Rare Event Simulation with Fully Automated
Importance Splitting

Carlos E. Budde!®) | Pedro R. D’Argenio!, and Holger Hermanns?

! FaMAF, Universidad Nacional de Cérdoba — CONICET, Cérdoba, Argentina
{cbudde,dargenio}@famaf.unc.edu.ar
2 Fakultét fir Mathematik und Informatik, Universitét des Saarlandes,
Saarbriicken, Germany
hermanns@cs.uni-saarland.de

Abstract. Probabilistic model checking is a powerful tool for analysing
probabilistic systems but it can only be efficiently applied to Markov
models. Monte Carlo simulation provides an alternative for the general-
ity of stochastic processes, but becomes infeasible if the value to estimate
depends on the occurrence of rare events. To combat this problem, intel-
ligent simulation strategies exist to lower the estimation variance and
hence reduce the simulation time. Importance splitting is one such tech-
nique, but requires a guiding function typically defined in an ad hoc
fashion by an expert in the field. We present an automatic derivation
of the importance function from the model description. A prototypical
tool was developed and tested on several Markov models, compared to
analytically and numerically calculated results and to results of typical
ad hoc importance functions, showing the feasibility and efficiency of
this approach. The technique is easily adapted to general models like
GSMPs.

1 Introduction

Nowadays, systems are required to have a high degree of resilience and depend-
ability. Determining properties that fail with extremely small probability in com-
plex models can be computationally very demanding. Though these types of
properties can be efficiently calculated using numerical tools, such as the model
checker PRISM [8], this is limited to finite Markov models, and, moreover, the
representation through an adequate data structure needs to fit in the computer
memory. Beyond this class of models calculations are limited to Monte Carlo sim-
ulation methods. However, standard Monte Carlo simulation may easily need an
enormous amount of sampling to obtain the desired confidence level of the esti-
mated probability, in order to compensate for the high variance induced by the
rare occurrences of the objective property.

Supported by ANPCyT project PICT-2012-1823, SeCyT-UNC program 05/BP12
and their related projects, EU TFP grant agreements 295261 (MEALS) and 318490
(SENSATION), by the DFG as part of SFB/TR 14 AVACS, by the CAS/SAFEA
International Partnership Program for Creative Research Teams, and by the CDZ
project CAP (GZ 1023).

© Springer International Publishing Switzerland 2015

M. Beltran et al. (Eds.): EPEW 2015, LNCS 9272, pp. 275-290, 2015.
DOI: 10.1007/978-3-319-23267-6_18

276 C.E. Budde et al.

To reduce this considerable need for simulation runs, efficient Monte Carlo
simulation techniques have been tailored to deal with rare events. These can be
largely divided into two conceptually different techniques: importance sampling
and importance splitting methods. Importance sampling (see [12] and references
therein) modifies the sampling distribution in a way that increases the chance to
visit the set of rare states. This introduces a bias in the resulting point estimate
which needs to be corrected by weighing it with the corresponding likelihood ratio
[7]. The change of measure requires some understanding of the system under
study. A bad choice of measure may have a negative impact on the simulation.

Instead we focus on importance splitting techniques, see e.g. [11,18,19].
Importance splitting works by decomposing the state space in multiple levels
where, ideally, the rare event is at the top and a level is higher as the probability
of reaching the rare event grows. Thus the estimation of the rare probability is
obtained as the product of the estimates of the (not so rare) conditional probabil-
ities of moving one level up. As a consequence, the effectiveness of this technique
crucially depends on an adequate grouping of states into levels. Importance func-
tions are the means to assign a value to each state so that, if perfect, such value
is directly related to the likelihood of reaching the rare event. So, a state in the
rare set should receive the highest importance and the importance of a state
decreases according to the probability of reaching a rare state from it.

Usually, an expert in the area of the system provides the importance function
in an ad hoc manner. Again, a badly chosen importance function can deterio-
rate the effectiveness of the technique. With some notable exceptions [3,5,14],
automatic derivation of importance functions has received scarce attention.

In this article we provide a simple but effective technique to derive auto-
matically an importance function. It leads the definition of the different levels
for importance splitting techniques. The algorithm works by applying inverse
breadth first search on the underlying graph of the stochastic process, labelling
each state with the shortest distance to a rare state. The importance of each
state is then defined as the difference between the maximum distance and its
actual distance. Obviously this technique still requires a finite system which fits
in the computer memory, but it is not limited to Markov models.

In particular, we focus on the RESTART method [18,19], though the app-
roach presented here can be applied to other importance splitting techniques.
We show correctness and effectiveness by performing some significant experimen-
tation in several known case studies. We limit experiments to Markov models
to compare the simulated results against numerically obtained values (using
PRISM) in order to show correctness. The effectiveness is shown by comparing
the performance of the simulation under the automatically calculated impor-
tance function against the performance under ad hoc importance functions.

The paper is organised as follows. Sec. 2 introduces the models and the type
of properties we deal with. Sec. 3 presents the criteria to decide when to stop the
simulation. Importance splitting is described in Sec. 4. The algorithm to derive
the importance function and the tool that supports it are described in Sec. 5.
Experimental results are presented in Sec. 6. The paper concludes in Sec. 7.

Rare Event Simulation with Fully Automated Importance Splitting 277

2 Formal Models and Properties

Although the technique presented in this paper can be applied to generalised
semi-Markov process, we only focus here on discrete-time and continuous-time
Markov chains since it is our interest to validate, among other things, the cor-
rectness of the technique against values obtained analytically or numerically.

Definition 1 (DTMC). A discrete-time Markov chain or DTMC is a tuple
M = (S,P,AP,L) where S # & is a countable set of states, the transition
probability function P : .S x S — [0,1] satisfies Vs € S.3 g P(s,s') =1, AP
is a set of atomic propositions and L : S — 247 is the labelling function.

The transition probability function P specifies for each state s the probability
P(s,s’) of jumping to another state s’ by means of a single transition. Notice
this depends solely on s and s, there is no information about the path which led
into s. This is called the memoryless property of markovian systems. The states
s’ for which P (s, s’) > 0 are denoted the successors of s. The imposed constraint
ensures P is a distribution.

DTMCs remain in the current state for a single time unit before jumping
to a successor state. In contraposition, state jumps in continuous-time Markov
chains are described with probabilistic timing information. This means that in
order to perform a transition both the probability of the successor state and the
probability of sojourn time in the current state need to be defined.

Definition 2 (CTMC). A continuous-time Markov chain or CTMC is a tuple
M= (S,R,AP,L) where R : § x S — Ry is the transition rate function and
all the other elements are like in Definition 1.

The non-negative real value A = R(s, s’) states the speed rate, sampled from
an exponential distribution, at which the transition s — s’ would be taken. A
null value indicates there is no such transition, and a positive value indicates the
probability of jumping to state s’ within ¢ time units is 1 — e~ .

We focus both on transient and steady state properties. The transient prop-
erties we consider aim to calculate the probability of reaching a set of goal states
G before visiting any reset state in the set R. This is characterised by the PCTL
formula

P(-RUG) (1)

where U denotes the unbounded until operator from LTL and P(&) denotes
the probability of observing any state that satisfies formula @. For simulation
purposes we need the probability of reaching a state either in G or in R to be 1.
This type of property is recurring in the literature of rare event simulation, see
e.g. [1,2,4,19]. Though not in this paper, bounded until properties of the form
P (=R US! @) can be addressed by our tool in the same way as (1).

While transient properties focus on probabilities of traversing a system from
a state to a class of states, steady state analysis focuses on the quantification of
a property once the system has reached an equilibrium. In particular, the steady

278 C.E. Budde et al.

state probability of a set of goal states G is the portion of time in which a state
in G is visited in the long run and is characterised by the CSL property

S(G) (2)

Though less frequently, this type of property has also appeared in the literature
of importance splitting [16,19]. More generally, properties of these type quantify
the ratio of goal events G w.r.t. reference events S in the long run such as, e.g.,
the ratio between lost and sent packets or measures like throughput.

3 Stopping Criteria

The efficacy of Monte Carlo simulation depends on the precision of the esti-
mated parameter. Confidence intervals are use to convey a notion of how far the
estimated value may be from the actual value. Confidence intervals are bounds
surrounding the computed point estimate and they are characterised by two
numbers: the confidence level and the precision. The first gives information on,
roughly speaking, how likely it is for the real population parameter (e.g. the
probability of visiting some goal state) to be located within these bounds. The
second defines the length of the interval. It is precisely from these two values
that the number of required simulation runs is dynamically determined.

These intervals can be constructed in different ways depending on the nature
of the sampled population and the parameter to estimate. Following the Central
Limit Theorem consider a “big enough” sample {z;}; ;" of independently sim-
ulated runs, where x; is the outcome of the i-th run. If X is the mean value of
the sample, then

X*Zl_% Z

ﬁ , X+Zl—%i (3)

VN

is a confidence interval for the estimated rare event probability, with confidence
level 100(1 —)% and semi-precision (or error margin) ¢/vN - z1_a [9]. Here
the constant value z;_g represents the 1 — & quantile of a unit normal vari-
ate, uniquely determined by the confidence level chosen by the user, and & is the
observed sample variance. This is the method of choice to build confidence inter-
vals around estimates of steady state properties like (2). Since nothing is known
about the distribution of the z; samples, namely the long run paths generated
on the model, then no tighter bound can be inferred.

The situation is different for transient properties like (1) because every path
will almost surely end as soon as it reaches either some goal or reset state. This
defines a Bernoulli experiment. Hence, each z; in the sample {zi}lN;Ol takes
either value 1 if run i reaches a goal state in G or 0 otherwise (i.e., it reaches
a state in R). Thus, if m is the number of runs that reached a goal state,
X = 27{161 T =% =D, is the estimate of (1).

The previous analysis also shows that 6 = p(1 — p), which is used by the
normal approximation interval to narrow the length of the interval with respect
to eq. (3). Since the precision of the interval has been fixed by the user, this

Rare Event Simulation with Fully Automated Importance Splitting 279

translates into smaller values for N and hence shorter simulation times. There
exist however better fitted confidence intervals, specially tailored for situations
when the proportion parameter p takes extreme values (viz. p ~ 0 or p = 1).
The Wilson score interval is one such method [20], and the technique of choice
to build confidence intervals whenever dealing with property (1).

4 Rare Event Simulation Through Importance Splitting

The use of Monte Carlo simulation for the estimation of parameters that depend
on the occurrence of rare events (i.e. events that occur with very low probability)
may easily become an extremely time demanding process due to the high variance
induced by these rare occurrences. Since the confidence level and precision are
requirements for the estimation, eq. (3) shows that high values of & can only be
countered by increasing N, which could grow exponentially on the model size [7].

Importance splitting (1s for short) attempts to speed up the occurrence of a
rare event, i.e. visiting goal states by generating a drift of the simulations towards
them. The first known reference is due to Kahn and Harris for splitting particles
in a physical context [6]. The work by José and Manuel Villén-Altamirano stands
amongst the most relevant modern contributions. They introduced RESTART,
a version of 1S with multiple thresholds, fixed splitting and deterministic dis-
cards of unpromising simulations [15-19]. Garvels provides a thorough analysis
of splitting techniques for rare event simulation in his PhD thesis [2]. For a broad
survey of importance splitting see [11] and references therein.

The general idea in 1S is to favour the “promising runs” that approach the rare
event by saving the states they visit at certain predefined checkpoints. Replicas
of these runs are created from those checkpoint states, which continue evolving
independently from then on. Contrarily, simulation runs deemed to steer away
from the rare event are identified and killed, avoiding the use of computational
power in fruitless calculi. The likelihood of visiting a goal state from any other
state s is called the importance of s. The variation in such importance is what
determines when should a simulation be split or killed, as the importance value
crosses some given thresholds up or down, respectively.

From a statistical point of view, 1S decomposes the probability of reaching a
goal state into several conditional probabilities, each one of them representing the
probability of crossing a threshold given that the lower thresholds have already
being crossed. The general idea is that sampling each conditional probabilities is
easier, i.e. incurs in less variance per estimation, than attempting to sample the
rare event at once. Take for instance a buffer where the measure of interest is
the probability of exceeding a capacity C' € N, starting from a non-empty state.
Denote by ¢ the buffer occupancy and by {¢ > C} the set of states where such
capacity is exceeded. The sought value is in consequence

p=P{c>Clc>0}) =P({c>Clc=2$}HP({c=5|c>0}) = pips.

280 C.E. Budde et al.

The state space has been divided into the disjoint regions {c > %} and {c < %},
covered by p; and py respectively. We say €/2 is a simulation threshold and this
can be easily generalised to n < C thresholds:

p = [Pez e le>a)) = T p (4)

In this equation the i-th threshold is T; = ¢;, namely a buffer with ¢; elements,
¢o = 0 and ¢, = C. The probability of reaching c¢;11 elements in the buffer once
the “simulation is above T;” is denoted p;.

Using this partition of the state space, IS generates the desired estimate
p =~ p by approximating each of the conditional probabilities p;. The resulting
p; estimates are then multiplied to compose p = p1 pa -+ P [2,19]. Notice 1S
will perform efficiently as long as all thresholds are chosen such that p; > p.
Only then will the step-wise estimation present a lower variance than traditional
Monte Carlo runs. Thresholds are intimately related to the importance of states
and could be though of as key importance values.

We focus on the 1S technique RESTART [19]. A RESTART run can be repre-
sented graphically as in Fig. 1 where the horizontal axis represents the simulation
progress and the vertical axis the importance value of the current state. The run
starts from an initial state of the model and evolves until the first threshold 77 is
crossed upwards. This takes the path from zone Zy below threshold 77 into zone
Z1 between T7 and T,. As this happens the state is saved and r; — 1 replicas or
offsprings of the path are created. See A in Fig. 1, where the number of split-
tings for Ty is r1 = 3. This follows the idea of rewarding promising simulations:
up-crossing a threshold suggests the path heads towards a goal state.

From then on the r; simulations will
evolve independently. As they continue,
one of them may hit the upper thresh- e e
old 75, activating the same procedure as
before: 7o — 1 offsprings are generated 12

from it and set to evolve independently. Z
See B on T5; here, the splittingisro = 2. T}
However, it could also happen that Zy

some simulation hits 77 again, mean-
ing this path is leading downwards. That
is an ill-willed simulation steering away 1o e
from the goal set, and RESTART deals

with it discarding the run right away pig 1 RESTART importance splitting
(see C in Fig. 1). In each zone Z; there

exists nonetheless an original simulation, which crossed threshold T; upwards
generating the r; — 1 offsprings. This run is allowed to survive a down-crossing
of threshold T; (see D in Fig. 1).

In this setting all simulations reaching a goal state went through the repli-
cation procedure, which stacked up on every threshold crossed. Simply counting
these hits would introduce a bias, because the relative weight of the runs in upper
zones decreases by an amount equal to the number of splittings of the threshold.

Rare Event Simulation with Fully Automated Importance Splitting 281

In consequence, each rare event observed is pondered by the relative weight of
the simulation from which it stemmed. If all the goal states exist beyond the
uppermost threshold like in Fig. 1, then this is a matter of dividing the observed
quantity of rare events by the constant SPLITpax = H?:l r;. Otherwise more
involved labelling mechanism must be implemented.

5 Fully Automated Importance Splitting

Importance splitting simulations are entirely guided by the importance function
which defines the importance of each state. This function conveys the locations
where the simulation effort should be intensified, and it is from its definition
that many other settings of 1S are usually derived. Importance functions are
defined in most situations in an ad hoc fashion by an expert in the field of the
particular system model under study. With a few exceptions in some specific
areas [3,5,14], automatic derivation of importance functions is still a novel field
for general systems. Here we present an efficient mechanism to automatically
derive this function from the model description.

Importance Function Derivation. The importance of a state s is formally
defined as the probability of observing a rare event after visiting s. Therefore if
one could track or at least conjecture a path leading from s to a goal state, some
notion of the distance between them may be determined and used to choose an
appropriate importance for s, where shortest paths should be favoured.

The core idea is simple enough:

Input: system model M starting from the rare event

Input: goal state set G # & itself, i.e. from the subset G of
9(G) <0 goal states perform a simultane-
queue.push(G) ous backwards-reachability anal-
repeat

ysis and label each visited states

5 queue -pop() layer with decreasing importance.
for all s’ € M.predecessors(s) do This way the shortest path lead-

if 5" not visited then ing from each state into G is

9(s") — g(s) Jr/ 1 computed by means of a Breadth-
queue -push(s’) First Search routine of complexity
end if O(k - n) where n is the size of the

end for
until queue empties or sg visited
g(s) < g(so) for every non visited state s

state space and k is the branch-
ing degree. Albeit k& = n in the
worst case, k is normally several
f(s) < g(s0) — g(s) for every state s orders of magnitude smaller than
return f n. The pseudo-code is described
in Fig. 2, where sg stands for the
initial state of the model M.
From the description of RESTART it is implied that s¢ has minimum impor-
tance. Therefore its distance to the subset G is the largest one our algorithm will
consider, allowing for an incomplete traversal of the state space on the average
case. More precisely, on a first run the states are labelled with their distance to

Fig. 2. Importance function derivation

282 C.E. Budde et al.

the subset G. This solely affects states at smaller or equal distance from G than
S0, revealing at the same time the maximum distance DISTmax = f(G) = g(so).

Bluemoon Tool. To verify the feasibility of the proposed algorithm the proto-
typical tool Bluemoon' was developed and run on several sample models. The
software is currently implemented as a module for the probabilistic model checker
PRISM [8]. All functionality related to the Markov chains was borrowed from
PRISM, namely the models description syntax and its internal ADT representa-
tion. We also took advantage of its model checking algorithms to tag the special
states of relevance for the importance labelling and the simulations.

The rare event probability estimation is carried out in five distinctive steps:

1. first the model is composed from its high-level description, using an internal
column-major sparse matrix representation to favour the later construction
of the importance function;

2. then the special states are identified, which includes the goal states and either
the reset or the reference states, depending on whether property (1) or (2)
was queried respectively. Both this step and the previous model construction
are done by means of the mechanisms already provided by PRISM;

3. afterwards the states are labelled with their importance. This can either be
done with the algorithm of Fig. 2, or with an ad hoc user expression. The
importance function is currently represented with a vector of integers;

4. before simulating the proper environment is constructed, which comprises
choosing the number of splitting and initial effort per simulation, determining
the number of thresholds and defining them, and transforming the model
ADT into a row-major sparse matrix, better fitted to forward references;

5. finally several independent RESTART simulations are run, “dynamically”
checking at the end of each run whether the stopping criteria was met.

The importance function can also be specified ad hoc on invocation of the
tool. The user can request any importance assignment of his choice, as long as
it comes expressed as an integer expression which PRISM can evaluate on every
state. This includes the extreme case of no importance: the user can ask for
simulations to be run in a pure Monte Carlo style with no splitting involved.

All these options can be determined by the user in the command line, along
the confidence criteria (confidence level, precision, method to use) and the initial
effort to spend per simulation. “Effort” may have one of two different meanings:
for transient properties like (1), it stands for the number of independent simu-
lations launched per main iteration, and for steady state properties like (2) it
means the maximum number of reference states to visit per simulation.

Regarding the fourth step, the user is allowed to choose the number of split-
tings, which else defaults to the minimal value 2. To minimise the variance
incurred per partial estimation p; (see eq. (4)) this value will be the same for
all thresholds [13,17]. In addition, the number of splittings should ideally be the
inverse of the conditional probability p; [2,19]. The selection of the thresholds
is performed once the importance function is built with those two conditions in

! Named after the kindred English expression «once in a blue moon».

Rare Event Simulation with Fully Automated Importance Splitting 283

mind. Thus, we use the adaptive multilevel splitting technique [1,2] which aims
to locate the thresholds so that all conditional probabilities p; are approximately
the same, and moreover, they are the inverse of the selected number of splittings.

Notice the importance function could have been derived using the algorithm
in Fig. 2, or evaluated on each state if it was defined ad hoc by the user. Given
the nature of the algorithm presented, the former option ensures all states will
be located above the uppermost threshold. If on the other hand the importance
was decided arbitrarily by the user, some goal states might not be given the
maximum value and could, during the later selection of the thresholds, end up
below the uppermost threshold. This anomaly was discussed in [15] and it is
detected and hence countered by our tool.

6 Experimental Validation

With the aim to validate our approach, we selected four case studies from the
literature and analysed them using the Bluemoon tool. To validate correctness,
the results estimated with simulation were compared against the analytic solu-
tion whenever this was available, and also against a numerical solution of the
corresponding logical property as computed by PRISM.

In all cases several independent experiments were launched. In each case we
compute interval estimates p + e,, for the probability p of observing the rare
event, where e,, is the error margin of the confidence interval. The precision and
confidence level were fixed a priori, and each simulation continued until either
the specified confidence criteria was met or a wall time limit was reached.

For each experiment we varied some model parameter, testing the perfor-
mance of the simulation methods for decreasing values of p, overall ranging from
magnitudes of p /= 1.63 - 1072 to p ~ 2.02- 10~ !°. From now on IFUN will denote
“importance function”. To validate the performance of our approach, for each
model and parameter value, we tested three simulation strategies: RESTART
using the automatically built IFUN, RESTART using a few ad hoc importance
functions, and standard Monte Carlo. Different split values where tested on the
importance splitting runs.

The obtained estimates and total simulation times in seconds are presented in
tables comparing the performance of the different simulations. We have repeated
each experiment a given number of times and each table entry contains the
average of the estimated probabilities p in each repetition and the average of the
total execution time of each repetition. Moreover, a ‘*’ next to an entry indicates
that at least one of the repetitions of the experiment did not finish before the
wall time limit. All experimentation was carried out in 8-cores 2.7 GHz Intel
Xeon E5-2680 processors, each with 32 GiB 1333MHz of available DDR3 RAM.

CTMC Tandem Queue. Consider a tandem network consisting of two con-
nected queues. Customers arrive at the first queue following a Poisson process
with parameter A. After being served by server 1 at rate u; they enter the second
queue, where they are attended by server 2 at rate us. The event of interest is an
overflow in the second queue for maximum capacity C. This model has received

284 C.E. Budde et al.

Table 1. Transient analysis of CTMC tandem queue

C=38 C=10 C=12 C=14
pavg time| p avg time| p avg time | p avg time
auto [5.61e-06 12.2(3.13e-07 51.7 [1.90e-08 214.4 |1.11e-09 2995.8
9| @ 5.55e-06 11.4(3.18e-07 101.1|1.91e-08 425.9 |1.20e-09 2775.4
q1+2¢2|5.66e-06 23.8(3.09e-07 403.3|1.91e-08 1631.8{1.17e-09 6712.9 *
q1+g2 |5.51e-06 24.9(3.07e-07 422.0|1.87¢-08 6821.0 - -
auto [6.08e-06 4.0 |3.14e-07 40.2 |1.88e-08 180.2 |1.15e-09 2819.1

g2 |5.52e-06 4.2 [3.19e-07 66.5 |1.86e-08 192.1 |1.14e-09 2836.8
q1+2q2(5.57e-06 23.3|3.12e-07 400.4|1.85e-08 6766.5 - -
q1+q2 |5.59e-06 23.3|3.17e-07 397.5/1.90e-08 6575.3 - -
auto [5.75e-06 2.1 |3.47e-07 26.5(1.99e-08 167.8 |1.13e-09 2858.2

g2 |5.88¢-06 1.9 [3.10e-07 28.3 |1.91e-08 444.2 [1.17e-09 2794.2
q1+292(5.79e-06 22.03.19e-07 396.2|1.85e-08 6764.4 - -
q1+q2 |5.29e-06 24.1(3.21e-07 392.1|1.93e-08 6432.1 - -
M.C. |5.67e-06 21.3|3.04e-07 394.6|1.88e-08 6522.8 - -
Prism |5.59e-06 3.15e-07 1.86e-08 1.14e-09

IFUN

Split,

15

considerable attention in the literature [2—4,16,19]. We follow the setting from [2]
which has an exact analytic solution. The first queue is initially empty and the
second has a single customer. We measure the probability of full occupancy in
the second queue before it empties, i.e. an instance of Property (1). As in [2,
p. 84] the model was tested for the values A\ = 3, 3 = 2, po = 6. The maximum
capacities tested for the second queue were C € {8,10,12,14}. Simulations had
to reach a 95% confidence level with precision equal to 20% of the estimated
parameter within 2 hours of wall time. Results are reported in Table 1 with the
full estimation process time expressed in seconds. Standard Monte Carlo usually
took the longest, and it failed to meet the stopping criteria for the biggest queue
size. With a few meaningless exceptions the automatically derived IFUN was the
fastest option, beating in performance all ad hoc versions. As side remark we
notice the splitting value affected the performance, but mostly for the small
queue sizes regarding the automatic function.

We also study long run behaviour for the same setting. In this case the rare
event was the saturation of the second queue and hence, following Property (2),
we estimated the steady state probability of such saturated state. This time sim-
ulations were requested to reach a confidence level of 95% with precision equal
to 10% of the estimated parameter within 2 hours of wall time. The obtained
estimates are shown in Table 2 for capacities C' € {10,15,20,25}. Standard
Monte Carlo met the criteria only for the smallest queue size. Importance split-
ting simulations did much better but only when good importance functions were
employed. The automatically built IFUN and the best ad hoc IFUN “gs” were
the only ones to finish in the majority of the cases. These only failed (in all)
experiments for C' = 25 and Split = 2, and in particular ¢, also failed to finish

Rare Event Simulation with Fully Automated Importance Splitting

Table 2. Steady state analysis of CTMC tandem queue

285

Split

IFUN

C =10

C=15

C =20

C=25

p avg

time

p avg

time

p avg

time

D avg

time

(]

auto
q2
q1+2q2
q1+q2

3.38e-06
3.38e-06
3.29e-06
3.36e-06

26.1
50.0
62.5
175.8

1.61e-08
1.62e-08
1.63e-08

257.6
873.9
502.5

7.33e-11
7.16e-11
7.27e-11

3866.0
6073.4 *
3568.2

auto
q2
q1+2q2
q1+q2

3.42e-06
3.36e-06
3.47e-06
3.33e-06

21.8
29.3
89.1
125.2

1.59e-08
1.61e-08
1.60e-08

30.0
45.7
676.2

7.42e-11
7.54e-11
7.39e-11

137.6
51.0
3819.7 *

3.30e-13
3.36e-13

15

auto
q2
q1+2q2
q1+q2

3.37e-06
3.36e-06
3.31e-06
3.47e-06

30.1
14.7
143.4
148.7

1.61e-08
1.63e-08
1.61e-08

99.8
114.9
1608.6

7.52e-11
7.41e-11

184.8
120.0

3.26e-13
3.30e-13

M.C.

3.33e-06

201.2

Prism

3.36e-06

1.62e-08

7.42e-11

3.29e-13

4 out of 5 repetitions for C = 20 and Split = 2. We observe that in some few
cases the automatic IFUN performed worse than ¢go (cf. C' = 25, Split = 6).

DTMC Tandem Queue. We model the same tandem system as a DTMC.
Here, each of the three possible events may happen in a single time unit. For
each event, we set the following probabilities per time unit: ag = 0.1 for arrivals
on the first queue, a; = 0.14 for packet transition between queues, and as =
0.19 for departures from the second queue. We simulated the system for the
overflow levels C' € {15,20,25,30,35} of the second queue. The CTMC and
DTMC version have the same state space but the underlying graph structures
are slightly different. Hence the automatically derived 1IFUN are different but all
ad hoc 1IFUNs are the same in both types of models.

We set the confidence level at 95%, the precision at 10% and the wall time
limit at 4 h. The results are reported in Table 3. For C > 25 all standard Monte
Carlo simulations failed and just a fraction of the RESTART ones finished.
Notice that the ad hoc “q; + 2¢2” IFUN lead on performance for some configu-
rations. Notwithstanding, and with the sole exception of C' = 25 for splittings 6
and 15, the automatically derived importance function outperformed all tested
ad hoc versions. This was true also for C' = 35, where only some of the simula-
tions using g2 and the automatic version of the IFUN finished in time.

Mixed Open/Closed Queue Network [4, Sec. 4.1]. This model consists
of two parallel queues handled by one server: an open queue ¢,, that receives
packets from an external source, and a prioritised closed queue q., that receives
(sends) packets from (to) some internal system buffer. Elements in ¢, are served
at rate p1; unless g, has packets which are handled first at rate u;5. Packets
in internal circulation are served at rate ps and sent back to g.. If there is

286 C.E. Budde et al.
Table 3. Steady state analysis of DTMC tandem queue
5 C =15 C =20 C =25 C =30
2| IFUN — - — - — - ~ -
w0 D avg time D avg time | p avg time p avg time
auto (4.81e-07 20.4 1.28¢-08 85.1 [3.24e-10 275.8 7.91e-12 699.5 *
9 g2 |4.97e-07 24.6 1.27e-08 83.3 [3.15e-10 281.0 8.17e-12 652.8 *
q1+2¢2(5.02e-07 15.2 1.31e-08 27.6 |[3.24e-10 112.2 7.75e-12 3274.7 *
q1+q2 |5.05e-07 164.4 |1.30e-08 312.7 |3.28e-10 2136.3 [9.37e-12 2486.3 *
auto [4.92e-07 25.9 1.26e-08 81.1 |3.18e-10 10674.6 *|7.23e-12 699.9 *
6 q2 [4.97e-07 29.8 1.28e-08 213.6 |3.31e-10 5404.3 * - -
q1+2q2|4.98e-07 2494.6 *|1.29e-08 157.9 [3.24e-10 1917.1 |[8.12e-12 11364.6 *
q1+q2 [4.90e-07 165.3 |1.28e-08 1247.0 |3.15e-10 2215.1 *|7.88e-12 4394.2 *
auto [4.96e-07 45.1 1.28e-08 155.4 [3.37e-10 1298.6 *|8.61e-12 572.3 *
15 @ 4.98e-07 134.7 |1.26e-08 142.4 |3.36e-10 839.3 *|7.63e-12 13763.1 *
q1+2q2|4.93e-07 253.9 |1.28e-08 4175.4 3.12e-10 635.7 * -
q1+q2 [4.97e-07 240.3 |1.22e-08 1108.0 |3.18e-10 2370.0 *|8.97e-12 4424.2 *
M.C 4.87e-07 596.4 |1.23e-08 - - -
Prism [4.94e-07 1.28e-08 3.22e-10 7.96e-12

only one circulating internal packet, the system is an M/M/1 queue with server
breakdowns.

Starting from an empty system, we estimate the probability that g, reaches
maximum capacity b before both queues are emptied again. The setting is as
in [4]: one packet in internal circulation, p11 = 4, p12 = 2, ps € {0.5,1.0} and
capacities b € {20,40}. We set the confidence at 95%, the precision at 10% and
the wall time limit at 8 h. Results are reported in Table 4. For the cases in which
b = 40 none of the simulations met the desired confidence within the time limit.
Thus, in the respective columns on the table, we show instead the minimum
and maximum estimations of the repetitions. Note that these estimations are
nonetheless very close to the value reported by PRISM. Experiments for b = 20
favour the automatic IFUN overwhelmingly for both failure rates and all splitting.
A speedup of at least 148x was gained in comparison to both ad hoc importance
assignments. This is particularly surprising regarding “q,” which seem to be a
sensible choice when comparing to the previous tandem queue systems.

Queueing System with Breakdowns [7, Sec. 4.4]. Consider a system where
sources of type i € {1,2} have exponential on/off times with parameters «; and
B; respectively. These sources, whenever active, send packets at rate \; to the
only system buffer. Queued packets are handled by a server which breaks down at
rate v and gets fixed at rate §, processing at rate p when functional. We estimate
the probability of the buffer reaching maximum capacity K before emptying.
As in [7] we start with a single packet in the queue and a broken server. There
are five sources of each type and, initially, all are down except for one of type
2. The sources parameters are (o, 61, A1) = (3,2,3) and (ag, 02, A2) = (1,4, 6).
The server parameters are (7, d, ;) = (3,4, 100) and the queue capacities tested
were K € {20,40,80,160}. We set the confidence level at 95%, the precision at
10% and the wall time limit at 2.5 h. Results are shown in Table 5, where s4 refers

Rare Event Simulation with Fully Automated Importance Splitting 287
Table 4. Mixed Open and Closed Queueing Network
= M2 = 1.0 H2 = 0.5
;QIFUN b =20 b =40 b =20 b =40
pavg time | pmin P max | p avg time | p min P max
auto |5.79e-07 11.1 |5.68e-13 5.69e-13|3.91e-08 131.2 [2.02e-15 2.03e-15
2| go |5.97e-07 1485.1|5.67e-13 5.69e-13|3.92e-08 19690.9{1.99e-15 2.02e-15
qe+40|5.95e-07 1493.6/5.68e-13 5.70e-13|3.91e-08 19733.3|2.01e-15 2.03e-15
auto |5.83e-07 11.2 |5.67e-13 5.69e-13|3.90e-08 132.7 [1.95e-15 2.04e-15
5| go |5.97e-07 1490.2|5.68e-13 5.70e-13|3.91e-08 20118.6(2.01e-15 2.05e-15
qc+40|5.94e-07 1491.3|5.68e-13 5.68e-13|3.92e-08 19753.9|2.01e-15 2.02e-15
auto |6.04e-07 16.8 |5.68e-13 5.69e-13|3.86e-08 133.0 [2.01e-15 2.03e-15
9| qo [5.96e-07 1481.2|5.68e-13 5.69e-13|3.91e-08 19816.7(2.02e-15 2.03e-15
qc+40|5.96e-07 1481.0(5.65e-13 5.69e-13|3.92e-08 19763.1|2.02e-15 2.03e-15
M.C. |6.04e-07 1400.5 - - 4.02e-08 18417.3 - -
Prism |5.96e-07 5.68e-13 3.91e-08 2.02e-15
Table 5. Multiple-source queue with breakdowns
= K =20 K =40 K =280 K =160
S| IFUN (— - ~ - - - ~ -
w0 pavg time| pavg time| p avg time p avg time
auto |1.63e-02 5.4 |4.54e-04 9.8 |3.72e-07 478.5 |2.43e-13 2464.1 *
9| @ 1.65e-02 5.5 |4.62e-04 19.0 |3.71e-07 162.9 |2.45e-13 3691.3 *
q+s4|1.62e-02 20.2 |4.63e-04 448.6|3.75e-07 880.6 *|2.42e-13 9034.9 *
q+54|1.63e-02 181.4|4.48e-04 537.2 - - - -
auto |1.64e-02 5.8 |4.60e-04 9.1 [3.66e-07 84.4 [2.47e-13 1809.8 *
3| 4 1.67e-02 5.9 |4.54e-04 17.1|3.73¢-07 87.5 |2.41e-13 4105.4 *
q+54|1.63e-02 16.4 |4.62e-04 53.3 |3.73e-07 242.4 *|2.46e-13 4709.4 *
G+5.|1.61e-02 115.3(4.61e-04 824.0|3.68e-07 3537.7 |[2.45e-13 5145.1 *
auto |1.64e-02 6.2 [4.72e-04 8.1 [3.71e-07 91.5 [2.45e-13 2836.0
5|9 1.64e-02 6.3 [4.62e-04 17.3 [3.70e-07 103.2 [2.47e-13 1154.5
q+saq|1.66e-02 7.3 [4.60e-04 59.5(3.73e-07 856.4 [2.47e-13 1823.5
q+5.]1.65e-02 49.5 [4.62e-04 159.7|3.74e-07 367.9 [2.50e-13 1251.1 *
auto [1.60e-02 6.3 |4.80e-04 7.8 |3.75e-07 109.7 |[2.46e-13 886.4
9| ¢ 1.62e-02 6.6 [4.54e-04 18.5[3.67e-07 136.6 |2.44e-13 591.4
q+s4|1.60e-02 5.5 |4.65e-04 26.7 [3.72e-07 153.9 [2.47e-13 4446.8 *
q+54|1.61e-02 18.0 |4.57e-04 67.6 |3.72e-07 348.1 |2.44e-13 1885.6
auto [1.66e-02 6.5 |4.98e-04 9.0 |3.74e-07 134.9 |2.45e-13 1251.0
15| @ 1.61e-02 6.6 |4.66e-04 18.9 |3.75e-07 367.5 |[2.43e-13 2812.3 *
q+s4|1.63e-02 5.6 |4.68e-04 23.5|3.72¢-07 321.7 |2.47e-13 1879.9 *
q+54|1.65e-02 11.3 |4.56e-04 36.5 |3.70e-07 285.1 |2.42e-13 1427.6
M.C. [1.65e-02 0.4 |4.58e-04 11.8 - - - -
Prism |1.63e-02 4.59e-04 3.72e-07 2.45e-13

to the number of sources down and s, = 10 — s4 refers to the number of sources
up. Standard Monte Carlo failed for K > 80, and from all ad hoc importance
functions only one, “q”, showed a relatively stable good behaviour. With very
few exceptions (cf. (K, Split) € {(80,2),(160,5), (160,9)}) the automatic IFUN

288 C.E. Budde et al.

was the best importance assignment observed. Furthermore this came at very
low cost, since the function derivation times were 0.1 s, 0.5 s, 2.1 s and 8.3 s for
capacities K = 20,40, 80, 160 respectively.

7 Concluding Remarks

Related Work. There have been some few incursions in automatic derivation of
importance functions. Sewards et. al construct their function based on the logical
property to be checked [5], which must support some “layered restatement” of its
syntax or resource to approximate heuristics. In [14] the approach from Booth
& Hendriks as reported in [10] is applied to stochastic Petri nets. However no
simulation times are reported in this case and the technique proposed requires
solving several instances of ILP, known to be an NP-complete problem. These
works, like ours, are based on static analysis of the model or property. Instead,
in [3] importance is assigned to states applying reversed simulation sequentially
on each of them. This requires some knowledge on the stationary distribution of
the system, and the applicability of the approach is shown for finite DTMCs.

Further Discussions. Overall the presented algorithm obtained, with very lit-
tle computational overhead, an IFUN which rivalled the best ad hoc alternatives.
For transient properties like (1), the derived function performed even better than
the quasi-optimal versions from the literature. This was particularly noticeable
in the queueing system with breakdowns from [7], where very complex internal
behaviours make it hard to distil a good ad hoc importance assignment. In some
cases however the best ad hoc IFUN met the stopping criteria faster for steady
state properties like (2), but in all scenarios either both automatic and the best
ad hoc 1FUN finished before the wall time limit or none did, see Table 2 and 3.
There were also situations where one or two experiment repetitions failed to
finish in time, but those who did took much less than the time limit, as e.g.
Table 3 for C = 30, Split = 6. This could be due to peculiarities of RESTART
discussed in [2,11]. In this direction, it would be good to study the performance
of our technique under other importance splitting algorithms such as [2]. Though
we have only reported an average on the point estimators, we remark all exper-
iments behave according to the confidence parameters when compared to the
numerically calculated values reported by PRISM.

Our algorithm works nicely as long as the number of transitions outgoing each
state is significantly lower than the number of states. If instead, the underlying
graph of the Markov Chain is highly connected, two problems arise. On the
one hand, the BFS algorithm approaches quadratic complexity where the large
majority of the computation is unproductive, spent on visiting already visited
nodes. On the other hand, the eventually derived IFUN will most likely run on
a very small domain as a consequence of a short minimal distance between the
initial state and a rare sate. This actually happens in a case study taken from [19]
(and not reported in this paper) were a huge amount of computation was spent
on the derivation of the IFUN, spending a total amount of time that largely

Rare Event Simulation with Fully Automated Importance Splitting 289

surpassed standard Monte Carlo simulation. In spite of this, the automatic IFUN
performed better than the IFUN proposed in [19].

To conclude we would like to highlight the generality of our approach, here

limited to Markov chains exclusively with numerical validation purposes. To
show this however the current tool should be exported out of PRISM into a
wider framework with a more expressive model description syntax.

Acknowledgments. We thank Raul E. Monti who helped on early developments of
the tool. The experiments were performed on the Mendieta Cluster from CCAD at
UNC (http://ccad.unc.edu.ar).

References

10.

11.

12.

13.

14.

15.

Cérou, F., Guyader, A.: Adaptive multilevel splitting for rare event analysis.
Stochastic Analysis and Applications 25(2), 417-443 (2007)

Garvels, M.J.J.: The splitting method in rare event simulation. PhD thesis, Uni-
versity of Twente (2000)

Garvels, M.J.J., Van Ommeren, J.-K.C.W., Kroese, D.P.: On the importance func-
tion in splitting simulation. Eur. Trans. Telecommun. 13(4), 363-371 (2002)
Glasserman, P., Heidelberger, P., Shahabuddin, P., Zajic, T.: Multilevel splitting
for estimating rare event probabilities. Operations Research 47(4), 585-600 (1999)
Jegourel, C., Legay, A., Sedwards, S.: Importance Splitting for Statistical Model
Checking Rare Properties. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS,
vol. 8044, pp. 576-591. Springer, Heidelberg (2013)

Kahn, H., Harris, T.E.: Estimation of particle transmission by random sampling.
National Bureau of Standards Applied Mathematics Series 12, 27-30 (1951)
Kroese, D.P., Nicola, V.F.: Efficient estimation of overflow probabilities in queues
with breakdowns. Performance Evaluation 36, 471-484 (1999)

Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic
Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585-591. Springer, Heidelberg (2011)

Law, A.M., Kelton, W.D., Kelton, W.D.: Simulation modeling and analysis, vol.
2. McGraw-Hill, New York (1991)

L’Ecuyer, P., Demers, V., Tuffin, B.: Rare events, splitting, and quasi-Monte Carlo.
ACM Trans. Model. Comput. Simul. 17(2) (April 2007)

L’Ecuyer, P., Le Gland, F., Lezaud, P., Tuffin, B.: Splitting techniques. In: Rare
Event Simulation using Monte Carlo Methods, pp. 39-61. J. Wiley & Sons (2009)
L’Ecuyer, P., Mandjes, M., Tuffin, B.: Importance sampling in rare event simula-
tion. In: Rare Event Simulation using Monte Carlo Methods, pp. 17-38. J. Wiley
& Sons (2009)

L’Ecuyer, P., Tuffin, B.: Approximating zero-variance importance sampling in a
reliability setting. Annals of Operations Research 189(1), 277-297 (2011)
Reijsbergen, D., de Boer, P.-T., Scheinhardt, W., Haverkort, B.: Automated Rare
Event Simulation for Stochastic Petri Nets. In: Joshi, K., Siegle, M., Stoelinga,
M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 372-388. Springer,
Heidelberg (2013)

Villén-Altamirano, J.: RESTART method for the case where rare events can occur
in retrials from any threshold. Int. J. Electron. Commun. (AEU) 52, 183-189
(1998)

290 C.E. Budde et al.

16. Villén-Altamirano, J.: Rare event RESTART simulation of two-stage networks.
European Journal of Operational Research 179(1), 148-159 (2007)

17. Villén-Altamirano, M., Martinez-Marrén, A., Gamo, J., Fernidndez-Cuesta, F.:
Enhancement of the accelerated simulation method restart by considering mul-
tiple thresholds. In: Proc. 14th Int. Teletraffic Congress, pp. 797-810 (1994)

18. Villén-Altamirano, M., Villén-Altamirano, J.: RESTART: A method for accelerat-
ing rare event simulations. Analysis 3, 3 (1991)

19. Villén-Altamirano, M., Villén-Altamirano, J.: The Rare Event Simulation Method
RESTART: Efficiency Analysis and Guidelines for Its Application. In: Kouvatsos,
D.D. (ed.) Next Generation Internet: Performance Evaluation and Applications.
LNCS, vol. 5233, pp. 509-547. Springer, Heidelberg (2011)

20. Wilson, E.B.: Probable inference, the law of succession, and statistical inference.
Journal of the American Statistical Association 22(158), 209-212 (1927)

	Rare Event Simulation with Fully Automated Importance Splitting
	1 Introduction
	2 Formal Models and Properties
	3 Stopping Criteria
	4 Rare Event Simulation Through Importance Splitting
	5 Fully Automated Importance Splitting
	6 Experimental Validation
	7 Concluding Remarks
	References

