
Theoretical Computer Science 606 (2015) 25–41
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Symmetric blocking ✩

Carlos Areces a,b, Ezequiel Orbe a,b,∗
a FaMAF, Universidad Nacional de Córdoba, Córdoba, Argentina
b CONICET, Argentina

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 September 2014
Received in revised form 19 May 2015
Accepted 5 June 2015
Available online 10 June 2015

Keywords:
Modal logics
Symmetry
Blocking
Detection
Evaluation

We present three different techniques that use information about symmetries detected in
the input formula to block the expansion of diamonds in a modal tableau. We show how
these blocking techniques can be included in a standard tableaux calculus for the basic
modal logic, and prove that they preserve soundness and completeness. We empirically
evaluate these blocking mechanisms in different modal benchmarks.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the context of automated reasoning a symmetry can be defined as a permutation of the variables (or literals) of a
problem that preserves its structure and its set of solutions. Symmetries have been extensively investigated and success-
fully exploited for propositional satisfiability (SAT). Already in [1], Krishnamurthy introduced symmetry inference rules to
strengthen resolution-based proof systems for propositional logic leading to much shorter proofs of certain difficult prob-
lems (e.g., the pigeonhole problem). Since then, many articles discuss how to detect and exploit symmetries for propositional
logic. Most of them can be grouped into two different approaches: static symmetry breaking (e.g., [2–4]) and dynamic sym-
metry breaking (e.g., [5,6]). In the former, symmetries are detected and eliminated from the problem statement before a SAT
solver is used, i.e., they work as a preprocessing step. In the latter, symmetries are detected and broken during the search
space exploration. Independently of the particular characteristics of each approach, they share the same goal: the goal is to
identify symmetric branches of the search space and guide the SAT solver away from symmetric branches already explored.

Similar techniques for logics other than propositional logic have been investigated in the last years, e.g. [7,8]. To the
best of our knowledge, symmetries remain largely unexplored in automated theorem proving for modal logics. In [9], we
have laid the theoretical foundations to exploit symmetries in a number of modal logics, and developed techniques to
efficiently detect symmetries in an input formula. In this paper we put these techniques to work and show how to use
symmetry information in a modal tableaux calculus by presenting novel blocking mechanisms. These techniques, that we
called symmetric blocking, dynamically delay the application of the rule that expands a yet unexplored diamond formula, if
the rule has been already applied to a symmetric formula. In the last part of the article, we carry out an empirical evaluation
of the effectiveness of these blocking mechanisms.

✩ This work was partially supported by grants ANPCyT-PICT-2013-2011, ANPCyT-PICT-2010-688, the FP7-PEOPLE-2011-IRSES Project “Mobility between
Europe and Argentina applying Logics to Systems” (MEALS) and the Laboratoire International Associé “INFINIS”.

* Corresponding author at: FaMAF, Haya de la Torre S/N, Córdoba, Argentina. CP:5000.
E-mail addresses: carlos.areces@gmail.com (C. Areces), orbe@famaf.unc.edu.ar (E. Orbe).
http://dx.doi.org/10.1016/j.tcs.2015.06.020
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.06.020
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:carlos.areces@gmail.com
mailto:orbe@famaf.unc.edu.ar
http://dx.doi.org/10.1016/j.tcs.2015.06.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.06.020&domain=pdf

26 C. Areces, E. Orbe / Theoretical Computer Science 606 (2015) 25–41
Outline. Section 2 introduces the required definitions on modal language and symmetries. Section 3 briefly discusses the
algorithm used to detect symmetries in modal formulas and shows experimental data about the detection construction.
Section 4 presents a classic labeled tableaux calculus for the basic modal logic and introduces different symmetric block-
ing conditions. We also show that the resulting calculi are terminating, sound and complete. Finally, Section 5 presents
experimental results about the effects of symmetric blocking in modal benchmarks. Section 6 concludes with some final
remarks.

2. Basic definitions

In this section we introduce the basic notions concerning modal languages, permutations and symmetries. In what
follows, we will assume basic knowledge of classical modal logics and refer the reader to [10,11] for technical details.

We will discuss only the mono-modal basic modal logic. The results we establish extend, in an obvious way, to the
multi-modal case. In Section 6 we discuss other modal logics.

Definition 1 (Syntax). Let PROP = {p1, p2, . . .} be a countably infinite set of propositional variables. The well-formed formulas
of the basic modal logic are defined by the rule

ϕ,ψ := p | ¬p | ϕ ∨ ψ | ϕ ∧ ψ | ¬�ϕ | �ϕ,

where p ∈ PROP. FORM denotes the set of all well-formed formulas of the basic modal logic. Given a formula ϕ ∈ FORM,
define PROP(ϕ) as the set of propositional variables occurring in ϕ; for S a set of formulas, let PROP(S) = ⋃

ϕ∈S PROP(ϕ).

Definition 2 (Propositional literals). A propositional literal l is either a propositional variable p ∈ PROP or its negation ¬p.
The set of propositional literals over PROP is PLIT = PROP ∪ {¬p | p ∈ PROP}. A set of propositional literals L is complete
if for each p ∈ PROP either p ∈ L or ¬p ∈ L. It is consistent if for each p ∈ PROP either p /∈ L or ¬p /∈ L. Any complete
and consistent set of literals L defines a unique valuation v ⊆ PROP which is defined as p ∈ v if and only if p ∈ L. For
S ⊆ PROP, the consistent and complete set of literals generated by S (notation: L S) is S ∪ {¬p | p ∈ PROP\S}.

Definition 3 (Modal literals, clauses and modal CNF). A formula is in modal conjunctive normal form (modal CNF) if it is a
conjunction of clauses. A clause is a disjunction of propositional and modal literals. A modal literal is a formula of the form �C or ¬�C where C is a clause.

The function clauses returns the multiset of clauses in a formula ϕ . Let � be the operation of union with repetition
between multisets, we define clauses as follows

clauses(p) = {}
clauses(¬p) = {}
clauses(�C) = clauses(C)

clauses(¬�C) = clauses(C)

clauses(C) = {C} � ⊎
l∈C clauses(l)

clauses(ϕ) = ⊎
C∈ϕ clauses(C).

Example 1. The formula ¬�(¬p ∨ �q ∨ �¬q ∨ ¬p) ∧ ¬�(¬q ∨ �p ∨ �¬p) is in modal CNF. It is the conjunction of two
clauses ¬�(¬p ∨ �q ∨ �¬q ∨ ¬p) and ¬�(¬q ∨ �p ∨ �¬p) which are also modal literals (notice that, in this case, each
clause contains only one disjunct).

Every modal formula can be transformed into an equivalent formula in modal CNF at the risk of an exponential blowup
in the size of the formula; it can be transformed into an equisatisfiable formula in polynomial time, using additional propo-
sitional variables (see [12] for details).

In what follows, we assume that modal formulas are in modal CNF. Moreover, we want to consider formulas modulo
commutativity and idempotency of conjunction and disjunction. To that end, we represent a modal CNF formula as a set of
clauses (interpreted conjunctively), and each clause as a set of propositional and modal literals (interpreted disjunctively).
This set representation disregards order and multiplicity of clauses and literals in a formula. We will assume that modal
formulas are represented using set notation, even though we will often write them using the familiar notation.

Example 2. The formula ¬�(¬p ∨ �q ∨ �¬q ∨ ¬p) ∧ ¬�(¬q ∨ �p ∨ �¬p) is written, using the set notation, as
{¬�{¬p, �{q}, �{¬q}}, ¬�{¬q, �{p}, �{¬p}}}.

Definition 4 (Semantics). A pointed model is a tuple 〈w, W , R, V 〉, where W is a non-empty set, w ∈ W , R ⊆ W × W and
V (v) ⊆ PROP for all v ∈ W . Let M = 〈w, W , R, V 〉 be a pointed model and w ′ ∈ W , define M, w ′ = 〈w ′, W , R, V 〉.

Let M = 〈w, W , R, V 〉 be a pointed model, we define the satisfiability relation |� for modal CNF formulas, clauses and
literals as follows. Let ϕ be a modal CNF formula, C a modal clause, and p ∈ PROP, then

C. Areces, E. Orbe / Theoretical Computer Science 606 (2015) 25–41 27
M |� p iff p ∈ V (w)

M |� ¬p iff p /∈ V (w)

M |� �C iff 〈w ′, W , R, V 〉 |� C , for all w ′ such that wRw′
M |� ¬�C iff M
|� �C
M |� C iff there is some literal l ∈ C such that M |� l
M |� ϕ iff for all clauses C ∈ ϕ we have M |� C .

We say that a formula ϕ is satisfiable if for some pointed model M we have that M |� ϕ . Otherwise, it is unsatisfiable.

Definition 5 (Modal depth). The modal depth of a modal CNF formula ϕ (notation: md(ϕ)) is the maximum nesting of �
operators that occurs in ϕ . Let ϕ be a modal CNF formula, C a modal clause, and p ∈ PROP, then

md(p) = 0
md(¬p) = 0
md(�C) = 1 + md(C)

md(¬�C) = 1 + md(C)

md(C) = max{md(l) | l ∈ C}
md(ϕ) = max{md(C) | C ∈ ϕ}.

Definition 6 (Permutations over PLIT). A permutation is a bijective function ρ : PLIT �→ PLIT. If L is a set of literals then
ρ(L) = {ρ(l) | l ∈ L}.

For p ∈ PROP, let ∼¬p = p and ∼p = ¬p. We say that a permutation ρ is consistent if for every literal l, ρ(∼l) = ∼ρ(l).
We say that a permutation ρ is a symmetry of ϕ if ϕ = ρ(ϕ) (here it is important that ϕ is represented using set notation).

We say that a permutation ρ has finite support if for only a finite number of literals we have that ρ(l)
= l, i.e., ρ is the
identity for most literals in PLIT. Permutations with finite support can be represented using cyclic notation (see [13] for
details). A cycle is a finite sequence of literals, and a permutation is represented as a finite sequence of cycles such that any
literal appears only once. Let (l11 . . . l1k1) . . . (li1 . . . liki) be a finite sequence of cycles, it defines the permutation

ρ(l) = l if l is a literal that does not appear in the sequence
ρ(li j) = li j+1 if j < ki
ρ(liki) = li1.

Example 3. ρ = (p ¬q)(¬p q) is the permutation that makes ρ(p) = ¬q, ρ(¬q) = p, ρ(¬p) = q, ρ(q) = ¬p and leaves
unchanged all other literals; ρ = (p q r)(¬p ¬q ¬r) is the permutation ρ(p) = q, ρ(q) = r and ρ(r) = p and similarly for
the negations.

Consider the formula ϕ = (¬p ∨ r) ∧ (q ∨ r) ∧�(¬p ∨ q). The permutation ρ = (p ¬q)(¬p q) is a consistent permutation.
Moreover, ρ is a symmetry of ϕ . Notice that ϕ and ρ(ϕ) are identical when using set notation.

In modal logics that enjoy the tree model property there is a direct correlation between the modal depth of the formula
and the depth in a tree model satisfying it: in models, a notion of layer is induced by the depth (distance from the root) of
the nodes, whereas in formulas, a notion of layer is induced by the nesting of the modal operators. A consequence of this
correspondence is that propositional literals at different modal depths are semantically independent of each other (see [14]
for details), i.e., a propositional literal can be assigned a different value in each different layer.

Definition 7 (Layered permutation). A layered permutation ρ̄ is a, possible empty, finite sequence of permutations 〈ρ1, . . . , ρk〉.
Let |〈ρ1, . . . , ρk〉| = k be the length of ρ̄ (〈〉 has length 0). For 1 ≤ i ≤ n, ρ̄i is the sub-sequence that starts from the ith

element of ρ̄ (in particular, ρ̄i = 〈〉 for i > |ρ̄| and ρ̄1 = ρ̄). Let ρ̄ = 〈ρ1, . . . , ρk〉 then ρ̄(i) is ρi if 1 ≤ i ≤ |ρ̄| and ρ̄(i) = ρId
otherwise, for ρId the identity permutation.

A layered permutation is consistent if all its permutations are consistent.
Let ϕ be a modal CNF formula, C a clause and p ∈ PROP, we define the application of a layered permutation ρ̄ to a

modal CNF formula, a clause or literal as follows. Define 〈〉(ϕ) = ϕ , and for |ρ̄| ≥ 1 define

ρ̄(p) = ρ̄(1)(p)

ρ̄(¬p) = ρ̄(1)(¬p)

ρ̄(�C) = �ρ̄2(C)

ρ̄(¬�C) = ¬�ρ̄2(C)

ρ̄(C) = {ρ̄(l) | l ∈ C}
ρ̄(ϕ) = {ρ̄(C) | C ∈ ϕ}.

As before, a layered permutation ρ̄ is a symmetry of ϕ if ρ̄(ϕ) = ϕ , when ϕ is represented using set notation.

28 C. Areces, E. Orbe / Theoretical Computer Science 606 (2015) 25–41
In what follows we assume that all permutations are consistent.

Example 4. Layered permutations capture symmetries that non-layered permutations cannot define. Consider the formula
ϕ = (p ∨ �(p ∨ ¬r)) ∧ (¬q ∨ �(¬p ∨ r)). If we only consider non-layered permutations then ϕ has no symmetry. However,
the layered permutation 〈ρ1, ρ2〉 generated by ρ1 = (p ¬q)(¬p q) and ρ2 = (p ¬r)(¬p r) is a symmetry of ϕ .

To make the article self-contained, we introduce here the needed definitions and results from [9].

Definition 8 (ρ̄-simulation). Let ρ̄ be a layered permutation. A ρ̄-simulation between two pointed models M = 〈w, W , R, V 〉
and M′ = 〈w ′, W ′, R ′, V ′〉 is a (possibly infinite) family of relations {Z ρ̄i | 1 ≤ i}, with Z ρ̄i ⊆ W × W ′ that satisfies the
following conditions:

Root: w Z ρ̄1 w ′ .
ρ̄-Harmony: w Z ρ̄i w ′ implies l ∈ LV (w) iff ρ̄i(1)(l) ∈ LV ′(w ′) .
Zig: If w Z ρ̄i w ′ and wRv then v Z ρ̄i+1 v ′ for some v ′ such that w ′ R ′v ′ .
Zag: If w Z ρ̄i w ′ and w ′ R ′v ′ then v Z ρ̄i+1 v ′ for some v such that wRv.

We say that two pointed models M and M′ are ρ̄-similar (notation: M →ρ̄ M′), if there is a ρ̄-simulation between
them.

Notice that the relation →ρ̄ is not symmetric (hence, it is not a bisimulation): M →ρ̄ M′ does not imply M′ →ρ̄ M.
On the other hand, let ρ̄ = 〈ρ1, . . . , ρk〉 and ρ̄−1 = 〈ρ−1

1 , . . . , ρ−1
k 〉, then it is not difficult to prove that M →ρ̄ M′ implies

M′ →ρ̄−1 M.
From the definition of ρ̄-simulations it follows that while they do not preserve validity of modal formulas (as it is the

case with bisimulations) they do preserve validity of permutations of formulas.

Proposition 1. Let ρ̄ be a consistent layered permutation, ϕ a modal CNF formula and M = 〈w, W , R, V 〉, M′ = 〈w ′, W ′, R ′, V ′〉
models such that M →ρ̄ M′ . Then M |� ϕ iff M′ |� ρ̄(ϕ).

Given a tree model and a layered permutation, we can construct a new model as follows.

Definition 9 (ρ̄-image of a tree model). Given a pointed tree model M = 〈w, W , R, V 〉 and a layered permutation ρ̄ . Let
depth(v) be the distance of v from the root w (in particular depth(w) = 0). Define the ρ̄-image of M as the model Mρ̄ =
〈w, W , R, V ρ̄〉 where

V ρ̄ (v) = ρ̄(depth(v) + 1)(LV (v)) ∩ PROP.

It follows that M and Mρ̄ are ρ̄-similar.

Proposition 2. Let ρ̄ be a consistent layered permutation and M a pointed tree model. Then M →ρ̄ Mρ̄ .

If ϕ is true in a model M, ρ̄(ϕ) is true in Mρ̄ .

Proposition 3. Let ρ̄ be a consistent layered permutation, ϕ a modal CNF formula and M a pointed tree model. Then M |� ϕ if and
only if Mρ̄ |� ρ̄(ϕ).

3. Detecting modal symmetries

In [9], we presented a graph-based technique for the detection of symmetries in modal CNF formulas. In propositional
logic, a standard approach is to reduce the problem of finding symmetries in formulas to the problem of finding automor-
phisms in labeled graphs: a labeled graph is constructed from a given formula in such a way that its automorphism group
is isomorphic to the symmetry group of the formula [4,2,3].

The graph automorphism problem is known to be in the NP complexity class. It is not known to be in P, and it has not
been proved NP-complete either [15]. Nevertheless there exist polynomial time algorithms for many special cases [16], and
there are many efficient tools [17,18] capable of efficiently computing a set of generators [13] for the automorphism group
of very large graphs.

In [9] we extended the graph construction for propositional formulas presented in [4] to a wide range of modal logics.
For completeness, we briefly describe the graph construction that can be used to detect layered symmetries for the basic
modal logic.

C. Areces, E. Orbe / Theoretical Computer Science 606 (2015) 25–41 29
A = id({¬�{¬p,�q,�¬q}})
B = id({¬�{¬q,�p,�¬p}})
C = id({¬p,�q,�¬q})
D = id({¬q,�p,�¬p})
E = id({q})
F = id({¬q})
G = id({p})
H = id({¬p})

Fig. 1. Labeled graph associated to ϕ = ¬�(¬p ∨ �q ∨ �¬q) ∧ ¬�(¬q ∨ �p ∨ �¬p).

Definition 10. An undirected, labeled finite graph is a graph G = (N, E, l) where N , the set of nodes, is a finite non-empty
set; E , the set of edges, is a symmetric relation over N × N; and l : N �→ L is the labeling function mapping nodes into a finite
set L of labels.

Definition 11 (Layered graph construction). Let ϕ be a modal CNF formula. Let (_)id : clauses(ϕ) �→ I be an injective function
that assigns each clause in ϕ a unique identifier over an arbitrary set I . Let PROP(ϕ, n) be the set of propositional symbols
occurring in ϕ at modal depth n.

The graph LGid(ϕ) = (N, E, l) corresponding to ϕ and id is the smallest labeled graph satisfying the following conditions:

1. For each propositional variable p ∈ PROP(ϕ, i) with 0 ≤ i ≤ md(ϕ):
(a) There are nodes (p, i) and (¬p, i) in N and l((p, i)) = l((¬p, i)) = 0.
(b) There is an edge between (p, i) and (¬p, i) in E .

2. For each clause C at modal depth 0 there is a node Cid in N and l(Cid) = 1.
3. For each propositional literal l at modal depth i occurring as a disjunct in a clause C , there is an edge between Cid and

(l, i) in E .
4. For each modal literal �D occurring as a disjunct in a clause C :

(a) There is a node Did in N and l(Did) = 2
(b) There is an edge between Did and Cid in E .

5. For each modal literal ¬�D occurring as a disjunct in a clause C :
(a) There is a node Did in N and l(Did) = 3
(b) There is an edge between Did and Cid in E .

Let n be the number of propositional variables appearing in ϕ then, LGid(ϕ) has at most 2n(md(ϕ) + 1) + |clauses(ϕ)|
nodes.

Notice the way literals are handled during the construction of LGid(ϕ): the construction duplicates literal nodes oc-
curring at different modal depth. By doing this we incorporate the notion of layering introduced in Section 2. Also,
modal literals �C and ¬�C are labeled differently. This avoids spurious permutations mapping �C literals to ¬�C lit-
erals.

Example 5. Consider the following modal CNF formula ϕ = ¬�(¬p ∨ �q ∨ �¬q) ∧ ¬�(¬q ∨ �p ∨ �¬p). Using set repre-
sentation ϕ is

ϕ = { {¬�{¬p,�{q},�{¬q}}}, {¬�{¬q,�{p},�{¬p}}} }
with eight clauses (2 at modal depth 0, 2 at modal depth 1, and 4 at modal depth 2) and six literals (2 at modal depth 1,
and 4 at modal depth 2).

Fig. 1 shows its associated labeled graph LGid(ϕ) (labels are represented by shapes, and nodes (l, i) by li in the figure).
A set of generators for the automorphisms group of the graph is given by:

π1 = (G H)(p2 ¬p2),

π2 = (E F)(q2 ¬q2),

π3 = (A B)(C D)(E G)(F H)(p1 q1)(¬p1 ¬q1)(p2 q2)(¬p2 ¬q2).

To obtain the corresponding generators for the formula ϕ , we restrict the automorphisms of the graph to the proposi-
tional literals nodes. The index associated to each propositional literal node indicates its modal depth and, therefore, given
a cycle permuting such nodes, we can determine to which permutation in the layered permutation it corresponds.

We obtain the following generators for the symmetry group of ϕ (ρId is the identity permutation):

30 C. Areces, E. Orbe / Theoretical Computer Science 606 (2015) 25–41
Fig. 2. % of random symmetric instances.

ρ̄1 = 〈ρId,ρId, (p ¬p)〉,
ρ̄2 = 〈ρId,ρId, (q ¬q)〉,
ρ̄3 = 〈ρId, (p q)(¬p ¬q), (p q)(¬p ¬q)〉.

The following theorem is proved in [9].

Theorem 1 (Correctness). Let ϕ be a modal CNF formula and LGid(ϕ) = (N, E, l) the graph corresponding to ϕ . Then every symmetry
ρ̄ of ϕ corresponds one-to-one to an automorphism π of LGid(ϕ).

3.1. Experimental evaluation

In [9], preliminary experimental results showed the existence of symmetries in formulas from the Logics Workbench
Benchmark (LWB) for the basic modal logic [19]. The evaluation also showed that detecting symmetries is a relatively
inexpensive process. The LWB is a well established, structured test set and has been extensively used to test modal provers.
However, most of the formulas became too easy for state of the art provers, even though it still contains instances which
remain difficult. This indicates the need for a more thorough testing to better evaluate the behavior of symmetry detection
in modal formulas.

To this end we performed an empirical evaluation of the graph construction of Definition 11 to verify the existence of
symmetries in modal formulas and the computing costs involved in their detection in larger sets of formulas.

To our knowledge there is no large structured test set for modal logics (equivalent, for example, to the TPTP test set for
first-order theorem proving [20]). The standard approach is to use random generators in an attempt to uniformly cover a
sufficiently large portion of the spectrum of satisfiable/unsatisfiable formulas (see [12,21] for details). Arguably, the syntactic
nature of symmetries makes the approach to testing via random generators ill suited: one would expect symmetries to
appear more often in hand-tailored test sets, where formulas follow some predefined pattern. But, as we will see, even in
random tests a good number of symmetries still appear.

Fig. 2 shows the results using 19 000 formulas in CNF, generated using the random generator hGen [21]. We fixed the
maximum modal depth of the formulas to 3 (this is usually enough to generate sufficiently challenging formulas). Instances
are distributed in seven sets, for each set we fixed the number of propositional variables (N) (from 20 to 500) and vary
the number of clauses (L) to get different values of the ratio clauses-to-variables (L/N). This ratio is a good indicator of the
satisfiability of the formula: formulas with smaller values of L/N are likely to be satisfiable, while formulas with greater
values of L/N are often unsatisfiable. Each set contains 100 random instances for 19 different values of the ratio L/N (from
0.2 to 35). Notice that formula size grows with L/N (larger values of L/N are obtained by generating more clauses). The
figure shows the percentage of symmetric instances for each value of the ratio L/N . For small values of L/N we find many
symmetric instances even in randomly generated formulas. As we increase the value of the ratio, the number of symmetric
instances rapidly diminish. This coincides with our expectations: large values of L/N results from a high number of random
clauses in the instances, reducing the possibility of symmetries. Summing up, even though random generation can be used
to obtain a test set of symmetric formulas, the result will contain mostly short, satisfiable formulas.

In an attempt to obtain more challenging, large structured formulas we used 4113 instances distributed in 23 problem
classes from the QBFLib Benchmarks [22]. These are Quantified Boolean Formulas (QBF) encodings of problems mostly from
the verification and planning domains. Problems from the QBFLib benchmarks were translated to the basic modal logic using
two variations of Ladner’s translation [23] that reduces QBFs to modal formulas preserving satisfiability. These translations,
named Collapse1 and Collapse2 and resulting in the test sets QBFLib-1 and QBFLib-2, respectively, reduce the modal depth of

C. Areces, E. Orbe / Theoretical Computer Science 606 (2015) 25–41 31
Table 1
Symmetries in structured test sets.

#In #TO #Sy #Cl #SyCl T G (sec) T S (sec)

LWB 378 0 208 9 6 9.80 1.80
QBFLib-1 4113 20 3874 23 23 7596.48 65012.79
QBFLib-2 4113 20 2680 23 18 6342.06 39370.36

the resulting modal formula yielding smaller formulas than Ladner’s original translation (see Appendix A.2 for more details).
The resulting formulas are large (the file containing the largest formula in the test set is 200 megabytes long) and they are
bound to contain both symmetries from the original problem, and others introduced during the translation into basic modal
logic.

Table 1 summarizes the results (including the results for the LWB from [9] for the sake of completeness). All tests were
ran on an Intel Core i7 2.93 GHz with 16 GB of RAM with a timeout of 120 seconds for both graph creation and symmetry
detection. We used Bliss [18] as the graph automorphism detection tool. Columns #In, #TO and #Sy are the number of
instances in the test set, the number of timeouts, and the number of instances with at least one symmetry, respectively.
Columns #Cl and #SyCl are the total number of problem classes in the test set and the number of problem classes with at
least one symmetric instance, respectively. Columns T G and T S are the time in seconds to create the graph and the total
time to search for automorphism for all the instances in the test set, respectively.

Table 1 shows that many symmetric instances exists in the test sets. The time required to compute the symmetries
(graph time plus search time) in the case of LWB is negligible. As we mentioned before, formulas in the QBFLib tests are
very large and the associated graphs contains thousands of nodes. The required times, in this test set, are more noticeable,
but still quite acceptable. The results show that the detection algorithm is very robust and is able to handle complex test
cases. The results for QBFLib highlight how sensitive is symmetry detection to the codification of the formulas. The QBFLib-1
test set have many more symmetric instances than the QBFLib-2 test set. Moreover, all problem classes in QBFLib-1 have
symmetric instances, whereas there exists 5 problem classes in the QBFLib-2 that have no symmetric instances. This can be
explained by the fact that the translation generating QBFLib-1 uses auxiliary variables (to “mark” the levels in the resulting
tree models) while the translation generating QBFLib-2 does not. Therefore, QBFLib-1 formulas have more propositional
literals at each modal depth, that might be permuted.

4. Symmetric blocking

In this section we show how the standard labeled tableaux calculus (see, e.g., [24,11]) for the basic modal logic can
be controlled with a dynamic blocking mechanism that uses symmetry information from the input formula. We will use
standard prefixed tableaux rules and notation which we briefly review for completeness. Let PREF be an infinite, non-empty
set of prefixes. Here we will set PREF = N, the set of natural numbers. Given ϕ a modal CNF formula, C a modal clause and
σ ∈ PREF we call σ :ϕ and σ :C prefixed formulas. The intended interpretation of a prefixed formula σ :F is that F holds at
the state denoted by σ . Given σ , σ ′ ∈ PREF we call σ Rσ ′ an accessibility statement. The intended interpretation of σ Rσ ′ is
that the state denoted by σ ′ is accessible via R from the state denoted by σ .

A tableaux for a formula ϕ in modal CNF is a tree whose nodes are decorated with prefixed formulas and accessibility
statements, such that the root node is 0:ϕ . Moreover, we require that additional nodes in the tree are created according to
the following rules, where ϕ is a modal CNF formula and C a clause.

σ :ϕ
σ :Ci

(∧) for all Ci ∈ ϕ σ :C
σ :l1|...|σ :ln (∨) for all li ∈ C

σ :¬�C
σ Rσ ′, σ ′:∼C (♦)1 σ :�C,σ Rσ ′

σ ′:C (�)

1 ∼C is the CNF of the negation of C . The prefix σ ′ is new in the tableau.

The rules are interpreted as follows: if the antecedents of a rule appear in nodes in a branch of the tableaux, the branch
is extended according to the formulas in the consequent. For the case of the (∨) rule, n immediate successors of the
last node of the branch should be created. In all other cases only one successor is created, which is decorated with the
indicated formulas. To ensure termination, we require that nodes are created only if they add at least one prefixed formula
or accessibility statement that was not already in the branch. Moreover, the (♦) rule can only be applied once to each
formula of the form σ :¬�C in a branch. This is called the standard blocking condition. A branch is closed if both σ :p and
σ :¬p appear as labels in some node of the branch, and it is open otherwise. A branch is saturated if no rule can be further
applied in the branch. The conditions imposed on rule applications lead to saturation after a finite number of steps.

Let Tab(ϕ) be the set of tableaux for ϕ whose branches are all saturated. The following classical result establishes that
the tableaux calculus we just defined is a decision method for satisfiability of formulas in the basic modal logic (see [25]
for details).

32 C. Areces, E. Orbe / Theoretical Computer Science 606 (2015) 25–41
Theorem 2. For any formula ϕ in modal CNF, any T ∈ Tab(ϕ) is finite. Moreover T has a saturated open branch if and only if ϕ is
satisfiable.

A different blocking technique called Pattern-based blocking (PBB) was introduced in [26] and resulted in improved
performance. The pattern P (σ :♦ϕ) of σ :♦ϕ is the set of formulas consisting of σ :♦ϕ together with all σ :�θ formulas in
the branch. Once the (♦) rule is applied to σ :♦ϕ , P (σ :♦ϕ) is marked as expanded. Moreover, a pattern P is considered
expanded if there is an expanded pattern Q such that P ⊆ Q . PBB restricts the applicability of the (♦) rule to formulas
whose patterns are not yet expanded on the branch. PBB is also sound, complete and ensures termination.

In what follows, we will strengthen these blocking conditions, further restricting the application of the (♦) rule so that
it can be applied to a σ :¬�C formula only if it has not been applied to symmetric formulas before. We will present
three different symmetric blocking conditions: Symmetric Blocking 1 (SB1), Symmetric Blocking 2 (SB2) and Symmetric
Pattern-based Blocking (SPBB). The first one was presented already in [27]. These restrictions cannot affect soundness or
termination of the (already sound and terminating) calculus. We will prove that they do not affect completeness either, i.e.,
Theorem 2 holds also under these new symmetric blocking conditions.

4.1. Preliminaries

Definition 12 (Depth of a prefix, permutation of a prefixed formula). Let T ∈ Tab(ϕ), and let � be a branch of T. Each prefix σ
in T, except 0, is introduced by the (♦) rule, and these applications define a unique path 0Rσ1 R . . . Rσ between 0 and any
other prefix. Let depth(σ) denote the length of this path (in particular, depth(0) = 0). Given a prefixed formula σ :ϕ and a
layered permutation ρ̄ , define ρ̄(σ :ϕ) = σ :ρ̄depth(σ)+1(ϕ).

We will need to identify the set of �-formulas occurring at a given prefix in a branch of a tableau.

Definition 13 (Set of �-formulas occurring at a prefix). Let ϕ be a modal formula, T ∈ Tab(ϕ), � be a branch of T and σ a
prefix in �. By 	(σ) = {ψ | σ :�ψ ∈ �} we denote the set of �-formulas occurring at prefix σ .

To prove completeness of the calculus with symmetric blocking we rely on the intuition that we can extend an incom-
plete model M� , built from a saturated open branch � to a complete model even when symmetric blocking was used.

Definition 14 (Model M� associated to a branch �). Given an open saturated branch � of a tableaux T ∈ Tab(ϕ), we define
the model M� = 〈0, W �, R� , V �〉 as:

W � = {σ | σ is a prefix on �}
R� = {(σ ,σ ′) | σ ,σ ′ ∈ W � and σ Rσ ′ ∈ �}

V �(σ) = {p | σ :p ∈ �}.

Notice that M� is always a tree rooted at 0.

Definition 15 (Rooted sub-model). Given a model 〈w, W , R, V 〉 and an element v ∈ W , let W [v] denote the set of all ele-
ments that are reachable from v by the reflexive and transitive closure of R . Let M[v] = 〈v, W [v], R�W [v], V�W [v]〉 denote
the sub-model of M rooted at v .

We already introduced the ρ̄-image of a model in Definition 9. We now introduce a variant of that model construction.

Definition 16 (ρ̄-left image). Given a pointed tree model M = 〈w, W , R, V 〉, a layered permutation ρ̄ , and disjoint sets
L, R ⊆ PROP. Let L = M�L = 〈w, W , R, V�L〉 and R = M�R = 〈w, W , R, V�R〉. Define the ρ̄-left image of M as the model
Mρ̄,L,R =Lρ̄ ∪R = 〈w, W , R, VLρ̄∪R〉 where Lρ̄ is the ρ̄-image of L and VLρ̄∪R(v) = VLρ̄

(v) ∪ VR(v) for all v ∈ W .

Definition 17 (M[
�]). Given � a saturated open branch, let
� be the set of tuples (σ , ψ, ρ̄, b) where σ is a prefix added
to � by the application of the (♦) rule to a ¬�-formula ψ that has a symmetric ¬�-formula ρ̄(ψ) blocked using the
blocking condition b ∈ {SB1, SB2, SPBB}. We define the set of models M[
�] as

M[
�] = {M�[σ]ρ̄ | (σ ,ψ, ρ̄,b) ∈
�,b ∈ {SB2, SPBB}}
∪ {M�[σ]ρ̄,PROP(ψ),PROP((σ)) | (σ ,ψ,b) ∈
�,b ∈ {SB1}},

where M�[σ]ρ̄ and M�[σ]ρ̄,PROP(ψ),PROP((σ)) are the ρ̄-image and the ρ̄-left image of model M�[σ] respectively.

C. Areces, E. Orbe / Theoretical Computer Science 606 (2015) 25–41 33
Intuitively, M[
�] is the set of “symmetric” sub-models that we need to glue to the model M� to complete it. Also,
notice that models in M[
�] are constructed differently depending on the blocking condition (SB1, SB2 and SPBB) used
when blocking a ¬�-formula.

Definition 18 (Symmetric extension). Given a saturated open branch �, the associated model M� = 〈0, W �, R�, V �〉 and a
set of symmetric pointed sub-models M[
�], the symmetric extension of M� is the model M�

ρ̄ = 〈0, W �
ρ̄ , R�

ρ̄ , V �
ρ̄ 〉 where:

W �
ρ̄ = W � �⊎

W

R�
ρ̄ = R� �⊎

R ∪ {(σ , τσ ′) | (σ ,σ ′) ∈ R�}
V �

ρ̄ = V � �⊎
V

for all 〈τσ ′ , W , R, V 〉 ∈ M[
�], where τσ ′ is the element corresponding to σ ′ in the disjoint union.

Note that we are gluing the symmetric sub-models to the original model by adding an edge from the element σ to the
root τσ ′ of the symmetric sub-model if there is an edge from σ to the root σ ′ of the original sub-model.

The following proposition is well known (see, e.g., [10]) and states that the evaluation of a formula in a model only
depends on the propositional variables appearing in the formula.

Proposition 4. Let ϕ be a modal formula, then 〈w, W , R, V 〉 |� ϕ iff 〈w, W , R, V�PROP(ϕ)〉 |� ϕ .

4.2. Completeness

We will now start the completeness proof. The proof will depend on the following Blocking Lemma that will be estab-
lished later.

Blocking Lemma. Let ϕ be a modal CNF formula, ρ̄ a layered symmetry of ϕ and � a saturated open branch of T ∈ Tab(ϕ). Let σ be
a prefix such that σ :¬�ψ ∈ � and let σ :ρ̄(¬�ψ) ∈ � be a blocked formula using any of SB1, SB2 or SPBB. Then ρ̄(ψ) ∧ ∧

	(σ) is
satisfiable.

We start by establishing the correspondence between membership of a prefixed formula in the branch � and truth in
the symmetric extension model built from it.

Lemma 1. Let � be a saturated open branch of a tableau T ∈ Tab(ϕ) and ρ̄ a symmetry of ϕ . For any formula σ :ψ ∈ � we have that
M�

ρ̄ , σ |� ψ .

Proof. The proof is by induction on both the modal depth and the size of ψ .

[ψ = p]: By definition, σ ∈ V �
ρ̄ (p). This implies M�

ρ̄ , σ |� p.

[ψ = ¬p]: Since � is open, σ :p /∈ �. Thus σ /∈ V �
ρ̄ (p), which implies M�

ρ̄ , σ |� ¬p.

[ψ = χ ∧ θ] and [ψ = χ ∨ θ] are trivial, by application of the corresponding tableau rules and the induction hypothesis.

[ψ = ¬�θ]: We have to consider two cases: a) ¬�θ has been expanded by the application of the (♦) rule. By saturation
of (♦), σ Rσ ′ , σ ′:∼θ ∈ �. By definition of R�

ρ̄ and induction hypothesis (which can be applied because ∼θ has smaller
modal depth): (σ , σ ′) ∈ R�

ρ̄ and M�
ρ̄ , σ ′ |� ∼θ and, hence, M�

ρ̄ , σ ′ |� ¬θ . Combining this, we obtain M�
ρ̄ , σ |� ¬�θ , as

required. b) ¬�θ has been blocked by the application of symmetric blocking. In this case, ¬�θ = ρ̄(¬�χ) = ¬�ρ̄(χ).
By saturation of (♦) we have that σ Rσ ′ , σ ′:∼χ ∈ �. Moreover, we have that (σ , σ ′) ∈ R� and that M�, σ ′ |� ¬χ . By
definition of the symmetric extension of M� we have that (σ , τσ ′) ∈ R�

ρ̄ and M�
ρ̄ , τσ ′ |� ¬ρ̄(χ). Which implies that

M�
ρ̄ , σ |� ¬�ρ̄(χ) = ¬�θ .

[ϕ = �θ]: If there is no state σ ′ such that (σ , σ ′) ∈ R�
ρ̄ then this holds trivially. Otherwise, let σ ′ be such that (σ , σ ′) ∈ R�

ρ̄ .
By definition of R�

ρ̄ it must be the case that σ :¬�χ ∈ � and σ Rσ ′ ∈ �. We must consider two cases: a) if σ :¬�χ has
no symmetric counterpart, i.e., it is not blocking a formula σ :¬�ρ̄(χ) then, given that σ :�θ ∈ �, by saturation of (�), we
have that σ ′:θ ∈ �. By inductive hypothesis, we have that M�

ρ̄ , σ ′ |� θ . From this it follows that M�
ρ̄ , σ |� �θ as required.

b) If it is the case that σ :¬�χ is blocking σ :¬�ρ̄(χ), then, by the definition of the symmetric extension M�
ρ̄ and the

Blocking Lemma, we have that (σ , τσ ′) ∈ R�
ρ̄ and M�

ρ̄ , τσ ′ |� ρ̄(χ) ∧ 	(σ). Given that θ ∈ 	(σ) then, M�
ρ̄ , τσ ′ |� θ . From

what it follows that M�
ρ̄ , σ |� �θ as required. �

Theorem 3. The tableau calculus with symmetric blocking is complete.

34 C. Areces, E. Orbe / Theoretical Computer Science 606 (2015) 25–41
Proof. Let � be an open saturated branch of the tableau T ∈ Tab(ϕ). Since 0:ϕ ∈ �, by Lemma 1 ϕ is satisfiable. �
4.3. Symmetric blocking conditions

It rest only to define the symmetric blocking conditions and prove the Blocking Lemma.

Symmetric Blocking 1 (SB1): Let ρ̄ be a symmetry of ϕ , and let � be a branch in a tableau of ϕ . The rule (♦) cannot be
applied to σ :ρ̄(¬�ψ) on � if it has been applied to σ :¬�ψ and PROP(ρ̄(¬�ψ)) ∩ PROP((σ)) = ∅.

Symmetric Blocking 2 (SB2): Let ρ̄ be a symmetry of ϕ , and let � be a branch in a tableau of ϕ . The rule (♦) cannot be
applied to σ :ρ̄(¬�ψ) on � if it has been applied to σ :¬�ψ and ρ̄((σ)) = 	(σ).

Symmetric Pattern-Based Blocking (SPBB): Let ρ̄ be a symmetry of ϕ , and let � be a branch in a tableau of ϕ . The rule
(♦) cannot be applied to σ :ρ̄(¬�ψ) on � if the pattern P (σ ′:ρ̄(¬�ϕ)) has been already expanded, for σ ′ a prefix
in �, and ρ̄((σ)) = 	(σ).

Note that these symmetric blocking conditions are dynamic: after being blocked, a ¬�-formula can be re-scheduled
if the blocking condition fails in an expansion of the current branch. This can happen because the set 	(σ) increases
monotonically as the tableau advances.

Blocking Lemma 1. Let ϕ be a modal CNF formula, ρ̄ a layered symmetry of ϕ and � a saturated open branch using SB1 of T ∈
Tab(ϕ). Let σ be a prefix such that σ :¬�ψ ∈ � and let σ :ρ̄(¬�ψ) ∈ � be a blocked formula using any of SB1, SB2 or SPBB. Then
ρ̄(ψ) ∧ ∧

	(σ) is satisfiable.

Proof. We divide the proof into cases depending on the used blocking condition:

[SB1]: Given that � is a saturated open branch, there exists σ ′ such that {σ Rσ ′} ∪ {σ ′:ψ} ∪ {σ ′:ψ | ψ ∈ 	(σ)} ∈ �. From
� we can construct a model M� = 〈W �, R�, V �〉 such that M�, 0 |� ϕ and, in particular, M�, σ ′ |� ψ ∧ ∧

	(σ) with
(σ , σ ′) ∈ R� .

Let M�[σ ′] = 〈σ ′, W ′, R ′, V ′〉 be the sub-model rooted at σ ′ with W ′ = W �[σ ′], R ′ = R�
�W �[σ ′] and V ′ = V �

�W �[σ ′] . Then
M�[σ ′] |� ψ ∧ ∧

	(σ). Let N = M�[σ ′]�PROP(ψ) = 〈σ ′, W ′ , R ′, V ′
N 〉 and R = M�[σ ′]�PROP((σ)) = 〈σ ′, W ′, R ′, V ′

R〉. By
Proposition 4 N |� ψ and R |� ∧

	(σ).
By Propositions 1 and 2, Nρ̄ |� ρ̄(ψ). Finally, let U = Nρ̄ ∪ R = 〈σ , W ′, R ′ , V ′′〉 where V ′′(w) = V ′

Nρ̄
(w) ∪ V ′

R(w) for
all w ∈ W ′ . By the symmetric blocking condition we know that PROP(ρ̄(ψ)) ∩ PROP((σ)) = ∅ and therefore LV ′

Nρ̄
(w) ∩

LV ′
R(w) = ∅ for all w ∈ W ′ . It follows that no contradiction will arise when doing V ′

Nρ̄
(w) ∪ V ′

R(w) and hence that the
valuation function V ′′(w) is well defined. Notice that U is the ρ̄-left image of M�[σ ′].

It rest to prove that U |� ρ̄(ψ) ∧ ∧
	(σ). Consider U�PROP(ρ̄(ψ)) , by construction of U , we know that U�PROP(ρ̄(ψ)) = Nρ̄

and that Nρ̄ |� ρ̄(ψ). By Proposition 4, U |� ρ̄(ψ). That U |� ∧
	(σ) follows by the same argument using R.

[SB2]: Since � is a saturated open branch, there exists σ ′ such that {σ Rσ ′} ∪ {σ ′:ψ} ∪ {σ ′:ψ | ψ ∈ 	(σ)} ⊆ �. We can
construct a model M� = 〈W �, R�, V �〉 from � such that M�, 0 |� ϕ and, in particular, M�, σ ′ |� ψ ∧ ∧

	(σ) with
(σ , σ ′) ∈ R� .

Now consider the model M�
ρ̄ . By Propositions 1 and 2, it follows that M�

ρ̄ , σ ′ |� ρ̄(ψ ∧ ∧
	(σ)) = ρ̄(ψ) ∧ ∧

ρ̄((σ)).
By SB2, ρ̄((σ)) = 	(σ), therefore, M�

ρ̄ , σ ′ |� ρ̄(ψ) ∧ ∧
	(σ).

[SPBB]: Same argument as for the SB2 case, since SPBB also requires that ρ̄((σ)) = 	(σ). �
Notice that SB2 can be seen as particular case of SPBB in which the search for a matching pattern is restricted to the

current prefix, i.e., the prefix of the formula being blocked. Moreover, it is easy to observe that SB2 is subsumed by SPBB,
i.e., every SB2-blocked formula is a SPBB-blocked formula. The advantage of using SB2 over SPBB is that the former could
be implemented more efficiently than the latter, since the search for a symmetric formula is restricted to the current prefix.

5. Experimental evaluation

We now empirically evaluate the effect that symmetric blocking has on modal benchmarks.

5.1. Implementation

We implemented the symmetric blocking conditions SB1, SB2 and SPBB in HTab [28], a tableaux prover for the hybrid
logic H(:, E, D, ♦−, ↓) with reflexive, transitive and symmetric modalities. HTab includes a series of optimizations that are

C. Areces, E. Orbe / Theoretical Computer Science 606 (2015) 25–41 35
Table 2
Tested HTab configurations.

Configuration Description

HTab The original prover with the default configuration
HTabSB1 HTab + SB1
HTabSB2 HTab + SB2
HTab= HTab + SPBB with exact match
HTab⊆ HTab + SPBB with subset match
HTab=

SB2 HTab + SB2 + SPBB with exact match

HTab⊆
SB2 HTab + SB2 + SPBB with subset match

enabled by default, namely, pattern-based blocking [29], semantic branching [30], dependency-directed backtracking [30],
lazy branching [26], unit propagation [31] and eager unit propagation [28].

The implementation of SB1 and SB2 is as follows: whenever there is a formula σ :¬�ϕ scheduled for expansion, the
solver checks if there is a symmetric formula σ :ρ̄(¬�ϕ) already expanded. If this is the case, it blocks the formula σ :¬�ϕ
and continues with the application of the remaining rules. The solver only verifies the blocking condition if it gets a satu-
rated open branch. If the blocking condition holds for all blocked formulas the solver terminates. Otherwise it reschedules
formulas for further expansion.

The implementation of SPBB is as follows: whenever there is a formula σ :¬�ϕ scheduled for expansion, the solver
computes its symmetric pattern P (σ ′:ρ̄(¬�ϕ)) and verifies if there exists a matching pattern that was already expanded.
If that is the case the solver blocks the formula σ :¬�ϕ and continues with the application of the remaining rules. If the
solver finds a saturated open branch, then it verifies the blocked formulas using the blocking condition. If the blocking
condition holds, it terminates. Otherwise it reschedules formulas for further expansion. A matching pattern can be an exact
match, i.e., it is identical to the original pattern, or a subset match, i.e., it contains the symmetric pattern.

If more than one blocking condition are enabled simultaneously, those enabled are evaluated in the following order: SB1
is tried first, then SB2 and finally SPBB.

To investigate the effects of symmetric blocking on modal benchmarks, we tested different solver configurations com-
bining SB1, SB2 and SPBB. As we will see, in our tests SB2 generally outperformed SB1, hence we only considered the
combination of SB2 and SPBB. Table 2 describes the configurations used.

5.2. Results

Our benchmark contains formulas from the LWB (207 formulas from 5 problem classes) and QBFLib-2 (172 formulas
from 15 problem classes) — from now we will refer to these as just QBFLib — benchmarks described in Section 3. All
formulas contain at least one non-trivial symmetry. Tests were run on a cluster using 4 Intel Xeon E5 2680 v2 nodes, with
64 GB of RAM. Timeout was set to 180 seconds.

Table 3 presents the results for the 7 solver configurations. For each configuration, the table shows the number of
instances solved (row Solved), the total time, in seconds, required to test all the formulas, including timeouts and symmetry
computation time when pertinent (row Time), the number of satisfiable and unsatisfiable instances solved (rows Sat and
Unsat respectively) and the number of timeouts (row TO). For each configuration, we present the values corresponding to
each test set and the total for the complete benchmark. The table shows that all configurations using SB1, SB2 and/or SPBB
outperform HTab. HTabSB2 emerges as the best performing configuration. Configurations HTab= and HTab⊆ , that only use
SPBB, show a similar performance to HTabSB2: they outperform HTab and HTabSB1, but solved 1 problem less than HTabSB2
and required more time in general. Configurations HTab=

SB2 and HTab⊆
SB2, combining SB2 and SPBB, outperform HTab and

HTabSB1, but they do not perform as well as the configurations in which SB2 and SPBB are used separately. Table 3 shows
also that SPBB with exact matching (HTab=) performs slightly better than SPBB with subset matching (HTab⊆).

Figs. 3a and 3b show scatter plots comparing the runtimes of HTabSB2 against HTab and HTabSB1 respectively. The x
axis gives the running times of HTab in Fig. 3a and of HTabSB1 in Fig. 3b, whereas the y axis gives the running times of
HTabSB2 in both figures. Each point represents an instance and its horizontal and vertical coordinates represent the time
necessary to solve it in seconds. Points on the rightmost and topmost edges represent timeout. Notice that a logscale is
used, so that gain or degradation to the far right and far top are exponentially more relevant.

Fig. 3a shows that for many instances (approximately 31% of all instances) HTabSB2 reports an important performance
gain with respect to HTab. The remaining instances report some degradation, in most cases negligible. Performance degra-
dation is caused by the additional overhead imposed by the blocking mechanism in instances that never trigger symmetric
blocking or in those cases where, after being triggered, the blocking condition does not hold, resulting in the final expansion
of the blocked formula.

Fig. 3b compares the performance of HTabSB2 and HTabSB1. It shows that HTabSB2 consistently outperforms HTabSB1:
many instances show an impressive performance gain, and no instance show degradation.

Figs. 3c and 3d show scatter plots comparing the runtimes of HTabSB2 against HTab= (the best configuration using
SPBB standalone) and HTab⊆ (the best configuration combining SB and SPBB) respectively. Both figures clearly show that
SB2

36 C. Areces, E. Orbe / Theoretical Computer Science 606 (2015) 25–41
Table 3
Results on the complete benchmark.

HTab HTabSB1 HTabSB2 HTab= HTab⊆ HTab=
SB2 HTab⊆

SB2

Solved QBFLib 165 165 168 166 166 164 164
LWB 175 183 193 194 194 194 194
Total 340 348 361 360 360 358 358

Time QBFLib 3712 3764 3266 3806 3820 3902 3895
LWB 6292 4917 2751 2820 2831 2827 2797
Total 10 004 8681 6017 6626 6651 6729 6692

Sat QBFLib 60 61 64 62 62 62 62
LWB 90 91 102 102 102 102 102
Total 150 152 166 164 164 164 164

Unsat QBFLib 105 104 104 104 104 102 102
LWB 85 92 91 92 92 92 92
Total 190 196 195 196 196 194 194

TO QBFLib 7 7 4 6 6 8 8
LWB 32 24 14 13 13 13 13
Total 39 31 18 19 19 21 21

Fig. 3. Performance on the complete benchmark.

HTabSB2 consistently outperforms HTab= and HTab⊆
SB2, except for a few isolated instances in which HTab= and HTab⊆

SB2
perform better.

Table 4 shows information about the application of symmetric blocking on satisfiable and unsatisfiable instances in
HTabSB2. Column Solved is the number of solved instances, column #ITrig is the number of instances that triggered SB2 at
least once, columns #TTrig and #Resch are the total number of times that SB2 is triggered and the number of times that
blocked formulas had to be rescheduled because the blocking condition failed.

C. Areces, E. Orbe / Theoretical Computer Science 606 (2015) 25–41 37
Table 4
Applications of SB in HTabSB2.

Solved #ITrig #TTrig #Resch

Sat 166 89 2031 1192
Unsat 195 76 814 71

Fig. 4. Performance of HTabSB2.

The table shows that for satisfiable instances, SB2 triggered many times but in approximately half of the cases the
blocking condition failed later in the branch causing the blocked formulas to be rescheduled for expansion. Despite this,
the scatter plot in Fig. 4a shows that there is still an overall improvement and that for many instances performance gains
are significant. It also shows that performance degradation, when it happens, is almost negligible. These observations tell
us that, for satisfiable instances, even in cases where the blocking condition does not hold, delaying the processing of
symmetric formulas might be beneficial since the branch has more information available that can avoid branching or close
the branch more rapidly.

For unsatisfiable instances, Table 4 shows that SB2 triggered less often than for satisfiable instances, however, the block-
ing condition holds most of the times (recall that the blocking condition is not validated if the branch closes). As expected,
Fig. 4b shows great improvement for several instances. However, performance losses are also more noticeable for some in-
stances. A possible explanation is the following: if the blocked formula plays no role in the unsatisfiability of the problem,
blocking it avoids unnecessary work resulting in a performance gain. If it plays a role in the unsatisfiability, the solver might
be forced to process formulas that would not be processed otherwise, resulting in a performance degradation.

Most of the performance gains obtained with HTabSB2 come from formulas in particular problem classes (e.g., the
k_branch problem class in LWB, or the Wmiforward problem class in QBFLib). This again indicates that the effectiveness
of symmetric blocking highly depends on the problem class at hand.

Tables 5 and 6 show detailed data concerning the application of symmetric blocking in HTabSB2, for each problem class
in the QBFLib and LWB test sets respectively. Column #Inst is the number of instances in the class, column #ITrig is the
number of instances that triggered SB2 at least once, columns #TTrig and #Resch are the total number of times that SB2 is
triggered and the number of times that blocked formulas had to be rescheduled due to the blocking condition not holding.
Columns THTab and TSB2 are the total time, in seconds, required to process all instances in the class for HTab and HTabSB2
respectively, including timeouts and symmetry computation (for HTabSB2). Columns n100

HTab and n100
SB2 in Table 6, report the

number of instances solved within a timeout of 100 seconds by HTab and HTabSB2 respectively. Table 5 confirms that
the application of SB2 depends on the problem class at hand: while all problem classes contain only symmetric instances,
only 8 from the 15 problem classes present instances that triggered SB2. This suggest that SB2 only uses a portion of the
available symmetries. In some classes, SB2 led to important performances gains even when the blocking condition fails,
while in other classes (e.g., Toilet_C), SB2 led to performance degradation. Table 6 shows a similar behavior with SB2
triggering only in 4 problem classes. SB2 triggers in k_path, but the problems in this class are too easy for this to result
in a noticeable performance gain. On the other hand, as mentioned previously, HTabSB2 shows a huge performance gain on
k_branch problems requiring just 1.5% of the time required by HTab.

To put the previous results in perspective, we also compared the relative performance of symmetric blocking against two
state-of-the-art solvers: Spartacus v1.1.3 [26] and Fact++ v1.6.3 [32]. Spartacus is a tableaux prover for hybrid
logic with global modalities and it was the first prover to implement pattern-based blocking. Fact++ is a description logic
solver that currently support OWL-DL and (partially) OWL 2 DL.

Table 7 shows the results for HTabSB2, Spartacus and Fact++ on the complete benchmarks. Spartacus is ran over
the same formulas used for HTabSB2. For Fact++, we first translated all formulas to TBoxes (see [33] for details), and then
used Fact++ to check satisfiability of those TBoxes. The table shows that, in the benchmark under consideration, HTabSB2

38 C. Areces, E. Orbe / Theoretical Computer Science 606 (2015) 25–41
Table 5
Performance of HTabSB2 in the QBFLib test set.

Class #Inst #ITrig #TTrig #Resch THTab TSB2

Toilet_A 20 0 0 0 355 354
Toilet_C 62 59 376 229 1564 1873
Toilet_G 6 6 34 1 2 2
blackbox-01X-QBF 25 1 14 0 245 195
StrategicCompanies 20 0 0 0 12 12
Wmiforward 9 8 302 0 566 212
Z4ml 8 0 0 0 11 11
Incrementer-encoder 4 0 0 0 11 12
Traffic-light 3 0 0 0 73 72
Chain 1 1 12 0 180 79
Toilet 5 4 14 14 48 39
Connect2 5 0 0 0 229 225
Tree 2 2 513 511 210 126
BMC 1 0 0 0 28 28
Qshifter 1 1 516 508 180 28

Table 6
Performance of HTabSB2 in the LWB test set.

Class #Inst n100
HTab n100

SB2 #ITrig #TTrig #Resch THTab TSB2

k_branch_n 21 9 21 21 231 0 2224 32
k_branch_p 21 14 21 20 350 0 1428 39
k_grz_n 21 21 21 0 0 0 0 1
k_grz_p 21 21 21 1 1 0 0 0
k_path_n 21 21 21 21 252 0 2 3
k_path_p 21 21 21 20 230 0 2 3
k_ph_n 18 21 21 0 0 0 93 104
k_ph_p 21 7 7 0 0 0 2517 2535
k_poly_n 21 21 21 0 0 0 13 17
k_poly_p 21 21 21 0 0 0 13 17

Table 7
Results for HTabSB2, Fact++ and Spartacus of the complete benchmark.

HTabSB2 Fact++ Spartacus

Solved QBFLib 168 129 156
LWB 193 164 173
Total 361 293 329

Time QBFLib 3266 8547 4712
LWB 2751 7758 6539
Total 6017 16 306 11 251

Sat QBFLib 64 42 59
LWB 102 87 91
Total 166 129 150

Unsat QBFLib 104 87 97
LWB 91 77 82
Total 195 164 179

TO QBFLib 4 43 16
LWB 14 43 34
Total 18 86 50

behaves better than Fact++ and Spartacus, solving more formulas in less time. Among Fact++ and Spartacus, the
latter is the one performing more similarly to HTabSB2. However, the scatter plots of the runtimes of HTabSB2 against
Fact++ and Spartacus shown in Figs. 5a and 5b, respectively, reveal that there exists many instances in which both
Fact++ and Spartacus outperform HTabSB2. As a matter of fact, if we discard the timeouts and concentrate only on the
total time required by instances solved by all three solvers, it turns out that Fact++ (638 seconds) outperforms HTabSB2
(727 seconds) and Spartacus (847 seconds). HTabSB2 consistently outperforms Fact++ and Spartacus in problems
coming from the k_branch class in the LWB benchmarks, were we have already seen that the effects of symmetric blocking
are more evident.

C. Areces, E. Orbe / Theoretical Computer Science 606 (2015) 25–41 39
Fig. 5. Running time comparison for HTabSB2, Fact++ and Spartacus.

6. Discussion

In this paper we exploited symmetries in a modal tableaux. We briefly presented an algorithm to detect symmetries for
the basic modal logic introduced in [9]. Given a formula ϕ the algorithm generates a graph such that the automorphism
group of the graph is isomorphic to the symmetry group of the formula. Layering is incorporated by duplicating the literal
nodes occurring at different modal depth. Then we presented mechanisms that use symmetry information to block the
triggering of the (�) rule in the tableaux. In particular, we introduced three different blocking conditions and show that they
do not compromise completeness of the basic tableaux calculus. Finally we evaluated empirically these blocking conditions.
Experimental results show that structured modal benchmarks are highly symmetric, that the applicability of the blocking
mechanism highly depends on the problem class at hand, and that important performance gains can be obtained in some
classes while imposing only a reasonable overhead.

Even though, in this article, we focused on the basic modal logic (with only one binary accessibility relation) it is clear
that the approach we presented generalizes to the multi-modal, many-dimensional case with minimal changes. Layering
symmetries, on the other hand, strongly depends on the possibility of working over trees (see [9] for further details).
But even in those cases, global symmetries could still be used for symmetric blocking. We plan to investigate symmetric
blocking conditions for other modal logics and also for related description logics as future research. It would be particularly
interesting to test our approach on the large ontology repositories available in that community.

Our empirical results also clearly shows that symmetric blocking only exploits a small portion of the symmetry of the
original formula, as many symmetric classes of problems do not trigger the symmetric blocking condition. Further testing is
needed, and also other approaches to exploiting modal symmetries like, e.g., symmetry breaking predicates [3].

Appendix A

A.1. Tools and benchmarks

Available at: http :/ /cs .famaf .unc .edu .ar /~ezequiel /sb-am.

A.2. Translations from QBF to basic modal logic

Let ϕ = Q 1 p1 . . . Q m pmθ(p1, . . . , pm) be a prenex QBF formula. By U (ϕ) = 〈Q i | Q i = ∀ and 1 ≤ i ≤ m〉 we denote the
sequence of ∀-quantifiers in the prefix of ϕ . By E(ϕ) = 〈Q i | Q i = ∃ and 1 ≤ i ≤ m〉 we denote the sequence of ∃-quantifiers
in the prefix of ϕ . Given a sequence of quantifiers S , by Si we denote the i-th quantifier in the sequence. S1 denotes the
first element of the sequence. By |S| we denote the size of the sequence.

For each existential quantifier ∃i , we define a collapse level, CL(∃i), which corresponds to the index of the last ∀-quantifier
occurring before ∃i .

For i, j ∈ N, i ≤ j we define �(i)ϕ = ϕ ∧ �ϕ ∧ �2ϕ ∧ . . . ∧ �i−1ϕ ∧ �iϕ , and, �(i, j)ϕ = �iϕ ∧ �i+1ϕ ∧ . . . ∧ � jϕ . For
i, j, k ∈N, j ≤ k, we define S(i, j, k) as

S(i, j,k) = �(j,k)(¬pi ∨ �pi) ∧ �(j,k)(pi ∨ �¬pi).

Definition 19 (Collapse1 translation). Let ϕ = Q 1 p1 . . . Q m pm θ(p1, . . . , pm) be a CNF QBF formula and m = |U (ϕ)|. We define
its translation to basic modal logic as the conjunction of the following formulas:

http://cs.famaf.unc.edu.ar/~ezequiel/sb-am

40 C. Areces, E. Orbe / Theoretical Computer Science 606 (2015) 25–41
(Root) : q0,

(Level) : ∧
j
=k � j(¬q j ∨ ¬qk) 0 ≤ j,k ≤ m,

(Peel&Branch) : ∧
B(i, j) 0 ≤ j < m and U (ϕ)(j+1) = ∀i,

(Propagate-∀) : ∧
S(i, j,m − 1) 1 ≤ j ≤ m − 1 and U (ϕ) j = ∀i,

(Propagate-∃) : ∧
S(i, j,m − 1) 1 ≤ k ≤ |E(ϕ)|, E(ϕ)k = ∃i and

j = CL(∃k), j ≤ m,

(Matrix) : ∧�m(¬qm ∨ C j) for all clauses C j ∈ θ,

where B(i, j) is defined as

B(i, j) = � j(¬q j ∨ ¬�(¬q j+1 ∨ ¬pi)) ∧ � j(¬q j ∨ ¬�(¬q j+1 ∨ pi)).

Definition 20 (Collapse2 translation). Let ϕ = Q 1 p1 . . . Q m pm θ(p1, . . . , pm) be a CNF QBF formula and m = |U (ϕ)|. We define
its translation to basic modal logic as the conjunction of the following formulas:

(Peel&Branch) : ∧
B(i, j) 0 ≤ j < m and U (ϕ) j = ∀i,

(Propagate-∀) : ∧
S(i, j,m − 1) 1 ≤ j ≤ m − 1 and U (ϕ) j = ∀i,

(Propagate-∃) : ∧
S(i, j,m − 1) 1 ≤ k ≤ |E(ϕ)|, E(ϕ)k = ∃i and

j = CL(∃k), j ≤ m,

(Matrix) : ∧�mC j for all clauses C j ∈ θ,

where B(i, j) is defined as

B(i, j) = � j¬�¬pi ∧ � j¬�pi .

References

[1] B. Krishnamurthy, Short proofs for tricky formulas, Acta Inform. 22 (3) (1985) 253–275.
[2] J. Crawford, A theoretical analysis of reasoning by symmetry in first-order logic, in: Proceedings of AAAI’92 Workshop on Tractable Reasoning, San Jose,

1992, pp. 17–22.
[3] J. Crawford, M. Ginsberg, E. Luks, A. Roy, Symmetry-breaking predicates for search problems, in: Proceedings of KR’96, 1996, pp. 148–159.
[4] F. Aloul, A. Ramani, I. Markov, K. Sakallah, Solving difficult instances of boolean satisfiability in the presence of symmetry, EEE Trans. Comput.-Aided

Des. Integr. Circuits Syst. 22 (9) (2003) 1117–1137.
[5] B. Benhamou, L. Sais, Theoretical study of symmetries in propositional calculus and applications, in: Proceedings of CADE-11, 1992, pp. 281–294.
[6] B. Benhamou, L. Sais, Tractability through symmetries in propositional calculus, J. Automat. Reason. 12 (1) (1994) 89–102.
[7] G. Audemard, B. Mazure, L. Sais, Dealing with symmetries in quantified boolean formulas, in: Proceedings of SAT’04, 2004, pp. 257–262.
[8] D. Déharbe, P. Fontaine, S. Merz, B. Woltzenlogel Paleo, Exploiting symmetry in SMT problems, in: Proceedings of CADE-23, in: LNCS, Springer, 2011,

pp. 222–236.
[9] C. Areces, E. Orbe, Symmetries in modal logics (Submitted for publication). Available at http://cs.famaf.unc.edu.ar/~ezequiel/sb-am.

[10] P. Blackburn, M. de Rijke, Y. Venema, Modal Logic, Cambridge University Press, 2001.
[11] P. Blackburn, J. van Benthem, F. Wolter, Handbook of Modal Logic, Studies in Logic and Practical Reasoning, vol. 3, Elsevier Science Inc., New York,

2006.
[12] P. Patel-Schneider, R. Sebastiani, A new general method to generate random modal formulae for testing decision procedures, J. Artificial Intelligence

Res. 18 (2003) 351–389.
[13] J. Fraleigh, V. Katz, A First Course in Abstract Algebra, Addison-Wesley, 2003.
[14] C. Areces, R. Gennari, J. Heguiabehere, M. de Rijke, Tree-based heuristics in modal theorem proving, in: Proceedings of ECAI’2000, Berlin, 2000,

pp. 199–203.
[15] S. Fortin, The graph isomorphism problem, Tech. rep. 96-20, University of Alberta, Edomonton, Alberta, Canada, 1996.
[16] E. Luks, Isomorphism of graphs of bounded valence can be tested in polynomial time, J. Comput. System Sci. 25 (1) (1982) 42–65.
[17] P. Darga, M. Liffiton, K. Sakallah, I. Markov, Exploiting structure in symmetry detection for CNF, in: Proceedings of DAC’04, 2004, pp. 530–534.
[18] T. Junttila, P. Kaski, Engineering an efficient canonical labeling tool for large and sparse graphs, in: Proceedings of ALENEX’07, SIAM, 2007.
[19] P. Balsiger, A. Heuerding, S. Schwendimann, A benchmark method for the propositional modal logics K, KT, S4, J. Automat. Reason. 24 (3) (2000)

297–317.
[20] G. Sutcliffe, The TPTP problem library and associated infrastructure: the FOF and CNF parts, v3.5.0, J. Automat. Reason. 43 (4) (2009) 337–362.
[21] C. Areces, J. Heguiabehere, hGen: a random CNF formula generator for hybrid languages, in: Proceedings of M4M-3, Nancy, France, 2003.
[22] E. Giunchiglia, M. Narizzano, A. Tacchella, Quantified boolean formulas satisfiability library (QBFLIB), http://www.qbflib.org, 2001.
[23] R. Ladner, The computational complexity of provability in systems of modal propositional logic, SIAM J. Comput. 6 (3) (1977) 467–480.
[24] R. Goré, Tableau methods for modal and temporal logics, in: M. D’Agostino, D. Gabbay, R. Haehnle, J. Posegga (Eds.), Handbook of Tableau Methods,

Springer, Netherlands, 1999, pp. 297–396.
[25] I. Horrocks, U. Hustadt, U. Sattler, R. Schmidt, Computational modal logic, in: J.V.B. Patrick Blackburn, F. Wolter (Eds.), Handbook of Modal Logic, in:

Studies in Logic and Practical Reasoning, vol. 3, Elsevier, 2007, pp. 181–245.
[26] D. Götzmann, M. Kaminski, G. Smolka, Spartacus: a tableau prover for hybrid logic, Electron. Notes Theor. Comput. Sci. 262 (2010) 127–139.
[27] C. Areces, E. Orbe, Dealing with symmetries in modal tableaux, in: D. Galmiche, D. Larchey-Wendling (Eds.), Automated Reasoning with Analytic

Tableaux and Related Methods, in: Lecture Notes in Computer Science, vol. 8123, Springer, Berlin, 2013, pp. 13–27.
[28] G. Hoffmann, C. Areces, Htab: a terminating tableaux system for hybrid logic, Electron. Notes Theor. Comput. Sci. 231 (2009) 3–19 (Proceedings of the

5th Workshop on Methods for Modalities, M4M5 2007).
[29] M. Kaminski, G. Smolka, Hybrid tableaux for the difference modality, Electron. Notes Theor. Comput. Sci. 231 (2009) 241–257.
[30] I. Horrocks, P.F. Patel-Schneider, Optimizing description logic subsumption, J. Logic Comput. 9 (3) (1999) 267–293.
[31] R. Zabih, D.A. McAllester, A rearrangement search strategy for determining propositional satisfiability, in: Proceedings of AAAI’88, vol. 88, 1988,

pp. 155–160.

http://refhub.elsevier.com/S0304-3975(15)00530-7/bib4B726973686E616D75727468793A313938357567s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib43726177666F72643A31393932777As1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib43726177666F72643A31393932777As1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib43726177666F72643A313939367761s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib416C6F756C3A323030327777s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib416C6F756C3A323030327777s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib42656E68616D6F753A313939327678s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib42656E68616D6F753A313939347472s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib417564656D6172643A323030347570s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib666F6E7461696E6532303131s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib666F6E7461696E6532303131s1
http://cs.famaf.unc.edu.ar/~ezequiel/sb-am
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib4D4C424F4F4Bs1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib4242573036s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib4242573036s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib73656261737469616E69s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib73656261737469616E69s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib6672616C65696768323030336669727374s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib617265633A747265653030s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib617265633A747265653030s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib666F7274696E31393936s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib4C756B73313938323432s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib44617267613A323030347573s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib4A756E7474696C613A323030377678s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib42616C73696765723A32303030747As1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib42616C73696765723A32303030747As1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib53533938s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib6172656365733033s1
http://www.qbflib.org
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib6C61646E657231393737s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib676F72653939s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib676F72653939s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib486F72726F636B7332303037313831s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib486F72726F636B7332303037313831s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib676F747A3A737061723130s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib617265633A6465616C3133s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib617265633A6465616C3133s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib486F66666D616E6E32303037s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib486F66666D616E6E32303037s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib6B616D696E736B6932303039687962726964s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib486F72726F636B7331393939s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib7A61626968313938387265617272616E67656D656E74s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib7A61626968313938387265617272616E67656D656E74s1

C. Areces, E. Orbe / Theoretical Computer Science 606 (2015) 25–41 41
[32] D. Tsarkov, I. Horrocks, Fact++ description logic reasoner: system description, in: Proceedings of the Third International Joint Conference on Automated
Reasoning, IJCAR’06, Springer-Verlag, Berlin, Heidelberg, 2006, pp. 292–297.

[33] K. Schild, A correspondence theory for terminological logics: preliminary report, in: Proceedings of the 12th International Joint Conference on Artificial
Intelligence, vol. 1, IJCAI’91, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1991, pp. 466–471.

http://refhub.elsevier.com/S0304-3975(15)00530-7/bib747361723A666163743036s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib747361723A666163743036s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib736368693A636F72723931s1
http://refhub.elsevier.com/S0304-3975(15)00530-7/bib736368693A636F72723931s1

	Symmetric blocking
	1 Introduction
	2 Basic deﬁnitions
	3 Detecting modal symmetries
	3.1 Experimental evaluation

	4 Symmetric blocking
	4.1 Preliminaries
	4.2 Completeness
	4.3 Symmetric blocking conditions

	5 Experimental evaluation
	5.1 Implementation
	5.2 Results

	6 Discussion
	References

