Int. J. Production Economics 144 (2013) 223-242

journal homepage: www.elsevier.com/locate/ijpe

Contents lists available at SciVerse ScienceDirect

Int.]. Production Economics

An approach based on constraint satisfaction problems to disruptive event

management in supply chains

Armando Guarnaschelli **, Omar Chiotti®, Hector E. Salomone ?

2 INGAR-CONICET-UTN, Avellaneda 3657, S3002GJC Santa Fe, Argentina
P CIDISI-UTN—FRSF, Argentina

ARTICLE INFO ABSTRACT

Article history:

Received 15 February 2012
Accepted 12 February 2013
Available online 14 March 2013

Keywords:

Disruptive event
Execution control
Supply chain
Constraint satisfaction

This work introduces a generalized model for evaluating and restoring feasibility in the execution of
supply chain processes. The model was designed to provide automation to the disruption management
function of Supply Chain Event Management (SCEM) systems. The repair mechanism is based on a
constraint satisfaction problem that can be automatically instantiated from self-contained descriptions of
the ongoing schedules without previous knowledge of the supply chain structure. The proposed
mechanism intends to make surgical modifications to the current schedule which do not affect the
economical and operational considerations and the allowed changes are limited to the space of slacks
already included by the original schedule. This level of repair can be safely delegated to automated
systems and would facilitate the design of collaborative inter-organizational business processes to

manage events along the supply chain. A case study validates the applicability of the proposed models.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Enterprises engaged in collaborative planning processes create
and maintain production and distribution schedules synchronized
with the schedules of other members in the supply chain. During
the execution, disruptive events affecting the schedules and their
synchronization usually occur. To increase the ability of the supply
chain to respond minimizing the impact of these disruptions,
Scheduling Systems generate schedules prescribing some sort of
resource reservation which might be able to absorb variability
during execution such as buffers of material, resource capacity and
time. These slacks are used to avoid the need of a new scheduling
task, which can be costly and time consuming since all enterprises
involved in the supply chain should agree on new synchronized
schedules.

As schedules are affected by disruptive events they require an
execution control process capable of disruption management.
Current Supply Chain Management Systems lack of systematic
approaches to disruption management. In practice the decision
process taking place given the disruption is loosely structured,
managers are seldom supported by systematic methodologies to
cope with the problem caused by the disruption, and when they
do, the solution is usually a full re-scheduling task.

* Corresponding author. Tel.: +54 342 453 5568; fax: +54 342 455 3439.
E-mail addresses: ag28@live.com.ar, guarnaschelli@santafe-conicet.gov.ar
(A. Guarnaschelli), chiotti@santafe-conicet.gov.ar (O. Chiotti),
salomone@santafe-conicet.gov.ar (H.E. Salomone).

0925-5273/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ijpe.2013.02.007

Information systems that support execution control processes
capable of disruption management have been called Supply
Chain Event Management (SCEM) Systems (Masing, 2003;
Zimmermann, 2006). SCEM systems should provide functionality
for: capturing/predicting disruptive events that could affect the
schedule execution; checking if schedules are still feasible after
the occurrence of a disruptive event; and searching for solu-
tions to locally repair schedules affected by a disruptive event
(Guarnaschelli, 2012).

Focusing on the last two functional requirements, this paper
presents a model driven development approach (Hailpern and
Tarr, 2006), to automate the activities of feasibility checking of
schedules in presence of disruptive events and repairing of dis-
rupted schedules using a mechanism based on constraint satisfac-
tion models.

The approach proposes a reference model as a platform
independent meta-model, which allows the representation of
ongoing schedules previously generated by the Scheduling Sys-
tems of the supply chain partners. When representing the avail-
ability of resources and the specification of supply process orders
(SPOs), the reference model provides systematic elements to
capture the slacks of the original schedules in a way that is
suitable for analyzing feasibility in presence of disruptive events.
This common representation for schedules allows the analysis of
concurrent execution schedules from different business partners
in a supply chain.

From an instance of this reference model a constraint satisfac-
tion problem (CSP) for schedule feasibility checking and repairing

www.elsevier.com/locate/ijpe
www.elsevier.com/locate/ijpe
http://dx.doi.org/10.1016/j.ijpe.2013.02.007
http://dx.doi.org/10.1016/j.ijpe.2013.02.007
http://dx.doi.org/10.1016/j.ijpe.2013.02.007
mailto:ag28@live.com.ar
mailto:guarnaschelli@santafe-conicet.gov.ar
mailto:guarnaschelli@santafe-conicet.gov.ar
mailto:chiotti@santafe-conicet.gov.ar
mailto:salomone@santafe-conicet.gov.ar
http://dx.doi.org/10.1016/j.ijpe.2013.02.007

224 A. Guarnaschelli et al. / Int. J. Production Economics 144 (2013) 223-242

can be automatically derived through a model-to-model transfor-
mation. Based on this CSP, a mechanism for the automatic repair of
disrupted schedules is implemented. This mechanism is able to
check if the schedules are still feasible after the occurrence of a
disruptive event, and then, to search for solutions using scheduled
slacks, avoiding the triggering of a new process of rescheduling
and coordination among the Scheduling Systems of the supply
chain partners.

The changes to be introduced in a schedule to restore its
feasibility are limited by the slacks on resources and orders. The
aforementioned repair mechanism keeps unchanged every eco-
nomical and operational target set when schedules were created.
The objective is to absorb as many disruptions as possible within
previously agreed operational slack without resorting to a new
rescheduling task.

This paper is organized in the following way. Section 2
discusses related works. Section 3 describes a component-based
architecture of a collaborative SCEM system which is the informa-
tion system framework for the models proposed here. Section 4
presents a reference model for disruptive event management.
Section 5 presents a constraint satisfaction model for feasibility
checking and repairing of schedules. Section 6 presents a mechan-
ism for the automated repair of disrupted supply processes.
Section 7 describes the implementation details of the transforma-
tion engine. Section 8 presents an empirical validation of the
approach through a case study, and Section 9 presents conclusions
and future work.

2. Related works

The subject of this work is mainly related to three research
areas: event management in complex software systems; resche-
duling of manufacturing and distribution processes; and SCEM
systems.

Disruption management in the execution of supply processes
can be seen from the perspective of exception handling in complex
software systems such as Workflow Management Systems, Process
Management Systems and Self-healing Systems. In Workflow
Management Systems, the support for exception handling goes
from the definition of exception handlers and methods for the
specification of exceptional behavior to classification and forecast-
ing of exceptions (Hwang and Tang, 2004; Song and Han, 2003;
Yuan et al., 2008). In Process Management Systems the definition
of exception handlers invoked under given conditions provide
support for given types of exceptions (Hamadi et al., 2008; Weske,
2007). Self-healing Systems are intended to provide support for
diagnosing faulty situations and selecting and/or searching for
recovery strategy (Friedrich et al., 2010; Griffith et al., 2009). While
these approaches are useful frameworks for managing exceptions
of general business processes, the nature of disruptions in the
specific domain of supply chain processes need to be further
exploited to build more powerful corrective actions to re-
establish feasibility at the same time the disruption is being
handled. Inspired in these approaches, the proposal of this work
provides this additional feature by capturing, in a systematic way,
the aspects of the supply process feasibility needed to automate a
reparation mechanism.

Rescheduling is the current practice for facing disruptions
during the execution of production and distribution processes. In
the literature, different formulations for manufacturing reschedul-
ing problems have been reviewed (Aytug et al., 2005) and different
strategies to restore schedule feasibility are evaluated (Pfeiffer
et al., 2007).

Rescheduling research works on distribution processes consider
logistics networks and the underlying transportation resources with

a set of assumptions on the behavior of the vehicles and loading and
unloading on depots as in the work of (Li et al., 20093, b).

Rescheduling approaches as the mentioned above are mainly
devoted to provide centralized decision making and largely
dependent on typified processes. They cannot be easily extended
to collaborative multi-organizational supply chains. They are
suitable for supporting the individual rescheduling task of each
sub-node in the supply chain but provide rather little support to
help restoring a collaborative execution schedule. An approach
that supports supply chain operations coordination based on a
distributed search algorithm inspired by constraint programming
has been proposed by (Gaudreault et al., 2012).

Supply Chain disruption management has been discussed in
specific industrial contexts. A proposal for rescheduling under
disruptions is introduced in the work of (Arief Adhitya and Karimi
(2006)). It addresses the event management problem by the
previous definition of a cause-effect graph between supply chain
entities; upon this graph a rescheduling strategy is introduced.
This strategy requires knowing the formulation of the scheduling
models of every supply chain partner. In contrast, our approach
does not make any assumptions on the supply chain structure and
does not require any knowledge about the methodologies used to
build schedules. The repair mechanism is fully functional through
an automated transformation from the schedules, output of the
scheduling systems, and the support for new processes or partners
is automatic.

The schedule repair methodology described in this paper
should not be considered a rescheduling approach but a subordi-
nate decision problem suitable to be delegated to an autonomous
repair mechanism with the aim of systematizing the usage of the
slacks already provided in the original schedule

Therefore, the degrees of freedom in our approach are con-
strained within the original schedule slacks and should never
require a re-assessment of the performance measures. For this
reason, the feasibility model is only involved with capturing the
requirements of the scheduled supply processes and their rela-
tionship with the availability profile of the resources.

This reduction of scope in the decision problem is the key
enabler of a generalized formulation that can be applied to any
sort of supply process and is intended to perform as an autono-
mous supervisory component in the execution control layer.
A failure in the repair will always fall back on a re-scheduling.

Research in SCEM systems has mainly been focused in addres-
sing the monitoring, the capture and the communication of
disruptive events. The ability to exert corrective control actions
has been identified as an area barely explored (Bearzotti et al.,
2008; Zimmermann, 2006). In this sense, a method based on
multi-agent negotiation of previously defined recovery plans for
searching solutions to disruptions was presented (Cauvin et al.,
2009). This approach does not take into account the planned
availability of resources versus the resource utilization by orders,
therefore the decision support is limited to give recommendations
to a decision maker that will analyze them and relies on the
previous definition of generic recovery plans. Autonomous dis-
ruptive event management functions for automatically deriving
repair actions fully executable are not provided.

A summary of DM (Disruption Management) related works is
shown in Table 1.

3. Business process and architecture for a collaborative SCEM
system

Both the repair mechanism and the constraint satisfaction
problems derived from instances of the proposed reference model

A. Guarnaschelli et al. / Int. J. Production Economics 144 (2013) 223-242 225

Table 1
Related works.

Knowledge area Contribution to DM

In comparison with the approach of this work

Event Workflow management Classification and forecasting of exceptions
management systems Exception handlers
in complex Process Management Exception Handlers to give support to
software systems predefined exception types
systems Self-healing systems Faulty situation diagnosis. Selection of

recovery strategies

Rescheduling of manufacturing and distribution
processes

SCEM Systems

across the supply chain

Methods and mechanisms for rescheduling
specific types of supply processes in
manufacturing and distribution systems

Information systems supporting the
monitoring process of schedule execution
and the communication of disruptive events

Although a DM support system can be considered a complex
software system, the nature of the disruptions in these
approaches does not include the ones in the specific domain of
supply chain processes. Powerful corrective actions to re-
establish feasibility at the same time the disruption is being
handled cannot be derived. Inspired in these approaches, the
proposal of the present work provides powerful corrective
actions by capturing, in a systematic way, the aspects of the
supply process feasibility needed to automate a reparation
mechanism

Rescheduling is the current practice in supply chain
management to tackle the problem of exceptions (effects of a
disruption) in schedule execution. However the approach
presented in this work allows restoring the feasibility of a
schedule making minimal changes within its slacks, avoiding
triggering a rescheduling task. The repair mechanism
proposed can autonomously analyze whether it is possible to
restore the feasibility or not. This is an important characteristic
as frequent rescheduling can be extremely harmful and at the
same time, slacks are used proactively to maintain a better
adherence to schedule targets. Moreover the reference model
can be used to define any kind of supply processes allowing
disruption management across general supply chains

Fully applicable as every DM system should proactively detect
and communicate disruptions. In this work the goal is more
ambitious as the models allow implementing autonomous
procedures to repair the schedule after a disruption, a
characteristic mentioned in SCEM literature as unexplored and
required

are the core tools to enhance an autonomous collaborative
disruptive event management solution called CMDESC (Collabora-
tive Management of Disruptive Events in Supply Chains)
(Guarnaschelli et al., 2012).

CMDESC defines a collaborative business process for managing
disruptions, identifying the participants of this process (which are
information systems on behalf of supply chain partners), specifies
their interactions and provides a foundation for its implementa-
tion as a SCEM system.

The collaboration is achieved by the interaction of three partici-
pants: two centralized managers and a distributed controller.

The participant Controller is distributed; it represents a supply
chain member and is responsible for the execution control of every
one of its schedules. The controllers interact with a single
(centralized) Feasibility Manager responsible for checking the
coordinated schedule's feasibility and conducting the collaborative
repair. A single (centralized) Monitor is responsible for analyzing
resources feasibility over time in comparison with orders progress
in order to predict and detect disruptive events.

Controllers analyze and restore the feasibility of their schedules
by using the services offered by the Feasibility Manager, and they
predict and detect disruptive events through the services offered
by the Monitor. In Fig. 1a summarized version of this business
process modeled using the BPMN (Business Process Modeling and
Notation) language is shown.

The process starts with the arrival of a ScheduleMsg containing
a schedule which is registered by the Controller, which immedi-
ately requests its monitoring. Following, the Controller awaits two
possible messages: a monitoring completion message generated
by the Monitor (Notify Completion task) which ends the schedule
control process, or a disruptive event message sent by the Monitor
(Notify Disruptive Event task).

In presence of a disruptive event, the controller defines its
scope (Define Event Scope task explained in Section 6), requests its
feasibility check (Request Feasibility Checking task) and waits for a
feasibility report sent by the Feasibility Manager.

If the feasibility report states that the schedule is still feasible
despite the disruption, the controller keep waiting for the arrival
of a new disruptive event message or the end of the monitoring
process. If the infeasibility of the schedule is reported the con-
troller requests a repair to the Feasibility Manager (Request
Schedule Repair task).

The Feasibility Manager will start the Repair Schedule sub-
process which is executed using the repair mechanism proposed
in this work, and depicted in Section 6.

At the end of the Repair sub-process the Feasibility Manager
sends a Feasibility Report Message (Send Feasibility Report task).
The controller decides what to do next accordingly to the result of
the repair process. If the schedule could be repaired, the controller
introduces the changes recommended by the Feasibility Manager
and start over a new controlling loop. If not, the controller will
generate an alarm (to the corresponding planning sub-system)
and the control process ends. For any result of the repair process
the controller will send a cancellation message to the Monitor as
the previously controlled schedule is not valid any more.

The architectural diagram in Fig. 2 depicts the main compo-
nents of a collaborative SCEM system: Control Subsystems (Con-
trollers), a Monitoring Subsystem (Monitor), and a Feasibility
Management Subsystem (Feasibility Manager).

The Control Subsystem provides the Monitoring Subsystem
with access to updated data from the Execution System. It also
interacts with the Feasibility Management Subsystem requesting
the feasibility verification and repairing function and engaging in
collaborative repair when requested. It is also responsible for
sending the solutions received from the Feasibility Management
Subsystem to the Execution System or notifying exceptions to the
Scheduling System for performing a rescheduling.

The logic of the Feasibility Management Subsystem is the focus
of this work. It comprises: the generation of CSP models
to evaluate feasibility; the reference model to express the sche-
dules of supply chain partners; and the collaborative repair
mechanism.

226 A. Guarnaschelli et al. / Int. J. Production Economics 144 (2013) 223-242

=
o
o
"
H
= ‘D() Send Feasibiity =2 Send Feasibility
2 Report ‘\L;?’ Report
E Check S(I‘ledule Feasihllﬁy Repan! Schedule
Register
Schedule b Schedule
scheduleM
59 }
™
= Request
= Request ay =Y el Generate
[{ -;—-)‘@.: Feasibility
£ Meonitering *_,// \A/ Checking Alarm
o] ;
(v] i
4 =)
-. &)
A
: (S
& &
- A
o
2 v £
5 2 AN Motify
= “t‘/) N ’| Completion I
Monitor Schedule @-4
&+
Fig. 1. Business process for managing disruptions.
Supply Chain

SCEM System

Node: Trading Parther N %

SCEM Control
Subsystem

SCEM Control
Subsystem

Node: Trading Partner %
k

SCEM:Feasibility Management
Subsystem

Node: Trading Partner 1

/Exception SCEM Control

Subsystem

=2

/Schedu

e

SCEM: Monitoring
Subsystem

/ Solution

Scheduling System /Execution Data

/Schedule Execution System

Fig. 2. SCEM system architecture.

4. Reference model for disruptive event management

The proposed reference model provides a common language to
describe supply processes and the interaction among them and
resources throughout the supply chain. As supply processes
depend on resources for their execution, the model has the ability
to describe the resources in a generic way, focusing on their
feasibility aspects.

The reference model is specified using the unified modeling
language UML 2.3 (OMG, 2010). It is represented by four main
views: time modeling, supply processes modeling, resources
modeling using feasibility dimensions, and SPO requirements
modeling.

4.1. Modeling time

To specify a point in time a TimeSpec object is used, which can be
absolute or relative to current time (Fig. 3). The TemporalRelation

class allows the time specification exactly “At” a given referenceValue
or more loosely as “Before” or “After” relationships. For example,
< absoluteTime=true, value=2013-03-15 13:25:00, referenceValue=
2013-03-18 13:25:00, temporalRelation= “Before” > is a planar tuple
representing a TimeSpec object and value can be any dateTime
satisfying that value<referenceValue.

The TimeWindow class allows representing a time period
through startTime and endTime attributes represented as TimeSpec
objects. The precedence and synchronization between two entities
could be represented through relations defined by Precedence or
Synchronization objects between startTime and endTime attributes
of TimeWindow objects.

DateTime objects representing specific time points are mapped
to a continuous timeline when evaluating feasibility in Section 5 of
this work. A continuous representation of time is more general
and includes the discrete representation as a sub-case. Every
discrete time point in the timeline of a scheduling horizon can
be represented in a continuous timeline.

A. Guarnaschelli et al. / Int. . Production Economics 144 (2013) 223-242

1

W before
| TimeWindow 1
[Eg startTime : TimeSpec <
[5g endTime : TimeSpec | *+ after

A

':' EndBeforeStart

*

u Synchronization

227

* _]Prec.edence le}— [startBeforestart

<=

:; EndBeforeEnd

.| SimultaneousStart || simultaneousEnd

| TimeSpec
[Eg absoluteTime : Boolean
Eg value : dateTime
[=g referenceValue : dateTime
[Eg temporalRelation : TemporalRelation

Fig. 3. Time Modeling.

I;: DimensionRequirement

[timing : TimeWindow

+ scheduledOrder ~ *

+ assignedResource
*

I; FeasibilityDimension | 1 * 1

| [Eg; controlledBy : Controller

:I Magnitude 1+ quantity *

=

.-". J’\
: I
ud O Maanitud
9 ; gerMag

"—I:E| magnitude : Integer

e M
— Float

= magnitude : float

I;_ SupplyProcessOrder

[[=g timing : TimeWindow . 1
[Z orderQuantity : Magnitude
[Eg minQuantity : Magnitude

* [Eg maxQuantity : Magnitude

[£g cancellable : Boolean

[Eg spareOrder : Boolean

Eg fixedSPO : Boolean

Eg controllerBy : Controller

I= Resource

; StartBeforeEnd
'_{ Horizon
L [£g timing : TimeWindow
|| startAtEnd
—_ TemporalRelation
N fal
| Before = at | After
___ RequirementsSchedule
0.1
+ relatedOrder QO“l 0.1
0.1 . .
}: Synchronization :__-| Precedence
- * *
0.1
E! Rate

Eg duration : duration

Fig. 4. Supply processes modeling.

Discrete representation of time is useful in several scheduling
domains since it reduces the problem complexity and makes the
model structure simpler and easier to solve but at expenses of
losing generality since the main events are forced to fit in a pre-
specified grid of time points. The models of this work can be easily
be converted to a discrete time representation by providing pre-
specified event points (explained in Section 5) already fixed to the
periodic time grid.

4.2. Modeling supply processes

Any instance of a supply process is described by a supply
process order coming from a Scheduling System. It is represented
through the SupplyProcessOrder class (Fig. 4), and is temporally
characterized by the timing attribute, which is a TimeWindow.

The size of a SPO is defined by the orderQuantity attribute and its
slack is described by the minQuantity and maxQuantity attributes.
The spareOrder attribute allows the definition of an optional
order that could be executed in case of a disruption; the
cancellable attribute allows specifying that the SPO could be
canceled; and the fixedSPO attribute allows specifying that the
SPO cannot be modified.

Every resource is represented through the Resource class. The
concept “feasibility dimension”, represented through the Feasibi-
lityDimension class, is used to describe any resource “ability” to
satisfy the requirements of a SPO. For example, the feasibility of a
transport unit to comply with the requirements of a transfer
process between two geographical points can be described with
two FeasibilityDimension objects, representing a load capacity and
a geographic location.

228 A. Guarnaschelli et al. / Int. J. Production Economics 144 (2013) 223-242

Thus, the requirements of any SupplyProcessOrder on one or
more resources can be defined using DimensionRequirement
objects. A SPO assigned to a resource has a requirement for each
feasibility dimension of the resource. In the way of the previous
example, if the SPO has a transport unit resource assigned, it will
have a requirement over the load capacity and geographical
location of the resource (e.g. to be able to load cargo on that
location).

A SupplyProcessOrder may have several requirements involving
one or more Resource objects. These requirements may need a
temporal orchestration, which is defined with a RequirementsSche-
dule comprising at least one Precedence or Synchronization object.

A supply process carried out between two enterprises can refer
to two SPOs (one per enterprise). This is represented by an
association called RelatedSPO class, which imposes the condition
that both SupplyProcessOrder objects have the same value of their
orderQuantity attribute. The temporal coordination will be defined
by Synchronization or Precedence objects.

4.3. Modeling resources using feasibility dimensions

The feasibility of a Resource is described by a set of Feasibility-
Dimension objects specialized in two types, StateBasedDimension
and CapacityDimension (Fig. 5). A Horizon defines the overall time
window where the availability and requirements associated with
the resource are scheduled.

A CapacityDimension represents feasibility aspects described by
a numerical magnitude that quantifies a capacity of the resource
that fluctuates over time according to the planned availability and
to the requirements imposed by its allocated orders (e.g. the
inventory of a semi-finished product, the capacity of a tank,
number of milling machines available in a manufacturing shop
are examples of capacity dimensions). Requirements over capacity
dimensions will consume or produce capacity, in the example
way: consuming inventory, occupying a milling machine or
releasing it and filling and emptying a tank.

A StateBasedDimension represents feasibility aspects of a
resource whose state may vary over time. Throughout its execu-
tion SPOs may require (through the appropriate dimension
requirement) a resource to be in a given state. A resource
StateBasedDimension has a finite discrete set of possible states
and a set of feasible transitions between those states. The
geographic location of a transport resource and the setup of a
machine are examples of state based dimensions.

|j Resource

[E controlledBy : Controller

-

1ok

il P — ~ = FeasibilityDi
,_{St > |_ eastoulity!

L1
E ScheduledStatesProfile

[Eg current : ScheduledState

I :Zl StateBasedRequirement

L [Eg timing : TimeWindow

+~ El avaitabitityprofite |

—| DimensionRequirement

The availability of a resource over the horizon is modeled by an
AvdilabilityProfile class. Each feasibility dimension of a resource has
a unique availability profile, which can be a ScheduledCapacityPro-
file for capacity dimensions or a ScheduledStatesProfile for state
based dimensions.

4.3.1. Modeling the ScheduledCapacityProfile

The scheduled capacity profile (Fig. 6) is defined by three
elements: an ordered set of AvailableCapacityltem objects, an ordered
set of CapacityUsageltem objects and the currentCapacity attribute.
The ordered set of AvailableCapacityltem objects provides minimum
and maximum levels of capacity represented by the maxCapacity-
Bound and minCapacityBound attributes, respectively. This set allows
representing the minimum and maximum capacity value a resource
can have in different periods within the horizon. These values define
upper and lower bounds on both the current availability defined by
the currentCapacity attribute and the projected availability. The
projected availability is the remaining capacity at different times
within the horizon when considering the variations due to the
satisfaction of the capacity requirements (Fig. 11).

A capacity dimension may impose conditions on its usage. For
instance, it may limit the rate, quantity or duration for the
consumption or production requirement. The ScheduledCapacity-
Profile is therefore complemented by a set of CapacityUsageltem
objects that impose bounds to formulate valid requirements.

The feasibility of a capacity dimension is verified when all
requirements meet the conditions of the respective CapacityUsa-
geltem objects, and the projected capacity satisfies the bounds
defined by AvailableCapacityltems objects.

4.3.2. Modeling the ScheduledStatesProfile

A scheduled states profile is represented by the ScheduledState-
sProfile class (Fig. 7). This profile is defined by an ordered set of
ScheduledState objects, each representing the resource state sched-
uled for a time period in the corresponding state dimension. Thus,
this ordered set defines the schedule of states of the dimension
along the horizon.

The current state of the dimension is expressed in the profile by
the current attribute, which is a ScheduledState object, and coin-
cides with the first item of the ordered set of ScheduledState
objects.

The profile of scheduled states can be specified by Scheduled-
State objects without any dependence among them or by using the
relationship nextState to represent predefined sequences of states.

i Horizon

1 .i-:ﬂtiming:TimeWindow |

I: CapacityDimension 1

1

1
ﬂ_ ScheduledCapacityProfile

' [5g currentCapacity : Magnitude

" {—! CapacityRequirement | ,

Fig. 5. Resources modeling.

A. Guarnaschelli et al. / Int. J. Production Economics 144 (2013) 223-242 229

iEI UsageBound

[Eg usage : UsageMode <
[Eg relativeVariation : Boolean

1.*
+ propertyBounded

1

— x {ordered}
! capacityUsageltem ———

| [Eg timing : TimeWindow

/A1
O

EJ_ ScheduledCapacityProfile

l—; DurationBound

{ordered} 1.

;:J UsageRateBound
[Eg minValue : Magnitude
[Eg; maxValue : Magnitude

é QuantityBound

[Eg cumulative : Boolean
[Eg; minValue : Magnitude
_ [5 maxValue : Magnitude

«enumeration»
g UsageMode

[Eg production
[E consumption

[Eg; minDuration : duration
[Eg; maxDuration : duration

=] AvailableCapacityItem
[Eg timing : TimeWindow

1 £ minCapacityBound : Magnitude

[Eg maxCapacityBound : Magnitude

[E§ currentCapacity : Magnitude

Fig. 6. ScheduledCapacityProfile modeling.

! ScheduledStatesProfile fordered) =]

f current : ScheduledState 1= ScheduledState

& timing : TimeWindow
+ nextState -

0.1

+ dimensionState 1

3.
,/+ stateName

|| StateTransition 1 + toState 1

7 — State
& transitionTime : duration

+ fromState .1

Fig. 7. ScheduledStatesProfile modeling.

A ScheduledStatesProfile also includes a description of feasible
transitions between states, which are defined using objects of a
particular subtype of the State class called StateTransition. The
feasibility of a state dimension is verified when all state require-
ments are consistent with the scheduled states of the profile, that
is to say when state s1 is required the dimension is in state s1, as it
was previously scheduled.

4.4. Modeling SPO requirements

Every SupplyProcessOrder has a set of requirements over the
resources assigned for its fulfillment. As requirements are over
feasibility dimensions, an SPO can have both capacity and state
requirements, in any case they are generalized by the Dimension-
Requirement concept.

4.4.1. CapacityRequirement

Requirements on a CapacityDimension are represented by
CapacityRequirement objects expressing the production or con-
sumption of capacity according to the usage attribute (Fig. 8).

Capacity requirements can be of three types: instantaneous,
which consumes or produces capacity instantaneously (used to
model situations where the duration of the requirement is
negligible compared to the duration of the SPO); Continuous,

which have a consumption or production rate of capacity
(Fig. 4); and Renewable, which uses a certain capacity in a time
period and restores it when the request is completed. A Renewable
requirement, if modified during a repair process, can have time
slacks represented by minDuration and maxDuration attributes.

The reqQuantity attribute represents the produced or consumed
amount of capacity. For every capacity requirement in a SPO its
reqQuantity is derived from the orderQuantity attribute of the SPO.
This relationship is defined according to the scalingMode and
scalingFactor of the requirement allowing to model recipe propor-
tions, stoichiometric factors and lot based orders.

4.4.2. State requirement

A state requirement is represented by StateBasedRequirement
objects and comprises at least one AtomicStateRequirement, which
defines a state required on a time window (Fig. 9). This represen-
tation allows a SPO to require the states of a resource in several
ways: an individual state, a set of states with no relationship
between them, or a sequence of states defined by nextState
relations.

4.5. Analysis of the representational capabilities of the Reference
Model

The Reference Model as stated previously serves as a modeling
language to represent execution schedules. Execution Schedules
are the result of solving their associated scheduling problems
which can be quite diverse and complex. It is indeed relevant to
ask what kind of schedules, result of scheduling problems it can
represent. To answer that, we introduce a comparison of the
reference model with the scheduling meta-model within ILOG
OPL Scheduler (IBM-ILOG, 2009; Le Pape, 1994). The latter is a
widely known scheduling problem builder and solver used in
many research papers and industrial projects.

In ILOG OPL Scheduler, the building blocks to model a schedul-
ing problem are resources and activities. Activities are simulta-
neously assigned to resources and sequenced (ordered in time)
according to a set of: activity, resource and temporal constraints.

230

«enumeration»
|| UsageMode

[5g production
[5 consumption

A. Guarnaschelli et al. / Int. J. Production Economics 144 (2013) 223-242

— DimensionRequirement

[Eg timing : TimeWindow

+ scale _1_~ | ScalingMode

| * AN
.| capacityRequirement
= Cop .ty 3 - = ProportionalScalingMode
[£ reqQuantity : Magnitude

[£g scalingFactor : Magnitude

[E usage : UsageMode

-
L4

[Instantaneous i Renewable
Eg minDuration : duration
[Eg maxDuration : duration

Eg duration : duration

E LotBasedScalingMode

i Continuous

[Eg rate : Magnitude

Fig. 8. Capacity requirement modeling.

_-| DimensionRequirement ; StateBasedRequirement

[timing : TimeWindow

) b"
Fa ()1

1.*

*

={state | 1 | AtomicStateRequirement

= 1 {ordered}
+ requiredState =

0.17" + nextState

Fig. 9. State requirement modeling.

In any case the result of solving the problem is a set of tasks with
start and end time on a given resource.

The Reference Model focuses in supply processes rather than
individual tasks. In a supply process a task is represented by
a DimensionRequirement over a resource feasibility dimension.
A Supply Process may contain many requirements for its fulfillment
and also a requirements schedule representing the timing and
sequencing of these requirements.

In the output of any scheduling problem a task only states how
much of a resource is produced, consumed or used and when,
therefore we have checked whether it is possible to represent the
universe of resources available in ILOG OPL Scheduler.

In Fig. 10 the ILOG OPL Resource meta-model is shown and in
Table 2 a description of these modeling entities and how they can
be represented using the Reference Model is given.

We highlight that the Reference Model does not represent the
complexity of economical and performance objectives of schedul-
ing problems but rather a set of supply process orders and how
they use resources for its execution as it is not intended to
generate schedules.

5. A Model for Feasibility Check and Restoration

This section presents a model for Feasibility Check and Repair
formulated as a Constraint Satisfaction Problem (FCR-CSP) which
is able to evaluate and restore feasibility through minimal impact
changes in supply chain schedules.

FCR-CSP is a model capable of assessing the feasibility of one or
more schedules expressed in terms of the reference model, i.e.,

every order in the schedule is represented as supply processes
modeled with the reference model elements, including its dimen-
sion requirements over feasibility dimensions of resources. For
every schedule expressed in such way an instance of FCR-CSP
capable of assessing its feasibility can automatically be obtained.
This is possible due to the way FCR-CSP has been designed: its
data model only uses elements present on the Reference Model,
and the equations are written over the feasibility dimensions of
resources. As a consequence it can handle any kind of schedule as
long as it is written in terms of the reference model.

To be able to use FCR-CSP, supply chain partners should
implement transformation engines that take the output of their
scheduling systems and express it in terms of the reference model.
The structure of FCR-CSP consists of a data model representing
reference model elements in a suitable form and a constraint
model which holds the constraints that ensure a schedule is
feasible according to resource availability

An instance of the data model is obtained by exploring the
elements of one or more reference model instances (object
models representing schedules). To introduce this data model
and for its implementation, UML and OCL (Object Constraint
Language) which is a part of UML are used. As a consequence
sets, parameters and variables are introduced in a platform
independent fashion.

5.1. Disruptive events

Disruptive events are classified in two kinds: resource
events produced by changes in the availability of a controlled
resource; and order events produced by changes in the require-
ments of a SPO. They can be described using the reference model
as follows.

Resource events:

A. Changes in the ScheduledCapacityProfile of a resource capacity
dimension, including
» Change in future availability (change in the set of
AvailableCapacityltem).
» Change in current available capacity (change in the attribute
currentCapacity of the dimension).
B. Changes in the ScheduledStatesProfile of a resource state based
dimension including
Change in future scheduled states (change in the set of
ScheduledStates).

A. Guarnaschelli et al. / Int.]. Production Economics 144 (2013) 223-242

! IloResource

il

— FAN

—| IloUnaryResource ‘

;l lloCapResource

v

|| IloDiscreteResource |—| lloReservoir

';I IloContinuousReservoir

231

L IloStateResource

I;l lloDiscreteEnergy

Fig. 10. ILOG OPL Scheduler resources meta-model.

Table 2
Modeling ILOG OPL resources using the Reference Model.

ILOG entity

Reference Model representation

IloDiscreteResource. A discrete resource represents a resource of finite capacity,
which is defined to be a positive integer number. The capacity of a discrete
resource can vary with time. At any time t, the capacity represents the number of
copies or instances of the resource that are available. Each activity in a schedule
may require some amount of the capacity of a discrete resource

IloUnaryResource. Represents a resource whose capacity is one. An instance of
IloUnaryResource is either occupied or free. No more than one activity can be
executed at a given time

TloDiscreteEnergy. An instance of the class IloDiscreteEnergy is divided into time
buckets (for example, minutes, hours, months, years) that contain a certain
amount of energy (for example, watt-hours or human-months) that can be made
available over those intervals. The available energy is used by the activities
defined on the resource, and as consequence capacity constraints on the discrete
energy resource use energy rather than capacity

IloReservoir. An instance of IloReservoir represents a resource that can be
dynamically replenished by producing activities. The capacity of an instance of
IloReservoir can be simultaneously required and provided by activities. This class
can be used to model situations in which certain types of activities consume
capacity from the reservoir, while others produce capacity

A reservoir must not overflow its maximal capacity or underflow its minimal
capacity

TloContinuousReservoir. An instance of lloContinuousReservoir represents a
resource which activities can either fill or empty in a continuous and linear
process between the start and the end of the activity. If the duration of the
activity is null, the filling (or emptying) process is instantaneous (so not
continuous). The maximum and minimum levels of a continuous reservoir can
vary over time

IloStateResource. An instance of the class IloStateResource represents a resource of
infinite capacity whose state can vary over time. Throughout its execution, each
activity may require a state resource to be in a given state (or in any of a given set
of states). Consequently, two activities may not overlap if they require
incompatible states during their execution. A state resource does not constrain
the number of activities that can be executed in parallel, provided that the
overlapping activities require compatible states of the resource. State transitions
of a state resource can be modeled. A state transition can be instantaneous or not
(requiring a transition time)

A resource with a capacity dimension holding a ScheduledCapacityProfile whose
currentCapacity value at the start of the scheduling horizon is its finite capacity
(number of available copies of the resource). In general ILOG discrete resources are
used in a renewable fashion. So requirements assigned to this type of resource
(resource dimension) must be renewable capacity requirements. In cases where the
resource is consumed, instantaneous requirements can be used. If there are bounds
on the number of copies (units of capacity) of the resource that can be used by a
single requirement, these bounds can be represented using capacity usage items
holding quantity bounds

It is modeled just as the discrete resource but with a single unit of capacity and it is
used only as a renewable resource. It only fulfills renewable capacity requirements
of size one, therefore it is either occupied or free

Suppose that the discrete energy resource has n time buckets. Each time
bucket i has an available energy of E(n). Then it can be represented using a
resource with a capacity dimension whose availability profile also holds n
capacityUsageltems whose time windows represents the time buckets in the
scheduling horizon and hold cumulative quantity bounds (its cumulative
Boolean attribute is true) that is: if i is a capacityUsageltem, the bounds express
that during its time window no more than E(i) units of energy are available to be
consumed

A resource with a capacity dimension whose scheduled capacity profile has the
following characteristics: Its currentCapacity attribute represents the current
reservoir occupancy or available capacity. Consuming and producing instantaneous
capacity requirements model the corresponding ILOG activities. Its maximal and
minimal capacity are represented using an available capacity item with a time
window from current time to the end of the scheduling horizon and corresponding
min and max capacity bounds

A resource with a capacity dimension whose scheduled capacity profile has the
following characteristics: Its currentCapacity attribute represents the current
reservoir occupancy or available capacity. The feasible rate for producing or
consuming capacity in the continuous linear process is modeled using a capacity
usage item with a rate bound, determining min and max rate for production and for
consumption

The maximum and minimum levels that may vary over time are represented using
available capacity items, one for each pair of minimum and maximum levels.
Therefore they define time windows for the period where the pairs of levels are
valid

Such resource behavior is represented using StateBasedDimension objects. The
ScheduledStatesProfile of the dimension defines the set of possible states for the
resource, the set of feasible transitions and required transition times. In the profile
the current state the resource is also shown as well as possible predefined set of
states for the resource to be along the schedule, modeled using ScheduledState
objects

Activities, in the reference model captured by the concept of requirements may
require to a resource to be in a given set of states. This is modeled using the concept
of State Requirement that may be composed by single atomic (individual) state
requirements or a set of state requirements for the resource

Change in the current state of a state based dimension (change in
the current attribute of the scheduledStatesProfile of the dimension).
Order events

Specification change in one SPO (changes in any SPO attribute
as: startTime, endTime or orderQuantity).

D. The addition or the cancellation of a SPO.

C.

5.2. A strategy to assess and restore feasibility

The feasibility of a schedule is evaluated by the ability of
the resources to fulfill the requirements imposed by the set of
SPOs. In the reference model, the requirements of a SPO and the
availability of resources are defined as different entities. Both of

232 A. Guarnaschelli et al. / Int. J. Production Economics 144 (2013) 223-242

them can be independently specified along the horizon. The
feasibility of the schedule depends on the matching of their
specifications.

This is done by modeling how the requirements use the
resource availability along the horizon. This strategy is implemen-
ted by introducing a set of variables modeling the use of every
resource's dimension by SPO requirements, and a set of constraints
modeling how those requirements affect their availability. Thus,
detecting infeasibility is reduced to detect infeasibility of the
constraints model, and repairing a damaged schedule is to allow
these variables to use slacks, generating changes in one or more
SPOs to restore feasibility.

FCR-CSP is composed by three models: a capacity dimension
model, a state based dimension model and a main model
associating them. The main model links the capacity and state
based dimension models through a set of constraints relating
capacity and state requirements from both types of dimension
models.

5.3. FCR-CSP: capacity dimension model

The availability of a capacity dimension is modeled by a
ScheduledCapacityProfile object, which has a currentCapacity attri-
bute modeling the available capacity at current time that by
convention is the beginning of the horizon. A capacity dimension
is feasible when the projected value of capacity after consider-
ing the requirements lies within the bounds defined by the
set of AvailableCapacityltem objects (that define min and max
bounds along the horizon). Also, the requirement characteristics
should satisfy the constraints imposed by the CapacityUsageltem
objects.

To calculate the projection of capacity along the horizon, a
continuous timeline is assumed. All significant time points along
this timeline are modeled as an ordered set of eventPoints (this
concept is explained by (lerapetritou and Floudas, 1998) and
approaches using it are reviewed in (Méndez et al, 2006)).
Therefore, capacity requirements are assigned to start or end at
one unique eventPoint.

The calculation of projected capacity at each eventPoint is done
using a capacity balance starting from the projected value in the
previous point and adding the consumptions or productions
(made by possibly assigned requirements) of capacity in the
current point.

EventPoints are assigned to availableCapacityltems which pro-
vide the capacity bound against the projection will be verified.
These assignments define a time window for each eventPoint (the
time point it represents belongs to this window) and consequently
for each requirement assigned to it as well.

In Fig. 11, an example of a capacity projection over a continuous
timeline with eventPoints is shown. The availability of the capacity
dimension is modeled using two available capacity items A1 and A2,
representing a change in the prescribed availability of the dimen-
sion within the scheduling horizon. In the figure a continuous
capacity requirement r1 is assigned to start and end at eventPoints
e2 and e3 so the time points both represent will be the start and
end time of this requirement. Also in the figure eventPoints el, e2
and e3 are assigned to available capacity item A1 and e4, e5 and e6
to A2. According to A1 and A2 the capacity projection at first group
of eventPoints has tighter bounds to satisfy than the second group
of eventPoints.

Every requirement is assigned to a unique capacity usage
item, which also defines a time window for the requirement.
The usage rules imposed by capacity usage items are checked for
every requirement it has assigned. This translates into checking
the values for the attributes quantity, duration and rate against
the corresponding bounds defined in the capacity usage

{1.rquuan1ity
Capacity 4

d
€, e

currentCapgacity - "2 projected capacity

e,&egfor”
CapacityRequirement
rl start and end

| | |
\ Ay I Ay \

eventPoint i.

Aj, available capacity item j. €

rl.usage = consumption €,,6,e;assigned to A,

€4,€5,64 assiged to A,

Fig. 11. Capacity projection for a capacity dimension.

item. A capacity dimension is feasible when the projected
capacity at each eventPoint satisfies the bounds defined by its
assigned available capacity item, and the requirements satisfy
the usage rules imposed by the capacity usage item they are
assigned to.

This capacity dimension model introduces independent
binary variables for the following assignments (r is a capacity
Requirement):

i). Every r.timing.startTime to one eventPoint
ii). Every r.timing.endTime to one eventPoint
iii). Every r.timing.startTime to one CapacityUsageltem
iv).
V).

Every r.timing.endTime to one CapacityUsageltem
Every eventPoint to one AvailabilityCapacityltem

All the above assignments imply a temporal compatibility
between the related elements, e.g.: if eventPoint e is assigned to
availableCapacityltem a, the time point corresponding to e is
within the time window defined by a. Also if requirement r is
assigned to start/end at eventPoint e, the start time/end time of r
equals the time point of e.

5.3.1. Data model for the capacity dimension model in Tables 3-5
5.3.1.1. Constraints for the capacity dimension model

CD-1: eventPoints are timely ordered. As the set of eventPoints is
ordered, the variables representing the time points they
address in a feasible solution keep the same order. This
constraint assures time consistency for the different require-
ments that may take place in every eventPoint.
t[r,c,e]>t[r,c,e—1], V(reR,cecDim|r], e = 2..e[r,c]: #(cR[r,c]) > 0)

M

CD-2: Every capacity requirement d is assigned to an eventPoint
from the corresponding capacity dimension

Y (e =1..e[r,c])zCRS[d,e] = 1, V(reR,cecDim[r], decR][r,c]
: d.ordergcSet 2)
if(dginstCR)Y.(e = 1..e[r,c])zCRE[d,e] =1,
V(reR,cecDim[r],decR]r,c] : d.ordergcSet) 3)

If a capacity requirement belongs to a canceled SPO, it is not

assigned to eventPoints

Y(e = 1..e[r,c])zCRS[d,e] = 1-iC[d.order], V(reR,cecDim[r],
decR[r,c] : d.orderecSet) 4)

Table 3

A. Guarnaschelli et al. / Int. J. Production Economics 144 (2013) 223-242 233

Sets for the capacity dimension model.

R set of Resource objects
SPO set of SupplyProcessOrder objects
cDim[r] reR, set of CapacityDimension objects modeling resource r
av(r,c] reR, cecDim|r], ordered set of AvailableCapacityltem objects for the capacity dimension c of resource r
cUlr,c] reR, cecDim[r], ordered set of CapacityUsageltem objects of the capacity dimension c of resource r
allReq set of DimensionRequirement objects in the model
regs[o] {d | deallReq: d.supplyProcessOrder=o0}, oeespo. Set of DimensionRequirement objects of SPO o
regs[r] {d | deallReq: d.resource=r}, reR. set of DimensionRequirement objects assigned to resource r
allCR {d | deeallReq: d.ocllsTypeOf(CapacityRequirement)}. set of CapacityRequirement objects
cR[rc] = {d | deallCR: d.resource=r & d.capacityDimension=c }, reR, ceecDim|[r]. set of CapacityRequirement objects assigned to capacity dimension c of resource r
instCR = {d | deallCR: d.ocllsTypeOf{InstantaneousRequirement)}. set of instantaneous capacity requirements
renCR ={d | deallCR: d.ocllsTypeOf(RenewableRequirement}. set of renewable requirements
contCR = {d | deallCR: d.ocllsTypeOf(ContinuousRequirement)}. Set of continuous capacity requirements
timingSet SPO u allRequ av[r,c] u cU[r.c], r en R, c en cDim[r]. set of entities with timing attribute
cSet = {01 0 in SPO: mod[o]=1 & o.cancellable=1}. set of cancelable SPO

Table 4

Parameters for the capacity dimension model.

mod|o] 0 €SPO. This Boolean parameter states whether a SPO o is under a repair process or not

cCap|r,c] reR, cecDim[r]. currentCapacity attribute of the ScheduledCapacityProfile of dimension c of resource r

e[r,c] reR, cecDim[r]. number of eventPoints in capacity dimension c.

qMin[d] deallCR. This value satisfies Egs. (27) and (28) when d.supplyProcessOrder.orderQuantity =d.supplyProcessOrder.minQuantity
minimum value for the requirement d quantity (qMin[d]) and is possible only when the SPO takes its minimum value

qMax[d] deallCR. This value satisfies Eqs. (27) and (28) when d.supplyProcessOrder.orderQuantity =d.supplyProcessOrder.maxQuantity
maximum value for the quantity of requirement d (qMax[d]) and is possible only when the SPO takes its maximum value

minB[r,c] =min{a.minCapacityBound}, acav|r,c], reeR, cecDim[r]. Minimum value allowable for the capacity projection of ¢ along the horizon

maxBr,c| =max{a.maxCapacityBound}, a eav[r,c], reeR, cecDim[r]. Maximum value allowable for the capacity projection of ¢ along the horizon

mUse[r,c] reR, cecDim[r]. boolean parameter with value 1 when the capacity dimension holds continuous requirements together with other types
of requirements

Table 5

Variables for the capacity dimension model.

zAv[a,e]

zUS[u,d]
zUE[u,d]
t[r,c.e]
Qlo]
Qld]

zCRS[d,e] zCRE

reeR, cecDim[r], aeeav]r,c], ee eventPoints[r,c]. Binary variable with value 1 when eventPoint e is assigned to AvailableCapacityltem a of
CapacityDimension ¢ from resource r

reeR, ¢ ecDim[r], ueeCapUsageltems[r],deecR][r,c]. Binary variables with value 1 when requirement d is assigned to start (zUS) or end (zUE) within
capacity usage item u time window

reeR, c ecDim[r], e=1...e[r,c]. Time point corresponding to eventPoint e. With domain [r.horizon.startTime.value, r.horizon.value]

0€€SPO. Quantity variable for SPO o. With domain [0, o.maxQuantity |

de allCR. Quantity variable for requirement d. With domain [0, qMax[d]]. If d.scalingMode =LotBasedScalingMode Q[d] is a non-negative integer
variable.

deeallCR, e=1...e[d.resource,d.feasibilityDimension]. Binary variables denoting the eventPoint where requirement d starts (zCRS) or ends (zCRE)

[d.e] respectively.
cRR[d] deeecontCR.Variable representing the rate of consumption/production of requirement d. With domain [d.minUsageRate, d.maxUsageRate]
pC [rcel reeR, ce cDim[r], e=1...e[r,c]. Projected capacity variable for dimencion c of resource r at eventPoint e
iClo] oe SPO. Binary variable with value 1 if SPO o is canceled
if(dgInstCR)Y (e = 1..e[r,c])zCRE[d,e] = 1-iC[d.order], assigned to be the start or the end of a requirement; then
v(reR,cecDim[r],decR[r,c] : d.orderecSet) (5) eventPoint e-1 must not be assigned to any requirement's start

or end. This constraint allows checking whether the capacity
dimension is feasible just before another requirement is attended.

CD-3: Every eventPoint e has at most one capacity requirement

Y (decR[r,c])(zCRS[d,e—1]+zCRE[d,e—1])

assigned
<1-Y(decR[r,c])(zCRS[e]+zCRE[e)),
Y (decR[r,c)) (zCRS[d,e]+zCRE[d,e])<1,v(reR,cecDim[r],e = 1...e[r,c]) v(reR,cecDim[r],e = 2...e[r,c] : mUse[r,c]=1) (8)
(6)
CD-6: If capacity requirement d is assigned to eventPoint e, their
CD-4: If capacity requirement d is assigned to end at eventPoint times are equal.
e, it has to be assigned to start at any e’ <e V(reR,cecDim[r],decR]r,cl,e = 1..e[r,c])
2(e'=1.e[r,c] : e’ <e) zCRS[d,e"|>zCRE[d,e], if (ZCRS[d,e] = 1)start[d] = t[r,c,e],V(reR,cecDim[r],
V(reR,cecDim[r],decR[r,cl,e = 1...e[r,c]) 7) decR[r,cl.e = 1...e[r,c]) 9)

CD-5: If capacity dimension ¢ has Continuous capacity requirements

if zCRE[d,e] = 1){end[d] = t[r,c,e]},

mixed with other types of requirements and eventPoint e has been V(reR,cecDim(r],decR[r,cl,e = 1...e[r,c]) (10)

234

A. Guarnaschelli et al. / Int. J. Production Economics 144 (2013) 223-242

CD-7: Every eventPoint is assigned to a unique available
capacity item.

Y (aeav[r,c]) zAv[a,e] = 1,¥(reR,cecDim[r],e = 1...e[r,c]) a1
CD-8: If eventPoint e is assigned to an available capacityltem a,
then their times are related

if (zAv[a,e] = 1)start[a]<t(r,c,e]; end[a]>t[r,c,e€],

V(reR,cecDim[r),acavlr,cl,e = 1..e[r,c]) (12)

CD-9: Capacity projection for dimension c of resource r.
pCr,c,1] = cCap[c.r1+ Y.(deinstCR
: decR[r,c]&d.usageMode = (Production))Q[d]*zCRS[d, 1]
+ Y (deinstCR : decR[r,c]&d.usageMode
= (Consumption))(—Q[d]*zCRS[d,1])
+ Y (derenCR : decR[r,c]& d.usageMode
= (Production))(Q[d]*zCRS[d,1]-Q[d]*zCRE[d,1])
+ Y. (derenCR : decRJr,c]&d.usageMode
= (Consumption))(—Q[d]*zCRS[d,1]

+Q[d]*zCRE[d,1)),V(reR,cecDim[r]) (13)

pC[r,c,e] = pC[r,c,e—1]+ Y.(deinstCR : decR[r,c]& d.usageMode

= (Production))(Q[d]*zCRS[d,e])
+ > (deinstCR : decR[r,c]& d.usageMode
= (Consumption))(—Q[d]*zCRS[d,e])
+ Y (derenCR : decR[r,c]& d.usageMode
= (Production))(Q[d]*zCRS[d,e]- Q[d]*zCRE[d,e])
+ Y. (derenC : decR[r,c]& d.usageMode
= (Consumption))(—Q[d]*zCRS[d,e]+ Q[d]*zCRE[d,e])
+>(d in contCR : din cR[r,c]& d.usageMode = (Production))

[(t[r,c,e]—t[r,c,e—1])*cRR[d]*(1-X (¢’ in e[r,c] :
e’<e—1)(zCRS[d,e'1-zCRE[d,e—1]))]

+>(din contCR : din cR[r,c]& d.usageMode
= (Consumption))
[—(t[r,c,e]-t[r,c,e—1])*cRR[d]*(1-X(e" in e[r,c] :
e’<e-1)(zCRS[d,e'1-zCRE[d,e—1]))],

V(reR,cecDim[r],e = 2..e[r,c]) (14)

CD-10: The projected capacity variable (pC) must satisfy the
available capacity items bounds along the horizon.

V(reR,cecDim[r],e=1...e[r,c])
pClr,c,e]<> (aeav[r,c])(a.maxCapacityBound*zAv[a,e]),

v(reR,cecDim[r],e = 1...e[r,c]) (15)
pClr,c,e]>> (aeav[c.r])(a.min CapacityBound*zAv|a,e)),
v(reR,cecDim[r],e = 1...e[r,c]) (16)

CD-11: Capacity requirements are assigned to capacity usage
items of the corresponding capacity dimension.

Y (uecU[r,c))zUS[u,d] = 1,¥(reR,cecDim[r],decR][r,c]

: d.ordergcSet) a7
if (dginstCR)Y (uecU[r,c])zUE[u,d] =1,
V(reR,cecDim[r],decR[r,c] : d.ordergcSet) (18)

If the SPO to which a requirement belongs is canceled such
assignment does not take place

Y (uecU[r,c])zUS[u,d] = 1-iC[o],
V(reR,cecDim[r],decR][r,c] : d.orderecSet)

if (dginstCR) Y. (uecU][r,c])zUE[u,d] = 1-iClo],
Y(reR,cecDim[r],decR][r,c] : d.orderecSet) (19)
CD-12: If requirement d is assigned to start or end within
capacity usage item u time window, its startTime/endTime
belongs to that time window

if (ZUS[u,d] = 1){start[u]< start[d]; end[u] >start[d]},

V(reR,cecDim[r),uecU[r,c],deallCR : decR[r,c]) (20)
if (zUE[u,d] = 1)start[u]< end[d]; end[u]>end[d],
V(reR,cecDim[r],uecU[r,c],deallCR : decR[r,c]) 21

CD-13: The quantity of a SPO remains as planned unless it is
under a repair process

if (mod[o] = 0)Q[o] = o.orderQuantity,¥(0€SPO) 22)
o.min Quantity<Q[o]<o.max Quantity, V(oeSPO) 23)
Q[o]>o.quantityLowerBound—o.max Quantity*(iC[o]),

V(0€SPO : oecSet) 24)
Q[o]<o.quantityUpperBound+o0.max Quantity*(iC[o]),

V(0€SPO : oecSet) 25)
Q[o]<o.quantityUpperBound*(iC[0]),¥(0€SPO : oecSet) (26)

CD-14: The quantity variable of every capacity requirement is
related to the quantity variable of the SPO holding the require-
ment.

if (d.scalingMode = ProportionalScalingMode)Q[d] = d.scalingFactor*QJo],
V(0eSPO,dereqs[o] : deallCR)

27)
if (d.scalingMode = LotBasedScalingMode)
d.scalingFactor*(Q[d]-1)+1 <QJ[o]<Q[d]*d.scalingFactor,
V(0€SPO,dereqs[o] : deallCR) 28)

CD-15: Instantaneous requirements start and end times are
equal.

end[d] = start[d],v(de instCR 29)

CD-16: A renewable requirement duration remains as planned,
unless its associated SPO is under a repair process. In such cases
is defined by the difference between end and start times.

if (mod[d.supplyProcessOrder] = O)d.duration = end[d]—start[d],

V(derenCR : d.ordergcSet) 30)
d.min Duration<end[d]-start[d]<d.max Duration,v¥(derenCR
: d.ordergcSet)

(€]

if (iC[d.order] = 0)d.min Duration<end[d]—start[d]<d.max Duration,

V(derenCR : d.orderecSet) 32)

CD-17: If a capacity usage item specifies bounds for
required quantities, then requirement quantities must fulfill
the following constraints (shown only for the case of a
production requirement, but valid for consumptions
as well).

A. Guarnaschelli et al. / Int. J. Production Economics 144 (2013) 223-242 235

if(d.usageMode =Production){

Q[dI< Y (u in cU[r,c])(u.productionQuantity. max Value*zUS[u,d));
Q[d]>X (u in cU[r,c])(u.productionQuantity.min Value*zUS[u,d));

QIdI<X(u in cU[r,c])(u.productionQuantity.max Value*zUE[u,d]) ’

Q[d]> Y (u in cU[r,c])(u.productionQuantity.min Value*zUE[u,d])
V(reR,cecDim[r],decR[r,c]) 33

CD-18: The duration of a renewable requirement is verified
using the capacity usage item assigned for its start time.

(end[d]-start[d])<Y (uecU[r,c])(u.productionDuration.max Value*zUS[u,d]),

V(reR,cecDim[r],decR[r,c]) (34)

(end[d]-start[d])>Y (uecU[r,c])(u.productionDuration.min Value*zUS[u,d]),

V(reR,cecDim[r],decR]r,c]) 35)

If capacity usage items constraint the rate of any continuous requi-
rement d, such rate is verified with respect to every capacity usage
item that spans the duration of the requirement. The constraint for the
case where d.usage= production, and is valid also for consumptions.

cRR[d]< k.productionRate.max Value
+(d.max Rate-d.min Rate)*(2—ZUS[i,d]-ZUE[j,d));
CRR[d]> k.productionRate.min Value
—(d.min Rate—d.min Rate)*(2—ZUS[i,d]-ZUEj,d]),
V(reR,cecDim[r],
decontCR : de cR[r,c]& d.usageMode = (Production)),
V(i,j,k in cU[r,c] : i<k<j) (36)

5.4. FCR-CSP: state based dimension model

The availability of a StateBasedDimension is modeled by sets of
ScheduledState objects defining which states the dimension must
take along the horizon. The attribute current shows the current
ScheduledState which could be a StateTransition or a “proper state”
(a state which is not a StateTransition).

The requirements for a state based dimension require a specific
state during a time window. Therefore the feasibility of the
resource will depend on the compatibility of required states and
the states the dimension will take along the horizon.

The strategy of the model for a state based dimension consists in
the generation of a set of blocks used as markers of the start and end
time of a state. These blocks are time ordered and have assigned a
unique state from the set of possible states of the dimension. For
example in Fig. 12 the x-axis shows a set of blocks, and the y-axis has
the set of states they may take. The assigned states are painted.

This ordered set of blocks with their states determines a state
projection for the dimension. To be feasible a state based dimen-
sion has to be able to attend both the scheduled states and the
state requirements (described in Sections 4.3.2 and 4.4.2). For that
purpose each scheduled state of the availability profile of the
dimension is assigned to one block. Every block has a single state
from the set of states of the profile. The assignment of the current
and another scheduled state to blocks 1 and 2 is shown in Fig. 12.

Atomic state requirements are also assigned to a unique block,
but there is no limit in the number of requirements assigned to
one block. Therefore every state based requirement should have
every one of its atomic requirements assigned to blocks. Finally
those blocks should satisfy the nextState relationships imposed by
requirements and by scheduled states as well, Fig. 12 shows a valid
state requirement assignment.

o———e ScheduledState

A
States Requirement
S1
S—

trans. S1-S2

el
—7 S2

currentState L o—
trans. S2-S1
Time -
blockl block2 block3

Fig. 12. Blocks for a state based dimension model.

The scheduled states profile might not specify states for the
whole horizon. In such case it is possible for the dimension to take
unplanned states without affecting scheduled states. This flexibil-
ity constitutes a useful slack to absorb disruptions.

In order to implement the aforementioned strategy the state
based dimension model introduces binary variables for the follow-
ing assignments:

i) One state to every block.
ii) Every atomic state requirement to one block.
iii) Every scheduled state to a dedicated block.

All the above assignments imply a temporal compatibility
between the related elements.

5.4.1. Data model for the state based dimension model in Tables 6-8
5.4.1.1. Constraints for the state based dimension model

SD-1 Every scheduled state is assigned to a block of the state
dimension, and conversely a block has no more than one
scheduled state assigned.

>(i=1..nB[r,s])wBSc[i,d] = 1,¥(reR,sesDim|r],jesched[r,s]) 37

> (jesched]r,s))wBSc[i,d]<1,V(reR,sesDim|[r,s],i = 1..nB[r,s]) 38)

SD-2 The first block corresponds to the current attribute of the
scheduled states profile of the dimension

wBSc[1,j] = 1,V(reR,sesDim|r],jesched]r,s]
: j =s.scheduledStatesProfile.current) 39

SD-3 Let a, b be scheduled state objects, if b is nextState of a, both
are assigned to consecutive blocks
wBSc[i—1,a]<wBSc[i,b],¥(reR,sesDim[r],

i=2..nB[r,s],a,besched[r,s] : b= a.nextScheduledState)
(40)

SD-4 Every block determines a unique state in the set of
projected states (blocks holding a state), that is: the block
has an unique state, and if it has been assigned to
ScheduledState j, it has the state of j, j.state

Y (kesSet(r,s] : if (i>2)keproperS)wBS[i, k]
= 1,v(reR,sesDim[r],i = 1...nB[r,s]) (41)

wBS[i,j.state]>wBSc[i,j],V(reR,sesDim|r],i
= 1...nB[r,s],jesched[r,s]) (42)

236

Table 6

A. Guarnaschelli et al. / Int.]. Production Economics 144 (2013) 223-242

Sets for the state based dimension model.

sDim][r] reeR. set of StateBasedDimension objects in resource r
sSet|r,s] reeR, seesDim[r]. Set of State objects of the dimension s
sched(r,s] reeR, seesDim[r]. Set of ScheduledState objects of the dimension s
SReq(r.s] reeR, seesDim|r]. Set of StateBasedRequirement objects of the dimension. Each element 1 in stateReq[r,s] is composed
by a set of AtomicStateRequirement objects
properS[r,s] reeR, seesDim[r]. Set of states of the dimension which are not of the type TransitionState
Table 7

Parameters for the state based dimension model.

fTran[s1,s2], reeR, seesDim[r], sleesSet[r,s], s2€ sSet|r,s]: s1,s2eeproprtS|r,s]
fTT[s1,52] fTran[s1,s2] is a boolean parameter with value 1 if there is a transition from properState s1 to properState s2, with value 0 otherwise
fTT[s1,52] is the transition time from s1 to s2
nBlr,s] reeR, seesDim|[r]. Number of blocks for dimension s
hL[r] Horizon length
Table 8

Variables for the state based dimension model.

start[k], end[k]
wBScli,j]
wBSJ[i,k]
tS[s,i],tE[s,i]

tranT[s,i,i’],

tran(s,i,i’,kk]

and tE the end time of block i of dimension s

the final assumption of states for consecutive blocks i and i’

kee{scheduleStates[r,s] u {a, ac |, | esReq[r,s]} r €R, seesDim|r]}

reeR, seesDim[r], i=1...nB|[r,s], jeesched|r,s]. Boolean variable with value 1 if scheduledState j is assigned to block i

reeR, seesDim(r], i=1...nB[r,s], k esSet][r,s]: if (i>2) seeproperS. Boolean variable with value 1 if block i assumes state k, 0 otherwise
reeR, seesDim|[r], i=1...nB[r,s]. With domain [r.horizon.startTime.referenceValue, r.horizon.endTime.referenceValue]. tS is the start

reeR, seesDim(r], i, i'=1...nB[r,s]: i’=i+1. transition time from block i to block i’ of dimension s. A calculated variable that considers

reR, seesDim|r], i, i’=1..nB[r,s], k, k'eesSet[r,s]: i’=i+1 & k’e properS and if(i > 1) keeproperS. Boolean variable with value 1 if there is

a transition from state k to k’ between consecutive blocks i and i’

wSR[d,i] rinR, s in sDim[r], 1 in sReq[r,s], d en], i en 1...nB[r,s]. Boolean variable with value 1 if atomic state requirement d is assigned to block i of
dimension s
SD-5 Block startTime and endTime SD-9 The following constraints determine whether there is a

tS[s,i|<tE[s,i],V(reR,sesDim[r],i = 1..nB[r,s)),

v(reR,sesDim[r],i = 1...nB[r,s]) (43)

SD-6 As the current scheduled state is assigned to the first block

SD-7

SD-8

of the state based dimension, the following time relation-
ship holds.

V(reR,sesDim[r),jesched]r,s] : j = s.scheduledStatesProfile.current)
tS[s, 1] = start[j,v(reR,sesDim|r],jesched|r,s] :

j=s.scheduledStatesProfile.current) (44)
tE[s,1]>end[j],V(reR,sesDim[r],jesched[r,s]
: j = s.scheduledStatesProfile.current) (45)

If scheduled state j is assigned to block i the scheduled state
timing is within the time window of i.

tS[s,i]<start[j]+ hL[r]*(1-wBSc[i,j]),¥(reR,sesDim[r],

i=1...nB[r,s],jesched[r,s]) (46)
tE[s,i]>end[j]—hL[r]*(1-wBSc[i,j]),¥(reR,sesDim[r],
i=1...nB[r,s],jesched[r,s]) (47)

If two consecutive blocks have different states assigned
there must be a feasible transition between them.

wBS[i,t]<1—(wBS[i—1,k]—f Tran[k,t]),v(reR,sesDim[r],

i=2...nB[r,s),k,teproperS|r,s]) (48)

SD-10

SD-11

transition between state k to k' when going from block i to
i+1. When the current attribute is a state transition, it is
assumed that the transition is taking place and there is no
transition to the next block.

tran[s,i,i’,k,k'1>wBS[i,k]+wBS[i’,k'1-1; tran[s,i,i’,k,k’]
<wBSi,k]; tran(s,i,i’,k,k'J<wBS[i’, k'],
V(reR,sesDim(r),i,i’ = 1...nB[r,s],k,k’esSet[r,s] : i’ =

i+1k,k’eproperS) (49)
tran[s,1,2,k, k'l = 0,v(reR,sesDim[r],k,k’€in sSet(r,s]
: k'eproperS and k¢properS) (50)

Transition times between blocks are calculated variables
according to the state transitions that take place when
going from block i to block i+ 1. These transition times
affect the start and end times of every block.

tranT[s,i,i'] = Y.(k,k'eproperS)tran(s,i,i’,k,k'1*f TT[k,k,

V(reR,sesDimr,[i,i' =1...nB[r,s] : i’ =i+1) (51)
tS[s,i"]>tE[s,i]+tranT][s,i,i'],V(reR,sesDim[r],i,
i"=1...nB[r,s]:i"=i+1) (52)

Every atomic state requirement is assigned to a state base
dimension block having a compatible state.

>(i=1...nB[r,s])WSR[d,i] = 1,v(reR,sesDim[r],

A. Guarnaschelli et al. / Int. . Production Economics 144 (2013) 223-242 237

Table 9
Sets for the main model.

TimingSet
ReqScheduleSet

SPO v allRequ av[r,c] u cUJr,c] uscheduleStates|r,s] u {a: a€ |, leesReq[r,s]} r in R, seesDim[r], ceecDim][r]. set of entities with a timing attribute
set of RequirementsSchedule objects (schedule to be analyzed with FCR-CSP)

Table 10
Variables for the main model.

start[k], end[k]
r.horizon.timing.endTime.value]

keetimingSet. Variables for the start and end time of all entities with a timing attribute. With domain [r.horizon.timing.startTime.value,

lesReq[r,s),del : l.ordergcSet) (53)

>(i=1...nB[r,s])WSR[d,i] = 1-iC[l.order],
V(reR,sesDim[r),lesReq[r,s),del : l.orderecSet) 54)

WSR[d,i]<wBS[i,d.requiredState],
V(reR,sesDim[r),lesReq[r,s],del,i = 1...nBJr,s]) (55)

SD-12 Atomic state requirement objets having a nextState are
assigned to consecutive blocks.

WSR[d1,i—1]>WSR[d2,i],V(reR sesDim][r],lesReq(r,s],
d1,d2el,i=2...nB[r,s] : d2 = d1.nextState) (56)

SD-13 An atomic state requirement starts and ends within its
assigned block start and end times

start[d]>tS[s,i]-hL[r]*(1-wSR[d,i]),V(reR,sesDim([r],
lesReq([r,s],del,i =1...nB[r,s]) (57)

end[d]<tE[s,i]+ hL[r]"(1-wSR[d,i]),
V(reR,sesDim[r),lesReq[r,s],d€l,i=1...nBJ[r,s]) (58)

5.5. FCR-CSP main model

Every instance of the reference model has a variety of Timing
objects defining time windows and time points in the horizon of
resources. These timing objects are often interrelated as in an
SPO's requirementSchedule that holds synchronizations or prece-
dencies amongst the requirements of an SPO. The main model
captures these time relationships and individual timing con-
straints; as it checks the coordination of both types of require-
ments (capacity and state requirements), it comprises the
coordination of both types of feasibility dimensions as well.

5.5.1. Data model for the main model in Tables 9-10

Glob-1 The following set of constraints model the feasible values
of every object in an instance of the reference model
that holds a timing attribute with respect to its start and
end times.

start[k]<end[k] (59)

if (k.startTime.temporalRelation
= At)start[k] = k.startTime.referenceValue (60)

if (k.startTime.temporalRelation
= Before)start[k]<k.startTime.referenceValue (61)

if (k.startTime.temporalRelation

= After)start[k]>k.startTime.referenceValue (63)

if (k.endTime.temporalRelation
= Before)end[kl<k.endTime.referenceValue (64)

if (k.endTime.temporalRelation
= After)end[k]>k.endTime.referenceValue (65)

(59)-(65), V(keetimingSet)

Glob-2 Unless a SPO is allowed to changes its specification, its
timing attribute keeps its originally planned values with-
out using any slack.

if(mod[o] = O)start[o] = o.startTime.value; end[o]
= o.endTime.value,¥(0€SPO) (66)

Glob-3 The timing of a requirement is bounded by the timing of
its associated SPO.

start[d]>start[o]; end[d]<end[o] ,¥(0€SPO,d iereqs[o]) (67)

If a SPO o is within a repair process constraints 0 are
relaxed for every requirement k of the SPO o. So require-
ments times move freely within the SPO times as long as
the requirement schedule (Glob-4 and Glob-5) of the
order is feasible.

Glob-4 Constraints modeling precedences within objects of type
RequirementSchedule

if (p = StartBef oreStart)start[p.before]<start[p.after] (68)
if (p = StartBef oreEnd)start[p.bef ore]<end[p.after] (69)
if (p = EndBef oreEnd)end[p.bef ore]<end[p.af ter] (70)

if(p = EndBeforeStart)end[p.bef ore]<start[p.after] (71)

(68)—(71), ¥(rs in ReqScheduleSet, peers.precedence)
Glob-5 Constraints modeling synchronizations within objects

of type RequirementSchedule

V(rs in ReqScheduleSet, p in rs.synchronization)

if (p = Simultan eousStart)start[p— > at(1)] = start[p— > at(2)] (72)
if (p = SimultaneousEnd)end[p— > at(1)] = end[p— > at(2)] (73)

if (p = StartAtEnd)start[p— > at(1)] = end[p— > at(2)] (74)
(72)-(74), ¥(rs in ReqScheduleSet, p in rs.synchronization)

6. Mechanism for automated repair

The mechanism introduced in this section is designed to
perform in the context of the collaborative business process for

238 A. Guarnaschelli et al. / Int. J. Production Economics 144 (2013) 223-242

managing disruptions described in Section 3. Controllers hold
their resources information consisting in their availability and
their scheduled SPOs. If a Controller requests the Feasibility
Manager for feasibility repair, it will send a message with the
request including this information.

At every stage of the mechanism the Feasibility Manager will
hold an activeNet composed by resources and SPOs involved in the
repair process. An activeNet is composed by four sets of entities
that join the mechanism: activeFixedSPO, SPOs which their speci-
fications remain fixed but later can be modified; activeVarSPO,
SPOs that can be modified; activeResources, resources in the
mechanism; and fixedSPO, SPO whose specification cannot be ever
modified. A resource r in activeResources has its scheduled SPOs in
any of the SPO sets.

If a SPO is in the set activeVarSPO, the domain of its related
variables (regarding time and quantity) encompasses all the slacks
available in the SPO.

When a Controller is alerted by the Monitor of a disruptive
event (as depicted in Fig. 1) it will define an event scope (the
minimal required information to evaluate feasibility) and send it to
the Feasibility Manager. If the event is a change in the availability
of a resource, the event scope is the affected resource and all its
scheduled orders, and then the activeNet is defined by: adding the
affected resource in activeResources and all its scheduled orders in
activeFixedSPO (the other sets are empty). The mechanism always
evaluates the feasibility of the whole activeNet by trying to solve
its associated FCR-CSP (as an activeNet is a set of reference model
supply processes).

If the FCR-CSP of the activeNet has a solution (every constraint
is satisfied), which means the event does not compromise the
execution of any SPO, there is not an exception and the outcome of
the mechanism is the updated net (the new specification of the
affected resource is the only update).

If a solution is not found, the mechanism advances to the next
stage, expanding the activeNet. This is repeated until the stopping
condition is fulfilled. The expansion consists in.

6.1. Stagel

1) Include in activeVarSPO every spareOrder in the set of
scheduledOrders of any resource already present in activeRe-
sources (if there is not any spareOrder go to Stage2). This
enforces the utilization of optional orders that can be executed
in case of disruptions (Section 4.2), before modifying scheduled
orders.

2) Add into activeResources the resources assigned to these spar-
eOrders; and add into activeFixedSPO the scheduledOrders of
these resources. This enables to check whether the resources
involved in executing the spareOrders can also execute their
previously scheduled orders.

3) If this new activeNet is feasible the net of SPOs is updated with
the changes introduced in the schedule and the repair mechan-
ism ends, otherwise go to Stage2.

6.2. Stage2?

1) Include in activeVarSPO every SPO in activeFixedSPO; this step
makes variable the set of fixed orders of the resources involved
in the mechanism.

2) Add into activeResources the resources assigned to the SPOs
recently added to the activeVarSPO set and add into activeFixedSPO
the scheduledOrders of these resources which were not added to
the activeVarSPO set. This enables to check whether the resources
involved in executing the orders which were just made variable
can also execute their previously scheduled orders.

3) If this new activeNet is feasible the net of SPOs is updated with
the changes introduced in the schedule and the repair mechan-
ism ends, otherwise return to Stagel.

The global stopping condition is fulfilled whenever a solution is
found or the set of activeFixedSPO is empty, that is, the activeNet
cannot be expanded.

7. FCR-CSP transformation engine implementation

Section 4.5 established that for every schedule defined with the
reference model, a transformation into the data model of the
FCR-CSP allows to have a FCR-CSP instance for the schedule. The
model to model transformation required was implemented as
follows:

1) A XML Schema (XSD model) (W3C, 2004) for the reference
model was obtained. This task is accomplished using a standard
UML to XSD transformation provided by IBM Rational Software
Architect (IBM, 2012).

2) The data model structure of FCR-CSP (composed by the
capacity, state and main data models) was defined as ILOG
OPL (IBM, 2011) data model. As constraints models are solved
in the following case study using ILOG OPL.

3) A JAVA project ILOG-InputOutputManager was developed in
order to transform a XML instance of the reference model (a
schedule) into an ILOG OPL data instance, and vice versa.

8. Case study

The tools used in this case study validation are: ILOG-OPL
Studio to solve the FCR-CSP constraints models; Scheduling
System to generate feasible supply chain schedules; and the
automatic transformation of Section 7 to generate the FCR-CSP
data model.

8.1. Case study description

The studied supply chain produces and distributes urea. Pro-
duction and factory warehousing is done in Bahia Blanca, Argen-
tina (Factory Warehouse-Bahia Blanca). From a proprietary loading
dock in the local port urea is distributed by ships to three
distribution centers located at San Lorenzo, Argentina; Montevi-
deo, Uruguay; Rio Grande, Brasil.

Shipments are managed by a third party logistics provider.
Three ships with a predefined route and schedule are used:
Ship-DCSanLorenzo, Ship-DCUruguay y Ship-DCBrasil, they attend
the demands of the distribution centers at: San Lorenzo, Argen-
tina; Montevideo, Uruguay and Rio Grande, Brasil, respectively.

Urea availability at Factory Warehouse in Bahia Blanca is
practically unlimited; therefore demand and supply are managed
using a Planning System for each Distribution Center attending the
constraints imposed by: coordination of shipments according to
availability and possible fluvial/marine routes (Table 11), mean
ship trip times, loading and unloading times, safety stock and
inventory sizes

The Scheduling System builds a schedule and provides slacks
with the following characteristics. Dispatches at Distribution
Centers have an associated time window for their fulfillment,
consisting in: if the dispatch is originally planned for day d, it can
be moved only within the week which d is within. Some SPOs
representing dispatches allow quantity changes but those changes
cannot exceed ten percent of their original quantity value. These
policies are captured in the reference model using capacity usage

A. Guarnaschelli et al. / Int. . Production Economics 144 (2013) 223-242 239

Table 11
Mean trip times (hours).

San Lorenzo

Montevideo Rio Grande

Factory Warehouse-Bahia Blanca 96 h. (Ship-DCSanLorenzo)
Montevideo -

144 h. Ship-DCUruguay 168 h. (Ship-DCBrasil)
- 60 h.(Ship-DCBrasil)

loadingDock-BahiaBlanca :

transfer-Urea-BahiaBlanca-DCBrasil-26 :

+assignedResource

Resource

SupplyProcessOrder

Urea-DCBrasil :
Resource

+assignedResource

has

loadingDock-B CapDim :

+assignedResource

Urea-DCBrasil-CapDim :

CapacityDimension

Ship-DC Brasil :
Resource

CapacityDimension

has/

eographicalPosition :|
tateBasedDimension

loadingCapacity :
CapacityDimension

Fig. 13. An urea transfer SPO from Bahia Blanca to Brasil.

items. Urea transfers from Factory Warehouse-Bahia Blanca to
Distribution Centers are scheduled with a specific timing, but in
case of a repair process, their timing can change as long as the
capacity of every resource involved (inventories, loading dock and
ships) allow such change, and the involved states (geographical
position of ships) are compatible with the change.

Ships are loaded at the Factory Warehouse-Bahia Blanca at a
rate of 1000 t (metric ton)/h, and unloaded at San Lorenzo and
Uruguay at rate of 250 t/h, and at a rate of 425 t/h at Brasil.

In exceptional situations transfers from Factory Warehouse-Bahia
Blanca to the Distribucion Center in Brasil can be performed by
another logistics provider that provides a transportation capacity of
17.000 t with a delivery time of 7 days. This supply process is modeled
as a spareOrder according to the reference model. Daily demand at DCs
is aggregated into daily dispatch SPOs for the 33 days of the horizon.

The main supply process, urea transfer from Factory
Warehouse-Bahia Blanca to Distribution Centers is modeled using
the reference model (Fig. 13). The transfer in the figure has three
resources: loadingDock-BahiaBlanca representing the dock where
ships are loaded with urea, Urea-DCBrasil representing the inven-
tory of urea in the Distribution Center in Brasil, Ship-DCBrasil
representing the ship used to transport the urea.

8.2. Data collection

To obtain information on stock movements of the urea supply
chain, records of port movements were collected within a 33 days
horizon, together with stock movement reports from the urea
factory at Factory Warehouse-Bahia Blanca in the same period.
These records were consolidated in a data base and this data was
analyzed to infer both the typical demand pattern in every DC and
the ship scheduling policy. Then, a Distribution Resource Planning
based Scheduling System was used to generate detailed schedules
for the urea supply chain. The output of this system was expressed
as a set of supply processes modeled using the artifacts provided
by the reference model.

8.3. Disruptive event management

The performance of the FCR-CSP based repair mechanisms was
studied in several disruptive situations. Following two situations are
described, which are chosen for their simplicity to follow the repair
steps and evaluate whether FCR-CSP can provide common sense
solutions that an Operations Manager could obtain and recommend.

8.3.1. Disruptive event on a resource

Shortly after initializing the execution of the schedule the shipping
company communicated the unavailability of Ship-DCBrasil from day
16 (384 h) and on (horizon is 33 days). This was reflected as change in
the availability profile of the resource. Feasibility of the affected
resource was assessed by means of the FCR-CSP. The result was that
the schedule becomes unfeasible and therefore the repair mechanism
was executed. Table 12 summarizes the search for a solution as the
activeNet was expanded.

The FCR-CSP on Expansion 2 found a solution. The most
important changes were:

SPO transfer from Bahia Blanca to Brasil at day 26 was canceled.

SPO Spare order of Urea from Bahia Blanca to Brasil was activated
and its involved resources (spare ship, loading dock and urea
inventory in Distribution Center in Brasil) properly coordinated.
This coordination satisfies the logistics provider policies specified
in the capacity usage items of the spare ship resource. Its resulting
specification is

* SPO: quantity: 17000; startTime: 383; endTime: 608

* Requirements:

* CapacityRequirement: load urea in Bahia Blanca, involving
resource loadingDock-BahiaBlanca starts at 383 h and ends at
400 h.

* CapacityRequirement: load urea in BahiaBlanca, involving
resource spareShip starts at 383 h and ends at 400 h.

* StateBasedRequirement: arrive and stay in state Rio Grande, to
download urea at Distribution Center in Brasil, involving
resource spare ship starts at 568 h ends at 608 h.

240 A. Guarnaschelli et al. / Int. J. Production Economics 144 (2013) 223-242

Table 12
Resource event managed using FCR-CSP.

Expansion ActiveResources ActiveFixedSPO ActiveVariableSPO Supply chain
collaborators
Event scope Ship-DCBrasil The set of transfers of Ship-DCBrasil %] Controller-Ships

Expansion 1 Ship-DCBrasil;
Urea-DCBrasil;
loadingDock-
BahiaBlanca

Ship-DCBrasil

Expansion 2 Ship-DCBrasil;

Urea-DCBrasil;

Set of 33 daily dispatch SPOs of Urea from Distribution
Center in Brasil; the set of scheduled orders that use
loadingDock-BahiaBlanca that is: every transfer in the
supply chain schedule apart from those that use

Set of 33 daily dispatch SPOs of Urea from Distribution
Center in Brasil; the set of scheduled orders that use

Transfer from BahiaBlanca
to Brasil at day 7 and transfer at day 26.

Controller-Ships;
Controller-Brasil;
Controller-Factory
Warehouse

Transfer from Bahia Blanca to Brasil at day ~ Controller-Ships,
7 and transfer at day 26; spare order of urea Controller-Brasil;

loadingDock- loadingDock-BahiaBlanca that is: every transfer in the supply from Bahia Blanca to Brasil Controller-FW;
BahiaBlanca; chain schedule apart from those that use Controller-3PL
spareShip Ship-DCBrasil (A third party logistics
provider controls the
spare ship)
17500 /1

12500 /

5 =q:|\:‘_‘_‘_‘_\
L
= 7500
o
o
2
2 _LLLL_|
§ 2500
>
=
0 100 200 300 400 500
-2500
-7500

Hours

— Solution
Exception
—— original schedule

N
/

600 700 800 900

Fig. 14. Urea-DCUruguay Projected Available Inventory.

* CapacityRequirement: download urea to DC in Brasil, involving
resource Urea-DCBrasil starts at 568 and ends at 608.

8.3.2. disruptive event on a SPO

At Uruguay the competitor's Distribution center temporarily
runs out of stock, this obligated its clients to supply from the
Distribution Center represented by resource Urea-DCUruguay (the
inventory of urea at Distribution Center in Uruguay). As a result
shipments scheduled from day 10 to 19 were substantially
increased their quantity. A FCR-CSP evaluation of the schedule
returned an exception. The scenario is depicted in Fig. 14 that
shows the infeasibility of the inventory projection.

The FCR-CSP found a solution (Fig. 14) where 9 SPOs were
modified. In the figure it is visible how the solution was closely
related to the original schedule. The second urea transfer is put
forward and the other modifications consisted in slightly reducing
some orders quantities (within the original slacks) preserving
most of the original schedule.

8.4. Results analysis

The events analyzed demonstrated that the mechanism based on
the FCR-CSP can perform an autonomous search for a solution in a
collaborative schedule after a disruption. The only requirement relies
on the willingness to share information on resources and SPOs.

By just modeling the schedule using the reference model a full
collaborative repair mechanism was readily available. Solutions for
both disruptions were found and the changes introduced used
only available slacks.

The type of solutions obtained by the mechanism is quite
similar to the ones obtained after a classical three party negotia-
tion between client, supplier and logistics provider. The mechan-
ism succeeded in finding them autonomously and almost
immediately without involving the parties into a probably
extended manual negotiation. In most situations it outperforms a
manual approach as it has full visibility of on-going supply
processes across different partners and if required new processes
are added in a distributed expansion mechanism.

The mechanism is innovative for both research and practice of
schedule execution as it opens the possibility of delegating the
schedule restoration, whenever possible, to an autonomous infor-
mation system that enables a collaborative execution control
among supply chain partners. This delegation is possible without
engaging Controllers to new negotiations regarding the creation of
a new schedule due to:

 Each individual Controller does not have any information about
the schedule of the others. Therefore the problem of sharing
information to other supply chain partners is reduced to share
portions of their schedule with a neutral Feasibility Manager.

» The repair mechanism solves the coordination problem that
arises from changes in the usage of resources as consequence of

A. Guarnaschelli et al. / Int.]. Production Economics 144 (2013) 223-242 241

the re-specification of SPOs done to restore schedule feasibility.
Every change introduced is guaranteed to satisfy the availabil-
ity and usage constraints of resources already provided in the
schedules.

* The restoration of schedules is accomplished without any
knowledge of the internal processes and the negotiations
between supply chain partners required for building them.

The main benefit of using this mechanism is a reduction of the
number of routine execution disruptions that can be repaired
without translating into a full rescheduling task, avoiding the
harmful effect of scheduling system nervousness: increases in
setup times and costs (Kabak and Ornek, 2009).

A vast literature on supply chain risk planning, robust planning
and buffer allocation, as in (Lenny and Saad, 2006; Koh et al., 2002;
Landeghem and Vanmaele, 2002; Srivastava, 2000; Tang, 2006),
deals with different strategies to tackle uncertainty resulting in
schedules and plans with slacks, and all the effort done to provide
them is better used by the adoption of this mechanism.

This constitutes the first proposal for disruptive event manage-
ment in supply chains that takes advantage of the explicit (as a
result of buffer allocation) and implicit (as a result of analyzing
concurrently a set of active resources and its usage) slacks present
in schedules in an autonomous fashion.

In contrast there are also two limitations for the approach. First,
the repair capacity is limited as modifications in the schedule are
constrained by the existence slacks. Second there is an implicit
collaboration contract required for the methodology to work:
supply chain partners acting as controllers must share small
portions of their schedules, and these portions should be
expressed in terms of the reference model.

8.5. Performance analysis

The performance of the repair mechanism depends on the
solution times of the CSP problems associated to its stages. In the
case study introduced in this work, schedules controlled by
different business partners in a supply chain are coordinated.

The size of the case is representative of a real world scenario
and extends to 107 modifiable orders (with its requirements) and
8 critical resources for a 33 days horizon.

The case study required solving 4 CSPs, the largest totalizing
10705 variables, 4995 of them were binary and the number of
constraints grew up to 25839.

The solution time of a CSP averaged 74 s with a maximum of
115 s for each stage of the mechanism and a total computing time
of 295 s to find feasible changes for a horizon of 33 days.

Unlike scheduling problems formulations, FCR CSP only
searches for feasible solutions in the slack space of already defined
schedules without optimizing any objective function, that is the
key for seamlessly solve big problem instances.

9. Conclusions and future work

The CSP based approach to disruptive events management in
supply chains presented in this work, gives a comprehensive
treatment to the functions of evaluating disruptive events, detect-
ing an exception and deciding corrective actions. The generality of
the proposal is given by the fact that it does not rely on any supply
chain configuration or internal structure. Generic supply processes
are described as composed by SPOs and its required resources,
focusing on the assessment of the feasibility of the execution. This
feasibility is evaluated through general descriptions of availability
and requirements that allows the modeling of any type of
processes and resources within the same framework.

To provide systematic autonomy to current event management
and execution control systems, a reference model was proposed. It
has two main features: (i) it provides a self-contained description
of any ongoing schedule of SPOs with the information required to
assess its feasibility and (ii) it allows the automatic transformation
into a CSP suitable to search for local solutions.

The mechanism for automated repair intends to make surgical
modifications to the current schedule which do not affect the
economical and operational considerations made at the moment
the schedule was created. On purpose, the allowed changes are
limited to the space of slacks already included by the original
schedule.

This repairing task can be safely delegated to automated
systems and would facilitate the design of collaborative inter-
organizational business processes to manage events along the
supply chain.

The limitations of the FCR-CSP approach are related to the
existence of slacks in schedules. This is aligned with current trends
of generating more robust schedules by including appropriate
buffers (Radjou et al., 2002; Verderame et al., 2010).

The need for a monitoring system capable of detecting changes
in both resources and orders is another critical requirement.

Finally the problematic of information sharing between busi-
ness partners whenever an exception crosses inter-organizational
borders arises. The present work implicitly assumed that informa-
tion on resources and orders are shared with no restrictions, but
this is not always the case. Further research on this subject is
needed.

Financial support for this work by Consejo Nacional de Inves-
tigaciones Cientificas y Técnicas (CONICET) and Agencia Nacional
de Promocién Cientifica y Tecnoldgica (ANPCyT) is gratefully
acknowledged.

References

Arief Adhitya, R.S., Karimi, .A., 2006. A model-based rescheduling framework for
managing abnormal supply chain events. Computers and Chemical Engineering
31, 496-518.

Aytug, H., Lawley, M.A., McKay, K., Mohan, S., Uzsoy, R., 2005. Executing production
schedules in the face of uncertainties: a review and some future directions.
European Journal of Operational Research 161, 86-110.

Bearzotti, L., Salomone, E., Chiotti, O., 2008. An autonomous multi-agent approach
to supply chain event management, Service Operations and Logistics, and
Informatics, 2008. IEEE/SOLI 2008. IEEE International Conference on, pp. 524-
5209.

Cauvin, A.CAA,, Ferrarini, A.F.A., Tranvouez, E-T.E., 2009. Disruption management in
distributed enterprises: a multi-agent modelling and simulation of cooperative
recovery behaviours. International Journal of Production Economics 122,
429-439.

Friedrich, G., Fugini, M., Mussi, E., Pernici, B., Tagni, G., 2010. Exception handling for
repair in service-based processes. Software Engineering, IEEE Transactions on
36, 198-215.

Gaudreault, J., Pesant, G., Frayret, J., D'Amours, S., 2012. Supply chain coordination
using an adaptive distributed search strategy. Systems, Man, and Cybernetics,
Part C: Applications and Reviews, IEEE Transactions on 42, 1424-1438.

Griffith, R., Kaiser, G., Lopez, J.A., 2009. Multi-perspective evaluation of self-healing
systems using simple probabilistic models, Proceedings of the Sixth Interna-
tional Conference on Autonomic computing. ACM, Barcelona, Spain, pp. 59-60.

Guarnaschelli, A, Fernandez, E., Chiotti, O., Salomone, H.E., 2012. A service-oriented
approach to collaborative management of disruptive events in supply chains.
International Journal of Innovative Computing, Information and Control 8,
5341-5368.

Hailpern, B., Tarr, P., 2006. Model-driven development: the good, the bad, and the
ugly. IBM Systems Journal 45, 451-461.

Hamadi, R., Benatallah, B., Medjahed, B., 2008. Self-adapting recovery nets for
policy-driven exception handling in business processes. Distributed and Paral-
lel Databases 23, 1-44.

Hwang, S.-Y., Tang, J., 2004. Consulting past exceptions to facilitate workflow
exception handling. Decision Support Systems 37, 49-69.

IBM-ILOG, 2009. Scheduler V6.7 Users Manual. IBM, United States.

IBM, 2011. IBM ILOG CPLEX Optimization Studio.

IBM, 2012. IBM Rational Software Architect.

lerapetritou, M.G., Floudas, C.A., 1998. Effective continuous-time formulation for
short-term scheduling. 1. Multipurpose batch processes. Industrial and Engi-
neering Chemistry Research 37, 4341-4359.

242 A. Guarnaschelli et al. / Int. J. Production Economics 144 (2013) 223-242

Kabak, K.E., Ornek, A.M., 2009. An improved metric for measuring multi-item
multi-level schedule instability under rolling schedules. Computers and Indus-
trial Engineering 56, 691-707.

Lenny, Koh S.C,, Saad, S.M., 2006. Managing uncertainty in ERP-controlled manu-
facturing environments in SMEs. International Journal of Production Econom-
ics, 109-127.

Koh, S.C.L, Saad, S.M., Jones, M.H., 2002. Uncertainty under MRP-planned manu-
facture: review and categorization. International Journal of Production
Research 40, 2399-2421.

Landeghem, H.V. Vanmaele, H. 2002. Robust planning: a new paradigm for
demand chain planning. Journa of Operations Management 20, 769-783.

Le Pape, C., 1994. Implementation of resource constraints in ILOG Schedule: a
library for the development of constraint-based scheduling systems. Intelligent
Systems Engineering 3, 55-66.

Li,].-Q., Mirchandani, P.B., Borenstein, D., 2009a. A Lagrangian heuristic for the real-
time vehicle rescheduling problem. Transportation Research Part E: Logistics
and Transportation Review 45, 419-433.

Li, J.-Q., Mirchandani, P.B., Borenstein, D., 2009b. Real-time vehicle rerouting
problems with time windows. European Journal of Operational Research 194,
711-727.

Masing, N., 2003. Supply Chain Event Management as Strategic Perspective—
Market Study: SCEM Software Performance in the European Market.
Hochschule Bremen, Bremen.

Méndez, C.A., Cerdd, J., Grossmann, LE., Harjunkoski, ., Fahl, M., 2006. State-of-the-
art review of optimization methods for short-term scheduling of batch
processes. Computers and Chemical Engineering 30, 913-946.

OMG, 2010. Object Management Group, Unified Modeling Language (UML) 2.3.

Pfeiffer, A., Kadar, B., Monostori, L., 2007. Stability-oriented evaluation of
rescheduling strategies, by using simulation. Computers in Industry 58,
630-643.

Radjou, N., Orlov, L M., Nakashima, T., 2002. Adapting To Supply Network Change,
in: Research, F. (Ed.), The TechStrategy Report.

Song, Y., Han, D., 2003. Exception specification and handling in workflow systems,
Proceedings of the Fifth Asia-Pacific Web Conference on Web technologies and
applications. Springer-Verlag, Xian, China, pp. 495-506.

Srivastava, V.D.R.GJ.a.R,, 2000. A review of techniques for buffering against
uncertainty with MRP systems. Production Planning and Control 11, 223-233.

Tang, C.S., 2006. Perspectives in supply chain risk management. International
Journal of Production Economics 103, 451-488.

Verderame, P.M,, Elia, J.A,, Li, J., Floudas, C.A., 2010. Planning and scheduling under
uncertainty: a review across multiple sectors. Industrial and Engineering
Chemistry Research 49, 3993-4017.

W3C(, 2004. XML Schema Part 0: Primer Second Edition, in: (W3C), WW.W.C. (Ed.).

Weske, M., 2007. Business Process Management: Concepts, Languages, Architec-
tures. Springer-Verlag, New York, Inc.

Yuan, H.-t, Ding, B., Sun, Z.-x., 2008. Workflow Exception Forecasting Method
Based on SVM Theory, Computational Intelligence and Design, 2008. ISCID ‘08.
International Symposium on, pp. 81-86.

Zimmermann, R., 2006. Agent-based Supply Network Event Management.
Birkhauser-Verlag, Basel, Switzerland.

	An approach based on constraint satisfaction problems to disruptive event management in supply chains
	Introduction
	Related works
	Business process and architecture for a collaborative SCEM system
	Reference model for disruptive event management
	Modeling time
	Modeling supply processes
	Modeling resources using feasibility dimensions
	Modeling the ScheduledCapacityProfile
	Modeling the ScheduledStatesProfile

	Modeling SPO requirements
	CapacityRequirement
	State requirement

	Analysis of the representational capabilities of the Reference Model

	A Model for Feasibility Check and Restoration
	Disruptive events
	A strategy to assess and restore feasibility
	FCR–CSP: capacity dimension model
	Data model for the capacity dimension model in Tables 3–5
	Constraints for the capacity dimension model

	FCR–CSP: state based dimension model
	Data model for the state based dimension model in Tables 6–8
	Constraints for the state based dimension model

	FCR–CSP main model
	Data model for the main model in Tables 9–10

	Mechanism for automated repair
	Stage1
	Stage2

	FCR–CSP transformation engine implementation
	Case study
	Case study description
	Data collection
	Disruptive event management
	Disruptive event on a resource
	disruptive event on a SPO

	Results analysis
	Performance analysis

	Conclusions and future work
	References

