, addressing
short-term scheduling problems.
When product demands can be accurately forecasted during a

relatively long time horizon due to a stable context (from a week
until a month, for example), more efficient management and
control of the production resources can be attained if the plant is
operated in a periodic or cyclic mode, i.e. in a campaign-mode. In
this case, the campaign consists of several batches of different
products that are going to bemanufactured, and the same pattern
is repeated at a constant frequency over the time horizon.
Fumero et al.17 presented a MILP model for the optimal
scheduling of batch plants operating under mixed product
campaign (MPC)mode. Given a fixed number of batches of each
product comprising the production campaign, the model
determines the batches assignment, sequencing and timing in
the campaign. They considered multistage batch plants with
identical parallel units and no changeover times/costs were taken
into account.
The MPCs-based operation is very useful, especially in

production systems using the make-to-stock policy. This
approach has several advantages, for example, more standardized
production during certain periods of time, easier and profitable
operations decisions, more efficient operation control and
tracking, and adequate inventory levels without generating
excessive costs and minimizing the possibility of stock-outs.
From the computational point of view, the cyclic scheduling
allows a reduction in the size of the overall scheduling problem,
which is often intractable. On the other hand, one of the main
differences between cyclic scheduling based on MPCs and short-
term scheduling is the adopted objective function. While most of
the approaches for short-term scheduling dealt with makespan
minimization, tardiness, or earliness, the most appropriate
performance measure for the scheduling problem using MPCs
of cyclic repetition is the minimization of the campaign cycle
time.17 Taking in mind that in a planning context the campaign
will be repeated over the time horizon, consecutive campaigns

have to be overlapped in order to reduce idle times between them
as much as possible.
The scheduling problem using MPCs, where the number and

size of batches are known, was scarcely addressed in the
literature. Besides the paper of Fumero et al.,17 Birewar and
Grossmann18 developed slot-based formulations for the
scheduling of multiproduct batch plants using production
campaigns, considering different transfer policies (unlimited
intermediate storage, UIS, and zero wait, ZW). They determined
the optimal campaign cycle time, for simple plants including only
one unit per processing stage, using a MILP formulation.
Corsano et al.19 presented a heuristic method for incorporating
scheduling, using MPCs, in a batch plant design model. They
formulated a detailed nonlinear programming (NLP) model
including operational conditions and synthesis decisions. Mixed
product campaigns are configured by the designer taking into
account the ratios among the numbers of batches of the different
products elaborated in the plant. Then, each suggested campaign
is considered in the proposed formulation defining several
alternatives. The best solution is determined after solving these
cases and comparing them. In Fumero et al.20 two MILP models
for the simultaneous design and scheduling of a multistage batch
plant are proposed. Both formulations consider MPCs: one in a
simplified manner with the aim of reducing the solving time,
while the other uses a rigorous formulation for the production
campaign. The parallel units are considered identical and no
changeover times are taken into account. The rest of the papers
that mention the use of campaigns, do not refer to the
determination of batches and its cyclic sequencing as is managed
in this work. For example, some of them consider that a campaign
is formed by several batches of the same product that follow each
other (Kallrath,21 Brandenburg and Tölle22). This assumption
obviously simplifies the model formulation.
On the other hand, in network production environments,

where recipes are rather complex, mixing and splitting operations
are included, andmaterial recycles are admitted, continuous-time
formulations based on state-task-network (STN) and resource-
task-network (RTN) are used to address the integrated problem.
In this area, Wu and Ierapetritou23 proposed a cyclic scheduling
based on STN representation of the plant using a mixed-integer
nonlinear programming (MINLP) formulation where sequence-
dependent changeovers have not been incorporated in the
formulation. Also, Castro and Grossmann24 present continuous
and discrete-time MILP formulations for the short-term
scheduling of multistage multiproduct batch plants using the
RTN representation, where sequence-dependent changeovers
are neglected and the transfer policy adopted is UIS.
Although the multistage multiproduct topology is a special

case of the network-type topology for which representations
more generic and applicable to any type of scheduling problem
exist, their computational efficiency for sequential batch
processes cannot compete, so far, with those of methodologies
explicitly exploiting the series structure. A current review on
existing scheduling methodologies and solution techniques,
presented by Harjunkoski et al.,25 states that the vast majority of
models developed to address problems in a batch process of
sequential topology are based on some of the following
representations: slot-based, unit-specific time event, and
precedence-based.
In this work, the simultaneous batching and scheduling

problem of multistage batch plants is addressed using
mathematical programming. Nonidentical parallel units, ZW
transfer policy, and sequence-dependent changeover times are
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considered. The scheduling is solved using the concept of MPC,
in such a way that, given the plant configuration and unit sizes,
the total amount of each product to be produced and the product
recipes, the approach determines the number of batches that
compose the production campaign and their sizes, the batches
assignment to units, the sequencing of batches in each unit for
each stage, and the initial and final times of the batches processed
in each unit in order to minimize the campaign cycle time.
Taking into account the time requirement to solve the

simultaneous optimization problem, a resolution strategy based
in twoMILP formulations is presented. With the aim of reducing
the combinatorial complexity associated with the scheduling
problem, a simplified model is first solved in order to obtain tight
bounds on the campaign cycle time and the number of batches
proposed for each product. Then, the simultaneous batching and
scheduling approach is efficiently solved. From the computa-
tional point of view, the presented examples show that the
proposed approach for addressing jointly batching and
scheduling through MPCs considering sequence-dependent
changeover times for multistage batch plant with nonidentical
parallel units is a good option.
The paper is organized as follows. In the next section the

description of the problem is presented. Then, a solution strategy
is proposed in section 3. The MILP formulations used in the
resolution process are described in section 4, and three
illustrative examples to show the capabilities of the proposed
approach are presented in section 5. Finally, conclusions of the
work are drawn in the last section of this paper.

2. PROBLEM DEFINITION

The problem addressed in this article deals with a multiproduct
batch plant where J denotes the set of processing stages that
compose the plant and K is the set of all units in the plant. Stage j
∈ J has a set Kj of nonidentical parallel batch units that operate
out-of-phase, so K = K1 ∪ K2 ∪···∪ K|J|. If the cardinality of Kj is
Nj, then the elements of each set Kj are represented by K1 = {1, 2,
..., N1}, K2 = {N1+1, N1+2, ..., N1+N2}, K3 = {N1+N2+1, ...,
N1+N2+N3}, and so on, that is, using an ascending numerical
order.
A set I of products must be manufactured in the plant

following the same sequence of stages. The total amount
required of each product in the campaign,Qi (i∈ I), which allows
maintaining adequate stocks levels taking into account the
estimated demands, is a model parameter.Qi can be fulfilled with
one or more batches, then an index b is introduced to denote the
bth batch required to meet production of the corresponding
product.
In each stage, there are no restrictions about parallel unit sizes

and, therefore, different unit sizes are admitted. Then, Vk is used
to denote the size of unit k. The processing time of each batch of
product i in unit k, tik, and the size factor SFij that denotes the
required capacity of units in stage j to produce one mass unit of
final product i, are problem data.
Considering the demand of product i, the nonidentical parallel

unit sizes at each stage, the equipment utilization minimum rate
for product i at each unit, denoted by αik, and the size factors of
product i in each stage, the minimum and maximum numbers of
batches required to fulfill the demand of product i can be
calculated in order to ensure solution optimality. Thus, the
minimum number of batches of product i at the campaign is
calculated as follows:
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is the maximum feasible batch size for product i. Analogously, the
maximum number of batches of product i at the campaign is
given by
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is the minimum feasible batch size for product i.
Intermediate storage tanks are not allowed. Therefore, taking

into account the configuration of the plant, there is no batch
splitting ormixing, that is, each batch is treated as a discrete entity
throughout the whole process. It is assumed that a batch cannot
wait in a unit after finishing its processing. Therefore, the ZW
transfer policy between stages is adopted, that is, after being
processed in stage j, a batch b is immediately transferred to the
next stage j+1. Besides, batch transfer times between units are
assumed very small compared to process operation times and,
consequently, they are included in the processing times.
Sequence-dependent changeover times, cii′k, are considered

between consecutive batches processed in the same unit k, even
of the same product. This transition time corresponds to the
preparation or cleaning of the equipment to perform the
following batch processing. It is necessary for various reasons:
ensure product quality, maintain the equipment, safety reasons,
etc.
As previously stated, the problem consists of solving

simultaneously two decision levels often addressed sequentially.
Through a holistic approach, the selection and sizing of batches
of each product (batching), and the assignment of batches to
units in each stage, the production sequence of assigned batches
in each unit and initial and final processing times for batches that
compose the campaign in each processing unit (scheduling) are
jointly determined.

3. SOLUTION STRATEGY
Production scheduling for batch processes is a complex
optimization problem, even more when the number of batches
to be processed and their sizes are not problem data. Taking into
account the combinatorial nature of the problem, most of the
existing approaches in the area decouple the batching and
scheduling decisions, which often leads to suboptimal solutions.
Therefore, formulations and solution strategies for the
simultaneous batching and scheduling of multiproduct batch
processes are challenging and necessary.
With the aim of reducing the combinatorial complexity

associated with the integrated problem, where the difficulty is
mainly due to the scheduling decisions, a two-phase solution
strategy is addressed in this work. First, a simplified MILP
problem (SP) is solved, where the batching and scheduling
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decisions are made considering a preordering constraint in the
assignment of batches in order to reduce the complexity related
to the scheduling. Then, the campaign composition and the
optimal value of the objective function of problem SP provide a
better-estimation of the number of batches that must be
proposed for the detailed model and a tighter upper bound on
the objective function of this model. Thus, the detailed MILP
formulation (DP) for the simultaneous batching and scheduling
of the given plant is solved in a reasonable computational time.
Model DP considers the exact scheduling of the batches selected
for the optimal campaign composition, without preordering
constraints. It is worth mentioning that the solution of model SP
provides a tight upper bound on the objective function of
problem DP, and, many times, it coincides with its global
optimum.
For scheduling decisions of both formulations, an asynchro-

nous slot-based continuous-time representation has been used.
The slots correspond to time intervals of variable length in which
batches will be assigned. In each slot l of a specific unit k at most
one batch b of product i can be processed and, if no product is
assigned to slot l, its length will be zero. In models based on this
type of representation, the selection of the number of slots
postulated for each unit is not a trivial decision since
computational performance strongly depends on this parameter.
Taking into account that in this work the parallel units at each
stage have different capacities and processing times, the
assumptions made and expressions proposed in previous works
for the number of slots postulated for each unit at both models
cannot be employed (Fumero et al., 2012). In this work, a
strategy to define the set of postulated slots for model DP has
been designed taking advantage of the optimal solution of model
SP. The number of selected batches for each product frommodel
SP allows tightly proposing the number of slots postulated for
each unit in the detailed model. So, the model DP size is
drastically reduced and it is solved in a reasonable CPU time.

4. MATHEMATICAL FORMULATIONS
In this section, continuous-time slot-based MILP formulations
for both models previously mentioned are described.
The number of slots postulated for unit k of stage j, denoted by

Lkj, is not a priori known because the set of batches to be
processed for fulfilling the demands and the allocation of those to
each unit are optimization variables. For the first model, this
value can be approximated considering the estimation on the
maximum number of batches of each product at the campaign,
denoted by NBCi

UP. Then, the number of slots postulated for all
units of each stage is the same, and it is given by

∑= ∀ ∈
∈

L j k KNBC ,
i I

i j
UP

Although this value is an overestimation, a better approximation
cannot be proposed taking into account that the parallel units are
different and, on the other hand, the number and sizes of batches
to be scheduled are optimization variables, unlike most of
scheduling approaches presented in the literature in which they
are considered as parameters. However, the lower bound on the
number of batches of product i at the campaign, NBCi

LOW

strongly reduces the number of combinations in the batching
decisions and consequently improves the computational
performance of the models.
Finally, taking into account the optimal solution of model SP,

the option more conservative on the number of slots proposed
for each unit of the batch plant for the first model can be relaxed

and a better-estimation can be achieved for model DP. This is a
significant result taking into account the impact of these values
on the computational performance.

4.1. SimplifiedModel SP. 4.1.1. Batching Constraints.The
number of batches of product i that must be manufactured at the
campaign is a model variable. Taking into account the upper
bound for this value, a set of generic batches associated with
product i, IBi, is proposed, where |IBi| =NBCi

UP. A binary variable
zib is introduced, which takes value 1 if batch b of product i is
selected to satisfy the demand requirements of that product and 0
otherwise. Then,

∑≤ ≤ ∀ ∈
∈

z i INBC NBCi
b IB

ib i
LOW UP

i (1)

Besides, without loss of generality and in order to reduce the
number of alternative solutions, eq 2 guarantees that the
selection of batches of a same product is made in ascending
numerical order:

≤ ∀ ∈ ∈ + ∈+z z i I b IB b IB, , 1ib ib i i1 (2)

Let Bib be the size of batch b of product i and Qi the demand of
product i that must be fulfilled, then

≤ ∀ ∈ ∈B B z i I b IB,ib i ib i
max

(3)
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∈

Q B i Ii
b IB

ib
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Taking into account that the size of unit k denoted by Vk and the
size factor SFij are model parameters, if batch b of product i is
processed in unit k of stage j the following inequalities limit the
size Bib of batch b between the minimum and maximum
processing capacities of unit k:

α ≤ ≤ ∀ ∈ ∈

∈

V
B

V
i I b IB

k j b

SF SF
, ,

{units of stage used to process batch }

ik
k

ij
ib

k

ij
i

(5)

where αik is the minimum filled rate required to process product i
in unit k. Since the units selected to process the batches of each
product are optimization variables and their sizes are different, eq
5 must be expressed through a variable that indicates this
selection. Then, the allocation variables and constraints of the
model are introduced.
For enhancing the resolution process by eliminating

equivalent symmetric solutions, the batch b size of product i is
forced to be greater than or equal to the batch b+1 size of the
same product, that is

≤ ∀ ∈ + ∈+B B i I b b IB, , 1ib ib i1 (6)

4.1.2. Assignment and Sequencing Constraints. Selected
batches must be assigned, in each stage, to specific slots in the
units. In this formulation, a preordering constraint is imposed in
the assignment of batches, which allows simplifying the
definition of the allocation variables, reducing the number of
binary variables. This heuristic rule assures that each selected
batch is assigned to the same slot on all stages. Then, the
assignment of batches to slots on different units is defined
through two sets of binary variables:

=
⎧⎨⎩Z

b l1 if batch is assigned to slot

0 otherwise
bl
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=
⎧
⎨⎪
⎩⎪

X
l k1 if slot of unit is employed for processing 

one batch
0 otherwise

kl

First, it is worth noting that if batch b of product i is not
processed, variable Zbl is zero for all slots:

≤ ∀ ∈ ∈ ≤ ≤Z z i I b IB l L, , 1bl ib i (7)

Variable Zbl defines the relation batch-slot. Therefore, the
proposed heuristic rule for the model SP, which states that each
batch processed must be allocated to the same slot on different
stages, is posed through the following condition:

∑ = ∀ ∈ ∈
≤ ≤

Z z i I b IB,
l L

bl ib i
1 (8)

Moreover, for each stage of the plant, slot l is only used for
processing at most one product batch on exactly one unit.
Therefore, in the remaining units of that stage, this slot cannot be
occupied. Then

∑ ≤ ≤ ≤
∈∪

Z l L1 1
b IB

bl

i
i (9)

∑ ≤ ∀ ∈ ≤ ≤
∈

X j J l L1 , 1
k K

kl
j (10)

The proposed preordering constraint accelerates the model SP
resolution, reducing the number of enumerated nodes. However,
in some cases, suboptimal solutions can be obtained.
To reduce the number of alternative solutions and

consequently improve the resolution process, in each stage the
slots are used in ascending order. Without loss of generality, the
following constraint is imposed:

∑ ∑≤ ∀ ∈ ≤ ≤
∈

+
∈

X X j J l L, 1
k K

kl
k K

kl1

j j (11)

The length of empty slots is zero, and, therefore, initial and final
times are equal and coincide with the end time of the previous
slot. Then, taking into account that the number of slots proposed
in all units is overestimated, some of them will be empty.
Finally, the following equality ensures that in each stage, the

number of batches selected to meet the demand of the
corresponding product coincides with the total number of slots
used at the units of each stage,

∑ ∑ ∑ ∑= ∀ ∈
∈ ≤ ≤ ∈ ∈
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The recently defined variables allow a correct expression of the
inequalities posed in eq 5 as
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where BM is a sufficiently large number that makes the constraint
redundant when batch b is not assigned to any slot of unit k.

Constraints 13a and 13b are nonlinear because of the bilinear
product Zbl Xkl. Then, in order to eliminate this nonlinearity, a
new non-negative variable Ybkl is defined as

=
⎧⎨⎩Y

Z X1 if both and are 1

0 otherwise
bkl

bl kl

Thus, eq 13a and 13b can be respectively rewritten as
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Given that variables Zbl and Xkl are binary, Ybkl can be treated as a
continuous variable in the interval [0, 1]. Thus, the number of
binary variables is reduced. Taking into account that if batch b is
not assigned to slot l, then none of the units of each stage can
employ slot l to process batch b, and that if slot l of unit k at stage j
is not utilized, then none of the products is processed in it, the
following constraints must be posed:

∑ = ∀ ∈ ∈ ∈ ≤ ≤
∈

Y Z i I b IB j J l L, , , 1
k K

bkl bl i
j (15)

∑ = ∀ ∈ ∈ ≤ ≤
∈∪

Y X j J k K l L, , 1
b IB

bkl kl j

i
i (16)

Reciprocally, Ybklmust take a value of 1 only if both Xkl and Zbl are
1. Therefore, the following linear inequality is imposed:

≥ + −

∀ ∈ ∈ ∈ ∈ ≤ ≤

Y X Z

j J k K i I b IB l L

1

, , , , 1
bkl kl bl

j i (17)

In summary, ifZbl = 0, then, taking into account constraint 15 and
that variable Ybkl is not negative, Ybkl = 0 for all units. Similarly, if
Xkl = 0, then, taking into account constraint 16, Ybkl = 0 for all
batches. In both cases, inequality 17 is redundant. On the
contrary, if Zbl and Xkl are simultaneously equal to 1, taking into
account that the upper bound for continuous variable Ybkl is equal
to 1, constraint 17 ensures that Ybkl = 1.
In this way, assignment variable Ybkl does not need to be

defined as binary, and hence the number of binary variables of the
model remains unchanged.

4.1.3. Timing Constraints. Non-negative continuous varia-
bles, TIkl and TFkl, are used to represent the initial and final
processing times, respectively, of the proposed slots in each unit
k. When slot l is not the last slot used in unit k of stage j for
processing one batch, knowing the processing times of products
at each unit and the sequence-dependent changeover times
between ordered pairs of products, the final processing time TFkl
of slot l in unit k is constrained by

∑ ∑ ∑ ∑= + +

∀ ∈ ∈ ≤ < < ′ ≤

∈ ′∈ ∈ ′∈
≠ ′

′ ′ ′
′

t c Y Y

j J k K l L l l L

TF TI ( )

, , 1 ,

kl kl
i I i I b IB b IB

b b

ik ii k bkl b kl

j

i i

(18)

where l′ represents the first slot effectively used in unit k of stage j
after slot l (Figure 1).
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When no batch is assigned to slot l at unit k (i.e., Ybkl = 0 for all
b), the initial and final times of this slot are equal, that is, TIkl =
TFkl.
A new non-negative variable YYblb′l′k is defined to eliminate the

bilinear term Ybkl Yb′kl′ in eq 18. This variable has to be linked to
the assignment variables Ybkl and Yb′kl′ such that YYblb′l′k takes
value 1 if both are 1, and 0 otherwise. To enforce its value, the
following conditions are added:

≥ + −
∀ ∈ ≤ ≤ ∈ ′ ∈

∈ ′ ∈ ≤ ≤ ′ ≤ ′ ≤

′ ′ ′ ′

′

YY Y Y
j J k K i I i I

b IB b IB l l l L

1
, 1 , , ,

, , 1 , 1

blb l k bkl b kl

j

i i (19)

≤ ∀ ∈ ≤ ≤ ∈ ′ ∈

∈ ′ ∈ ≤ ≤ ′ ≤ ′ ≤

′ ′

′

YY Y j J k K i I i I

b IB b IB l l l L

, 1 , , ,

, , 1 , 1

blb l k bkl j

i i
(20)

≤ ′ ′ ∀ ∈ ≤ ≤ ∈ ′ ∈

∈ ′ ∈ ≤ ≤ ′ ≤ ′ ≤

′ ′

′

YY Y j J k K i I i I

b IB b IB l l l L

, 1 , , ,

, , 1 , 1

blb l k b kl j

i i
(21)

Taking into account the previous constraints, the new variable
does not need to be declared as binary and can be treated as a
continuous variable in the interval [0, 1].
Thus, eq 18 can be represented using the following Big-M

representations:

∑ ∑ ∑ ∑

∑

− − +
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∀ ∈ ∈ ≤ < < ′ ≤
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(22)
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j

1

i i

(23)

whereM1 is a sufficiently large number that makes the constraint
redundant when slot l′ is not used for processing any product
batch.
On the other hand, when slot l is the last slot used at unit k of

stage j for processing some batch of the campaign, the previous
constraints are not valid. Now, taking into account that the

campaign is cyclically repeated over a time horizon, the final

processing time TFkl of slot l in unit k is calculated considering

the changeover time required for processing the batch assigned

to the first slot effectively used in unit k of stage j (Figure 2).
Then, the following constraints must be satisfied:

∑ ∑ ∑ ∑

∑ ∑
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≥ − − −

∀ ∈ ∈ ≤ ≤ ≤ ′ ≤
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(24a)

∑ ∑ ∑ ∑

∑ ∑

− + + + ′

≥ − − −

∀ ∈ ∈ ≤ ≤ ≤ ′ ≤

∈ ′∈ ∈ ′∈
′ ′

′
≤ <̂ ′

̂
< ≤̃

̃

′

t c YY

M X X X

j J k K l L l l

TF TI ( )

( 1 )

, , 1 , 1

kl kl
i I i I b IB b IB

ik ii k b l blk

kl
l l

kl
l l L

kl

j

1
1

i i

(24b)

where the constraints are redundant when some slot following to
slot l is used for processing one product batch or if slot l′ is not
the first slot used in unit k of stage j.
To avoid the overlapping between the processing times of

different slots in a unit, the following constraint is added:

≤ ∀ ∈ ∈ ≤ <+ j J k K l LTF TI , , 1kl kl j1 (25)

Besides, if no batch is assigned to slot l+1 of unit k (Xkl+1 = 0),
then the initial time of this slot is enforced to be equal to the final
time of slot l. Then, taking into account that eq 25 is satisfied for
successive slots in a unit, this new condition is represented by

− ≥ − ∀ ∈ ∈ ≤ <+ +M X j J k K l LTF TI , , 1kl kl kl j1 2 1

(26)

whereM2 is a sufficiently large number that makes the constraint
redundant when a batch is assigned to slot l+1.
As already mentioned, an operational feature of plants

involved in this work is the ZW transfer policy. It is assumed
that a batch, after finishing its processing at a stage, must be
transferred immediately to the next stage. Therefore, when a
batch processed in slot l utilizes unit k in stage j and k′ in stage j
+1, the following equation must be satisfied:

Figure 1. Illustration representing eq 18

Figure 2. Illustration representing eqs 24a and 24b
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where l′ represents the first slot effectively used in unit k of stage j
after slot l (Figure 3).

Given that this constraint must be only satisfied when a batch
is assigned to those units, then this condition can be expressed
through constraints of Big-M type. Constraints 28a and 28b are
active when some slot l′ following to slot l is used for processing a
product batch, while eq 29a and 29b when slot l is the last slot
used at unit k of stage j.
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In particular, if only a campaign is processed to fulfill the
production targets, changeover times must not be considered to
calculate TFkl when l is the last slot used at unit k of stage j.
Consequently, eqs 24a and 24b, and eqs 29a and 29b with
regards to the ZW policy are simpler and the parameters cii′k and
the variables Yblb′l′k are not required.

4.1.4. Cycle Time Definition. The expression for the cycle
time of the campaign, CT, is obtained using the initial and final
times of the first slot used for processing batches and last slot
proposed in unit k of stage j, respectively:

= −
∈ ∈

̃CT max{max{TF TI }}
j J k K

kL klk (30)

where lk̃ represents the first slot effectively used in unit k for
processing one batch, that is, lk̃ = min {1 ≤ l ≤ L/Xkl = 1}. This
equation can be represented using a Big-M representation, as

∑− + ≥ − −

∀ ∈ ∈ ≤ ≤

′
≤ ′<

′M X X

j J k K l L

CT TF TI ( 1 )

, , 1

kL kl kl
l
l l

kl

j

1

1

(31)

where the constraint is redundant for all the previous and
subsequent slots, if any, to the first not empty one in unit k.
Additional constraints which establish tight bounds for timing

variables TIkl, TFkl, CT are incorporated to the model in order to
reduce the search space, and consequently achieve significant
savings in computational time:

≤ − ∀ ∈ ∈ ≤ ≤t j J k K l LTI TFMax min{ } , , 1kl j
i

ik j

(32)

≥ ∀ ∈ ∈ ≤ ≤t X j J k K l LTF min{ } , , 1kl
i

ik kl j (33)

∑ ∑ ∑≥ ∀ ∈ ∈
∈ ∈

t Y j J k KCT ,
i I b IB l

ik bkl j
i (34)

In this case, as the number of batches of each product in the
campaign is a model decision, parameter TFMaxj is calculated by
solving a simpler model where batching is not considered, each
stage considers only the unit with longer total processing times
and the number of batches to be scheduled is equal to the total set
of proposed batches for all products. Then, TFMaxj corresponds
to the final time of the last assigned slot to stage j.

4.1.5. Objective Function. The problem goal is to minimize
the cycle time of the production campaign that fulfill the
demands requirements, that is

Minimize CT (35)

where the proposed MILP formulation of model SP includes
constraints 1−4, 6−12, 14a−17, 19−26, 28a, 29b, and 31−34.
The objective function value of this model represents a good

upper bound for the cycle time of detailed problem DP, which is
presented next.

4.2. Detailed Model DP. To complete the resolution
methodology of the integrated batching and scheduling problem,
the formulation of model DP is presented in this section. In this
formulation, preordering constraints defined in SP, which affect
the optimality of the scheduling decisions, are removed. On the
contrary, DP result in a more complex model that considers an
exact scheduling for the selected batches in the batching level as
well as assumptions that keep the model generality. However,
model SP provides significant information that allows solving the
model DP in a reduced space in reasonable computation time.

Figure 3. Representation of ZW policy between batch stages j and j+1.
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The optimal solution of the first model allows strongly reducing
the number of slots proposed compared to model DP. On the
other hand, the optimal objective function value obtained from
simplified model SP provides a good upper bound for the
campaign cycle time of the model DP.
Taking into account the preordering constraint of model SP is

avoided, the variable Zbl is not required. Now, batch b can be
assigned to different slots in each stage. Equations involving this
variable, as 7−9 and 15 are not valid in this new formulation and,
therefore, this variable is not used. To assign batches to slots on
each unit, variable Ybkl, previously used in model SP, will be again
employed in the same way. However, unlike the previous model,
this variable is required to be binary. Although the binary variable
Ybkl is enough for formulating the detailed scheduling problem,
the binary variable Xkl, which specifies the slots set utilized in unit
k for processing batches, will be also used in order to reduce the
search space and, therefore, to improve the computational
performance.
Batching decisions are modeled through constraints 1−4, 14a,

and 14b from model SP. However, due to that the preordering
constraint is not considered for the detailed model, new
assignment, sequencing and timing constraints are presented.
In this model, the handling of the slot concept is slightly

different compared to model SP. Without loss of generality and
in order to reduce the search space, it is assumed that slots of each
unit are consecutively used in ascending numerical order. Hence,
the optimal assignment of batches to slots obtained from model
SP allows the tightening of the number of slots postulated for
unit k of stage j, denoted by Lkj.
4.2.1. Assignment and Sequencing Constraints. Unlike

model SP, it is assumed that slots of each unit are occupied in
ascending order. Hence, the slots of zero length take place at the
end of each unit. The following constraint establishes that for
each unit k, slot l+1 is only used if slot l has been already
allocated:

≥ ∀ ∈ ∈ ≤ ≤+X X j J k K l L, , , 1kl kl j kj1 (36)

Logical relations can be defined among binary variables zib, Xkl
and Ybkl. In fact, if slot l of unit k is not utilized, then none of the
proposed batches is processed in it. Therefore, the following
constraint is imposed:

∑ = ∀ ∈ ∈ ≤ ≤
∈ ∪

∈

Y X j J k K l L, , 1
b IB

bkl kl j kj

i I
i (37)

Moreover, eq 37 allows representing the opposite conditional of
the logical relation recently mentioned, which indicates that if
slot l of unit k is utilized, then only one of the proposed batches is
processed in it.
On the other hand, if batch b of product i is selected (i.e., zib =

1), then this batch is processed, in each stage j, in only one slot of
some of the available units at the stage. This condition is
guaranteed by the following constraint:

∑ ∑ = ∀ ∈ ∈ ∈
∈ ≤ ≤

Y z j J i I b IB, ,
k K l L

bkl ib i
1j kj (38)

Finally, considering constraints 37 and 38 the following
constraint must be satisfied. Though it is redundant with the
previous ones, it reduces the computing time:

∑ ∑ ∑ ∑= ∀ ∈
∈ ≤ ≤ ∈ ∈

X z j J
k K l L

kl
i I b IB

ib
1j kj i (39)

4.2.2. Timing Constraints. Taking into account that the slots
are used in ascending numerical order at each unit, the final
processing time TFkl of slot l in unit k is calculated by
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1
i i

(40)

This constraint is only valid if l is not the last slot used in unit k of
stage j for processing one batch, that is, if Yb′kl+1 take value 1 for
some b′ (Figure 4).

On the other hand, when the sequence of slots used in unit k is
1, 2, ... l, that is, slot l is the last slot used at unit k of stage j to
process some batch, taking into account that the campaign can be
cyclical repeated over a time horizon, the final processing time
TFkl is calculated considering the changeover time required for
processing the batch assigned to slot 1 in unit k of stage j. Then,
the following constraints must be satisfied:

∑ ∑ ∑ ∑= + +

∀ ∈ ∈ ≤ ≤

∈ ′∈ ∈ ′∈
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b b

ik ii k bkl b k

j kj

1
i i

(41)

Nonnegative variable YYblb′l′k defined in model SP is used to
eliminate the bilinear products in eqs 40 and 41. However, taking
into account that in this formulation the slots of each unit are
consecutively used in ascending order, it is only necessary to link
the assignments variables Ybkl and Yb′kl+1, that is, those relative to
consecutive slots on the same unit k as well as Ybkl and Yb′k1, for all
slot l, in order to represent the previous constraints. Therefore,
the number of variables YYblb′l′k required for this model is |K||B|(|
B| − 1)(|L|− 1).2 + |K||B|, in contrast to model SP where |K||B|(|
B| − 1)(|L| − 1).|L|/2 + |K||B||L| variables are needed, which is
strongly increased when |L| ≥ 4.
Equations 40 and 41 can be represented using the following

Big-M expressions, respectively:
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Figure 4. Illustration representing eq 40
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whereM3 is sufficiently large. Also, constraints 25 and 26must be

included in the formulation of this model.
To ensure ZW transfer policy, when a batch b is processed in

slot l of unit k at stage j and in slot l′ of unit k′ at stage j+1, the
following equation must be satisfied when slot l is not the last slot

used at unit k of stage j:
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As this constraint must be only satisfied when a batch is

assigned to those units and slots, then this condition can be

expressed through constraints of Big-M type. Constraints 45a

and 45b are active when slot l+1 is used for processing a product

batch, while eq 46a and 46b when slot l is the last slot used at unit

k of stage j.
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Analogously to model SP, if the campaign is not repeated over a
time horizon, when slot l is the last slot used at unit k of stage j,
the changeover times must not be considered to calculate the
final time TFkl of this slot. Constraints 43a, 43b, 46a, and 46b
concerning to ZW policy are most simple and the parameters cii′k
and the variables Yblb′l′k are not required.

4.2.3. Cycle Time Definition. Taking into account that slots of
each unit are used in ascending numerical order, the expression
for the cycle time of the campaign, CT, is given by

≥ − ∀ ∈ ∈j J k KCT TF TI , ,kL k j1kj (47)

In addition, constraints 32, 33, and 34 of model SP, which
proposed upper and lower bounds for the initial and final times,
respectively, and a lower bound on the cycle time of the
campaign, are also imposed.
The optimal value of the objective function of model SP, CTSP,

represents a tight upper bound for the cycle time of model DP
presented in this section.

≤CT CTSP (48)

As will be shown in the Examples section, this bound strongly
reduces the search space and allows the optimization of batching
and scheduling decisions simultaneously in reasonable comput-
ing time.

4.2.4. Objective Function. The MILP formulation of model
DP consists of minimizing the same objective function that
models SP, subject to constraints 1−4, 6, 14a, 14b, 25, 26, 32−34,
36−39, 42a, 43b, 45a, 46b, 47, and 48.
Finally, this model allows a determination of the number and

size of batches to satisfy the given production targets, the
assignment of batches to units in each stage, the production
sequence on each unit, and initial and final processing times for
the batches that compose the campaign in each processing unit,
in order to minimizing the production cycle time.

5. EXAMPLES
In this section, the capabilities of the proposed approach are
highlighted through examples, which are of increasing size. For
all examples, the batching and scheduling decisions of the given
multiproduct plants, operating through mixed campaigns, have
to be simultaneously solved to fulfill the required product
demands. In all cases, coefficient αik representing the minimum
filled rate required to process product i in unit k, is assumed to be
0.50 for all products and equipment items. That is, this parameter
accounts for 50% of total available capacity of units. The last two
examples emphasize the importance of the proposed resolution
methodology from the computational point of view. All examples
were implemented and solved in GAMS26 version 24.1.3 with a
2.8 GHz Intel Core i7 processor. The CPLEX 12.5.1 solver was
employed for solving the MILP problems, with a 0% optimality
gap. The number of continuous and binary variables and
constraints strongly depend on the total number of units,
products and batches proposed to fulfill the required demands.
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5.1. Example 1. In this example, the considered batch plant
consists of three stages with nonidentical parallel units with
known sizes that operate out-of-phase, as is illustrated in Figure 5.

Available units at each stage are denoted by the sets: K1 = {1, 2},
K2 = {3, 4, 5}, and K3 = {6}, respectively. Products A, B, and C
have to be processed through all stages before being converted
into final products. The required amounts in the campaign areQA
= 8000 kg, QB = 6000 kg, and QC = 3000 kg. Data on processing
times and size factors of each product are shown in Table 1, while
the sequence-dependent changeover times are given in Table 2.
Considering the nonidentical parallel unit sizes at each stage,

the size factors for each product in each stage and the equipment
utilization minimum rate for all products, the minimum feasible
batch sizes for products A, B, and C are

= =B 0.5max{3714 kg, 3333 kg, 5076 kg} 2538 kgA
min

= =B kg0.5max{4334 kg, 2857 , 3882 kg} 2167 kgB
min

= =B 0.5max{3714 kg, 3077 kg, 4714 kg} 2357 kgC
min

Then, the maximum number of batches of each product at the
campaign is given by

= = = =

= =

⎡
⎢⎢

⎤
⎥⎥

⎡
⎢⎢

⎤
⎥⎥
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⎥⎥
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8000
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6000
2167
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2
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B
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Thus, the sets of proposed batches are {b1, b2, b3, b4}, {b5, b6, b7},
and {b8, b9} for products A, B, and C, respectively, and
consequently a total of nine batches must be postulated to
guarantee the global optimality of the solution for this example.
Also, the maximum feasible batch sizes for all products allow a

determination for the minimum number of batches of every
product at the campaign. In this case, themaximum feasible batch
sizes for all products are

= =B min{6142 kg, 7000 kg, 5076 kg} 5076 kgA
max

= =B min{7167 kg, 6000 kg, 3882 kg} 3882 kgB
max

= =B min{6142 kg, 6461 kg, 4714 kg} 4714 kgC
max

therefore, the required minimum number of batches for products
A and B is two, while that for product C is one.
As wasmentioned earlier in the paper, the optimization criteria

used for both models that integrate the proposed solution
strategy, is the minimization of the campaign cycle time, taking
into account that the campaign is periodically repeated along a
time horizon. The model SP comprises 75619 constraints, 22619
continuous variables, and 139 binary variables, and it was solved
in 16.4 CPU seconds, while DP involves 6436 constraints, 1424
continuous variables, and 148 binary variables, and its solving
time was equal to 3.6 s. The optimal objective function values are
equal to 34.25 h for both models.
To assess the proposed strategy, model DP without

considering the supplied information by model SP (upper
bound for the cycle time introduced by eq 48 and tighter number
of postulated slots) is solved. In this case, the same optimal
solution is obtained in 35.1 CPU seconds, which increases the
computational time compared with that obtained with the
proposed solution strategy.
The optimal campaign for satisfying the required product

amounts involves two batches of product A (b1, b2), two of B (b5,
b6), and one of C (b8); that is, the demands of all products are
fulfilled with the minimum number of batches. The optimal
production sequence obtained in each batch unit for the different
stages, considering sequence-dependent changeover times, is
illustrated in the Gantt chart of Figure 6. Taking into account that
the optimal campaign is cyclically repeated over a time horizon,
the changeover times between products processed in the last and
first slot of each unit must be included in the optimization in
order to achieve the accurate overlap of successive campaigns.
For this example, as it can be seen from Figure 6, changeover
times between pairs of campaigns are cAB1 = 1 h, cAC2 = 1 h for
units of stage 1; cBB3 = 0 h, cAC4 = 4 h, cAB5 = 2 h for units of stage
2; and cAC6 = 1 h for stage 3.
The size for each batch that composes the campaign is equal to

5000 and 3000 kg for product A, 3833 and 2167 kg for product B,
and 3000 kg for product C. The capacities used, in liters, in each
unit of the different stages for processing the selected batches are
summarized in Table 3. The batches that reach the minimum and
maximum capacities are highlighted in boxes shaded in white and
gray, respectively. Batch b1 of product A is processed in units 1, 4,
and 6, and its size is themaximum possible to be processed in unit
4 of stage 2. Then, batch b2 fulfills the required amount of that
product occupying approximately 81%, 90%, and 60% of the
capacity of units 2, 5, and 6, respectively. On the other hand, two
batches of product B are processed for meeting its demand. Batch
b5 size is larger than b6 and additionally the size of b6 is the
requiredminimum. The latter batch is processed in units 2, 5, and
6 using 50%, 75.75%, and about 55% of their capacities,
respectively.
Finally, from the computational point of view, this example

shows that the simplified model SP may be used as a good
heuristic for solving the simultaneous batching and scheduling of

Figure 5. Plant structure for Example 1.

Table 1. Processing Times and Size Factors of Products for Example 1

processing time: tik (h) size factor: SFij (L/kg)

product stage 1 stage 2 stage 3 stage 1 stage 2 stage 3

i 1 2 3 4 5 6 k = 1, 2 k = 3, 4, 5 k = 6

A 14 9 25 18 12 7 0.70 0.60 0.65
B 16 10 18 13 9 5 0.60 0.70 0.85
C 12 8 15 11 8 4 0.70 0.65 0.70
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batch plants taking into account the high combinatorial
complexity associated with this type of decisions.
5.2. Example 2. To illustrate the significant savings in CPU

time that can be attained by using the proposed approach, a
second case study is presented. In this example, the batch plant
consists of four stages, with two nonidentical units operating out-
of-phase on stages 1 and 3, and one unit on the remaining stages,
as is illustrated in Figure 7.

Products A, B, C, and D must be manufactured following the
same sequence of stages. The required amounts of them in the
campaign areQA = 110 kg,QB = 150 kg,QC = 85 kg, andQD = 80
kg. Data on processing times and size factors of each product are
shown in Table 4, while the sequence-dependent changeover
times are given in Table 5.

For this example, the minimum feasible batch sizes are 50,
72.22, 40.63, and 54.17 kg for products A, B, C, and D,
respectively. Then, taking into account the required product
amounts, the maximum number of batches for the campaign is
three for products A, B, and C, and two for product D. Thus, a
total of 11 batches partitioned into sets {b1, b2, b3}, {b4, b5, b6},
{b7, b8, b9} and {b10, b11} must be postulated for products A, B, C,
and D, respectively. On the other hand, considering that the
maximum feasible batch sizes are 80 kg for product A, 100 kg for
B, 60 kg for C, and 86.96 kg for product D, the minimum number
of batches required for products A, B, and C is two, while that for
product D is one.
Table 6 lists the objective function values, model sizes, and

computational statistics for both formulations that integrate the
proposed solution strategy, as well as for problem DP when the
optimal solution achieved through model SP is not considered
for its optimization.
As it can be observed from Table 6, the optimal objective

values of models SP and DP are not equal. However, the number
of selected batches for each product and the optimal campaign
cycle time obtained from the first model, provide a better
estimation of the number of slots that must be postulated for the
detailed model and a tighter upper bound on the objective
function of this model. Thus, model DP is solved in a reasonable

Table 2. Changeover Times for Example 1

Sequence-dependent changeover time: cii′k (h)

stage 1 stage 2 stage 3

k = 1, 2 k = 3 k = 4 k = 5 k = 6

i A B C A B C A B C A B C A B C

A 1 1 1 0 6 6 0 4 4 0 2 2 0 2 1
B 0.25 2 1 6 0 6 4 0 4 2 0 2 2.15 0 2.25
C 2 0.5 0 6 6 0 1 1 0 2 2 0 0 1 0

Figure 6. Optimal production schedule for the campaign of Example 1.

Table 3. Capacities Used in Each Unit of Each Stage for Example 1 (L)

Figure 7. Plant structure for Example 2.
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computing time. Also, this example allows showing the
significant advantage of the proposed solution approach to
obtain the simultaneous batching and scheduling of batch plants.
In this sense, the last row of Table 6 shows that the CPU time is
increased (more than 4 times) when it is compared with the
required total time needed to solve proposed strategy.
For both models, 7 batches were selected out of a total of 11, at

the optimal solution. Batches b1 and b2 satisfy the total required
demand of product A with sizes of 55.17 and 54.83 kg,
respectively. Batches b4 and b5 of product B with sizes equal to
77.78 and 72.22 kg, respectively, are processed for fulfilling the
campaign demand of product B. Batches b7 and b8 are required to
achieve the production of C with sizes equal to 44.38 and 40.63
kg, respectively. The assigned sizes to batches b5 and b8 satisfy the
minimum filled capacity required for unit 6; that is, 50% of the
total unit capacity is used for processing these batches. Finally,
only one batch (b10) is selected to accomplish the demand of
product D. Information about the occupied capacity, in liters, in
each unit of each stage for processing the selected batches is
resumed in Tables 7 and 8 for both models, where the minimum
and maximum capacities reached for processing the product
batches are highlighted in boxes shaded in white and gray,
respectively.
For each model, the optimal campaign scheduling with

minimum cycle time is illustrated in Figure 8. The model SP
considers a preordering constraint in the assignment of batches
to slots, where each batch is assigned to exactly the same slot in all
stages. Then, as it can be noted from Figure 8a, particularly on
stages 2 and 4, the processing sequence of the batches assigned to
the first seven slots is the same on those units, namely b1−b7−
b10−b4−b5−b2−b8. In contrast to model SP, model DP, which

does not consider batch preordering, reduces the campaign cycle
time in 4 h, varying the batch sequencing in the stages. This can
be easily observed in Figure 8 b where the batch sequencing at
stage 2 is b7−b1−b10−b4−b5−b8−b2, while at stage 4 is b1−b7−
b10−b4−b5−b2−b8. As it can be observed from Figure 8 panels a
and b, the batch sequencing on stage 4 is the same for both
models (A−C−D−B−B−A−C). However, on stage 2, model
DP allows the batches to be put such that the idle time among
batches processed on stage 4 is reduced compared to model SP.
It is worth mentioning that although the solution of model SP is
suboptimal, it introduces an appropriate upper bound on the
objective function and further reduces the number of postulated

Table 4. Processing Times and Size Factors of Products for Example 2

processing time: tik (h) size factor: SFij (L/kg)

product stage 1 stage 2 stage 3 stage 4 stage 1 stage 2 stage 3 stage 4

i 1 2 3 4 5 6 k = 1, 2 k = 3 k = 4, 5 k = 6

A 3 2 2 6 5 5 1.25 0.80 1.45 1.50
B 8 6 2 3 2 2 0.85 0.60 1.20 0.90
C 7 6 1 12 10 6 1.40 1.00 2.00 1.60
D 10 8 2 6 4 5 1.15 0.80 1.15 1.20

Table 5. Changeover Times for Example 2

sequence-dependent changeover time: cii′k (h)

stage 1 stage 2 stage 3 stage 4

k = 1, 2 k = 3 k = 4, 5 k = 6

i A B C D A B C D A B C D A B C D

A 0 1 2 2 2 1.5 0 1 1 4 4 4 1 1.25 0 1
B 0 1 0.5 3 0 0 0 2 1.5 0 0 1.5 1 0.25 1.25 1
C 1 2 1 1 0 1.5 1.5 1 2 2 0 0 1 1 0.25 0
D 3 1.5 1 0.5 1 1 1 1 1 1 2 2 0.25 0 2 0.25

Table 6. Model Sizes and Computational Statistics for
Example 2

variables

model
objective
function constraints binary continuous

CPU
time (s)

simplified (SP) 42 159467 191 48985 62.6
detailed (DP) 38 17363 289 3884 150.0
DP without
considering SP

38 71425 741 14558 941.7

Table 7. Capacities Used in Each Unit of Each Stage for
Example 2 with SP (L)

Table 8. Capacities Used in Each Unit of Each Stage for
Example 2 with DP (L)
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slots, which enable achieving a better performance in model DP,
as it is shown in Table 6.
5.3. Example 3. In this case, a new large example is

introduced. The plant consists of four batch stages with two
nonidentical parallel units operating out-of-phase on stages 1 and
2, three nonidentical parallel units on stage 3, and one unit on
stage 4. Units at each stage are denoted by the sets:K1 = {1, 2},K2

= {3, 4}, K3 = {5, 6, 7}, and K4 = {8}, respectively, and units sizes
are shown in Figure 9.

Products A, B, C, andD have to bemanufactured following the
same sequence of stages. The required amounts of them in the
campaign are QA = 560 kg, QB = 850 kg, QC = 250 kg, and QD =

300 kg. Data on processing times and size factors of each product
are shown in Table 9, while the sequence-dependent changeover
times are given in Table 10.
The minimum feasible batch sizes are 200 kg for products A

and C, 187.5 kg for product B, and 175 kg for D. Then, taking
into account the required product amounts, the maximum
number of batches for the campaign is three for product A, five
for product B, and two for products C and D. Thus, a total of 12
batches partitioned into sets {b1, b2, b3}, {b4, b5, b6, b7, b8}, {b9,
b10} and {b11, b12} must be postulated for products A, B, C and D,
respectively. On the other hand, considering that the maximum
feasible batch sizes are 357 kg for product A, 350 kg for B, 312.5
kg for C, and 500 kg for product D, the required minimum
number of batches for product A is two, for product B is three,
while for products C and D is one.
The optimal objective function values are equal to 39.75 h for

models SP and DP. Table 11 lists model sizes and computational
statistics for both formulations that integrate the proposed
solution strategy, as well as for problem DP when the optimal
solution achieved through model SP is not considered for its
optimization. In this last case, the same optimal solution is
obtained in 1589.1 CPU seconds, which increases more than 4

Figure 8. Gantt chart of the production campaign for example 2: (a) simplified model; (b) detailed model.

Figure 9. Plant structure for Example 3.

Table 9. Processing Times and Size Factors of Products for Example 3

processing time: tik (h) size factor: SFij (L/kg)

stage 1 stage 2 stage 3 stage 4 stage 1 stage 2 stage 3 stage 4

i 1 2 3 4 5 6 7 8 k = 1,2 k = 3,4 k = 5,6,7 k = 8

A 6 5 13 10 12 10 9 5 0.84 0.40 0.70 0.50
B 10 9 6 6 18 16 12 6 0.70 0.50 0.40 0.57
C 7 5 8 6 10 8 6 6 0.45 0.80 0.50 0.57
D 15 12 7 4 14 13 8 4 0.40 0.35 0.30 0.40
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times the computational time when it is compared with the
proposed strategy.
The optimal campaign for satisfying the required product

amounts involves two batches of product A (b1, b2), three of B
(b4, b5, b6), one of C (b9), and one of D (b11); that is, the demands
of all products are fulfilled with the minimum number of batches.
According to eq 2 the batches are selected in ascending numerical
order. The optimal production sequence obtained in each batch
unit for the different stages, considering sequence-dependent
changeover times, is illustrated in the Gantt chart of Figure 10.
The size for each batch that composes the campaign is equal to

345.71 kg (b1) and 214.29 kg (b2) for product A, 300 kg (b4),
292.86 kg (b5), and 257.14 kg (b6) for product B, 250 kg (b9) for
product C, and 300 kg (b11) for product D. The capacities used,
in liters, in each unit of the different stages for processing the
selected batches are summarized in Table 12. The batches that
reach the minimum and maximum capacities are highlighted in
boxes shaded in white and gray, respectively. The size of batch b2
of product A is the maximum possible following the route
composed by the units 2, 5, 8, and its size satisfies the minimum
filled capacity required for unit 5, that is, 50% of the total unit
capacity is used for process batch b2. Then, batch b1 fulfills the

required amount of that product occupying approximately 97%,
55%, 81%, and 86% of the capacity of units 1, 3, 5, and 8,
respectively. On the other hand, three batches of product B are
processed for meeting its demand. As it can be noted from Table
12, batches b4 and b5 size are the maximum possible to be
processed in units 1, 4, 6, 8 and 2, 4, 6, 8, respectively, and batch
b5 fulfills the campaign demand of that product. Finally, only
batches b9 and b11 are selected to accomplish the demands of
products C and D, respectively.
Finally, from the computational point of view, this example, as

well as those previously presented, shows that the two-step
solution strategy is a good option for the simultaneous
optimization of batching and scheduling decisions of multistage,
multiproduct batch plants, and it yields the optimal solution in
less CPU time than solving the model DP at once. Also, it is
worth mentioning that the proposed model formulations can be
adapted in order to optimize the batching and scheduling of
batch plants considering, for example, the makespan minimiza-
tion as performance criteria.

6. CONCLUSIONS

In this work, the simultaneous batching and scheduling of
multistage batch plants with nonidentical parallel units is faced.
Scheduling is modeled according to campaign-based operation
mode in such a way that the campaign cycle time minimization is
an appropriate optimization criterion. Sequence-dependent
changeover times are considered for each ordered pair of
products in each unit of the different stages.
Taking into account the complexity of the simultaneous

involved decisions, the optimization is tackled solving two MILP
models. Both formulations handle binary and continuous
variables for the batches selection and sizing, respectively, and

Table 10. Changeover Times for Example 3

sequence-dependent changeover time: cii′k (h)

stage 1 stage 2 stage 3 stage 4

k = 1, 2 k = 3, 4 k = 5, 6, 7 k = 8

i A B C D A B C D A B C D A B C D

A 0.5 2 2 3 1 1 1 2 1 2 2.5 3 0.5 0 0.25 1
B 1 1 2.5 1 0 0.5 2 1 2 0.5 1 0.25 0 0 2 0.5
C 0 2 0.5 2.5 3 1.5 0.5 2 2 1 1 2.5 2 1 0 2
D 2 2 2 1 3 0.5 2.5 0.5 1.75 2 0.5 0.75 0.25 2 1.5 0

Table 11. Model Sizes and Computational Statistics for
Example 3

variables

model constraints binary continuous
CPU

time (s)

simplified (SP) 296965 245 91466 267.1
detailed (DP) 14311 264 3036 79.6
DPwithout considering SP 141001 1123 24006 1589.1

Figure 10. Gantt chart for the optimal production campaign of Example 3.
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use a slot-based continuous-time representation for scheduling
decisions. In particular, the first formulation, denoted by SP,
considers preordering constraints for the assignment of batches
to slots at the different stages. In contrast, the second model,
called DP, considers the exact scheduling of the selected batches
and the optimal objective value of model SP is used as a tight
upper bound for the campaign cycle time. In addition, the
number of selected batches for each product from the first model
provides a better-estimation of the number of slots that must be
postulated for the detailed model DP. In this sense, the
computational performance is improved and the simultaneous
optimization is efficiently solved.
In both mathematical models, various equations are

reformulated in order to keep the problem linear and ensure
the global optimality of the solution. Furthermore, the models
could be adapted to optimize the batching and scheduling of
batch plants using the makespan minimization as problem
objective function.
Through the examples the capabilities of the proposed

formulations and resolution methodology are shown. Further-
more, model SP represents a good heuristic for solving the
integrated problem in complex contexts, taking into account that
an appropriate approximated solution is achieved.
With the proposed formulation, an interesting problem has

been solved. Many times, in made-to-stock contexts, the
campaign-based operation mode is an appropriate alternative
that allows taking advantage of the available resources with an
ordered production management. The proposed models
simultaneously solve batching and scheduling problems in
reasonable computing time. Thus, this approach can be applied
in real production systems that operate in campaign-mode taking
into account the assumed suppositions as far as different unit
sizes, changeovers, etc.
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■ NOMENCLATURE

Indices
b = batch
i = product
j = stage
k = unit
l = slot

Sets
I = set of products
IBi = set of batches proposed for product i
J = set of stages
K = set of units
Kj = nonidentical batch units operating in parallel out-of-phase
in stage j

Parameters
αik = equipment utilization minimum rate for product i at unit
k
Bi
max = maximum feasible batch size for product i

Bi
min = minimum feasible batch size for product i

BM = parameter used for constraint of Big-M type
cii′k = sequence-dependent changeover time between products
i and i′ at unit k
L = number of slots postulated for all units in model SP
Lkj = number of slots postulated for unit k of stage j in model
DP
Mn = parameter used for constraint of Big-M type, where n = 1,
..., 7
Nj = cardinality of Kj
NBCi

LOW = minimum number of batches of product i in the
campaign
NBCi

UP = maximum number of batches of product i in the
campaign
SFij = size factor for product i in stage j
tik = processing time of product i at unit k
Vk = size of unit k

Binary Variables
Xkl = indicates if slot l of unit k is employed
Ybkl = indicates if batch b is assigned to slot l of unit k (defined
for model DP)
Zbl = indicates if batch b is assigned to slot l
zib = indicates if batch b of product i is selected

Continuous Variables
Bib = size of batch b of product i
CT = cycle time of the campaign
TFkl = final processing time of slot l in unit k
TIkl = initial processing time of slot l in unit k

Table 12. Capacities Used in Each Unit of Each Stage for Example 3 (L)
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Ybkl = represents the bilinear term Zbl Xkl (defined for model
SP)
YYblb′l′k = represents the bilinear term Ybkl Yb′kl′
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(15) Marchetti, P. A.; Meńdez, C. A.; Cerda,́ J. Mixed-integer linear
programming monolithic formulations for lot-sizing and scheduling of
single-stage batch facilities. Ind. Eng. Chem. Res. 2010, 49, 6482−6498.
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