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a b s t r a c t

Sensibility analysis of experimentally measured frequencies as a criterion for crack detection has been
extensively used in the last decades due to its simplicity. However the inverse problem of the crack
parameters (location and depth) determination is not straightforward. An efficient numerical technique is
necessary to obtain significant results. Two approaches are herein presented: The solution of the inverse
problem with a power series technique (PST) and the use of artificial neural networks (ANNs). Cracks
in a cantilever Bernoulli–Euler (BE) beam and a rotating beam are detected by means of an algorithm
that solves the governing vibration problem of the beam with the PST. The ANNs technique does not
need a previous model, but a training set of data is required. It is applied to the crack detection in the
cantilever beamwith a transverse crack. The firstmethodology is very simple and straightforward, though
no optimization is included. It yields relative small errors in both the location and depth detection. When
using one network for the detection of the two parameters, the ANNs behave adequately. However better
results are found when one ANN is used for each parameter. Finally, a combination between the two
techniques is suggested.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Cracks in structural elements can indicate a fatigue problem,
mechanical defects or others faults from the manufacturing
process. In any case, they represent a threat to the reliable behavior
of the part or structural element. Then their detection is a relevant
issue. According to Rytter [1] the damage detection in a structure
can be attained at four different levels: Level 1: detection of
the existence of damage; Level 2: Level 1 plus damage location;
Level 3: Level 2 plus damage quantification; Level 4: Level 3
plus prediction of the remaining service life (usually uncoupled
from the other three levels). On the other hand, it is well known
that a structural element shows changes in its behavior due to
the presence of a crack. The estimation of the crack parameters
(location and depth, Level 3) using the changes in the measured
frequencies of a crackedmember has been an extended criterion in
the last decades. One of the reasons is that frequencies are, among
other dynamic parameters, easily obtained from measurements.
So their experimental determination for a given cracked element
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is rather direct. However solving the inverse problem of crack
parameters determination for a given set of frequencies in a
damaged element can be a challenging task. Consequently, and
in order to obtain meaningful results, both an acceptable model
and an efficient numerical technique have to be adopted. Several
researchers have tackled the problem with diverse techniques.
Many works are available on crack detection in beams. Some
representative papers are [2–7]. Shen and Taylor [7] report a
procedure based on the minimization of the difference between
measured data and a computational model to detect a crack
in a Bernoulli–Euler beam. Liang et al. [5] develop theoretical
relationships between eigenfrequency changes and magnitudes,
and the locations of crack-induced damage for beam structures
with either simply supported or cantilever boundary conditions.
For uniformbeams, a physicalmodel of amassless rotational spring
is used to represent the local flexibility introduced by the crack.
Nandwana andMaiti [6] dealwith inclined edge, or internal normal
cracks using a rotational spring in slender beams. Bovsunovsky
and Matveev [2] model a closing crack through a bilinear model
of a cantilever Bernoulli–Euler beam. Kim et al. [3] present two
damage detection methods, one based on frequencies and the
other on mode shapes. Kim and Stubbs [4] use changes in natural
frequencies of a structure as a practical method to detect cracks in
beams. Fractional changes in modal energy are related to changes
in natural frequencies due to damage.
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In the present work, two approaches employing the frequency
change criterion are explored. One is the solution of the inverse
problem with a power series technique (PST) and the other is
the use of artificial neural networks (ANNs). The power series
algorithm is a systematization of this well-known technique
which results in an efficient numerical method appropriate
for this inverse problem. The authors have previously solved
several ordinary nonlinear problems (both initial conditions and
boundary value ones) using a similar approach [8]. Other boundary
value problems were approached with power series [9]. The
proposed methodology is straightforward and simple and, despite
dealing with a linear model, the detection results are sufficiently
accurate. Two structural elements are herein examined with PST:
a Bernoulli–Euler (BE) beam and a spinning beam. The governing
differential problem is stated and, in both cases, the crack is
modeled by introducing springs of constant stiffness that vary
for each crack size. First the analytic model of the BE beam with
springs is stated and the differential problem is then solved by
an algorithm based on power series which constitutes the direct
problem. Since the aim is the detection of the damage up to level 3
(its existence, location and depth of the crack), an inverse problem
should be tackled. The power series algorithm is then used to solve
this inverse problem and, for this purpose, the natural frequencies
measured in the damaged beam are input. The location and the
value of the spring constant are the output, and a relationship from
the Mechanics of Fracture theory [10] allows us to find the related
crack depth. Both numerical and physical experiments are dealt
with. The second application is related to the crack detection of a
damaged spinning beam (‘‘flexible rotor’’). Similarly to the BE beam
problem, the inverse problem solution leads to the determination
of the crack parameters, and a detailed approach can be found
in [11]. Finally the ANNs technique is applied to the case of the
damaged cantilever beam. It differs from the previous approach
since it does not involve governing equations but, on the other
hand, needs a training set of data. A single hidden layer back-
propagation neural network is trained with data found with 2D
finite element models with more than four hundred scenarios.
These data are also analyzed and some curves are depicted to
show the variables’ influence. Natural frequencies were measured
from physical experiments and then input in the ANNs algorithm
to detect the damage. First, one ANN to detect the two involved
parameters was tested. Better results were found using two ANNs,
detecting one parameter each [12]. A combination of the PST and
ANN approaches is suggested.

2. Bernoulli–Euler beam-spring vibration problem

In the following sub-sections the natural vibration problem of
a BE beam with an intermediate spring that represents the crack,
will be stated. The direct approach and the power series solution
will be presented.

2.1. BE beam with spring: Governing equations

In order to fix ideas, a cantilever cracked BE beam is considered
(see Fig. 1). The crack influence is here simulated as a change in
the flexibility at the crack location [5]. For this purpose, a spring of
stiffness constant k∗ is introduced. The beam has mass density ρ
and Young’s modulus E and, for the sake of generality, the beam is
supposed to have two spans L1 and L2 of different cross sections F1
and F2 and second order moments of inertia J1 and J2, respectively.
The governing equations of the natural transverse vibrations of the
beam-spring system, after non-dimensionalization, are:

v′′′′1 −Ω
2
1v1 = 0; v′′′′2 −Ω

2
2v2 = 0 (1)
L1

X1

k*

X2

, F1, E, J1

L2

ρ , F2, E, J2ρ

Fig. 1. BE beam with an intermediate spring.

with the following boundary and continuity conditions

v1(0) = 0; v′1(0) = 0; v′′2 (1) = 0; v′′′2 (1) = 0

v1(1) = v2(0);
EJ1
L1
v′′1 (1)+ k

[
v′1(1)
L1
−
v′2(0)
L2

]
= 0.

(2)

The following parameters have been introduced in order to obtain
the non-dimensionalized governing equations: x1 = X1/L1, x2 =
X2/L2, 0 ≤ X1 ≤ L1, 0 ≤ X2 ≤ L2, 0 ≤ x1 ≤ 1, 0 ≤
x2 ≤ 1,Ω2j = ρFjω2L4j /EJj (j = 1, 2), k = k

∗L1/EJ1 and where
v1(x1) and v2(x2) are the elastica of each beam segment, ω is the
circular frequency and Ω1, Ω2 are the two non-dimensionalized
frequency parameters. The prime(s) in Eqs. (1) and (2) denote the
derivative(s) with respect to x1 or x2 correspondingly.

2.2. Direct and inverse problem solutions via a power series algorithm
for the BE beam

In the direct problem, the spring constant and its location are
the input data, and the natural frequencies the output. Here the
solution of the problem stated in Eqs. (1) and (2) is tackled via
the PST. The power series is a very well-known technique and
also straightforward. Its systematization yields an efficientmethod
which is useful to afterwards solve the derived inverse problem.
The unknowns are the functions v1(x1) and v2(x2) which are
expanded as follows:

v1(x1) =
N∑
i

Aixi1; v2(x2) =
N∑
i

Bixi2;

N →∞ (theoretically) (3)
where Ai, Bi are unknowns (i = 1, 2, . . . ,N). After introducing
these expansions in Eqs. (1) and (2), the next relationships are
obtained

B0 =
∑
Ai;

k
α
B1 =

∑
ϕ2iAi+2 + k

∑
ϕ1iAi+1;

2
γ

α2
B2 =

∑
ϕ2iAi+2; 6

γ

α3
B3 =

∑
ϕ3iAi+3 (4)

Ai+4 = Ω21
Ai
ϕ4i
; Bi+4 = Ω22

Bi
ϕ4i

where ϕln = (n + l)!/n! with l, n integer numbers. Also α =
L1/L2, β = L1/(L1 + L2), γ = EJ2/(EJ1). These are the necessary
equations to construct the solution algorithm. The admissible input
data are the spring constant k, the spring location β or the natural
frequency parameters Ω ’s. Given two of them, the third can be
obtained as an eigenvalue.
In order to solve the inverse problem, the first three natural

frequencies of the damaged beam are obtained (either from a
numerical or a physical experiment). After introducing each of
these values in the power series algorithm (input), a curve β vs. k
is obtained. The detected spring location and constant (output) are
given by the intersection point of the three curves. The obtained
value of β is proportional to L1 (crack location) and the value of
k is related to the crack depth by a relationship from Fracture
Mechanics [10].
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Fig. 2. Spinning beam with springs.

3. Spinning beam with spring vibration problem

This section includes the statement of the differential problem
that governs the transverse vibrational problem of a spinning BE
beam with and without intermediate springs.

3.1. Spinning beam governing equations

As stated in a previous work of the authors [13], the transverse,
vibrational behavior of a beam rotating with constant spin about
its longitudinal axis (z), assuming that its cross section (in the xy
plane) possesses only one axis of symmetry, is governed by the
following partial differential equations:

u′′′′ + a2(ü− Ω̄2u− 2Ω̄ v̇) = 0 (5)

v′′′′ + A2(v̈ − Ω̄2v + 2Ω̄ u̇) = 0 (6)
where, if z is coincident with the beam axis and the rotation is
around it, u(z, t) (in x direction) and v(z, t) (in y direction) are
the transverse displacements of the beam in plane xy of the cross
section, a2 ≡ ρF/EJx, A2 ≡ ρF/EJy, ρ is the mass density of the
beam, F is the cross-sectional area of the beam, Jx and Jy are the
moments of inertia with respect to the x and y axes, respectively,
E is the Young’s modulus, Ω̄ is the constant angular velocity
around the longitudinal axis z. Dots denote timedifferentiation and
primes denote differentiation with respect to z. If normal modes
are assumed Eqs. (5) and (6) can be written as

H ′′′′ − a2((λ2 + Ω̄2)H + 2Ω̄f ) = 0 (7)

f ′′′′ − A2((λ2 + Ω̄2)f + 2Ω̄λ2H) = 0 (8)
where H(z) and f (z) are the mode shapes, unknowns of the
problem. λ′s are the circular natural frequencies. These equations,
togetherwith the boundary conditions, are the basis of the stepped
beam problem solved in the Appendix.
The vibration problem of a spinning beam with intermediate

springs will be stated in the next section.

3.2. Spinning beam with intermediate springs

The spinning beam with intermediate springs is depicted in
Fig. 2. The governing Eqs. (7) and (8) hold for each part of the beam:
i.e. H1(z1) and f1(z1) for the first part and H2(z2) and f2(z2) for the
second one, 0 ≤ zj ≤ 1, zj are the non-dimensionalized variables
(j = 1, 2). The boundary conditions for H1(z1) and H2(z2) are
(assuming a simply supported beam)

H1(0) = 0; H2(1) = 0; H ′′1 (0) = 0; H ′′2 (1) = 0 (9)
and the continuity conditions are the following

H1(1) = H2(0);
EJy
L31
H ′′′1 (1)−

EJy
L32
H ′′′2 (0) = 0

EJy
L21
H ′′1 (1)+ ky

[
H ′1(1)
L1
−
H ′2(0)
L2

]
= 0 (10)

EJy
L22
H ′′2 (0)+ ky

[
H ′1(1)
L1
−
H ′2(0)
L2

]
= 0

where kx and ky are nondimensional spring constants, as defined
in Section 2.1. Similar expressions are found for f1(z1) and f2(z2),
respectively (not shown herein).
3.3. Solution of the spinning beam-springs vibration problem via PST

The basic unknowns in the direct problem are the mode shapes
H1(z1),H2(z2), f1(z1) and f2(z2). They are expanded in power series,
as follows:

Hj(zj) =
∞∑
i0

A(j,i)z ij fj(zj) =
∞∑
i0

B(j,i)z ij (11)

where i0 denotes i = 0, i = 1, 2, . . . ,N A(j, i) and B(j, i)
are unknowns and j = 1, 2. After the replacement of the
expansions (11) in the differential system (7) and (10), the
following recurrence system is obtained,

A(j,i+4) =
Λyj [(1+ η

2)A(j,i) − 2ηB(j,i)]

ϕ4i
(12)

B(j,i+4) =
Λxj [(1+ η

2)B(j,i) − 2ηA(j,i)]

ϕ4i
(13)

where:

Λxj =
ρFL4j λ

2

EJx
; Λyj =

ρFL4j λ
2

EJy
; η =

Ω̄

λ

ϕ4i = (i+ 1)(i+ 2)(i+ 3)(i+ 4) =
(4+ i)!
i!

.

The above-described algorithm is appropriate to solve the direct
problem; i.e.: given a spinning beamwith intermediate springs, the
natural frequencies and mode shapes can be obtained. The same
algorithmwill be used to solve the inverse problem, as is described
in the next subsection.

3.4. Inverse problem. Crack detection in a spinning beam

If one is able to measure the natural frequencies in a damaged
spinning beam, then the previous algorithm gives a means to
detect a crack, its location and its depth. At this stage of the study,
and to validate themethodology, a numerical experiment is carried
out in order to simulate it. A three-span beam is employed as a
model of a cracked beam (see Appendix). The crack was assumed
to be symmetric.
The spinning beam has a particular behavior, as reported by

Bauer [14] and Filipich et al. [13], among other authors. For a
given spin (angular velocity) the sequence of natural frequencies
(ordered numerically), in general, alternate modes. Thus, if we
choose an example (see Filipich et al. [13] and Rosales et al. [11])
(Jx = Jy = J , Ω̄ND = 70, where Ω̄ND = Ω̄

√
ρF
EJ ) the first frequency

corresponds to the third mode (three semi-waves), the second
frequency to the second (two semi-waves) and so on.
The detection methodology is similar to the one described

for the BE beam. The ‘‘measured’’ frequencies are input in the
power series algorithm and the respective curves β vs. k are
obtained. The intersection point of the three curves represents
the detected values. The obtained value of β is proportional to L1
and the value of k is related to the crack depth. In this work, the
spinning stepped beam model (see Appendix) was employed to
tabulate different values of crack depths and the equivalent springs
constants. The beam has three spans with flexural rigidity (EJy)i,
length Li, transverse mode shapes Hi, spatial variable 0 ≤ zi ≤ 1,
radius of cross-section di with i = 1, 2, 3. Since L2 represents
the crack width, it should have a very small value. An illustrative
example will be shown below in the next Numerical examples
section.
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4. Numerical examples using the power series technique (PST)

4.1. Results with PST: Cracked BE

In order to validate the proposed algorithm, two exampleswere
solved, Example 1: a computational simulation of the cracked BE
beam using a 2D finite element model and Example 2: a physical
dynamic experiment of a damaged beam.
Example 1. Detection using a computational simulation. The crack
was introduced as a notch and the standard finite element package
ALGOR [15] was employed for the analysis. The data for the
damaged beamwith uniform cross-section is the following: length
L = 100 cm, rectangular cross-section of height h = 5 cm
and width b = 1 cm, Young’s Modulus E = 2.1 × 1011 N/m2
and Poisson’s ratio ν = 0.3. The frequency parameter is Ω =
ωL2
√
ρA/EJ . A zero setting correction is applied (see, for instance,

Nandwana y Maiti [6]) to account for the discrepancies between
the analytical BE beam and the computational 2D model. Such
correction is done on each value of frequency. A cantilever beam
is analyzed with three different values of the crack depth a, CASE 1
with a = 1 cm, CASE 2 with a = 2 cm, CASE 3 with a = 3 cm and
in all the cases the 2D FEM was built for a cantilever beam with
a notch 0.2 cm wide, located at β = L1/L = 0.4. The first three
natural frequencies are input in the power series algorithm, after
the zero setting. Three curves k vs. β for each natural frequency
are obtained. Fig. 3 shows the three curves obtained for CASE 1. It
should be noted that curves for CASES 2 and 3 (not shown herein)
are similar, though with different vertical scales. The intersection
point gives the detected values of the parameters β and k and
the value of the crack depth a can be estimated from the next
relationship (Ostachowics y Krawczuk [10]) in which r = a/h is
the crack depth/section height ratio.

k = Ebh2/[72π f (r)] (14)

f (r) = 0.6384r2 − 1.035r3 + 3.7201r4 − 5.1773r5

+ 7.553r6 − 7.3324r7 + 2.4909r8.

Results and estimates (L̂1 and â) for CASES 1, 2 and 3 are depicted
in Table 1. The errors were calculated in such a way so that they
are comparable, i.e.

errorL̂1 =
(L̂1 − L1)
L
; errorâ =

(â− a)
h

. (15)
Table 1
Bernoulli–Euler cantilever beam. Example 1. Crack parameter estimates L̂1 and â
found using a numerical experiment. The percent errors calculated with Eq. (15)
are shown between parentheses. L = 1 m, L1 = 0.4 m, b = 0.01 m, h = 0.05 m.

CASE Crack
depth (m)

Ω1 Ω2 Ω3 k Estimated values
L̂1 (m) â (m)

1 0.01 3.4905 21.7876 61.2885 23.63 0.4 0.00906
(0%) (−1.88%)

2 0.02 3.3980 20.9411 59.9480 4.87 0.402 0.01901
(0.2%) (−1.98%)

3 0.03 3.1526 19.1435 57.2844 1.41 0.4 0.03111
(0%) (2.22%)

Table 2
BE beam physical experiment. Data for the different scenarios.

CASE Crack width (m) Crack location from free end (m) Crack depth (m)

1 0.0013 0.2 0.0100
2 0.0015 0.3 0.0148
3 0.0014 0.2 0.0120

Table 3
Frequencies in Hz (fi = ωi/2π ) found with physical experiment and numerical
simulation on cracked cantilever beam. L = 0.40 m.

Case f1 f2 f3 f4

Non-damaged Exp 110 645 1845 3437
Non-damaged 2D FEM 113 689 1866 3515
1 Exp 105 565 1830 3225
1 2D FEM 110 609 1855 3390
2 Exp 85.5 610 1696 3325
2 2D FEM 80 664 1498 3461
3 Exp 109 580 1825 3275
3 2D FEM 107 566 1848 3388

Example 2. Detection using a physical experiment. Dynamic tests
were performed on various specimens. In all the cases, the steel
beam section was b = 0.0223 m and h = 0.0223 m. The beams
were built with L = 0.40, 0.50, and 0.60 m. Table 2 depicts the
experiment scenarios. To obtain the data, the equations of elasticity
governing the beam plane stress problem were solved via a finite
element method for different depths and locations of the crack
using 2D finite elements with a quadratic finite element basis. Also
Table 3 shows the experimentally measured natural frequencies
for the beam of length L = 0.40 m. Measured frequencies are
reported for Cases 1, 2 and 3. Also the non-damaged case is
included as a reference. Additionally, the values of frequencies
found with the numerical experiment using a 2D finite element
model are depicted in the same table. Fig. 4 shows the variation of
the natural frequencies for different values of the crack parameters
(depth and location).
Finally, the frequency valuesmeasured in the experimentswere

input in the inverse PST algorithm. The resulting curves (similar to
the ones reported in Fig. 3) are depicted in Fig. 5 for two of the
analyzed cases. As before, the points at which the three curves
intersect give the values of the location and the spring stiffness.
After using Eq. (14) the crack parameters are found. The resulting
estimates (L̂1 and â) are listed in Table 4. The errorswere calculated
with expressions (15).

4.2. Results with PST: Cracked spinning beams

In order to test the usefulness of the technique, a crack detection
example is now performed for a spinning beam. The simply-
supported spinning beam has a circular cross-section of 0.05 m
of radius (Jx = Jy = J) and length 1.00 m. The mass density is
ρ = 7850 kg/m3 and the Young’smodulus is E = 2.1×1011 N/m2.
Two cases with different angular velocities are reported: Ω̄ =
3879.15 rad/s and Ω̄ = 9051.34 rad/s (which correspond to non-
dimensional velocities Ω̄ND = 30 and Ω̄ND = 70 respectively).
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The cracked zone is modeled by a very short span L2 = 5×10−4m
(see Appendix, Fig. A.1) wide and a circular cross-section of radius
0.03 m (i.e. a crack with depth ā = 0.02 m), located at 0.3 m from
the left support (i.e. z1 = 0.3 m in Fig. 2). The frequency values
obtained for the damaged spinning beam of the present example
(using the algorithm of the Appendix) are depicted in Tables 5 and
6, found with Ω̄ND = 30 and Ω̄ND = 70 respectively.
For each case, the first three values of frequencies are input
in the beam-springs algorithm. As is observed in Tables 5 and 6,
there are two different frequencies (among the first four ones)
which correspond to the one semi-wave mode (see Section 3.4).
It was found that both values lead to the same estimates of
the crack parameters. Then, the three selected frequencies are
corresponding to one, two and three semi-waves, respectively,
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Table 4
Bernoulli–Euler cantilever beam. Example 2. Crack parameter estimates L̂1 and â
found using a physical experiment. The percent errors calculated with Eq. (15) are
shown between parentheses. b = 0.0223 m, h = 0.0223 m.

CASE
(Table 2)

L (m) Ω1 Ω2 Ω3 k Estimated values
L̂1 (m) â (m)

1 0.4 3.3561 19.3016 61.1947 2.729 0.186 0.0131
(3.5%) (13%)

1 0.5 3.4692 19.9138 59.1449 5.0169 0.295 0.0103
(−1.0%) (1.3%)

3 0.5 3.4692 20.2759 60.0727 6.0128 0.285 0.0096
(−3.0%) (−10%)

2 0.6 3.1058 20.4972 56.4295 1.4024 0.279 0.017
(−3.5%) (9.8%)

which, in this particular problem of the spinning beam, are not in
sequential order.
After the frequencies are input in the inverse algorithm, the

intersection of the three curves L1 (crack location) vs. k (spring
stiffness) analog to the BE beam previously described, yields the
solution of the crack detection problem. Due to the symmetry of
the problem, two locations are found. In this case L1 = 0.3 m
and L1 = 0.7 m (both at 0.3 m from the ends). The crack
estimates L̂1 and â are shown in Table 7. In order to obtain the crack
magnitude, a relationship between the springs constants and the
crack depth should be used. Here, an energy approach using the
steppedmodel of the Appendixwas employed to tabulate different
values of crack depths and the equivalent springs constants. By
equating the bending energy with the external work, both within
the intermediate span (the damaged zone) (Eq. (A.3)), one is
able to find such a relationship. The estimates are, as expected,
independent of the rotational velocity, and the error in the location
estimate is negligible and acceptably low in the crack depth.
Table 7
Spinning beam. Crack parameters estimates using a numerical simulation. The
percent errors calculated with Eq. (15) are shown between parentheses. L = 1 m,
h = 0.05 m (radius).

Ω̄ND k Estimated values
L̂1 (m) â (m)

30 3.3985× 108 0.3001 0.0181
(0.01%) (−3.8%)

70 3.3985× 108 0.3001 0.0181
(0.01%) (−3.8%)

5. Artificial neural networks approach

The Artificial Neural Network (ANN) technique is a different
approach [16]. It is inspired in the brain information processing
through a very interconnected parallel structure. It does not
involve governing equations but it needs a training set of data.
The knowledge of the ANN is then acquired through a learning
process in which both input and output (desired) data is supplied
to the network. The so-called Multi-layer Perceptron architecture
consists of a first layer with the input vector, a final layer with the
output vector and intermediate layers (known as hidden layers)
that link to the other layers through weighted connections. A
simple representation of an ANN with a single hidden layer is
depicted in Fig. 6. In this work, a single hidden layer and the
backpropagation training algorithm are used. In this work, the
ANN learns from the data consisting of more than four hundred
scenarios from a computational experiment. Fig. 4 shows the
results of the frequency values for all the studied cases, as
described in previous Section 4.1.
As is usual, a portion of the data is chosen randomly to train

the ANN (training set to fit the weights), and the other portion
(20%) to validate the data. Several variables were modified such as
Table 5
First four natural frequencies of a cracked spinning beam. Ω̄ND = 30.

i λi Mode shape Used

1 1211.71722951021 Yes

2 2605.48654642698 Yes

3 5152.80468312496 No

4 7603.25283041748 Yes
Table 6
First four natural frequencies of a cracked spinning beam. Ω̄ND = 70.

i λ Mode shape Used

1 2431.05867738177 Yes

2 3960.47692352495 Yes

3 7777.68069946014 Yes

4 10324.9988361644 No
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Fig. 6. ANN scheme with input, hidden and output layer.

the number of neurons in the hidden layer, the learning rate, the
number of samples for the validation. Fig. 7 shows an example of
one of the output graphics obtained with the algorithm of training
and validation after running 50000 epochs (epoch is a step in the
training process), with the first three natural frequencies as input
and with three neurons in the hidden layer. It can be seen that the
training and evaluation error are similar with no over-fitting. It
was also observed that the input of the four frequencies, instead
of three, in the training improved the performance. Also, two
strategies were tested. First an ANN trained with the frequencies
and both crack depth and location data. However, the handling
of two output variables forces the ANN to accomplish a higher
average error level. To overcome this situation, the authors propose
the finding of the crack location with the first technique PST and
the crack depth with the ANNs.
Finally, results found with the physical experiments on a

cracked cantilever beam detailed in Section 4.1 were introduced in
the trained ANN algorithm. One of the cases is reported in Table 8.
The length of the beam is L = 0.50m, the crack is located at 0.30m
from the free end and it is 0.0148mdeep (Case 2, Table 2). The first
four frequencies found by the physical experiment and input in the
ANN algorithm to detect the crack are 67.5, 358, 1187 and 2300Hz,
respectively. First, a single ANN algorithm was used to handle the
twoparameters (location and depth), and then two algorithms, one
for each parameter. The detected results improve in the second
case.

Table 8
BE cantilever beam. ANN trained with computational data. Crack detection using
experimentally measured natural frequencies. The percent errors calculated with
Eq. (15) are shown between parentheses. L = 0.5 m, L1 = 0.2 m, a = 0.0148 m.

Crack
parameters (cm)

Case 3. Experimental data
One ANN Two ANN Two ANN
two output one output each one output each
NN = 30 NN = 30 NN = 50

Crack location L̂1 24.2 (−8.4%) 21.5 (−3%) 21.9 (−3.8%)
Crack depth â 1.330 (−6.7%) 1.584 (4.6%) 1.457 (−1%)

6. Summary and conclusion

The detection of cracks for beam-type elements was addressed
using the analysis of changes in the frequencies as a detection
criterion. Two approaches were tackled, a power series technique
(PST) and artificial neural networks (ANN). The use of PST provided
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Fig. 7. ANN example of training and validations output. 50 000 epochs. Three neurons in the hidden layer.
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a straightforward and efficient numerical technique to solve the
inverse problem. The crack is modeled by introducing springs to
represent the stiffness reduction. Two crack detecting problems
were studied with PST: a Bernoulli–Euler cantilever beam and a
spinning beam. The algorithm was tested with 2D computational
experiments and physical experiments. The results are excellent
in the location value and with acceptable errors in the depth for
the first type of experiments. The error remains in an acceptable
levelwhen experimental data is employed. Itwas observed that the
width of the crack (in the axis direction) affects the accuracy of the
depth resulting value. This approach is proposed as a very simple
technique to find a first approximation (recall that the algorithm
solves a very simple beam model and without any optimization
process) with almost no computational cost.
The ANN algorithm was implemented and trained with the

numerical experiment data with a 2D finite element model of a
cracked cantilever beam. Then, frequencies measured in a physical
experiment were introduced in the trained ANN. Several examples
were carried out and the results are satisfactory in general.
However, a single ANN algorithm to handle the detection of the
two parameters is not as efficient as two algorithms with one
parameter each.
It can be concluded that the first proposed algorithm (Power

Series Technique, PST) is very straightforward and detects the
crack with very small errors and very low cost. However the
simplicity of the model limits its use as an initial tool to make an
economical detection at a first stage. Furthermore, the resulting
estimates can be used as the seed to a more sophisticated
methodology. The second algorithm (Artificial Neural Networks,
ANN) yields on the average rather larger errors. However, the
second approach might handle more complex models such as
nonlinearities due to closing cracks or large deformations, subject
to study by the authors [17].
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Appendix

The vibrational problem of a stepped spinning beam of three
spans (Fig. A.1) is governed by Eqs. (5) and (6), valid for each span.
Once normal modes are assumed, Eqs. (7) and (8) must be solved
for each span, where H1(z1), f1(z1), H2(z2), f2(z2), H3(z3), f3(z3) are
the mode shapes; 0 ≤ zj ≤ 1; j = 1, 2, 3.
The boundary conditions are:

H1(0) = 0; H3(1) = 0H ′′1 (0) = 0; H ′′3 (1) = 0 (A.1)

and the continuity conditions are:

H1(1) = H2(0); H2(1) = H3(0)
H ′1(1)
L1
=
H ′2(0)
L2
;

H ′2(1)
L2
=
H ′3(0)
L3

EJ1y
L21
H ′′1 (1) =

EJ2y
L22
H ′′2 (0);

EJ2y
L22
H ′′2 (1) =

EJ3y
L23
H ′′3 (0)

EJ1y
L31
H ′′′1 (1) =

EJ2y
L32
H ′′′2 (0);

EJ2y
L32
H ′′′2 (1) =

EJ3y
L33
H ′′′3 (0).

Governing Eqs. (7) and (8) arewritten in terms of the unknowns
(mode shapes Hj and fj with j = 1, 2, 3). Similar boundary and
continuity conditions exist for functions fj. The system is then
solved after proposing the following expansions in power series:
A B

x or y

z1
z2

z3

L1 L2 L3

d1 d2 d3

Ω

Fig. A.1. Stepped spinning beam.

Hj(zj) =
∞∑
i0

A(j,i)z ij ; fj(zj) =
∞∑
i0

B(j,i)z ij j = 1, 2, 3. (A.2)

The natural frequencies and the corresponding mode shapes
are then obtained for the desired geometry. In the present crack
detection problem, the intermediate span represents the cracked
section and consequently L2 is assumed to be small. From this
model, the equivalent spring constant of the second span (cracked
section) can be found as follows:

(EJ2y )2
L32

∫ 1

0
[H ′′2 ]

2dz2 = keq
[H ′2(1)− H

′

2(0)]
2

L22
. (A.3)

Then, for each value of crack depth a, i.e. d2 = d1 − a, it is
possible to find the equivalent spring constant keq. Inversely, given
a constant k, one is able to find the value of J (=Jx = Jy) and from it,
the corresponding radius of the intermediate span. The value of a
is then derived directly. This appears as an alternativeway to find a
k/crack depth relationship necessary to detect the extension of the
damage.
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