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The problems that arise from the presence of self-attacking arguments and odd-length
cycles of attack within argumentation frameworks are widely recognized in the literature
on defeasible argumentation. This paper introduces two simple semantics to capture
different intuitions about what kinds of arguments should become justified in such
scenarios. These semantics are modeled upon two extensions of argumentation frameworks,
which we call sustainable and tolerant. Each one is constructed on the common ground
of the powerful concept of admissibility introduced by Dung in [P.M. Dung, On the
acceptability of arguments and its fundamental role in non-monotonic reasoning, logic
programming, and n-person games, Artificial Intelligence 77 (1995) 321–357]. The novelty
of this approach consists in viewing the admissibility of a subset of arguments as relative
to potentially challenging subsets of arguments. Both sustainable and tolerant semantics
are more credulous than preferred semantics (i.e. they justify at least the same arguments,
and possibly more). Given certain sufficient conditions they coincide among them as well
as with other semantics introduced by Dung.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Argument systems are aimed to capture the intuition that actual reasoning proceeds by means of the construction and
confrontation of defeasible arguments. A tentative conclusion may be revised if its supporting arguments are attacked by
others, leading to new tentative conclusions, and so on. Several formalisms have been proposed to model this idea, each
focusing on different details, spanning from the internal structure of arguments to the characterization of the warranted or
justified arguments.

Despite their differences, the development of argument systems has led to some common paradoxes or, at least, prob-
lematic issues. Some of them where inherited from early approaches to non-monotonic reasoning, such as the well-known
Nixon’s Diamond where two arguments attack each other. To solve this problem two intuitions have been invoked, one that
postulates that none of the conflicting arguments should be warranted—the “skeptical” view—while the other states that it
is right to grant equal warrant to both of them, so that the user of the system can freely select either one—the “credulous”
view.

Another kind of problems arose from the process of argumentation itself, namely the occurrence of odd-length cycles
of attack. In the most simple case, one argument attacks itself. Pollock [16] studied a particular instance derived from
the lottery paradox, introduced by Kyburg [12] as a problem for reasoning with probabilities. Imagine a fair lottery with
1,000,000 tickets, so that each ticket has one in a million chances of winning. Given a particular ticket, we can tentatively
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Fig. 1. The “lottery paradox” paradox.

conclude that it will not win, since its probability is very low. But the same can be concluded about every ticket, hence we
can conclude that none of them will win. But given that the lottery is fair, one ticket must win. Upon this contradiction
Pollock claimed that a further contradiction can be drawn, namely that since none of the tickets will win, the lottery cannot
be fair. That is, the argument of the lottery paradox, based upon the premise that the lottery is fair attacks itself, since one
of its consequences contradicts its premise. This is what Pollock called the ‘lottery paradox paradox’ (see Fig. 1).

Self-attacking arguments are cycles of attack of length one. For odd-length cycles, Dung [10] indicates that arguments
in such cycles should be deemed controversial since they both attack and defend, directly or indirectly, some arguments (in
particular, themselves). Assume that A attacks B , B attacks C and C attacks A. Since A attacks C ’s attacker, A defends (i.e.
attacks the attacker of) C . Hence, A defends its own attacker, so A indirectly attacks itself. The same happens in any cycle
of odd length. This analysis led Dung (and most of the researchers in the field) to try to prevent the occurrence of such
arguments within any extension, i.e. set of warranted arguments.

In this paper we propose two semantics for dealing with the problem of self-attacking arguments. We define them upon
the methodological artifact of seeing an argumentation process as a strategic interaction between two agents. We do not
attach ontological weight to this assumption, since the agents may be the two sides that a single reasoner may take while
pondering which arguments should be warranted.

Our first semantics takes up from a wide consensus among researchers in the argument systems’ community, who
seek to solve the problem of self-attacking arguments by rejecting any justification for arguments in any odd-length cycles
of attack. We define a new kind of extension called “sustainable”, capturing this lead. The second semantics solves as
well the problem of self-attacking arguments, but allows the justification of arguments belonging to longer odd-length
cycles of attack. Although this runs against the consensus, some authors are also beginning to pursue similar aims [3,4].
The rationality of this semantics, captured by extensions called “tolerant”, becomes clear when the attack relation among
arguments is seen as embodying a transitive preference relation. Then, as we will show, tolerant semantics exhibit the
intended behavior of preferred semantics.

The platform on which our semantics are developed is the argumentation frameworks model of Dung. The main idea
introduced there is the admissibility of sets of arguments. This notion defines the way a set of arguments can be defended
from external attacks. We build upon this idea, stating that the defense of a set of arguments should not be defined in
absolute terms but relative to other possible challenging sets of arguments. In this way we obtain a notion of cogency on
which we base both sustainable and tolerant semantics.

The intuition behind is that an acceptable set of arguments is not necessarily one that can be defended against unco-
ordinated attacks, but one that can be defended against arguments that are firmly supported. Philosophers of science will
recognize the similarity of this condition with the one stating that the withdrawal of scientific theories is not due to some
contrary evidence, but to the appearance of a better theory that supports that evidence. In this vein, this paper also pro-
poses a game-theoretic counterpart of sustainable and tolerant semantics showing a strategical rationale for adopting them.
A strategic argumentation game will be defined as a two-agent game in which each agent has to choose a set of arguments
to confront with and defend against the possible choices of the other agent.

The paper is organized as follows. The main features of Dung’s system are presented in Section 2. In Section 3 we
introduce the two semantics. In Section 4 we show that in well-founded argumentation frameworks (those in which no
cycles of attack occur), sustainable, tolerant and preferred semantics are equivalent. In Section 5 we argue for the rationality
of tolerant semantics by showing that the hypothesis attacks = conflict + preference establishes also a sufficient condition
for the equivalence between this and preferred semantics. The game-theoretic counterpart of the semantics is offered in
Section 6, arguing for strategical foundations. In Section 7 we analyze and discuss related work, while the main conclusions
are summarized in Section 8. Appendix A provides the proofs of the formal results.
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2. Dung’s argumentation frameworks

The formal platform on which this work is based is Dung’s argumentation frameworks [10]. An argumentation framework
is a pair AF = 〈AR,attacks〉, where AR is a set of abstract entities called arguments and attacks is a binary relation attacks ⊆
AR × AR intended to denote attacks among arguments. The fundamental question about argument frameworks is which
arguments remain justified or warranted under the attacks among them. A set of justified arguments is called an extension,
and alternative criteria yield different kinds of extensions. Two basic concepts allow to obtain all the extensions defined
by Dung: acceptability of arguments, and admissibility of a set of arguments. The formal definitions of these notions are
summarized as follows:

Definition 1. (See Dung [10].) In any argumentation framework AF an argument σ is said acceptable w.r.t. a subset S of
arguments of AR, in case that for every argument τ such that τ attacks σ , there exists some argument ρ ∈ S such that ρ
attacks τ .1 A set of arguments S is said admissible if each σ ∈ S is acceptable w.r.t. S , and is conflict-free, i.e., the attack
relation does not hold for any pair of arguments belonging to S . A preferred extension is any maximally admissible set of
arguments of AF . A complete extension of AF is any conflict-free subset of arguments which is a fixed point of F (·), where
F (S) = {σ : σ is acceptable w.r.t. S}, while the grounded extension is the least (w.r.t. ⊆) complete extension. Moreover, a
stable extension is a conflict-free set S of arguments which attacks every argument not belonging to S .

Extensions are said to constitute the “semantics” of an argumentation framework, because they capture the notion
(weaker than truthfulness) of justifiability of arguments. Different kinds of extensions give way to alternative semantics,
that is, different intuitions about which arguments can be justified. The usual interpretation is that semantics justifying a
single extension correspond to some kind of skeptical arguer. On the other hand, in a semantics that yields multiple ex-
tensions, to select their intersection also characterizes a kind of skeptical attitude, while the arbitrary choice of one of the
extensions represents a credulous decision. For example, in Dung’s system, preferred, complete and stable extensions can
be used to model alternative forms of credulity, while the grounded extension and the intersections (each for each notion
of credulity) of the credulous extensions can model different conceptions of skepticism.

3. A strategical approach to argumentation

Dung’s view of argument justification does not assign any role whatsoever to the utterer/s of the arguments. His frame-
work can be interpreted as the decision-making setting of a single agent, who ponders the arguments in the framework.
Another interpretation is to see the arguments as laid out by an agent to defend herself against the arguments presented by
another agent. This distinction motivated some researchers to view defeasible argumentation from a dialogical point of view,
modeling dialogues between two players (pro and con) who develop an argumentation strategy by advancing arguments one
by one in alternation (e.g. [1] and [24]).

While we take this view of argumentation as arising from the interaction of two agents, the novelty of our approach
consists in that we focus on argumentation strategies instead of considering the properties of a sequential dialogue. An
argumentation strategy can be viewed as the set of arguments that an intentional agent may lay out in response to the
arguments of the other agent in a dialogue. As this notion involves all possible combinations of arguments, we consider
that any subset of AR in an argumentation framework AF = 〈AR,attacks〉 can be seen as an argumentation strategy. In
this context, our main working hypothesis is that the rationality of choosing an argumentation strategy is relative to the
argumentation strategies that the rival may select. What matters here is not whether an argumentation strategy (as a subset
of arguments) is “admissible” in the whole framework, but if it is so relative to the sub-frameworks formed by the strategy
itself together with the possible strategies of the other agent.

Under this view we can rethink the main problems of argumentation. While usual questions about argumentation ask
how arguments can be compared and justified, we want to know now how argumentation strategies can be compared and
justified. Once that question is settled, we extend the justification to individual arguments. The main methodological steps
in the characterization of justification are based on the following assumptions:

• argumentation strategies can be compared on the basis of the attack relation among the arguments that they include,
• argumentation strategies can be justified on the basis of their comparison, and
• the justification of an argument obtains from the justification of the argumentation strategies to which it belongs.

The full strategic conception of argumentation will be spelled out in Section 6. Before that, we will introduce our two
credulous semantics. Later we will justify them in game-theoretic terms.

1 In order to simplify the notation we will say that σ attacks A (conversely, A attacks σ ) iff there exists some τ ∈ A such that σ attacks τ (τ attacks σ ,
respectively).
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Fig. 2. Argumentation framework of the “lottery paradox” paradox: α attacks its subargument β , hence it attacks itself.

3.1. Admissibility and cogency

The first idea is to establish a comparison among argumentation strategies (just ‘strategies’ henceforth) using the notion
of admissibility. We will consider a strategy A at least as cogent as a strategy B if and only if A is conflict-free and all its
arguments can be defended against the arguments of B . This amounts to saying that A is an admissible set within the
framework formed just by the arguments in A ∪ B . In order to introduce this definition, we first need an auxiliary notion:
a restriction of an argumentation framework AF by a subset of arguments S ⊆ AR, is the framework AF ↓S= 〈S,attacks ↓S 〉,
where attacks ↓S is the restriction of attacks to S . Then:

Definition 2. For any pair of strategies A, B ⊆ AR, we say that A is at least as cogent as B , in symbols ‘A ↪→ B ’ iff A is
admissible in AF ↓A∪B .

It is easy to see that:

Proposition 3. A ⊆ AR is admissible in AF iff for every B ⊆ AR, A ↪→ B.

Note that according to this result, it is easy to recover the preferred semantics by requiring a strategy A to be a maximal
strategy (for set-theoretic inclusion) such that for every B ⊆ AR, A ↪→ B .

Admissibility is sufficient for cogency, but cogency is weaker than admissibility: while we understand that A is admissible
if it can be defended against any other strategy, A is just cogent if it can be defended against any other strategy which can
be defended against A. Formally:

Definition 4. A strategy A ⊆ AR is cogent (in AF) iff for every strategy B ⊆ AR, if B ↪→ A then A ↪→ B .

3.2. Sustainable semantics

Our first semantics arises just asking for a strategy to be a maximally cogent strategy. We call it ‘sustainable’ suggesting
a strategy that holds against any articulated criticism.

Definition 5. A subset A ⊆ AR is a sustainable extension of AF iff A is a maximal (w.r.t. ⊆) cogent strategy in AF .

Sustainable extensions avoid the undesirable interference of self-attacking arguments, as shown in the following example:

Example 6. In the argumentation framework 〈{α,β}, {(α,α), (α,β)}〉 (see Fig. 2), the set of all possible strategies is 2{α,β} =
{∅, {α}, {β}, {α,β}}. Then, {β} is the only sustainable extension since, besides itself, ∅ is the only strategy as cogent as {β},
but {β} is as cogent as ∅ and is larger. Note that {α} is not as cogent as {β}, so {β} needs not be as cogent as {α}.2

Example 7. In the argumentation framework AF = 〈{α,β,γ }, {(α,β), (β,γ ), (γ ,α)}〉, the only sustainable extension is ∅.

It is easy to see that sustainable extensions yield a more credulous semantics than preferred extensions. Example 6 is
a case in which the only preferred extension, ∅, is a subset of the only sustainable extension, so the latter is clearly more
credulous than the preferred extension. We can generalize this fact:

Proposition 8. If A is a preferred extension, there exists some sustainable extension B such that A ⊆ B.

Given a preferred extension, the sustainable extension to which it belongs may be the preferred extension itself. So, in
Example 7, ∅ is both the only preferred and sustainable extension.

2 This can be interpreted as an impossibility of shifting the burden of proof from {α} to {β}, that is, there is no need of proving the admissibility of {β}
in AF ↓A∪B , unless its attacker {α} is proved to be admissible in that framework.
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3.3. Tolerant semantics

Let us now consider more general cases of odd-length cycles of attack. The behavior we want to capture is the following:
while in the framework of Example 6 we would like to justify β , in the framework of Example 7 we should justify just one
of the three arguments in the cycle. Later in Sections 5 and 6 we will argue that to do so is rational, but for now we will
build further intuition considering interpretations of the framework of Example 7.

The first is due to Pollock [18], in which the three-cycle of attacks is produced by the incompatible statements of three
witnesses:

α: “Jones says that Smith is unreliable, hence Smith is unreliable”;
β: “Smith says that Robertson is unreliable, hence Robertson is unreliable;
γ : “Robertson says that Jones is unreliable, hence Jones is unreliable”.

For practical purposes it could be advisable to accept either one of these arguments, rejecting as excessively skeptical the
view that every witness lies.

A similar conclusion can be drawn in a context where three different scientific paradigms are in conflict. We can put this
in terms of a scientific discussion that could have taken place at the beginning of the XVIIth century. Assume the arguments
are:

α: “There exists evidence supporting Copernicus’ theory and his theory is simpler than Ptolemy’s, therefore Ptolemy must
be wrong”;

β: “There exists evidence supporting Ptolemy’s theory and his theory is quite in accordance with the Holy Bible, contrary
to what happens with Tycho’s theory, therefore Tycho must be wrong”;

γ : “There exists evidence supporting Tycho’s theory which, in accordance with the Scriptures, explains that the Sun re-
volves around the Earth, therefore Copernicus must be wrong”.

Note that α, β and γ provide reasons against the premises of β , γ and α respectively, so we have a cycle of attacks of
length three. Even if choosing either one of α, β or γ implies to adhere to a less than certain position, each of these
arguments could have been accepted provided there were astronomers supporting the corresponding theories. The arbitrary
acceptance of one of them was, in fact, more reasonable than the skeptic rejection of all three arguments. In any case, the
preference of {α}, {β} or {γ } over ∅ clearly exceeds even the bounds of credulity established by sustainable semantics. That
preference implies to believe something rather than nothing, even at the price of being unable to defend that belief. In the
realm of science this seems to accord with Kuhn’s claim that to reject a paradigm without simultaneously substituting it by
another is to reject science itself (cf. [13]). Scientific skepticism prescribes to try to refute any theory but, contrary to the
Popperian precept, refutations (or the existence of anomalies) do not provide reasons enough for discarding a theory if there
is no better alternative to it. According to this pragmatic point of view, sustainable and, a fortiori, also preferred semantics
seem to be excessively skeptic for representing scientific argumentation.

Cycles of attacks can also arise when several criteria are involved in a practical decision situation. Suppose, for instance,
that you have to choose a school for your children. Then, you will evaluate the alternatives according to, say, three criteria:
tuition fee (t), nearness (n) and social environment (e). Assume you finally reduce the options to three schools, say s1, s2
and s3, which you order according to those three criteria as follows:

s1 �t s2 �t s3

s2 �n s3 �n s1

s3 �e s1 �e s2

This situation poses what is known in social choice theory as the “Condorcet’s paradox”, i.e. the acyclicity of the global
preference relation obtained aggregating the individual preferences through majority voting. More precisely, if we define
the global preference relation � as s � s′ iff |{c: c ∈ C and s �c s′}| > |{c: c ∈ C and s �c s′}|, where C = {t,n, e}, we obtain
the cycle s1 � s2 � s3 � s1. This situation leads to an argumentation framework with the structure of Example 7, where the
arguments are:

α: “s2 is better than s3 with respect to the nearness and the tuition fee, but s1 is better than s2 with respect to the tuition
fee and the environment, so s1 is the best choice”;

β: “s3 is better than s1 with respect to the environment and the nearness, but s2 is better than s3 with respect to the
nearness and the tuition fee, so s2 is the best choice”;

γ : “s1 is better than s2 with respect to the tuition fee and the environment, but s3 is better than s1 with respect to the
environment and the nearness, so s3 is the best choice”.

Is in these situations of practical decisions where the choice of one argument is clearly more sensible than the rejection of
them all. As far as we know, Baroni et al. have proposed the only semantics for dealing with odd-length cycles of attack
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that resembles our analysis [3]. Guided by similar intuitions, our next semantics is based on accepting a set of arguments A
whenever every set of arguments that challenges A ends up challenged by the last set in a sequence of challenges started
by A. More precisely:

Definition 9. A strategy A ⊆ AR is cyclically cogent iff for every strategy C , if C ↪→ A but A ↪→C then there exists a sequence
D1, . . . , Dm of strategies such that D1 = C , Dm = A and Dk+1 ↪→ Dk but Dk ↪→Dk+1, for 1 � k < m.

Definition 10. A ⊆ AR is a tolerant extension iff A is a maximal (w.r.t. ⊆) cyclically cogent strategy.

Example 11 (Example 7 revisited). The tolerant extensions are {α}, {β} and {γ }.

From Definitions 4 and 9 it follows immediately that cogent strategies are also cyclically cogent. This indicates that
tolerant extensions incorporate a higher degree of credulity than sustainable extensions.

Proposition 12. If A is a sustainable extension then there exists some tolerant extension B such that A ⊆ B.

This proposition jointly with Proposition 8 immediately entails the following theorem:

Proposition 13. Every preferred extension is contained in a sustainable extension, and every sustainable extension is contained in
some tolerant extension.

4. Sufficient conditions for agreement among semantics

A question that arises naturally is whether there exist sufficient conditions for the coincidence between these and
other credulous semantics. One answer is that in limited controversial frameworks—those which exclude odd-length cycles
of attack– both tolerant and sustainable extensions collapse into a preferred one. To make this claim precise, we first recall
the definition of limited controversial frameworks:

Definition 14. (See Dung [10].) An argumentation framework is limited controversial iff there exists no infinite sequence of
arguments α1, . . . ,αn, . . . such that αi + 1 is controversial with respect to αi . An argument α is controversial with respect to
an argument β iff α indirectly attacks and indirectly defends β . An argument β indirectly attacks α iff there exists a finite
sequence α0, . . . ,α2n+1 such that (1) α = α0 and β = α2n+1 and (2) for each i, 0 � i � 2n, αi+1 attacks αi . An argument
β indirectly defends α iff there exists a finite sequence α0, . . . ,α2n such that (1) α = α0 and β = α2n and (2) for each i,
0 � i � 2n, αi+1 attacks αi .

Then we have that:

Lemma 15. For every limited controversial argumentation framework AF, every sustainable extension of AF is also a preferred extension
of AF, and vice versa.

Lemma 16. In a limited controversial argumentation framework AF, every tolerant extension of AF is also a preferred extension of AF,
and vice versa.

We can put these two results together to state a sufficient condition for the equivalence among sustainable, tolerant and
preferred extensions.

Proposition 17. In every limited controversial argumentation framework, any subset of arguments is a sustainable extension iff it is a
tolerant extension iff it is a preferred extension.

Moreover, we can incorporate our semantics into the known, more general picture of relations among Dung’s semantics.
First, our Proposition 17 together with Theorem 25 in [10], which indicates that every preferred extension is a complete
extension, entails that in every limited controversial argumentation framework, sustainable and tolerant extensions are also
complete extensions. Second, Theorem 30 in [10] claims that all well-founded argumentation frameworks, i.e. those in which
no infinite sequence of attacks occur, have a unique complete extension which is grounded, preferred and stable. Now, from
Proposition 17 and the obvious fact that every well-founded argumentation framework is also limited controversial, we can
conclude that the unique complete, grounded, preferred and stable extension in such frameworks is also sustainable and
tolerant.

Summarizing, these results ensure that in “normal” cases the behavior of sustainable and tolerant semantics will be
tantamount to that of preferred semantics, while different behaviors are restricted to the “weird” cases of odd-length cycles
of attack.
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Fig. 3. Argumentation frameworks AF and AF′ are equivalent under the attack = conflict + preference hypothesis.

5. Tolerant semantics and the hypothesis “attacks = conflict + preference”

In Section 3.3 we have analyzed some motivating examples of tolerant semantics from a merely intuitive point of view.
Now we want to assess it through a comparison with the intuition behind preferred semantics. Our analysis will be based
on the possible formal properties of the abstract concept of ‘attack’. We will argue that if the intended meaning of attack
involves a reflexive and transitive preference relation among arguments, the definition of tolerant semantics capture the
same behaviors that arise in preferred semantics.

In his approach, Dung does not ascribe any particular formal property to the attack relation, a modeling choice that
was appropriate at that stage. But it is legitimate to ask what it might represent. One possibility is that it involves at the
same time two different relations: ‘α attacks β ’ implies, on one hand, that α disagrees with β while, on the other hand,
α is preferred to β . Similar points of view have been previously taken elsewhere. For example, Simari and Loui in [22]
define their attack relation, called ‘defeat’, on the basis of a combination of disagreement (a symmetric relation between
two arguments that together imply a contradiction in conjunction with the knowledge base) and specificity (which they take
from [20]), which, although not a preference (it is not transitive), behaves as such in most cases of interest.

More recently, Kaci et al. [11] have shown that if the attack relation is characterized by a symmetric conflict relation plus
a transitive preference relation, then a “strictly acyclic” argumentation framework obtains, where ‘strictly acyclic’ means
(strangely) that for any cycle ‘α1 attacks α2 attacks . . . attacks αn attacks α1’ it must be the case that ‘α1 attacks αn attacks
. . . attacks α2 attacks α1’. For instance, the argumentation framework of Example 7, AF = 〈{α,β,γ }, {(α,β), (β,γ ), (γ ,α)}〉,
is equivalent to the argumentation framework AF′ = 〈{α,β,γ }, {(α,β), (β,α), (β,γ ), (γ ,β), (γ ,α), (α,γ )}〉 under the hy-
pothesis that attack = conflict + preference (see Fig. 3). Note that the tolerant extensions of AF are exactly the preferred
extensions of AF′ . If this happens in general and the aforementioned claim is true—i.e., for each cycle there exists a cycle
on the same arguments but going in reverse direction—then we can arguably claim that tolerant semantics captures the
intended behavior of preferred semantics.

Let us analyze Example 7 from an intuitive point of view, assuming that the preference relation among arguments is
reflexive and transitive. Then, we can understand ‘α is preferred to β ’ as ‘α is at least as good as β ’. Consequently, the
cycle α attacks β attacks γ attacks α can be thought as “α, β and γ disagree among them and any one of them is at
least as good as any other”. This is our main point: under this interpretation it seems perfectly reasonable to choose any
one of these arguments, as it is the case in tolerant extensions. Hence, tolerant extensions provide a reasonable credulous
semantics for attack relations that incorporate a preference relation. The fact that tolerant extensions in this setting consist
of the same subsets as the preferred extensions when the attacks in cycles go in both directions, is true except in presence
of cycles of length one. Formally:

Proposition 18. Let AF be a strictly acyclic argumentation framework free of self-attacking arguments. Then every tolerant extension
of AF is also a preferred extension of AF, and vice versa.

The following lemma will help to prove this claim as well as some further results:

Lemma 19. Assume A is cyclically cogent. Then for any non-self-attacking argument β which attacks A, there exists some argument
α ∈ A and a sequence γ1 attacks . . . attacks γn such that α = γ1 and β = γn.

Let AFo be the closure of AF w.r.t. strict acyclicity, i.e. if AF = 〈AR,attack〉 then AFo = 〈AR, {attack ∪ {(α,β): (β,α) ∈ attack
and there exists a sequence γ1, . . . , γn such that γi+1 attacks γi , γ1 = β , γn = α, 1 � i < n}〉. Provided that AF is free of
self-attacking arguments, the preferred extensions of AFo are the same as the tolerant extensions of AF . But if self-attacking
arguments are present in AF , then tolerant extensions might justify more arguments than those sanctioned by preferred
extensions in both AF and AFo (cf. Example 6). This means that if we interpret the attack relation in terms of disagreement
plus a reflexive and transitive preference relation, the tolerant semantics in AF is as reasonable as the preferred semantics
in AFo . Moreover, if self-attacking arguments introduce some kind of “anomaly”3 into preferred semantics—Dung seems to
adhere to this opinion (cf. [10, p. 351])—this “anomaly” is resolved by the tolerant semantics. The following results make
this claim clear.

3 We use this term with the approximate meaning in Philosophy of Science: an anomaly of a theory is an event that the theory should explain but does
not.
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Proposition 20. The class of all the tolerant extensions of AF is exactly the class of all tolerant extensions of AFo.

Proposition 21. Let AF be a strictly acyclic argumentation framework free of self-attacking arguments. Then every tolerant extension
of AF is also a preferred extension of AFo, and vice versa.

Finally, we have to mention an alternative hypothesis about the attack relation that is due to Amgoud and Cayrol [2].
They propose that A attacks B iff A R B and it is not the case that B �Pref A, where R ⊆ AR × AR represents a defeat
relationship between arguments, and �Pref is a strict ordering associated with a preorder (reflexive and transitive) Pref
on AR. Mutatis mutandi, here ‘defeat’ can be understood as synonymous of ‘conflict’. Note that from this definition of
‘attack’ it follows that if A attacks B but not vice versa, then A �Pref B . Under this interpretation, the attack relation in the
argumentation framework of Example 7 yields the cycle A �Pref B �Pref C �Pref A. As a consequence, in this and similar
cases of odd-length cycles of attack we will obtain the same results as under the attack = conflict + preference hypothesis.

6. Sustainable and tolerant semantics in a strategic argumentation game

In this section we will show, in game-theoretical terms, how some strategic considerations that lead to the choice of a
set of arguments may lay out a rational decision-making basis for sustainable and tolerant semantics.

In Game Theory, the process by which the players of a game sequentially delete from their sets of alternatives all those
strategies that are dominated by any other strategy is known as iterated elimination of weakly dominated strategies (IEWDS).
A strategy is weakly dominated if, whatever the choice of the other agents, there exists some other strategy that pays at
least the same for the actual choice of the other agents, and more for at least one alternative choice of the other agents.
Then, consider two individuals i and j playing a game in which they have to choose simultaneously actions. To decide
which decisions to make they should apply the IEWDS process. So i first eliminates all his dominated strategies and then,
believing that j is rational (and therefore that she will eliminate all her dominated strategies), will restrict his remaining
strategies by ignoring the dominated actions of j. On this reduced set, i will run a round of elimination of dominated
strategies, and by assuming that j will do the same, i further restricts his options, choosing only the undominated actions,
and so on. In turn, without communicating with i, j will do the same. The surviving strategies in the iterated elimination
process are considered “rationalizable” (see [15]).4 We will show next a correspondence between the tolerant extensions of
a framework AF and the surviving strategies of the IEWDS process in a game associated to AF .

A strategic argumentation game associated to an argumentation framework AF = 〈AR,attacks〉, denoted by ‘SAGAF ’, is a
game between two agents, 1 and 2. The strategies that each agent can choose are elements of 2AR . The agents obtain
payoffs from the outcome of the game, according to the following function:

Payi(A, B) =

⎧⎪⎪⎨
⎪⎪⎩

0, if A is not conflict-free, or there exists an argument

σ ∈ B such that σ attacks A but not A attacks σ ;
1 − x, otherwise, where x =

{
ε, if A ⊂ B and Pay−i(A, B) > 0;
0, otherwise

where Payi(A, B) is the payoff obtained by player i when she plays strategy A and agent −i plays strategy B (respectively,
Pay−i(A, B) is the payoff obtained by −i in the same situation). Note that this payoff function was defined according to the
same idea of defensibility that is behind the notions of admissibility and cogency. Agent i gets 0 if either her strategy yields
inconsistencies (i.e. it contains arguments that attack others within that strategy), or the chosen strategy is defenseless
against a possible attack from the strategy chosen by the other agent, −i. Otherwise, when the strategy is conflict-free
and can be defended against any attack from −i’s strategy, i gets a payoff of 1, unless −i has chosen the same and more
arguments in a defensible strategy, in which case i obtains 1 − ε . The (small) constant ε intends to model a slight penalty
for not choosing a larger class of arguments. The game is better understood as a confrontation of “theories” rather than as
a debate in which one agent proposes some thesis that the other one tries to refute.

Let us consider the strategic argumentation game corresponding to the framework of Example 7 (Fig. 4). In this setting,
any of the strategies {α}, {β} and {γ } is a rationalizable choice. For example, {α} is not dominated by any other strategy,
because it would pay more than any other one if the rival were to choose {β}. This means that {α} will survive the
elimination process, and hence it is rationalizable. The same can be said about {β} and {γ }. This suggests that, in terms
of argumentation frameworks, {α}, {β} and {γ } are “rationalizable” extensions. These extensions are captured by tolerant
semantics.

The relation between tolerant extensions and the IEWDS process can be more technically detailed through the notion of
“mixed strategy Nash equilibrium”.5

4 Actually, rationalizable strategies are those that survive a process of iterated elimination of strongly dominated strategies, i.e. those which pay strictly
less than the ones that survive. IEWDS survivors are sometimes called “admissible” strategies in the Game Theory literature, but to avoid overloading the
term we will call them rationalizable as well.

5 The technical details that follow can be ignored by readers who are not familiar with Game Theory, although the presentation is self-contained.
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2
∅ {α} {β} {γ } {α,β} {β,γ } {α,γ } AR

1 ∅ 1,1 1 − ε,1 1 − ε,1 1 − ε,1 1,0 1,0 1,0 1,0
{α} 1,1 − ε 1,1 1,0 0,1 1,0 0,0 0,0 0,0
{β} 1,1 − ε 0,1 1,1 1,0 0,0 1,0 0,0 0,0
{γ } 1,1 − ε 1,0 0,1 1,1 0,0 0,0 1,0 0,0
{α,β} 0,1 0,1 0,0 0,0 0,0 0,0 0,0 0,0
{β,γ } 0,1 0,0 0,1 0,0 0,0 0,0 0,0 0,0
{α,γ } 0,1 0,0 0,0 0,1 0,0 0,0 0,0 0,0
AR 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0

Fig. 4. Three-length cycle of attack.

2
∅ {α} {β} AR

1 ∅ 1,1 1,0 1 − ε,1 1,0
{α} 0,1 0,0 0,0 0,0
{β} 1,1 − ε 0,0 1,1 0,0
AR 0,1 0,0 0,0 0,0

Fig. 5. The “lottery paradox” paradox strategic argumentation game.

Definition 22. Given a space of actions S1 × S2, where S1 and S2 are the sets of strategies available to agents 1 and 2,
respectively, a mixed strategy Nash equilibrium is a pair 〈σ1, σ2〉 where σi is a probability distributions over Si , for i = 1,2
(i.e. if Si = {Ai

1, . . . , Ai
k}, σi = (pi

1, . . . , pi
k), where pi

j is the probability of action Ai
j and

∑k
j=1 pi

j = 1). Furthermore, for the
agent i and every alternative distribution τi , Ei(σi, σ−i) � Ei(τi, σ−i), where Ei(·) denotes the expected payoff function of
agent i given her own as well as −i’s probability functions.

Under this characterization it is easy to see in Example 7 that if σ is a probability distribution over {α}, {β} and {γ }, both
〈∅, σ 〉 and 〈σ ,∅〉 are mixed strategy Nash equilibria. To see this, consider that player i chooses ∅. Then, player −i obtains
the same payoff (1) on each of the pure strategies {α}, {β} and {γ }. By the Fundamental Theorem of Mixed Strategy Nash
Equilibria (cf. [15]), these three strategies belong to the support of a mixed strategy σ , i.e. they have non-zero probability
assigned by σ . Since the expected payoff of σ is 1, σ is a best response to ∅.

Conversely, if player −i chooses σ , player i compares the expected payoffs of playing any of her pure strategies. Since ∅
yields a payoff 1 − ε while any of {α}, {β} and {γ } yields a expected payoff of 2/3, it follows that player i yields her best
response by playing ∅.6

Notice that this result is independent of the exact probability distribution over {α}, {β} and {γ }. The only condition on
σ is that each of those arguments has to have a strictly positive probability. In the previous case, either {α}, {β} or {γ } can
be accepted in the case that they can be played out in a mixed Nash equilibrium. The same, of course is true for ∅ that can
be seen as a degenerate mixed strategy in which ∅ itself has probability 1.

A strategy that becomes eliminated in an IEWDS process can never carry positive probability in a mixed strategy Nash
equilibrium. This follows from the Fundamental Theorem of Mixed Strategy Nash Equilibria (cf. [15]), and implies that:

Proposition 23. If A is a tolerant extension of AF then A survives a IEWDS process in SAGAF , i.e., A has a positive probability in a mixed
strategy Nash equilibrium.

The converse is not true, which is proved by ∅ in our example: it has positive probability in a mixed strategy Nash
equilibrium but it is not a tolerant extension. On the other hand, it is easy to see that if A has a positive probability in
a mixed strategy Nash equilibrium, then A is contained in some tolerant extension, which is true in particular for the
intersection of all the tolerant extensions.

This kind of choice also gives the expected outcome in the lottery paradox paradox game. The solution, obtained by
running as they run a IEWDS process, is the equilibrium profile ({β}, {β}). This amounts to say that β has probability 1,
while each other strategy is assigned probability 0. In contrast with the case of the three-cycle of attacks, ∅ is not a good
choice here since it is eliminated by {β} after the elimination of {α}. This outcome is exactly the same as prescribed by the
sustainable semantics (see Fig. 5).

In general, an agent that plays a sustainable extension proceeds by eliminating all the strategies A such that for some
strategy B , Payi(A, B) = 0 < Payi(B, A), and then arbitrarily selecting any non-weakly dominated strategy among the sur-
vivors. In Example 7, ∅ is the only strategy that survives the elimination and is non-weakly dominated.

6 If σ = (p{α}, p{β}, p{γ }) is the strategy used by i, the expected payoffs that −i gets by playing either one of her pure strategies {α}, {β} or {γ } are
p{α} + p{β} , p{β} + p{γ } and p{α} + p{γ } , respectively (for example, if −i plays {α} then her expected payoff is 1p{α} + 1p{β} + 0p{γ } = p{α} + p{β}). Since
each of p{α} , p{β} and p{γ } are strictly positive and p{α} + p{β} + p{γ } = 1, the payoff for −i of playing either one of {α}, {β} or {γ } is strictly less than 1.
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More formally, A is cogent if only if A ∈ Cog = {A: for every B, B ⊆ AR, if Payi(B, A) � 1 − ε then Payi(A, B) � 1 − ε}.
Then:

Lemma 24. For every A, B ∈ Cog, Payi(A, B) � 1 − ε .

Lemma 25. If Cog is finite then there exists some A ∈ Cog such that for every B ∈ Cog, Payi(A, B) = 1.

Finally,

Proposition 26. If A is a sustainable extension of AF then A is not weakly dominated in SAGAF restricted to the strategies in Cog (the
converse is true just if Cog is finite).

Contrary to the choice of a tolerant extension, the choice of sustainable extensions yields not mixed but pure strategies
equilibria. Note that if both players choose sustainable extensions they avoid the risk of obtaining less than 1. In this sense,
higher degrees of credulity in the extension semantics of an argumentation framework correspond to facing higher risks of
loss in the argumentation game.

7. Discussion and related work

7.1. Comparison with Baroni et al.’s CF2 semantics

Let us discuss now some alternative approaches. Notions similar to tolerant semantics have been introduced by Baroni
and Giacomin in [3] and Baroni et al. in [4]. Nevertheless, their semantics are not totally equivalent to ours, although we find
difficult to say which one is more intuitive. Anyway, let us see the formal description of their semantics, called CF2, in order
to show the difference. The approach is inspired in the graph-representation of the relation of attack among arguments.
In this view, an argumentation framework AF can be decomposed along its strongly connected components, SCCSAF . Every
strongly connected component SCC ∈ SCCSAF is a set of arguments, all of which are path-equivalent. This relation is reflexive,
and two different arguments α and β are path-equivalent iff there is a path from α to β and there is a path from β to
α. Since the SCC’s can be ordered following the direction of the graph, the original idea is that the directionality can be
used to yield recursively the semantics. They define a generic recursive function, for which the base case is ad-hoc for each
semantics. The generic function for the semantics we are considering is defined as follows: E ∈ G F (AF, C):

• in case |SCCSAF | = 1, E ∈ B F (AF, C),
• otherwise ∀S ∈ SCCSAF(E ∩ S) ∈ G F (AF ↓UP(S,E), U (S, E) ∩ C),

where B F (AF, C) is a base function such that given |SCCSAF | = 1 and a set C ⊆ AR, yields a maximal conflict-free subset of
AR. C is the set of nodes which have no attackers from outside S or whose outer attackers are all attacked by E . U (S, E) is
the subset of nodes of S that are not attacked by E from outside S and are defended by E (i.e., their attackers from outside
S are all attacked by E). And UP(S, E) consists of U (S, E) joint with the set of all the provisionally defeated nodes, that is,
the nodes of S that are not attacked by E from outside S and are not defended by E (i.e., at least one of their attackers
from outside S is not attacked by E). This semantics sanctions the same extensions as tolerant semantics in the frameworks
of Examples 6 and 7. But in the following example the behavior is different:

Example 27. Let AF = 〈{α,β,γ , δ, ε,η,φ}, {(α,β), (β,γ ), (γ ,α), (α, δ), (δ, ε), (ε,η), (η,φ), (γ ,φ), (φ, δ)}〉. Then {α,η} is a
tolerant extension but it is not an extension in the CF2 semantics. In order to see that it is a tolerant extension note that for
any subset of arguments B such that B ↪→ {α,η}, there exists a sequence of subsets of arguments D1 ↪→ ·· · ↪→ Dm , where
D1 = {α,η} and Dm = B . Such subsets are {α,ε}, {γ , ε}, {γ , δ,η}, {γ ,η} and {α,ε,φ}, for which we found the following
sequences:

(1) {α,η} ↪→ {β, δ,η} ↪→ {β,φ, ε} ↪→ {γ , δ,η} ↪→ {γ , ε} ↪→ {α,ε};
(2) {α,η} ↪→ {β, δ,η} ↪→ {γ ,η};
(3) {α,η} ↪→ {β, δ,η} ↪→ {β,φ, ε} ↪→ {α,ε,φ}.

Sequence 1 completes the cycles for {α,ε}, {γ , ε} and {γ , δ,η}, sequence 2 completes the cycle for {γ ,η} and sequence 3
completes the cycle for {α,ε,φ}. On the other hand, to see that {α,η} is not sanctioned by the CF2 semantics, note that we
have two SCC’s: S1 = {α,β,γ } and S2 = {δ, ε,η,φ}. Assume E ∩ S1 = {α}, then for S2 the parameters of the generic function
are AF ↓{ε,η,φ} and U (S2, E) ∩ C = {ε,φ}. Hence, SCCSAF↓{ε,η,φ} = {{ε}, {η}, {φ}}. Taking the strongly connected component
S ′ = {η}, we have (E ∩ S ′) ∈ G F (AF ↓∅,∅) = ∅, since UP(S ′, E) = ∅ and C = ∅. Therefore, {α,η} cannot be an extension in
this semantics.
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Despite this difference, both tolerant and CF2 semantics display similar behaviors in many cases.
Sustainable semantics, on the other hand, is an alternative for dealing properly with the problem of self-attacking ar-

guments, overruling arguments belonging to larger odd-length cycles of attack. We have not found any other approach
yielding similar results. As we have seen, this semantics offers a solution to both problems, agreeing with Pollock on how
to deal with the interpretations of Example 7 [17,18]. On the other hand, the solution given by Pollock to the problem of
self-attacking arguments in [16] and [17] consists in inhibiting by definition their interference in the warrant process. To be
fair, Pollock changed his view later [19] by accepting that self-defeat is really a necessary feature for his non-monotonic
entailment system. Our solution, instead, inhibits the interference of self-attacking arguments as an emergent ability of the
model, not by fiat. Of course, it contributes the fact that we define a credulous semantics instead of a skeptical one.

7.2. Comparison with Jakobovits and Vermeir’s robust semantics

Despite the similar treatment given to self-attacking arguments by tolerant, sustainable and CF2 semantics, the question
cannot be declared settled. The lack of indisputably sound examples contributes to maintain the fuzziness of the concepts
and the disagreement among authors. In [14], for instance, Jakobovits and Vermeir provide an extended version of Exam-
ple 6, where a third argument, say γ , is attacked by β . In their robust semantics, β must be disabled by the attack from
α, while γ must be reinstated. This is clearly at odds with the generally accepted interpretation—to which we adhere—
according to which α must be overruled, β reinstated and γ defeated by β . On the other hand, their semantics fits well to
the example presented by them, which takes the arguments from the logic program:

p ← ¬p

q ← ¬p

mapping proof trees into arguments in the following way:

α : —¬p—p

β : —¬p—q

γ : —¬q

where α attacks α attacks β attacks γ (an attack occurs when the conclusion of a tree contradicts some leaf node of
the other tree). By a labeling process defined by them, ‘±’ is assigned to α (α’s conclusion takes an undefined value), ‘−’
to β (the negation of β ’s conclusion is accepted) and ‘+’ to γ (accepts γ ’s conclusion). Since q cannot be founded using
¬p, then ¬q may be accepted using negation as failure. The proposed semantics seems right in the light of this example.
Nevertheless, consider the following example:

q ← ¬p

p ← q

where by mapping proof trees into arguments we obtain:

α : —¬p—q—p

β : —¬p—q

Although this has the structure of the lottery paradox paradox, β , which is a sub-argument of α, is assigned ‘−’ and, hence,
rejected, against our intuition. An open question that deserves a deep philosophical analysis is to determine whether a
self-attack by a sub-argument is a special case to deal with or it should be treated as any other self-attack.

7.3. Strategic argumentation games and dialogue games

The strategic view that justifies our notion of cogency is not the only possible “two-agents” point of view on argumen-
tation. Other approaches focused instead on dialogue games. Among the salient works along this line we can mention those
of Vreeswijk [23], Prakken [21] and Vreeswijk and Prakken [24]. The latter is particularly close to the present work since
it deals with the problem of representing credulous and skeptic argumentation, along the intuitions of Dung. These au-
thors postulate a proof-theoretic procedure based on a specific dialogue game they call tpi-dispute (for two-party immediate
response dispute). This game assumes two players, PRO and CON, and rules governing the players’ choices:

(1) PRO can repeat itself if possible, because CON might fail to find a new attacker against PRO’s repeated argument.
(2) CON should repeat PRO (if possible), because it would prove that PRO’s collection of arguments is not conflict-free.
(3) PRO should not repeat CON, because that would introduce a conflict in PRO’s own collection of arguments.
(4) CON should not repeat itself unless the second use is in a different line of the dispute.
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A tpi-dispute is carried out through two kinds of moves:

• block: to prompt an argument that places the other player in a position in which she cannot move.
• eo ipso: to prompt a previous non-backtracked argument of the other player, in order to show a conflict within her

collection of arguments.

The main results in [24] are the following. An argument can be defended by PRO in every tpi-dispute if and only if it is
in some preferred extension. This stands for credulous argumentation. On the other hand, in systems where all preferred
extensions are also stable, an argument is in every preferred extension if and only if it can be defended by PRO in every tpi-
dispute and none of its attackers can be so. This, in turn, stands for skeptic argumentation. Besides the obvious differences
between Vreeswijk and Prakken’s approach and ours, we find more subtle distinctions in the strategic analysis assumed
in each approach. From a dialogical point of view, strategies can be seen as indicating which (single) argument has to
be uttered at each circumstance. Furthermore, to know whether an argument is either credulously or skeptically justified
requires to play each possible game. Game theory, instead, allows to represent all the potential confrontations in just a single
matrix (no matter how large), and consequently the characterization of the epistemic attitudes obtains through suitable
solution concepts.

Tolerant semantics can be captured by introducing the following “rule of tolerance”: accept all the arguments α such
that for any β , if β is a blocking argument in a tpi-dispute in which PRO advances α, then β cannot be defended in a tpi-
dispute. This amounts to say that the burden of proof is on the attacker, not on the defender. Taking into account Lemma 19
the following result can be obtained:

Proposition 28. An argument α belongs to a tolerant extension iff no argument β that blocks α in a tpi-dispute can be defended in a
tpi-dispute.

In the lottery paradox paradox (Example 6), β is accepted according to the “rule of tolerance” because α, its blocker,
cannot be defended in a tpi-dispute (even when β cannot be defended neither):

Dispute 1.

1. PRO: β

2. CON: α (block, CON wins)

(CON blocks PRO with α because PRO cannot repeat CON’s move advancing α in time).

Dispute 2.

1. PRO: α
2. CON: α! (eo ipso, CON wins)

(α cannot be accepted according to the “rule of tolerance” because α, its (self) attacker, is not introduced by CON in a
blocking move, but in an eo ipso move).

In the three-length cycle of attacks of Example 7, all the three arguments can be justified because there exist no winning
strategies for their respective attackers. The following dispute shows that β cannot be defended, hence γ (which is attacked
only by β) must be accepted according to the “rule of tolerance”.

Dispute 3.

1. PRO: β

2. CON: α
3. PRO: γ
4. CON: γ ! (eo ipso, CON wins).

Sustainable strategies can be captured in a tpi-like dialogue by changing rule 3 to allow PRO to repeat CON’s arguments,
only as a way of pointing out a conflict within CON’s strategy (eo ipso). Let us call such disputes ‘tpi

∗-disputes’. They are
complete and sound with respect to sustainable semantics:

Proposition 29. An argument is in a sustainable extension iff it can be defended in every tpi
∗-dispute.
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As an example, we present two tpi
∗-disputes on the lottery paradox paradox: Dispute 4 shows a successful defense of

argument β (the only sustainable solution) while Dispute 5 shows a failed defense of argument α:

Dispute 4. [tpi
∗]

1. PRO: β

2. CON: α
3. PRO: α! (eo ipso, PRO wins)

(PRO is allowed to repeat CON’s move just for an eo ipso move).

Dispute 5. [tpi
∗]

1. PRO: α
2. CON: α! (eo ipso, CON wins)

(equivalent to a tpi-dispute).

7.4. Odd-length cycles of attack in Bench-Capon’s value-based argumentation frameworks

In [6], Bench-Capon introduces value-based argumentation frameworks, which give a turn to the problem of odd-length
cycles of attack. On the basis of Dung’s argumentation frameworks, this author considers a non-empty set of values V , and
a function val which maps elements of AR on elements of V . An argument A gets a value v , v ∈ V , if accepting A promotes
or defends value v . Another element considered in the model is the audience to which the arguments are addressed. An
audience a is identified with a strict preference relation Valpref a (irreflexive, asymmetric and transitive) among the values
in V . Then, besides the attack relation among arguments, Bench-Capon constructs a relation of defeat for an audience: an
argument A defeats an argument B for audience a if and only if attacks(A, B) and val(B) is not more preferred (in Valpref a)
than val(A). The concept of conflict-free sets of arguments is then made relative to the audience. Given A, B ∈ S , an attack
from A on B does not make S conflictive for an audience if, in addition, A does not defeat B for that audience. The
notions of acceptable, admissible and preferred extension for an audience a obtain by substituting the attack relation in the
corresponding Dung’s definitions by Bench-Capon’s defeat.

Let us consider again the framework of Example 7, assuming now that we have two values V = {red,blue}, a valuation
val(α) = red, val(β) = val(γ ) = blue and two audiences r and b identified with Valpref r(red,blue) and Valpref b(blue, red),
respectively (example taken from [6]). Then for audience r, which prefers the value red to the value blue, {α,γ } is a pre-
ferred extension, while {α,β} is a preferred extension for audience b, which prefers blue to red. Moreover, α is “objectively
acceptable” in the example because it is preferred for every audience. Clearly, every tolerant extension in that framework is
a subset of some preferred-for-an-audience extension, which lead us to interpret tolerant extensions as sets of “subjectively
acceptable” arguments for some possible valuations and audiences. Bench-Capon’s value-based argumentation frameworks,
like our own approach, challenges the usual intuition that rejects the acceptance of arguments involved in odd-length cycles
of attack. The difference is that in Bench-Capon’s system the problem of acceptance is derived from considerations on the
defeat-for-an-audience relation. In this way, the problems raised from odd-cycles of attack disappear. On the other hand,
cycles in the defeat-for-an-audience relations are avoided by definition since they are based on preferences conceived as
strict orders.

7.5. Controversial arguments in prudent semantics

Another issue to discuss is the occurrence of indirect attacks inside extensions. Sustainable and tolerant semantics cannot
avoid such occurrences. Consider the following example taken from Coste-Marquis et al. [9]: AF = 〈{α,β,γ , δ, ε, ν}, {(γ ,β),

(β,α), (γ , ε), (ε, δ), (δ,α), (ν, δ)}〉. Then {γ ,ν,α} is the only extension for any of Dung’s semantics. It is also the only
sustainable and tolerant extension. Note that γ is controversial w.r.t. α because of the sequence γ attacks ε attacks δ

attacks α (recall that an argument α is controversial w.r.t. β iff α indirectly attacks and defends β). Coste-Marquis et
al. define a set of arguments S as p(rudent)-admissible iff every argument that belongs to S is acceptable in S and there
are no odd-length paths of attacks connecting two arguments that belong to S (i.e., S must be admissible and free of
controversial arguments), and a p-preferred extension is a maximally p-admissible set of arguments. So the only prudent
preferred extension in the example above is {γ ,ν}. As this example shows, prudent semantics accepts less arguments than
sustainable and tolerant semantics.

A natural way of obtaining “prudent” sustainable and tolerant extensions is to introduce the notions of p-cogent and
p-cyclically cogent sets of arguments, substituting admissibility by p-admissibility in the definitions of ‘cogent’ and ‘cyclically
cogent’, respectively. In this way, no controversial argument would belong to p-sustainable and p-tolerant extensions.

Cayrol et al. [8] have recently extended prudent semantics to bipolar argumentation frameworks. Besides the attack re-
lation among arguments, the authors introduce another kind of interaction that they call ‘support’. A supporting argument
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enters a debate when “an agent brings to light some new piece of information and so advances an argument which justifies
an assumption used by an argument provided by another agent (agents are assumed independent). This kind of interaction
between arguments is not captured by the notion of defense. It is rather a kind of support” (p. 262). So the authors define
bipolar argumentation frameworks BAF = 〈AR, Ratt, Rsup〉 where Ratt is the usual, Dung’s style attack relation, and Rsup is the
relation of support among arguments. To cope with the problem of controversial arguments, the authors indicate that S is
a b(ipolar)p(rudent)-conflict-free set of arguments iff  ∃α,β ∈ S s.t. there exists a sequence α1 Rsup . . . Rsupαn Ratt . . . Rattαn+m ,
n = 1, with α1 = α, αn+m = β , and m is an odd number. That is, any argument α that supports (directly or indirectly) an
argument α′ that attacks (directly or indirectly) some argument β , is considered to be in conflict with β . bp-admissible
sets are those bp-conflict-free sets such that all the arguments belonging to them are acceptable. Then the bp-versions of
preferred and stable semantics obtain in the obvious way. But the results are not so obvious, since the new semantics elicits
some surprising behaviors. For instance, some non-attacked arguments, which always belong to every preferred extension,
may not belong to some bp-preferred extension. In comparison with tolerant semantics, it is clear that no argument belong-
ing to odd-length cycles of attack will be warranted by a bp-semantics since such arguments are always controversial. On
the other hand, in the framework BAF = 〈AR, {(α,α), {(α,β)},∅〉, argument β , which is warranted by sustainable semantics,
is not warranted by any bp-semantics.

7.6. Further work

More work has to be done to relate sustainable and tolerant semantics with other approaches. Besnard and Doutre [5]
have introduced an equational characterization of Dung’s stable and complete extensions, although the authors have not
found appropriate, effective equations characterizing preferred and grounded extensions. The same work could be carried
out for sustainable and tolerant extensions.

Another point for future exploration is the behavior of rule-based systems (e.g. [22]) in the light of our semantics,
assessing them in the light of the rationality postulates of consistency and closure recently introduced by Caminada and
Amgoud [7].

8. Conclusion

In the final section of his paper, Dung recognizes that his approach lacks a solution for the problem of self-attacking
arguments [10, p. 351]. In this paper we intended to give two alternative semantics, that we deemed sustainable and
tolerant extensions, to solve the problems of odd-length cycles of attack while keeping a close contact with Dung’s work.
We did this using the same basic tool of Dung: the concept of admissibility. The novelty of our approach raises from a
strategy-based concept of ‘cogency’, which basically is a defensibility notion build upon admissibility, albeit slightly weaker
than that. This conception builds upon the following ideas:

• a subset of arguments is a possible argumentation strategy of an agent,
• the admissibility of a strategy is relative to the possible strategies of the rival,
• the choice consists of the maximal strategies that can be successfully defended against those challenging strategies

which in turn can be successfully defended against them (i.e. choosing those strategies that are capable of “shifting the
burden of proof”).

The resulting semantics were shown to be more credulous (i.e. justifying more arguments) than preferred semantics, while
sufficient conditions were established for the equivalence with this and other Dung’s semantics. Moreover, a game-theoretic
foundation was provided showing the strategical rationale of choosing sustainable and tolerant sets of arguments in a
debate.
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Appendix A. Proofs

Proposition 8. If A is a preferred extension then there exists some sustainable extension B such that A ⊆ B .

Proof. Assume A is a preferred extension. If A is also a sustainable extension then the proposition is proved, so let us
assume it is not. By definition of sustainable extension we have two possible cases: either A is not cogent (i.e. there exists
some strategy B such that B ↪→ A but A ↪→B) or A is not maximal (i.e. there exists some sustainable extension B such that
A ⊂ B). But, while the former case contradicts Proposition 3, the latter yields the desired result. �
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Proposition 12. If A is a sustainable extension then there exists some tolerant extension B such that A ⊆ B .

Proof. Assume that A is a sustainable extension. Since A is cogent it is also cyclically cogent. Now, let us suppose that A
is not a maximal strategy verifying this condition. But then there exists a maximal cyclically cogent strategy containing A,
which implies that there exists a tolerant extension containing A. �
Lemma 15. For every limited controversial argumentation framework AF, every sustainable extension of AF is also a preferred exten-
sion of AF, and vice versa.

Proof. Assume AF is limited controversial.

• (⇒) Suppose that A is sustainable but not preferred. Since A is conflict-free, then either (i) there exists some α /∈ A
which is acceptable w.r.t. A, or (ii) A is not admissible. Assume case (i), then A ∪ {α} ↪→ A but A ↪→A ∪ {α}. Contra-
diction. Consider case (ii), then there exists some α ∈ A which is not acceptable w.r.t. A. Then there exists a β which
attacks α and A does not attack β . Since AF is limited controversial, there cannot be self-attacking arguments. This
implies that for some conflict-free set B , β ∈ B and B ↪→ A but A ↪→B . This contradicts that A is cogent, therefore, it
also contradicts that is sustainable.

• (⇐) Assume A is preferred but not sustainable. Then there exists some B such that (iii) B ↪→ A but (iv) A ↪→B . From
Theorem 33(1) in [10] we have that (v) A is stable (see Definition 1). (Note that (iii), (iv) and (v) together imply that
B \ A = ∅.) Now, (iii) and (iv) together imply that for some β ∈ B \ A, either (a) β is acceptable w.r.t. A, or (b) β attacks
A but A does not attack β . But both (a) and (b) contradict the fact that A attacks β , which is ensured by (v). �

Lemma 16. In a limited controversial argumentation framework AF, every tolerant extension of AF is also a preferred extension of AF,
and vice versa.

Proof. (⇒) Let AF be a limited controversial argumentation framework and A be a tolerant extension of AF . By contradic-
tion, assume A is not a preferred extension in AF . Then we have two cases:

• There exists some argument α belonging to A which is not acceptable w.r.t. A. It follows that there exists some argu-
ment β1 attacking α, but A does not attack β1. So we have that (A \ {α}) ∪ {β1} ↪→ A but not vice versa. Since A is
tolerant we know that there must be a sequence in the relation ↪→ leading from A back to (A \ {α}) ∪ {β1}. In particu-
lar, there exists some argument β2 attacking β1, such that (A \ {α}) ∪ {β2} ↪→ (A \ {α}) ∪ {β1}. Therefore, there exists a
sequence ‘. . . attacks βn attacks . . . attacks β1 attacks β0’ such that βn /∈ A, β0 = α.
Now, in order to show a contradiction with the fact that AF is limited controversial, let us prove that there exists some
odd-length cycle in that sequence. We will do this in two steps: the first is to find a cycle, and the second to show that
its length is odd.
◦ Existence of a cycle: Assume there are no cycles. Then the sequence is composed by an infinite number of different

arguments. Consider the subset {β2i}∞i=0: it is an admissible, conflict-free set, neither of which arguments attacks nor
is attacked by A \ {α}. Note that α could not attack {β2i}∞i=0, because AF is limited controversial. But we can face two
possible cases:
– {β2i}∞i=0 attacks α. Then A \ {α}∪ {β2i}∞i=0 is a tolerant extension (since no subset of arguments is at least as cogent

as it but not vice versa) and it is at least as cogent as A but not vice versa. Hence A is not a tolerant extension.
Contradiction.

– {β2i}∞i=0 does not attack α. Then A ∪ {β2i}∞i=0 is a tolerant extension larger than A. Contradiction.
Therefore, there must exist a cycle in the sequence ‘. . . attacks βn attacks . . . attacks β1 attacks β0’.

◦ Odd length of the cycle: Let us prove now that the above cycle has an odd length. Assume on the contrary that it has
even length. Let ‘βi+2 j attacks . . . attacks βi ’ be that cycle, with βi = βi+2 j , for some i, j, 0 � i < j. Then the subset
of all the arguments in the cycle which indirectly defend βi is an admissible set, neither of which arguments attacks
nor is attacked by A. Hence this set together with A constitutes an admissible set larger than A (the same happens
w.r.t. the subset of all the arguments in the cycle which indirectly attack βi ). But this is a tolerant extension larger
than A. Contradiction. Hence the cycle in the sequence ‘. . . attacks βn attacks . . . attacks β0’ has an odd length, which
implies that every argument βk+1 in the cycle is controversial w.r.t. βk . Therefore, the argumentation framework is
not limited controversial, contradicting the hypothesis.

• There exists some argument α which does not belong to A but is acceptable w.r.t. A. Let B = {α: α /∈ A and α is
acceptable w.r.t A}. Then A ∪ B is a tolerant extension which properly contains the tolerant extension A. Contradiction.

In consequence, A is a preferred extension.
(⇐) Assume A is a preferred extension in a limited controversial argumentation framework AF . Theorem 33(1) in [10]

states that every preferred extension in a limited controversial argumentation framework is also stable, that is, it attacks
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every argument not in it. But since every preferred extension is a subset of some tolerant extension (as implied by Propo-
sition 12), if B is a tolerant extension such that A ⊂ B then A attacks B \ A. But then B is not conflict-free, which is a
necessary condition of tolerant extensions. Contradiction. �
Lemma 19. Assume A is cyclically cogent. Then for any not self-attacking argument β which attacks A, there exists some argument
α ∈ A and a sequence γ1 attacks . . . attacks γn such that α = γ1 and β = γn .

Proof. Assume that A is cyclically cogent and β attacks A. Let β be not self-attacking. By the absurd, assume that there is
no sequence A attacks . . . attacks β . Then for any sequence . . . attacks γn attacks . . . attacks γ1 attacks γ0 where γ0 = β

(n � 0), there exists γi such that {γi} ↪→ ·· · ↪→ A. But since there is no sequence A attacks . . . attacks γi , then A is not
cyclically cogent. Absurd. �
Proposition 18. Let AF be a strictly acyclic argumentation framework free of self-attacking arguments. Then every tolerant extension
of AF is also a preferred extension of AF, and vice versa.

Proof. Assume AF is strictly acyclic and free of self-attacking arguments.
(⇒) Let A be a tolerant extension not attacked by self-attacking arguments. Suppose by the absurd that A is not pre-

ferred. Then we have two cases:

• There exists some argument α belonging to A which is not acceptable w.r.t. A, that is, there exists β such that β attacks
α but A does not attack β . From the proof of Lemma 16, we know that there must exists a sequence of attacks going
from α to β , closing a cycle. But since AF is strictly acyclic, then there also exists a cycle in the inverse direction, hence
α attacks β . This implies that A attacks β , therefore α is acceptable in A. Contradiction.

• There exists some argument α not belonging to A which is acceptable w.r.t. A. Then A ∪ {α} is a cyclically cogent
strategy greater than A. This contradicts that A is tolerant.

Hence, A is a preferred extension.
(⇐) Let A be a preferred extension. Suppose by the absurd that A is not tolerant. Since Proposition 3 ensures that

A ↪→ B for every strategy B , the only case that deserves consideration is the existence of some B such that A ⊂ B and B is
tolerant. In this case there exists some argument α which is not acceptable w.r.t. A and α ∈ B \ A. Then there exists some
β attacking α but A does not attack β . Since α belongs to a tolerant extension, from Lemma 19 we know that there exists
a sequence γ1, . . . , γn such that γi+1 attacks γi , γ1 = β , γn = α and 1 � i < n. This sequence close a cycle, and since AF is
strictly acyclic, then we also have those attacks the way around. Hence, α attacks β , which means that α can defend itself.
This implies that A ∪ {α} is an admissible set containing properly a preferred extension (A). This contradicts the definition
of preferred extension. Hence, A is a tolerant extension.

Proposition 20. The class of all the tolerant extensions of AF is exactly the class of all tolerant extensions of AFo .

Proof. (⊆) Assume A is tolerant in AF but not in AFo . Then we have two cases:

• A ⊂ B and B is cyclically cogent in AFo . Assume β ∈ B and β /∈ A. For every γ such that γ attacks β , either γ is self-
attacking and, hence, A ∪ {γ } is cyclically cogent in AF which is absurd, or—by Proposition 19—there exists a sequence
B ↪→ ·· · ↪→ {γ } in AFo . This implies that there exists δ ∈ B such that δ = δ1 attacks . . . attacks δn = γ in AFo . Then we
have two sub cases:
◦ δ = δ1 attacks . . . attacks δn = γ in AF—because of AFo being the closure of AF w.r.t. strict acyclicity. Hence B is

cyclically cogent in AF . This contradicts that its proper subset A is tolerant in AF;
◦ γ = δn attacks . . . attacks δ1 = δ in AF , hence A ∪ {δ} is cyclically cogent in AF . This also contradicts that A is tolerant

in AF .
• A is not cyclically cogent in AFo . Then there exists some strategy B , B ↪→ A but there is no sequence A ↪→ ·· · ↪→ B in

AFo . In particular, it is not the case that A ↪→ B , which implies that there exist α ∈ A and β ∈ B , such that β attacks α
and A does not attack β . Then:
◦ β attacks α and A does not attack β in AF , which contradicts that A is cyclically cogent in AF; or
◦ α attacks β (the reason why β attacks α in AFo), which contradicts that A does not attack β in AFo .

(⊇) Assume A is tolerant in AFo but not in AF . Then we have two cases:

• A ⊂ B and B is cyclically cogent in AF . Assume β ∈ B and β /∈ A. Then for every γ such that γ attacks β , there exists
a sequence B ↪→ ·· · ↪→ {γ } in AF . Hence there also exists some δ ∈ B such that δ = δ1 attacks . . . attacks δn = γ in AF .
But then δ = δ1 attacks . . . attacks δn = γ occurs in AFo too. This implies that B is cyclically cogent in AFo contradicting
that its proper subset A is tolerant in AFo .
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• A is not cyclically cogent in AF . This implies that there exists some B such that B ↪→ A but there is no sequence
A ↪→ ·· · ↪→ B in AF . Hence A ↪→B , which means that there exist α ∈ A and β ∈ B such that β attacks α and A does not
attack β . Then β attacks α in AFo , but since A is tolerant in AFo , there exists γ ∈ A such that γ attacks β in AFo . Since
A does not attack β in AF then γ does not attack β in AF , hence there must be a cycle of attacks in AF involving the
attack of β over γ . In consequence there exists a sequence γ attacks . . . attacks β in AF which entails that there also
exists a sequence A ↪→ ·· · ↪→ B . Contradiction. �

Proposition 21. Let AF be a strictly acyclic argumentation framework free of self-attacking arguments. Then every tolerant extension
of AF is also a preferred extension of AFo, and vice versa.

Proof. Immediate from Propositions 18 and 20. �
Lemma 24. For every A, B ∈ Cog, Payi(A, B) � 1 − ε .

Proof. Assume Payi(A, B) = 0. Then since B ∈ Cog, Payi(B, A) = 0. Since both A and B are conflict-free, we have a mutual
attack. That means that there exists some α ∈ A such that α attacks B but B does not attack α, and there exists some β ∈ B
such that β attacks A but A does not attack β . But then {α,β} attacks both A and B but not vice versa. This contradicts
the fact that A and B are cogent. �
Lemma 25. If Cog is finite then there exists some A ∈ Cog such that for every B ∈ Cog, Payi(A, B) = 1.

Proof. Assume, to the contrary, that for every A ∈ Cog there exists some B ∈ Cog such that Payi(A, B) = 1 − ε . By definition
of the payoffs we have that A ⊂ B . The same is true for B , etc. This implies that there exists a sequence A ⊂ B ⊂ · · · ⊂ A,
which is absurd. �
Proposition 26. If A is a sustainable extension of AF then A is not weakly dominated in SAGAF restricted to the strategies in Cog (the
converse is true if Cog is finite).

Proof. (⇒) Assume A is a sustainable extension of AF , and suppose that there is some B such that B ∈ Cog and B weakly
dominates A in the game restricted to Cog. Then there exists some strategy C ∈ Cog such that Payi(A, C) < Payi(B, C). Hence
Payi(A, C) = 1 − ε , which implies that A ⊂ C . But then A is not maximally cogent, which contradicts that it is a sustainable
extension of AF . (⇐) Assume that A is not weakly dominated in the game restricted to Cog, and Cog is finite. Suppose by
contradiction that Payi(A, B) = 1 − ε for some B ∈ Cog. Then, by Lemma 25 there exists some strategy C ∈ Cog such that
Payi(C, B), i.e. C weakly dominates A, contradicting the hypothesis. Hence A always pays 1 against strategies in Cog, which
means that it is maximally cogent, i.e. a sustainable extension of AF . �
Proposition 29. An argument is in a sustainable strategy iff it can be defended in every tpi

∗-dispute.

Proof. (⇒) Assume that A is a sustainable extension. Since A is conflict-free, CON cannot make an eo ipso move. Now,
CON cannot block PRO through any argument β , because in that case Pay(A, {β}) = (0,1) (A would not be cogent), which
contradicts the hypothesis. Hence, A can be defended in every tpi

∗-dispute.
(⇐) Assume α is an argument that can be defended in every tpi

∗-dispute. For any optimal opposition of CON, assume
α ∈ A where A is the strategy chosen by PRO. Assume that A is not conflict-free. Then CON could have made an eo ipso
move. But this is not the case since α can be defended in each dispute. Therefore A is conflict-free. Even so, it may happen
that Pay(A, C) = (0,1) for some strategy C that survives a IEWDS process. Then for some αi ∈ A and β ∈ C , β attacks αi but
A does not attack β . But then β would be a winning argument, and α could not be defended in a dispute in which CON
utters β . Contradiction. Therefore, A is tolerant. �
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