
Article
DOI: 10.1111/j.1468-0394.2012.00620.x

Knowledge representation of the software architecture
design process based on situation calculus
Marı́a Luciana Roldán, Silvio Gonnet and Horacio Leone
Instituto de Desarrollo y Diseño, Universidad Tecnológica Nacional - CONICET, Avellaneda 3657, 3000
Santa Fe, Argentina
Email: lroldan@santafe-conicet.gov.ar, sgonnet@santafe-conicet.gov.ar, hleone@santafe-conicet.gov.ar

Abstract: Software architecture design is an interactive, complex, decision-making process. Such a design process involves the exploration,
evaluation, and composition of design alternatives. Increasingly, new computer-aided tools are available to help designers in these complex
activities. However, these tools do not know how design is actually done, in other words, by means of which design activities the final artefact
was obtained. In fact, the architectural design knowledge exclusively rests in the mind of designers, and there is an urgent need to move it, as
much as possible, to a computer-supported environment that enables the capture of this type of knowledge. This contribution addresses this
need by introducing a model for capturing how products under development are generated and transformed along the software architecture
design process. The proposed model follows an operational perspective, where architectural design decisions are modelled by means of
sequences of operations that are applied on the design products. Situation calculus is used to formally express the existence of an object in a
given state of a design process. In addition, this formalism allows us expressing without ambiguities when an operation can be performed in
a specific state of the design process.

Keywords: design process representation, software architectures, situation calculus

1. Introduction

Software architecture design process (SADP) includes many
tasks such as exploration, evaluation, and composition of
design alternatives, which make it a difficult, complex pro-
cess (Jansen & Bosch, 2005). In the last few years, numerous
design methods, modelling languages, and computer-aided
tools (Garlan et al., 2000; Bachmann et al., 2003; Hofmeister
et al., 2007; Medvidovic et al., 2007; Clements et al., 2010)
have been proposed to face these complex activities. These
strategies, languages, and tools are basically focused on as-
sisting a designer in describing an architecture model, main-
taining intellectual control over its design, and on generating
a software architecture model to satisfy a set of requirements.
However, such tools keep only part of the knowledge applied
and generated during the architecture design process. Most
of the knowledge still rests in the minds of experienced de-
signers, it is not a product of the process and consequently,
it is lost with time. Therefore, there is a need for tools able to
capture and retrieve the software architecture design process.
These tools should be capable of recording each designer’s de-
cision and its impact on the architectural model, thus making
possible both the tracking and tracing of the SADP and the
analysis of its underlying rationale. In this way, the expert’s
knowledge could be captured, thus providing the founda-
tions for learning and training activities and for future reuse.

To set the basis for the development of tools with such
characteristics, it is needed a model that provides the ele-
ments for capturing the evolution of the products that arise
from SADP and the design decisions that generated them.

This contribution adopts the situation calculus (Mc-
Carthy, 1963; Reiter, 2001) for modelling that evolution. Such
a formalism is useful to make explicit the states of SADP and
how they were obtained. Based on this proposal, the authors
have developed a tool for capturing and tracing engineer-

ing design processes (Roldán et al., 2010). Although such a
tool was intended to supporting generic engineering design
processes, its flexibility enables being applied to software ar-
chitectures domain.

The paper is organized as follows. In Section 2, the prob-
lem and its scope are defined. Then, in Section 3, the core
model of this proposal is presented. After that, in Section
4, an extension is proposed were the particular operations
of SADP are included. The proposed model is validated in
Section 5 by designing a monitoring system for an industrial
process. In Section 6, related work is compared with our ap-
proach and some limitations of the approach are discussed.
Finally, Section 7 summarizes the main issues presented.

2. Problem definition

Software architecture design is one of the most complex and
critic activities in the software life cycle, involving the con-
sideration and resolution of many creative problem-specific
tasks, which require a lot of decision making. A software
architecture is intended for representing and communicat-
ing the system structure and behaviour of a system to all
the stakeholders. In addition, software architecture captures
early design decisions of a system. The architecture descrip-
tion, along with the architectural design decisions, consti-
tutes architectural knowledge that should be represented
(Kruchten et al., 2006), thus captured and documented in
some way. Different technical tools have emerged to sup-
port such architectural knowledge, which make emphasis
in some of the activities of SADP. Particularly, some no-
tations have been proposed to describe architectural mod-
els, and then, based on these notations numerous compu-
tational environments emerged to support architectural vi-
sual modelling (Medvidovic et al., 2007). Other recent tools

34 Expert Systems, February 2013, Vol. 30, No. 1 C© 2012 Wiley Publishing Ltd



(Tang et al., 2010; Weinreich & Buchgeher, 2011) have been
proposed to support architectural knowledge management in
some activities of SADP life cycle, mainly architectural anal-
ysis, synthesis, and evaluation. By using different approaches,
these tools capture design decisions and their relationships
with requirements and architecture design. However, they
share a common problem: users find out that capturing or
documenting design decisions requires an additional effort,
and in consequence, they ignore them. If design decisions are
not documented, they remain tacit knowledge, which is easily
lost (Jansen & Bosch, 2005), thus causing knowledge vapor-
ization that is the key problem of design erosion. Eventually,
vaporization of architectural knowledge, results in reduced
stakeholder communication, increased system maintenance
costs, and limited reusability of architecturally significant
entities.

The approach proposed in this work addresses the depicted
problem. It is focused in capturing not only the final architec-
ture model, but also all the design decisions that generated
the intermediate products during the design process. In spite
of the value of the design decision rationale, we know that it
is practically infeasible to obtain from architects the textual
documentation of their design decisions. Therefore, our pro-
posal considers that a design decision is materialized, also
documented, by the execution of sequences of design oper-
ations on a predecessor version of the architectural model.
The design operations have been defined as part of the de-
sign domain model and enclose a specific piece of knowledge
of it. Such design operations can be as basic as adding or
deleting a component, or as complex as applying an archi-
tectural pattern, but always have a concrete impact on the
software architecture model, causing the arising of a new
model version.

We do not separate the outcome of the software archi-
tecture design process from the process itself. Basically, this
work considers the outcome of the design process as a ‘ra-
tional reconstruction’ of that process (Dingsøyr & van Vliet,
2009). Therefore, we propose a model to represent a SADP
by explicitly capturing the architectural knowledge given by:
(1) the design products generated and their evolution; and
(2) the design decisions made during the process and materi-
alized by the application of sequences of domain operations.
The SADP is executed using product types and operations
that were defined in the design domain model.

3. Representing how the SADP is performed

The proposed scheme considers the SADP as a sequence of
activities that operate on the products of the design process
and materialize the architect decisions. Therefore, these prod-
ucts, which are called design objects, are the result of decisions
made by the designer and constitute an abstraction of what
is eventually desired to be realized in the real world (Taylor &
van der Hoek, 2007). Typical design objects are architectures
of the software being designed, specifications and scenarios
to be met, and components and connectors that form an ar-
chitectural view. Naturally, these objects evolve as the SADP
takes place, giving rise to several versions. Consequently, this
contribution focuses on representing the various states (ver-
sions) of the design objects along their life cycle, and how
these states were derived.

3.1. Representing design objects

As it was previously introduced, a design object represents
any entity that can evolve during a SADP. It is represented at
two levels, the repository and the versions level. The repository
level keeps a unique entity for each design object that has
been created and/or modified during a SADP. This object
is regarded as a versionable object (o). On the other hand,
the versions level keeps the different versions of each design
object. These are called object versions (v).

The concepts of the proposed scheme are formally de-
fined by introducing appropriated first-order logic predicates
and writing axioms that capture their semantics. To repre-
sent design objects, unary predicates versionableObject and
objectVersion are proposed. The relationship between a ver-
sionable object and one of its object versions is represented by
the version(v, o) predicate, which expresses that the v object
version is a version of the o versionable object. Below, axioms
(1)–(3) define the semantic of such a relationship.

(∀o)versionableObject(o)

⇒ (∃v : ObjectVersion)version(v, o) (1)

(∀v)objectVersion(v)

⇒ (∃ o : VersionableObject)version(v, o)

(2)

(∀v :ObjectVersion)(∃ o1, o2 :VersionableObject)

version(v, o1) ∧ version(v, o2) ⇒ (o1 = o2) (3)

It should be also noted, that an object version is always
linked to a versionable object, from which is version, as it
is represented in (2). In addition, this versionable object is
unique, which is expressed in (3).

At the repository level, also the associations among the dif-
ferent versionable objects are maintained. These associations
(ak) correspond to the rules that allow associating objects
to develop syntactically valid models. A ternary predicate
association(ak, oi, oj) is included to express such repository
associations between oi and oj versionable objects.

3.2. The operational perspective for model evolution

This section focuses on describing how the design process
evolution is represented. The situation calculus (McCarthy,
1963; Reiter, 2001) is adopted for modelling such a process.
Situation calculus is a second-order language, sometimes de-
scribed as a first-order language with some second-order fea-
tures, for representing dynamically changing worlds (Scherl
& Levesque, 2003). All changes to the world are the result of
named actions. Possible world histories, which are sequences
of actions, are represented by first-order terms called situa-
tions. By convention, S0 is used to denote the initial situa-
tion, which is comprised of the empty sequence of actions.
There is a binary symbol do; do(action, s), which denotes
the successor situation to s resulting from performing an
action. Relations whose truth values vary from situation to
situation, called fluents, are denoted by expressions with a
predicate symbol that take a situation term as the last argu-
ment. We find the ontology provided by situation calculus

C© 2012 Wiley Publishing Ltd Expert Systems, February 2013, Vol. 30, No. 1 35



for modelling dynamic domains very useful for modelling
the software architecture design process.

We abstract the SADP as a history made up of discrete
situations. In this way, at a given stage during the execution
of a software architecture design project, the set of versions
assumed by the relevant design objects supplies a snapshot
description of the state of the design process at that point.
Each state of the design process is called model version. Then,
a new model version mn is generated when a design decision
dd is made. A design decision dd is materialized by a sequence
of operations φ. The new model version mn is the result of
applying such a sequence φ to the elements of a previous
model version mp. In consequence, using the situation calcu-
lus ontology, we assimilate situations to the different model
versions generated during a SADP, actions to operations, and
complex actions to sequence of operations. Consequently, a
new model version mn is achieved by performing the follow-
ing evaluation: apply(φ, mp) = mn.

The apply function is defined in (4), where SequenceOfOp-
erations is the set of all possible operation sequences φ and
ModelVersion is the set of all possible model versions m. In (5),
a sequence of operations is defined in a recursive way, where
λ is an empty sequence of operations, op is an operation, and
• is the function that create a sequence of operations from
an operation and another sequence of operations.

apply : SequenceOfOperations × ModelVersion

→ ModelVersion. (4)

φ =
{

λ

op • φ
(5)

Then, in (6) the apply function is defined by induction. do:
A × S → S is a binary function defined by situation calculus
(Reiter, 2001; Scherl & Levesque, 2003), where A is the set of
all possible actions and S is the set of all possible situations.
This can be expressed as follows:

ModelVersion ⊆ S
Operation ⊆ A
do(λ, m) = m
do(op, m) = mi, m 	= mi
apply(opφ, m) = apply(φ, do(op, m)).

(6)

In order to represent the transformation of model versions
during SADP, a set of primitive operations is proposed. The
operations are add, delete, and modify, which can be com-
bined to form a sequence of operations φ to be applied on
a given model version. By using the add(v) operation, an
object version that did not exist in a previous model version
can be incorporated into a successor one. Conversely, the
delete(v) operation eliminates an object version that existed
in the previous model version. Also, if a design object has a
version vp, the modify(vp, vs) operation creates a new version
vs of the existing design object, where vs is a successor version
of vp. Thus, an object version v belongs to a model version that
arises after applying the sequence of operations φ to model
version m, if and only if one of the following conditions is
met:

(1) v is added when the new model version is created by means
of an add or modify operation (7); or

(2) v already belonged to the previous model version m (be-
long(v, m)) and it is not deleted when φ is applied to it
(8).

(∀φ, v, m)(add(v) ∈ φ ∨(∃vp)modify(vp, v) ∈ φ)

⇒ added(v, apply(φ, m)). (7)

(∀φ, v, m)(delete(v) ∈ φ ∨(∃vs)modify(v, vs) ∈ φ)

⇒ deleted(v, apply(φ, m)). (8)

From these definitions, and using the format of successor
state axioms proposed by Reiter (2001), a formal specifica-
tion of the cases in which an object version belongs to a model
version is specified in (9). It states that an object version v be-
longs to the version model that results from applying the
sequence of operations φ to model version m if an only if
v already was present in m and it is not deleted when φ is
applied to m, or v is added when the new model version is
created from applying sequence of operations φ on m. In
(9), the predicate belong(v, m) is true when object version v
belongs to model version m.

(∀φ : SequenceOfOperations, v:ObjectVersion,

m : ModelVersion)belong(v, apply(φ, m))

⇔ (belong(v, m) ∨ added(v, apply(φ, m))) ∧
(¬deleted(v, apply(φ, m))). (9)

From this expression, the object versions that belong to a
certain model version can be determined. Then, it is possi-
ble to reconstruct a model version mi+1 by applying all the
sequences of operations from the initial model version m0.

Each sequence of operations applied to a model version in-
corporates the necessary information to trace a model evolu-
tion. This information is represented by modelHistory predi-
cate between the model versions and the applied sequence of
operations (10).

(∀φ : SequenceOfOperations, mp,

ms : ModelVersion) (10)

apply(φ, mp) = ms ⇔ modelHistory(φ, mp, ms)

It is worth mentioning that the proposed model makes
possible representing the design objects evolution since a
versionable object can be expressed by one or more object
versions, but they belong to different model versions (11).

(∀o : VersionableObject, m:ModelVersion)

(∃vi : ObjectVersion)

version(vi, o) ∧ belong(vi, m)

⇒ [(∀vk : ObjectVersion) version(vk, o) ∧
belong(vk, m) ⇒ (vi = vk)] (11)

The relationships existing among object versions in a model
version can be also found out. For that, it should be noted

36 Expert Systems, February 2013, Vol. 30, No. 1 C© 2012 Wiley Publishing Ltd



that in this proposal, object versions belonging to a model
version are not explicitly associated to other versions be-
longing to the same model version. On the contrary, if an
association between two design objects exists, such a link is
represented at the repository level, without a situation term.
Consequently, the relationship existing between two object
versions must be inferred from the relationship established
between the versionable objects that have been versioned by
them. This fact is represented in (12), in which an association
ak is inferred between two object versions v1 and v2 belonging
to the same model version m (inferredAssociation(ak, v1, v2,
m)), if and only if there exists an association ak between the
two versionable objects o1 and o2 (association(ak, o1, o2)), of
which v1 and v2 are versions, respectively (version(v1, o1) and
version(v2, o2)).

(∀v1, v2, m, ak)inferredAssociation(ak, v1, v2, m)

⇔ (∃o1, o2)belong(v1, m) ∧ belong(v2, m) ∧
version(v1, o1) ∧ version(v2, o2) ∧
association(ak, o1, o2). (12)

Situation calculus provides precondition axioms to spec-
ify the conditions under which an action can be performed
(Reiter, 2001). Thus, it is necessary to extend them to specify
the preconditions to apply a sequence of operations φ to a
given model version m, fact that is expressed by the possso(φ,
m) predicate in (13).

(∀φ, m)possso(φ, m)

⇔ (∀opi, opi ∈ φ)posso(opi, φ, m). (13)

A sequence of operations φ may be applied to a model ver-
sion m if each operation opi belonging to φ can be applied to
m, as well as opi can be applied in all the situations generated
by applying the i − 1 previous operations in the sequence,
where opi is the ith operation belonging to φ. This fact is
defined by the posso(opi, φ, m) predicate (14), which was pre-
viously introduced in (13). Therefore, a sequence φ can be
applied to m if each operation of φ is applicable to m and
does not violate the preconditions of the other operations
belonging to φ.

(∀φ, m)(∀opi, opi ∈ φ, ∃φ1, φ2, φ = φ1 • opi • φ2)

posso(opi, φ, m)

⇔ (∀mi, m ≤ mi < apply(φ1 • opi, m))

poss(opi, mi). (14)

The poss(op, m) predicate expresses that an operation op
is applicable to a given model version m. This fact is repre-
sented by the following axioms: (1) operation add(v) can be
applied to model version m if the object version v does not
belong to m (15); (2) operation delete(v) can be applied to the
model version m if the object version v belongs to m (16); (3)
operation modify(vi, vj) can be applied to m if vi belongs to
m and vj does not belong to it (17).

(∀v, m)poss(add (v), m) ⇔ ¬belong(v, m). (15)

(∀v, m)poss(delete(v), m) ⇔ belong(v, m). (16)

(∀vi, v j, m)poss(modify(vi, v j ), m)

⇔ belong(vi, m) ∧ ¬belong(v j, m). (17)

3.3. Design process products representation

Let us regard a fragment of a hypothetical design process
of a software architecture, which is illustrated in Figure 1.
In this example, the designer has obtained mi model ver-
sion, where an object version (Cov1), that represents a phys-
ical component, is part of the deployment view (Clements
et al., 2010) of the architecture for a system (Sov1). At this
point of the design process, the designer decides to improve
the computational capacity of the component in order to
satisfy a performance requirement imposed on the system.
This decision is translated in the applying of a sequence of
operations φ on mi, which encloses only one applyIncreaseC-
omputationalEfficiency operation. Such an operation is an
extension of modify primitive operation (Section 4 address
how to define complex operations like applyIncreaseCompu-
tationalEfficiency) and adds a new object version (Cov2) from
an existing object version (Cov1). This fact is represented by
the effect axiom of Figure 1(d). As a consequence of this
sequence of operations, model version mj is generated.

This simple model evolution generates new knowledge that
is represented with the facts stated in Figure 1. Facts included
in Figure 1(b) keep what was true before the execution of φ.
Then, facts in Figure 1(c) describe the resulting knowledge
after obtaining model version mj. It can be observed that
at the repository level, the component and system design
objects are represented by versionable objects Cvo and Svo re-
spectively, whereas at versions level they assume the versions
Cov1 and Sov1, respectively. In addition, at the repository level,
an association Asc indicates that the component is part of the
system under design since an association fact that links the
two versionable objects Cvo and Svo exists. After applying the
sequence of operations φ to obtain mj, new facts represent
the new generated version (Cov2 in this case).

It should be noted that the facts in Figures1(b) and 1(c) do
not have a situation term. Therefore, nothing is said about to
which model versions the object versions belong. However,
that information can be obtained by means of the succes-
sor state axiom belong (9). In this example, belong(Sov1, mi)
and belong(Sov1, mj) are true since Sov1 belonged to mi and
was not deleted after applying φ. This can be viewed in Fig-
ure 1(a), where Sov1 version participates in both mi and mj
model versions. In addition, it is possible to know that Cov1
is part of model version mi but not of mj (belong(Cov1, mi) is
true and belong(Cov1, mj) is false) because Cov1 is deleted as a
consequence of performing applyIncreaseComputationalEf-
ficiency operation (see effect axiom Figure 1(d)). Similarly,
it can be determined that Cov2 does not participate in model
version mi but it is present in mj due to the effects of that
operation.

4. Defining a SADP domain

A model for capturing and tracing SADP must be flexible
enough to enable the definition and execution of the several

C© 2012 Wiley Publishing Ltd Expert Systems, February 2013, Vol. 30, No. 1 37



Figure 1: mj = apply({applyIncreaseComputationalEfficiency(Cov1, Cov2)}, mi).

operations involved in the design decisions made during a de-
sign process. In addition, this contribution not only provides
the capabilities for representing each performed operation
but also its resulting products. To that end, the model must
include the elements that make possible defining the types of
design objects to be captured and the possible relationship
types than can exist among them. The model must also sup-
port the definition of the several design operations applicable
to the types of products that can be managed in a domain,
which materialize the design decisions.

As it was introduced in the previous section, in this paper,
situation calculus is used for specifying the preconditions
and the effects of the design operations and for capturing
and reconstructing how a design process took place. There-
fore, first-order logic is also used for representing additional
knowledge about SADP domains.

4.1. Defining design object types for SADP

Before developing a SADP project, it is necessary to identify
which types of design objects should be captured. Possible
design objects must be classified according to the different
types managed in the domain (e.g., component, port, system,
quality requirement, etc.).

In order to identify them for defining a SADP domain, it is
important to consider the numerous architecture description
languages (ADLs) that have been proposed in the literature,
specially those adopted by industry practitioners and those
familiar to the project’s architects. ADLs embody a set of
concepts to be modelled (from which design object types can
be derived) and a particular approach to the specification
and evolution of an architecture (Medvidovic et al., 2002;
Medvidovic et al., 2007). Besides, we consider relevant to
include also some concepts relative to the architectural design
method preferred by the designer.

To this end, the proposed model is extended defining a
possible SADP domain that includes different design ob-
ject types derived from concepts taken from ADD method
(Bass et al., 2003) and the architectural description language
ACME (Garlan et al., 2000).

The first set of design object types for the SADP domain
is identified from concepts present in the ADD method
proposed by SEI (Bass et al., 2003). ADD method is based
on a decomposition process, where architectural patterns
are chosen at each iteration to fulfil a set of requirements
(functional and quality requirements). From the instantiation
of an architectural pattern, several elements (like components
and connectors) are included in the architectural model. The
inputs to ADD are quality requirements, which are expressed

38 Expert Systems, February 2013, Vol. 30, No. 1 C© 2012 Wiley Publishing Ltd



as a set of system specific quality scenarios, and functional
requirements, which are translated into a set of responsibil-
ities that are assigned to components. Quality scenarios and
responsibilities can be delegated to other components when
the original component is refined. When a method itera-
tion is finished, the designer verifies how approached is the
architecture to each proposed scenario and set an assessment.

At the end of an ADD iteration, a partial architecture
model is obtained. The IEEE recommended practice for ar-
chitectural description of software-intensive systems (IEEE,
2000) recommends describing an architectural model by us-
ing different viewpoints. In the scope of this contribution,
Component&Connector views are considered (Clements
et al., 2010). However, this proposal supports the definition
of several design object types relative to any view. Then, to
represent Component&Connector views, the ACME archi-
tectural description language is chosen (Garlan et al., 2000).
ACME defines a component as a computational element and
data store of a system. A component may have multiple inter-
faces, each of which is termed port. The connectors represent
interactions among components and have interfaces that are
defined by a pair of roles. A system in ACME comprises
components and connectors, by setting attachments between
roles and ports. Moreover, ACME proposes elements to doc-
ument extra-structural properties of a system’s architecture,
which are named characteristics.

The concepts (design object types) introduced above can
be formally defined in a SADP domain by introducing ap-
propriate first-order logic constructs and writing axioms to
capture their properties and possible relationships with other
concepts. We introduce the unary predicate designObject-
Type. This predicate has one term, which is the name of the
concept that constitutes the design object type. Using such
a predicate, the concepts defined above are included in the
SADP domain by means of the facts in (18).

designObjectType(Requirement).

designObjectType(QualityRequirement).

designObjectType(FunctionalRequirement).

designObjectType(QualityScenario).

designObjectType(Assessment).

designObjectType(System).

designObjectType(Component).

designObjectType(Connector).

designObjectType(Responsibility).

designObjectType(Port).

designObjectType(Role).

designObjectType(Characteristic). (18)

The SADP domain also states which are the types of the
relationships that rule the valid ways in which design objects
can be associated. This is expressed by means of domainRe-
lationship predicate. domainRelationship predicate has three
terms, where the first one represents the name of a relation-
ship type and the two others are the types of design objects
that are involved in the relationship type. In (19), some rele-

vant domain relationships are included in the SADP domain.

domainRelationship(RSystQReq, System,

QualityRequirement).

domainRelationship(RSystFReq, System,

FunctionalRequirement).

domainRelationship(RSystComp, System,

Component).

domainRelationship(RSystConn, System,

Connector).

domainRelationship(RCompResp, Component,

Responsibility).

domainRelationship(RCompPort, Component,

Port).

domainRelationship(RConnRole, Connector,

Role). (19)

Design object types have a set of versionable characteris-
tics denominated properties. This means that object versions
will have particular values for the properties defined by its
design object type. Each property (p) of a design object type
(dot) is explicitly stated in the SADP domain by means of
a binary predicate property(dot, p). In (20), the facts that
describe the properties of Component and Connector design
object types are listed. Particularly, in this domain, besides
the property Name for Component, two additional properties
were defined: MaxCantOfTables and IndexingType, which
are characteristics of databases components. On the other
hand, a Connector type defines properties for communicat-
ing two components in an architectural model, like a name
(given by Name property in (20)), the type of connection
indicating whether it is physical or logical (given by Type
property in (20)), and the adopted communication protocol
(given by Protocol property).

property(Component, Name).

property(Component, MaxCantOfTables).

property(Component, IndexingType).

property(Connector, Name).

property(Connector, Type).

property(Connector, Protocol). (20)

When design object types share common properties, it is
worthwhile to generalize these concepts by defining an ab-
stract design object type, or, with a different perspective, to
specialize a concept in a set of new concepts that inherit its
properties. A binary predicate isSubtypeOf(dot1, dot2) allows
expressing that design object type dot1 is a subtype of design
object type dot2. Examples are given in (21) by specializing
the possible requirements of a system in FunctionalRequire-
ment and QualityRequirement.

isSubtypeOf (Requirement,

QualityRequirement).

C© 2012 Wiley Publishing Ltd Expert Systems, February 2013, Vol. 30, No. 1 39



isSubtypeOf (Requirement,

FunctionalRequirement). (21)

Sometimes, an expert concerned in the definition of a
SADP domain, might decide to include a new design ob-
ject type to represent the associations rules that exist be-
tween two types. This means the transformation of a domain
relationship in a design object type, which is called reifica-
tion. By doing that, a domain relationship becomes a design
object type. An example is given by RCompResp domain
relationship, which can be transformed in a design object
type called RHasResp that links Component and Responsi-
bility design object types by means of RHRComponent and
RHRResponsibility domain relationships. These facts are
represented by designObjectType(RHasResp), domainRela-
tionship(RHRComponent, RHasResp, Component), and do-
main Relationship(RHRResponsibility, RHasResp, Responsi-
bility)). In addition, properties like AssignedBy and Visibility
could be assigned to RHasResp design object type to repre-
sent who is the responsible actor that assigns that responsi-
bility to a component and the visibility of the responsibility
(public or private).

Binary predicates isDesignObjectType and isAssociation-
Type complete the set of predicates for representing the types
of products and associations that arise during a design pro-
cess. Continuing with the example presented in Section 3.3, a
Domain level is added (Figure 2). A set of facts represents the
knowledge about the type of the versionable objects Cov and
Sov, and the kind of domain relationship of the association
Asc that links them (Figure 2).

4.2. Defining operations suitable for SADP

The primitive operations add, delete, and modify are not
enough for capturing and tracing a SADP execution. Al-
though an architectural design decision can be materialized
by a complex sequence of these primitives, its very low ab-
straction level precludes capturing the meaning of the deci-
sion made, thus the decision is lost. Consequently, the model
previously introduced must be extended in terms of the suit-
able high-level operations for SADP design domain, which
really capture the performed architectural decisions. The pro-
posed operations should be applicable to the design objects
included in the domain. Table 1 lists some examples of ar-
chitectural operations for SADP domain. An extensive cata-

Table 1: Possible operations for the software architecture de-
sign domain

Basic operations

addComponent deleteComponent
addConnector deleteConnector
addFunctional-

Requirement
deleteFunctional-

Requirement
addPort deletePort
addCharacteristic deleteCharacteristic
addQualityRequirement deleteQuality-

Requirement
addResponsibility deleteResponsibility
addRole deleteRole
addScenario deleteScenario

Special operations

refineComponent delegateScenario
refineResponsibility verifyScenario
delegateResponsibility

Architectural patterns and tactics

applyControlLoop applyInsertIntermediary
applyClientServer applyIncreaseComputa-

tionalEfficiency

logue of architectural design operations with their functional
specifications can be found in Roldán (2009).

Such operations are grouped in categories that range from
the most basic to more complex ones, in order to understand
the operation abstraction level. Basic operations allow cre-
ating and deleting basic design objects (like components and
connectors) (some functional specifications are given in Fig-
ure 3). Special operations are more complex and comprise
design activities like object refinement or delegation (some
specifications are given in Figure 4). With a higher level of
abstraction, Architectural patterns and tactics operations are
defined. They generate several design objects, which follow a
configuration based on the applied architectural style (some
specifications are given in Figure 5).

Figure 3 presents functional specifications for two of the
basic operations defined in Table 1. Operations are defined in
terms of primitive operations such as add and non-primitive
ones, such as addPort. For example, the addComponent(s,
nc, lResps, lPorts, lprops) operation adds a component called
nc as part of a system s. As it can be seen in Figure 3, this
operation is defined by a series of commands. First, a version

Figure 2: Facts expressing partial knowledge about SADP domain and the types of the design objects generated in during a
project and their associations.

40 Expert Systems, February 2013, Vol. 30, No. 1 C© 2012 Wiley Publishing Ltd



Figure 3: Specification of two basic operations.

of component c is added (add(c, Component, lprops)). After
that, a set of responsibilities (whose names are given by the
lResp collection) and ports (whose names are provided by the
lPorts collection) are added.

Finally, an association between the new component c and
an existing system s is set. This last operation is performed
by an auxiliary function addAssociation whose effect is de-
scribed by the association predicate introduced in Section 3
(12). It should be noted that when performing an add op-
eration both an object version and a versionable object are
included, at versions and repository levels, respectively. The
versionable object maintains the references to all versions
it assumes during a SADP, which belong to different model
versions (fact represented by means of version predicate intro-
duced in Section 3). In addition, associations are set among
versionable objects (repository level).

Although functional specifications of operations (Fig-
ure 3) are expressed by using non-primitive operations or
other operations already defined in the domain, they can be
translated in a sequence of primitive operations add, delete,
and/or modify. From this, it is possible to express these more
complex operations in terms of added and deleted predicates
introduced in (7) and (8). For illustration purposes, let us
consider again the addComponent(s, c, lResps, lPorts, lprops) op-
eration. If it is applied to a model version m, then a version
of a component c (and its ports and responsibilities), will
belong to the successor model version (apply(φ, m)), as it is
defined in (22).

(∀φ, s, c, lResps, lPorts, m)addComponent(s, c,

lResps, lPorts, lprops) ∈ φ

⇒ added(c, apply(φ, m)) ∧ (∃asc)inferred

Association(asc, s, c, apply(φ, m)) ∧
((∀r ∈ lResps)added(r, apply(φ, m)) ∧

(∃acr)inferredAssociation(asr, r, c,

apply(φ, m))) ∧ ((∀p ∈ lPorts)added(p,

apply(φ, m)) ∧ (∃acp)inferredAssociation

(asp, p, c, apply(φ, m))). (22)

Therefore, the definition of new operations allows enlarg-
ing the set of operations, without modifying the successor
state axiom defined in (9), maintaining the coherency of the
proposed model.

The precondition for applying the addComponent oper-
ation is specified in (23), where the poss(op, m) predicate
expresses that an operation op is applicable to a given model
version m.

(∀s, c, lResps, lPorts, m)poss(addComponent

(s, c, lResp, lPorts, lprops), m) ⇔ belong(s, m) ∧
¬belong(c, m) ∧ (∀r ∈ lResps)¬belong(r, m) ∧
(∀p ∈ lPorts)¬belong(p, m). (23)

Similarly to definition of basic operations, it is possible
to define the special ones. Figure 4 presents an example of
special operations. The delegateResponsibility(r, c1, c2) oper-
ation enables delegating a responsibility r from a component
c1 to a component c2. Responsibility delegation generally oc-
curs when a component is removed from a model version as
a consequence of a refinement activity, and a new (set of)
component (s) assumes (assume) the responsibilities of the
original component. If r is a responsibility of a component
c1 that belongs to model version m, and delegateResponsibil-
ity(r, c1, c2) operation is included in the sequence of opera-
tions applied to m, then, the responsibility r is assigned to c2
in the resulting model version.

The functional specification of delegateResponsibility in
Figure 4 presents the commands that compose this op-
eration. The arguments of delegateResponsibility are the

Figure 4: Specification of delegateResponsibility special operation.

C© 2012 Wiley Publishing Ltd Expert Systems, February 2013, Vol. 30, No. 1 41



Figure 5: Specification of applyControlLoop operation.

responsibility to be delegated (r), the component to what r is
currently assigned (c1), and the new component (c2) to what
r is going to be delegated. The delegation works by adding
a new RHasResp version (hr2), which represents a reified as-
sociation between c2 and r. Finally the version (hr1), which
represents that r was assigned to c1, is deleted.

In the same way as in (22) for addComponent operation,
delegateResponsibility operation can be described in terms of
added (7) and deleted (8) predicates. Expression (24) presents
delegateResponsibility specification using first-order logic.

(∀φ, r, c1, c2, m)delegateResponsibiliy

(r, c1, c2) ∈ φ

⇒ (∃hr2)added(hr2, apply(φ, m)) ∧
(∃hr1)deleted(hr1, apply(φ, m)) ∧
(∃ac2−hr2)(inferredAssociation(ac2−hr2,

c2, hr2, apply(φ, m)) ∧ (∃ahr2−r)(inferred

Association(ahr2−r, hr2, r, apply(φ, m))

(24)

In addition, expression (25) indicates the preconditions
of delegateResponsibility, which have to be satisfied to allow
the designer performs the operation. The precondition axiom
indicates that components c1 and c2, and the responsibility
to delegate (r) have to belong to the model version m, and
in such a model version, responsibility r is assigned to c1,
by means of hr1 version. Also, in model version m there

is not association among r and c2 representing that r is a
responsibility of c2.

(∀φ, c1, c2, r, m)poss(delegateResponsibiliy

(c1, c2, r), m)

⇔ belong(c1, m) ∧ belong(c2, m) ∧
belong(r, m) ∧ (∃hr1)belong(hr1, m) ∧
(∃ac1−hr1)inferredAssociation(ac1−hr1, c1,

hr1, m) ∧ (∃ahr1−r)inferredAssociation

(ahr1−r, hr1, r, m) ∧ (¬∃hr2)belong(hr2, m)

∧(¬∃ac2−hr2)inferredAssociation(ac2−hr2,

c2, hr2, m) ∧ (¬∃ahr2−r)inferredAssociation

(ahr2−r, hr2, r, m) (25)

Operations that apply an architecture pattern refine an
existent component in a new set of components and connec-
tors that are instantiated from the elements types provided
by the pattern. They interact with the designer asking for
the responsibilities to be delegated, the way in which con-
nections of the external components should be attached to
the new ones. An example of pattern applying operation is
defined in Figure 5. In this case, applyControlLoop operation
is specified.

The applyControlLoop pattern comes from the pro-
cess control paradigm and defines an architecture, where

42 Expert Systems, February 2013, Vol. 30, No. 1 C© 2012 Wiley Publishing Ltd



Figure 6: Applying of applyControlLoop operation.

monitoring policies are activated in response to different
events produced by several sensors (Shaw, 1994). When ap-
plying these policies, they may also generate new events or
actions. The applyControlLoop(c) operation consists on re-
fining a component c. Such a component has several respon-
sibilities and is located on top of a layer (a type of component)
named SensorsActuatorsLayer. This layer acts as an interface
to the various devices that operate on the environment to be
controlled. To apply the control loop pattern, applyControl-
Loop operation performs a series of addComponent adding
the main elements of the solution: the Diagnosis component
is the responsible of monitoring the state of the devices and
their action rules; the Reactor component encapsulates ac-
tions predefined for certain situations requiring immediate
attention; and the PolicyManager component provides the
features for defining the possible actions to respond to the
possible situations informed from the sensors. Then, add-
Connector operation is employed to add two connectors to
create the pattern configuration. The roles of the connec-
tors are attached to the respective ports of the previously
added components, which are provided in an argument col-
lection of addConnector command. The next step is to dele-
gate the responsibilities of the original component c to each
new component. This is made by means of the get auxiliary
commands, to obtain a list of responsibilities, and the se-
lect auxiliary command, to select just the ones to delegate.
Then the loop auxiliary command (translated in this syntax
as for each – in) is using for iterating over the list of selected
responsibilities (lresps) and delegating each one to a child com-
ponent. Afterwards, it is necessary to reconfigure the attach-
ments among the components that existed before executing
the applyControlLoop operation. This is made, firstly, by get-
ting the ports of the c component (get command). Also, the
rest of the ports belonging to the model version are obtained
and assigned to lap. Finally, by iterating over the collection
of ports of the original component, the attached role of a
port of the original component is recovered and the designer

selects a port from lap (all ports in model version) to attach
to p.

Figure 6 shows the evolution from one model version to
other one, after applying a sequence of operations that con-
tains applyControlLoop(c) operation. It represents two suc-
cessive versions of the architectural model by using a Com-
ponent&Connector view. It is described by means of a no-
tation similar to ACME, in which the relationships between
versions are inferred. More operations for architectural pat-
terns applications are detailed in Roldán et al. (2006) and
Roldán (2009).

Other design operations that apply architectural patterns,
called tactics by Bass et al. (2003), do not modify the struc-
ture of the architectural model, but modify some proper-
ties of the affected design objects. Examples of these oper-
ations are applyIncreaseComputationaIEfficiency and apply-
IntroduceConcurrency (Figure 7). The first one, which was
introduced in the example of Section 3.3 works by gener-
ating a new version of component c (by means of modify
operation). This new version of c has a better processor since
its Processor property (introduced in Figure 1) has the value
provided by the CPUspeedValue argument, whereas the rest
of the properties keeps the same values as the previous ver-
sion). The second tactic applyIntroduceConcurrency works
by adding a characteristic denominated Concurrency to the
component c (by means of addCharacteristic operation) and
adding a new responsibility to c for achieving load balancing
features (by means of addResponsibility operation).

5. Case study

The proposed model was implemented by adopting the O-
Telos language (Jeusfeld et al., 2010) and their implemen-
tation on ConceptBase (Jeusfeld et al., 2010), a deductive
object-oriented database manager. ConceptBase integrates
techniques from deductive and object-oriented databases in
the logical framework of the O-Telos’ data model, a dialect

C© 2012 Wiley Publishing Ltd Expert Systems, February 2013, Vol. 30, No. 1 43



Figure 7: Specification of two tactics.

of Telos. Telos is a conceptual modelling language for rep-
resenting knowledge about information systems based on
the core concepts of object-oriented technology, integrity
constraints, and deductive rules. Therefore, the O-Telos lan-
guage was employed to formally specify the axioms of the
proposed model. In association, the introduced concepts are
translated in an object-oriented model by implementing them
as classes in ConceptBase. Since ConceptBase is a deductive
object base manager, it enables to check and validate the
proposed model.

The classes in Figure 8 express the double representation
of a design object as VersionableObject and ObjectVersion.
While VersionableObject represents a unique entity for each
design object that has been created and/or modified due
to model evolution during a design project, ObjectVersion
represents the different versions of each design object. The
relationship between a versionable object and one of its ob-
ject versions is represented by the version relationship. This
portion of the object-oriented model in ConceptBase is asso-
ciated to the axioms (1)–(3) that were introduced in Section
3. In addition, ModelVersion class supplies a snapshot de-
scription of the state of the design process at a given point

on a design project. The belong relationship in Figure 8 is an
inferred association from successor state axiom belong (9).
Furthermore, the model implemented in ConceptBase spec-
ifies the relationships existing among object versions. First,
it should be noted that from axiom (12), object versions be-
longing to a model version are not explicitly associated with
other versions belonging to the same model version. These
links are represented at the repository level (association re-
lationship). ModelVersion and ObjectVersion concepts are
generalized by AbstractVersion. The model is enriched with
relationships among object versions of different model ver-
sions, which enables the navigation along the history of the
object versions that comprise a given model version. The re-
lationships among object versions are represented by means
of explicit links, named versionHistory. Each transformation
operation (Operation class) that is applied to a model version
incorporates the necessary information in terms of the pre-
vious link to trace the model evolution. The modelHistory
relationship represents the sequence of operations applied
that gave rise a new model version (which is associated to the
meaning of axioms (4)–(6)) and makes it possible the defi-
nition of attributes oriented towards the characterization of

Figure 8: Implementation of the proposed model in ConceptBase.

44 Expert Systems, February 2013, Vol. 30, No. 1 C© 2012 Wiley Publishing Ltd



Figure 9: Successor state axiom (9) using O-Telos.

the history of the executed operations. Such a portion of the
model implements the semantics of axiom (10).

On the other hand, the types of design objects whose evo-
lution wants to be kept are represented by DesignObjectType
concept. These design object types specify the properties that
characterize them (Property), allowing the designer to de-
fine object versions with specific values for such properties
(see PropertyValue concept, which is related to ObjectVersion
through the value relationship). Also, the possible relation-
ships that can exist among these types are defined by do-
mainRelationship relationship. This portion of the model is
relative to the domain of the design process and is associated
to the predicates designObjectType, domainRelationship, and
property introduced in Section 4.1 to define a SADP domain.

Figure 9 shows a specification of the cases in which an
object version belongs to a model version (9), using the O-
Telos language. It is introduced as a rule of ModelVersion
(belongRule in Figure 9).

5.1. Developing the architecture of a monitoring system

To validate the proposed model, the design of the software
architecture of a monitoring system for an industrial pro-
cess (see Figure 10) has been carried out. It is based on
classical case studies addressed in other contributions (Shaw
et al., 1995; Bass et al., 2003). Monitoring activities are fo-
cused on two core distillation columns: an extractive dis-
tillation column and a solvent stripping one, both working
together in a highly integrated manner. The system should
monitor control loops and temperature sensors, by contin-
ued acquisition of real-time process data, tracking set-point
values, alarm conditions and outputs of valves, and compar-
ing them with normal pattern behaviour. The system should
also monitor the process state, using real-time process data
previously processed in combination with expert knowledge
in order to maintain process stability and performance. In
order to meet all these functional requirements, the system

Figure 10: Monitoring system for an industrial process.

should be connected to input and output devices. The main
functions considered in designing the monitoring system in-
clude administration of users and permissions, configuration
of input/output devices, priority-based event management,
process diagnosis, and specification of warning and process
protective actions.

Figure 11 portrays a partial view of the design process
under study. As it is illustrated in the figure, each model
version results of applying a sequence of operations on the
design objects belonging to a previous model version, allow-
ing their evolution to a new model version, which contains
the resulting object versions.

The first model version (ModelVersion_1) is the result of a
synthesis design decision. This design decision is materialized
by the sequence of operations phi1, which is applied on the
initial model version InitialModelVersion.

phi1 =< addSystem(‘MonitoringSystem’) >

The sequence phi1 comprises a single operation, addSys-
tem(‘MonitoringSystem’), represented by AddSystemMoni-
toringSystem operation in Figure 11. As a consequence, a
first object version of MonitoringSystem is added at the ver-
sion level (see ObjectVersion_1 in Figure 11), and a version-
able object (see VersionableObject_1 in Figure 11) is added
on repository. On ModelVersion_1, a new sequence of oper-
ations phi2 is applied, which comprises a series of addQuali-
tyRequirement and addFunctionalRequirement operations:

phi2 =< addQualityRequirement(Object

Version 1, ‘QRModificability’, []),

addQualityRequirement(ObjectVersion 1,

‘QRPerformance’, []),

addFunctionalRequirement(ObjectVersion 1,

‘FRProcessDataAdquisition’, []),

addFunctionalRequirement(ObjectVersion 1,

‘FRSetPointValuesTracking’, []),

addFunctionalRequirement(ObjectVersion 1,

‘FRAlarmConditionsTracking’, []),

addFunctionalRequirement(ObjectVersion 1,

‘FRProcessStateMonitoring’, []),

addFunctionalRequirement(ObjectVersion 1,

C© 2012 Wiley Publishing Ltd Expert Systems, February 2013, Vol. 30, No. 1 45



Figure 11: Design decisions view and model version structure in ConceptBase.

‘FRUsers&PermissionsAdministration’, []),

addFunctionalRequirement(ObjectVersion 1,

‘FRIODevicesConfiguration’, []),

addFunctionalRequirement(ObjectVersion 1,

‘FRWarning&ProtectiveActionsSpecif ’, []) >,

where ObjectVersion_1 is the object version of Monitor-
ingSystem that makes explicit in the architectural model the
requirements to be achieved. By this applying, ModelVer-
sion_2 is obtained.

The next design activity consists on defining a set of quality
scenarios to make the quality requirements more concrete, to
make their assessment easier. It is materialized and captured
in a sequence of addQualityScenario operations applied on
ModelVersion_2, which gives rise ModelVersion_3:

phi3 = < addQualityScenario

(V1QRModifiability, ‘SceModifiability1’,

[‘A new sensor is attached. The system has to

get it without modifications’]),

addQualityScenario(V1QRModifiability,

‘SceModifiability2’, [‘A process operator

should easely configure 70% of the system

functionality’]),

addQualityScenario

(V 1QRModifiability, ‘SceConfigurability’,

[‘New events to monitor must be defined and

priorities assigned to existent events change.

These modifications have a minimal impact

on the system’]),

addQualityScenario

(V 1QRFlexibility, ‘ScePerformance1’,

[‘An abnormal situation is detected by

sensors. The system should start corrective

or alarm action in response to it in less

than 1 second.’], addQualityScenario

(V 1QRFlexibility, ‘ScePerformance2’,

[‘The average time taken to provide a

response to any kind of event should not

be longer than 5 seconds.’]) > .

It should be noted that the set of object versions generated
by the sequences of operations applied on ModelVersion_1
and ModelVersion_2 are not shown for clarity reasons. Con-
sequently, the four components are added to the ModelVer-
sion_4 as a consequence of executing the following sequence
of operations:

phi4 = < addComponent(ObjectVersion 1,

‘Control&Diagnosis’, [‘RDiagnosis’,

‘REventManaging’, ‘RIODevicesConfig’,

‘RWarning&ProtectiveActionsLaunching’],

[‘C&DPort1’, ‘C&DPort2’, ‘C&DPort3’], []),

addComponent(ObjectVersion 1, ‘Sensor

ActuatorLayer’, [‘RReceivingSensorsData’,

‘RSendingCommandToActuators’], [‘SALPort1’,

‘SALPort2’, ‘SALPort3’], []),

addComponent(V 1SysMonitoring,

‘PConfiguration’, [‘RDevicesCfg’, ‘RAlertsCfg’,

46 Expert Systems, February 2013, Vol. 30, No. 1 C© 2012 Wiley Publishing Ltd



‘RProtectiveActionsCfg’], [‘ConfPort1’,

‘ConfPort2’, ‘ConfPort3’], []),

addComponent(ObjectVersion 1,

‘UserInterface’, [‘RParametersValuesInput’,

‘RInfoVisualization’, ‘RReports’],

[‘U IPort1’], []) >,

where ObjectVersion_1 is the object version of Monitor-
ingSystem. These operations add an object version of Con-
trol&Diagnosis, SensorActuatorLayer, Configuration, and
UserInterface components at the versions level and their
respective versionable objects (Figure 11 only shows Ob-
jectVersion_16 and VersionableObject _16, representing Con-
trol&Diagnosis component) on repository.

The next design decision addresses how these components
are connected and the characteristics of the connections. It
is expressed in the following sequence of operations:

phi5 = < addConnector(ObjectVersion 1,

‘CC&DSAL’, [‘CC&DSALRole1’,

‘CC&DSALRole2’],

[V 1SALPort1, V 1C&DPort1], []),

addConnector(ObjectVersion 1, ‘CSALC&D’,

[‘CSALC&DRole1’, ‘CSALC&DRole2’],

[V 1SALPort2, V 1C&DPort2], []),

addConnector(ObjectVersion 1, ‘CConfSAL’,

[‘CConfSALRole1’, ‘CConfSALRole2’],

[V 1SALPort3, V 1ConfPort1], []),

addConnector(ObjectVersion 1, ‘CC&AConf ’,

[‘CC&AConfRole1’, ‘CC&AConfRole2’],

[V 1C&APort3, V 1ConfPort2], []),

addConnector(ObjectVersion 1, ‘CConfUI ’,

[‘CConfUIRole1’, ‘CConfUIRole2’],

[V 1ConfPort3, V 1UIPort1], []) >

This sequence is executed on ModelVersion_4 and gives
rise to ModelVersion_5. Now, at this point of the design
process, the designer considers the applying of control loop
architectural pattern, which leads to ModelVersion_6. In
Figure 11, we can observe that the ObjectVersion_16 (Con-
trol&Diagnosis component) belongs to the ModelVersion_4
(represented by the link denominated as belong), but not be-
long to the model version ModelVersion_6. This fact is due
to the Control&Diagnosis component is refined in three new
components through the applying of the sequence of opera-
tions phi6 on ModelVersion_5 (see Figure 11):

phi6 = < applyControlLoop

(ObjectVersion 16) >

These three new components added are: Diagnosis (Ob-
jectVersion_57 in Figure 11), PolicyManager (ObjectVer-
sion_58 in Figure 11), and Reactor (ObjectVersion_59 in Fig-
ure 11). As it was specified in Figure 5, the applyControlLoop

operation asks the designer the necessary information for
delegating responsibilities, and for attaching previous con-
nectors to the components of the new configuration. By
focusing the attention on the history link from ModelVer-
sion_5 to ModelVersion_6 (s64685658_922 modelHistory), it
is observed that the applied operation was captured by the
ApplyControlLoopOnControlAndDiagnosis object.

Figure 12 shows the elements of an object version. In
this case, it is illustrated a version of a Diagnosis compo-
nent (ObjectVersion_57). The link versionHistory captures
the information of the performed operation that generated
it (ApplyControlLoopOnControlAndDiagnosis), its argument
(ObjectVersion_16, the refined component), and its results
(ObjectVersion_57, . . . ,59 represent components, ObjectVer-
sion_60 . . . 61 are connectors, and the other object versions
are instances of responsibilities, ports, and roles generated
by the ApplyControlLoopOperation).

5.2. Reasoning capabilities

The proposed model enables the capture of design process
states that were reached during a SADP. This section shows
how this proposal supports reasoning to recover captured
knowledge and answer questions about how the design pro-
cess took place. Queries are answered by navigating through
the model history, by tracing the captured operations and
their predecessor versions and successor versions. Such a
tracing begins from a particular version and moves back-
wards or forwards depending on the intended information
to recover. A set of queries is formulated with the aim of
showing the reader the feasibility of extending the model in
order to infer more information about the SADP from the
knowledge base. So, the examples do not pretend to show
how a designer would interact with the knowledge base. If
this type of interaction were considered valuable, an appro-
priate and user-friendly interface would need to be designed.

For example, consider the following queries:

(1) Which design operations originated a given design state?

A design state is represented by model version concept. As
it was introduced in Section 2.2, it is possible to reconstruct a
model version mi+1 by applying all the sequence of operations
from the initial model version m0. This fact is represented in
expression (26). Therefore, the sequence of operations φ1 •
. . . • φi • φi+1 answers which operations were applied to
obtain the model version mi+1.

mi+1 = apply(φi+1, mi);
mi = apply(φi, mi−1); . . . ;
m1 = apply(φ1, m0)

mi+1 = apply(φi+1,

apply(φi, apply(. . . apply(φ1, m0) . . .)))

mi+1 = apply(φ1 • . . . • φi φi+1, m0). (26)

In the ConceptBase implementation of the proposed
model, when a sequence of operation is performed, it is cap-
tured by means of a modelHistory predicate. Therefore, φ1 •
φ2 • φ3 • φ4 • φ5 • φ6 is the sequence of operations applied to
the InitialModelVersion to obtain the ModelVersion_6 model
version. This is retrieved from the knowledge base using

C© 2012 Wiley Publishing Ltd Expert Systems, February 2013, Vol. 30, No. 1 47



Figure 12: ObjectVersion view: object version of diagnosis component.

the GenericQueryClass concept (Figure 13), an O-Telos con-
struct. A generic query class in ConceptBase is defined as a
specialization of a class whose instances may be part of the
sought answer. Therefore, to ask about the operations ap-
plied to a model version, it is possible to formulate the query

as a specialization of ModelVersion class. In this particular
case, it is named AppliedOperation. In turn, the modelVer-
sion parameter is defined to specify the particular model
version to ask, in this case ModelVersion_6 (AppliedOpera-
tion[ModelVersion_6/modelVersion] in Figure 13), and the

Figure 13: Query about sequence of operations applied to InitialModelVersion to obtain ModelVersion_6.

48 Expert Systems, February 2013, Vol. 30, No. 1 C© 2012 Wiley Publishing Ltd



Figure 14: Query about operations applied to ObjectVersion_16.

appliedOperation attribute is defined to capture the answer.
Moreover, the instances of the AppliedOperation query are
constrained by means of the c constraint, specified in Fig-
ure 13. This constraint will identify only the modelVersion
specified by the input parameter.

(2) Which are the alternative successor model versions of a
certain model version?

Given a model version, for example, ModelVersion_5, it
is possible to apply several design operations evolving the
SADP to different states. This fact is represented by the model
History predicate, which link the predecessor model version
with the successor model version. If ms is the result of apply
the sequence φs to the mp model version (ms = apply(φs, mp)),
then mp is the predecessor model version and ms is the suc-
cessor model version. In consequence, a model version has a
unique predecessor model version (except the initial model
version) and a model version can have zero, one, or more
successor model versions. Each successor model version rep-
resents an alternative design state reached during the design
process. Note that, in the case study, only a successor model
version was proposed for InitialModelVersion, ModelVer-
sion_1, ModelVersion_2, ModelVersion_3, ModelVersion_4,
and ModelVersion_5. If ADD method is considered, archi-
tectural patterns (defined as design operation in this pro-
posal) are chosen at given state (model version) to fulfil a set
of requirements (functional and quality requirements). From
the instantiation of an architectural pattern (execution of
the design operation), several elements (like components and
connectors) are included in the architectural model, evolving
the design state a new model version. Therefore, at a given
model version, as ModelVersion_5, it is possible to perform a
sequence of operations including ApplyControlLoop opera-
tion, evolving the design to ModelVersion_6 (Figure 11). This

operation was performed to address the requirements about
activate monitoring policies in response to different events
produced by several sensors. If the designer selects another
quality requirement to reach, then another model version is
defined to represent the new design state.

(3) How did a design object change along the design process?

The versions of design objects are represented by object
version concept. When an operation is applied, the effects of
the operation can add new object versions (represented by
the added predicate, expression (7)) or delete object versions
(represented by the deleted predicate, expression (8)) to a
model version. For example, when the applyControlLoop op-
eration was applied to ModelVersion_5, the ObjectVersion_16
was deleted (therefore, it does not belong to ModelVer-
sion_6, Figure 11), and several object versions were added
(ObjectVersion_57–59 in Figure 11). In the ConceptBase im-
plementation, these operation effects were captured by ver-
sionHistory relationship. Therefore, to answer this query, a
generic query class is defined (Figure 14). Figure 14 shows
that ObjectVersion_16 was refined in several object versions,
described by result attribute, by the application of ApplyCon-
trolLoop operation.

(4) Which were the products generated due to the execution
of a sequence of operations?

This knowledge is retrieved from expression (9) that states
which object versions belong to the version model as a result
of applying the sequence of operations φ on model version
m. Figure 15 shows the results of asking ModelVersionView
query for retrieving all model versions and their belonging
object versions. In the results window, ModelVersion_1, Mod-
elVersion_2, and a partial ModelVersion_3 from the devel-
oped case study are shown.

C© 2012 Wiley Publishing Ltd Expert Systems, February 2013, Vol. 30, No. 1 49



Figure 15: Query about object versions belonging to model versions.

6. Related work and discussion

Several approaches for representing architectural design de-
cisions and architectural design rationale have been recently
proposed. They assist software architects in their decision-
making activities by capturing and characterizing architec-
tural knowledge. Most of these tools are based on conceptual
or semi-formal models, which provide a characterization and
interpretation of SADP and make the emphasis on specifics
activities of SADP. Tyree and Akerman (2005) have proposed
a template of attributes to represent architectural design de-
cisions. Such an approach allows the designers documenting
some critical evolutions of SADP. The approach discussed
in Capilla et al. (2007) is similar, but instead of providing a
complete list of attributes to describe a design decision, they
propose the use of mandatory and optional attributes that
can be tailored according to different needs for making more
agile the efforts of capturing a design decision. In addition,
they include specific attributes and relationships aimed to
support the evolution of design decisions. Archium is a tool
that models design decisions and their relationships with
resulting components (Jansen & Bosch, 2005). It is based
on a conceptual model for representing architectural design
decisions and their context, which allows keeping the evolu-
tion of an architecture design by keeping architectural deltas

(changes). The perspective employed in this approach is dif-
ferent from ours since the design decisions are not explicitly
captured; they remain as tacit knowledge. Hence, the tacit
knowledge embedded in the captured design is used to trace
back from the changes to the decisions they originated from
(Jansen et al., 2008). Contrary to this perspective, our ap-
proach captures the design decisions by materializing them
in a sequence of operations that is applied on the current
model version. In this way, the design decisions are captured
during the SADP and not after. Ali Babar and Gorton (2007)
propose another framework for the capture and recover of
architecture knowledge called Process-centric Architecture
Knowledge Management Environment (PAKME). PAKME
uses a data model for characterizing architectural constructs
(such as design decisions, alternatives, rationale, and qual-
ity attributes), their attributes and relationships. Each de-
sign decision is captured as a case along with rationale and
contextual information using a template. The main function
of this tool is to support general knowledge representation
such as design patterns or tactics in order to facilitate archi-
tectural knowledge reuse, goal that is just partially achieved.
The primary purpose of our proposal, besides supporting
architectural knowledge representation, is to assist the ar-
chitectural development process, providing the elements to
define a proper domain model. Also, it is important to note

50 Expert Systems, February 2013, Vol. 30, No. 1 C© 2012 Wiley Publishing Ltd



that a tool based on the proposed model could be opened to
allow integration with external knowledge sources, in order
to support their conceptual models and operations.

Besides the valuable contribution to the capture, codifi-
cation, and partially retrieving of the knowledge (generated
or applied) in a design process, the models that underlie the
aforementioned approaches lacks formalism. On the con-
trary, our approach is formalized on situation calculus and
first-order logic, which allows us to define the model pre-
cisely. Such a formalization serves, in some way, as a speci-
fication for the design of computational tools for capturing
the knowledge about SADP (Roldán et al., 2010).

There are many contributions that use situation calcu-
lus for modelling dynamic domains. Albrecht et al. (2003)
describe a situation calculus agent system for e-business.
Agents’ knowledge about actions and their effects is rep-
resented using the conventions of situation calculus. This
knowledge enables the agents to keep track of the world and
to deduce the effects of plans of action, all of which are
applicable to e-business needs. Koubarakis and Plexousakis
(2002) presented an application of situation calculus for en-
terprise and business process modelling. They propose a for-
mal framework to represent knowledge about organizations
and their business processes. The use of situation calculus
permits them to verify specific correctness properties of the
specifications.

In our proposal, situation calculus is not employed as a
reasoning formalism to obtain a plan of action to guide the
design activities. Instead, it is applied as a modelling formal-
ism for representing design knowledge. Situation calculus is
used for expressing without ambiguity when it is possible to
perform an operation in a given instant of the design process.
In addition, situation calculus allows us to determine which
versions of the several objects, that have been generated, be-
long to that point of SADP (in other words, to a particular
version model).

Since the proposed model is intended to record the evo-
lution of a design process through the tracking of all the
generated versions, it shares some similarities with other
versioning approaches like software configuration manage-
ment (SCM) systems (Westfechtel, 1999), database manage-
ment systems, ontology management, and knowledge man-
agement frameworks (Maliappis & Sideridis, 2004). These
approaches also provide support for the administration of
design process products and their evolution (Westfechtel
& Conradi, 2003). Particularly, as Westfechtel (1999) has
pointed out, SCM systems have proved to be an indispens-
able aid in organizing the products generated along big de-
velopment efforts. However, their underlying data models,
to represent versions, are very simple. Indeed, SCM systems
have been created just to focus on the products of develop-
ment processes, neglecting the representation of the design
activities, the decisions that were taken, the people and com-
puterized tools that performed such activities, and the ratio-
nale that underlies the adopted decisions. Thus, they do not
satisfy the need of capturing the design knowledge. On the
contrary, once a design stage is complete, what remains is
mainly the final artefact, but there is no explicit representa-
tion of how this product was obtained.

The proposed formalism can be specialized to a specific
domain model that includes concepts of a particular software
architectures domain. A domain model serves as a common

language for communication among the actors that partici-
pate in a design process. Since all modelling concepts (design
object types) are clearly defined and related to other concepts,
the software architectural model is easier to understand.

Despite of the benefits of the present proposal on captur-
ing and representing SADP as the process takes place, the
approach has some limitations. The main restriction is in-
herent to the size of the repository that keeps all the design
operations performed and versions generated during an ar-
chitectural design process. A way of diminishing the problem
is the definition of high-level operations, which encapsulate
complex decisions (that could comprise dozens of basic op-
erations in just one operation). It must be also stated, that
in order to obtain advantages of the model, it should be in-
tegrated to other tools for supporting architectural design,
thus reducing the overhead of performing design operations
by including specific tool operations as part of the SADP
domain.

It should be mentioned that in this proposal, the defined
design operations do not cover all the activities of the soft-
ware architecture life cycle (Hofmeister et al., 2007; Tang
et al., 2010), and just representative analysis and synthesis
design operations have been proposed. Mainly, the current
operations are focused on eliciting requirements and manip-
ulating (adding, modifying, deleting, and refining) architec-
tural elements like components, connectors, or responsibil-
ities. However, the set of operations can be easily extended
to design operations related to other activities of the archi-
tecture life cycle, like the set of operations for evaluation
proposed in Roldán (2009).

The proposed formal model set the grounds for develop-
ing a tool that supports SADP, which makes possible the
representation of types and relationships of specific domains
as well as the definition of operations to manage the design
products. The model provides the necessary mechanisms to
capture and represent the performed sequences of operations
as design decisions, along with their resulting products, thus
mitigating the problem of overloading the designer’s work
with documenting approaches that do not fit to the natu-
ral course of SADP. The representation capabilities of the
model goes beyond the simple design decisions documenta-
tion, where information is just informally stored in textual,
template-based, or graphical formats.

The next step in domain operations definition is trans-
forming the existent operations in requirements or goal
driven operations. It consists in adding an extra argument
(or term) to an operation for indicating which is the goal to
be reached when applying such an operation, and including
special relationships with ‘achieves’ or ‘satisfies’ semantic to
link the results and the predecessor versions.

Some research in collaborative design has been carried out
by the authors (Gonnet et al., 2007) exploring the utilization
of situation calculus for conflicts detection and resolution.
This work needs being extended in the field of software ar-
chitectures design process.

7. Conclusions

The model proposed in this paper captures the operations
that generate each design product during the SADP, and
therefore, it enables the designer to get a better understanding

C© 2012 Wiley Publishing Ltd Expert Systems, February 2013, Vol. 30, No. 1 51



of the information on how the design objects have been ob-
tained. It also offers an explicit mechanism to manage the
different model versions generated during the SADP. Thus,
it allows the tracing of the SADP and its resulting products.
The proposed formalism records the design decisions as they
are made (by means of capturing the executed operations)
along with their impact on the architectural model (the re-
sults of the operations). This is a fundamental step towards
the development of a knowledge base to support the SADP
and to guide designers in the different activities of a design
project, setting the grounds for learning, future reuse, and for
proposals of formal means for detecting potential conflicts.

Situation calculus, the formal background of the proposed
framework, allows us to represent the evolution of a SADP
by means of the specification of a set of actions, fluents,
state successor axioms, and action preconditions. The situa-
tions are represented by the model version concept. Actions
are add, delete, and modify primitive operations, which con-
form the several sequences of operations that are applied
to generate a new situation (model version). The proposed
model also includes complex operations (design operations)
made of simpler ones. Action preconditions axioms allow
us expressing without ambiguities when an operation can be
performed in a specific state of the design process. belong is
a fluent, which specifies the object versions that are part of a
model version. This fact is represented by a very simple suc-
cessor state axiom (9), using added and deleted predicates. In
addition, the representation of a design object at two levels,
versionable object and object version, allow us to maintain
just one fluent (belong) in the model. Associations among
design objects are represented at the repository level, and
as a result, they are not defined as fluents. Therefore, our
proposal requires only one successor state axiom (9), which
is a valuable contribution in order to obtain a compact and
simple model.

Furthermore, this contribution uses an operational per-
spective where design decisions can be modelled by means of
design operations. This approach is employed in other con-
tributions like Bass et al. (2003). The structure of the concep-
tual framework allows the easy definition of specific design
operations, like applyControlLoop and applyIncreaseCompu-
tationalEfficiency, without modifying the successor state ax-
iom (9). Similarly, other design operations, like the architec-
tural patterns and tactics defined by Bass et al. (2003), can
be specified.

The model offers an explicit mechanism, based on situa-
tion calculus, to represent the different design process states
that are reached during a SADP. Using this feature, it is
possible to retrieve the history of a given model version or
a specific version of an architectural element. A computa-
tional implementation of this capability will show a view
the architectural decisions in a chronological order, to better
understand the decision-making process.

Acknowledgements

The authors wish to acknowledge the financial support re-
ceived from CONICET, Universidad Tecnológica Nacional
and Agencia Nacional de Promoción Cientı́fica y Tec-
nológica (PAE PICT 02315).

References

ALBRECHT, C., D. DEAN and J. HANSEN (2003) Using situation cal-
culus for e-business agents, Expert Systems with Applications, 24,
391–397.

ALI BABAR, M. and I. GORTON (2007) A tool for managing soft-
ware architecture knowledge, in Proceedings of the Second Work-
shop on SHAring and Reusing architectural Knowledge Architecture,
Rationale, and Design Intent (SHARK-ADI ’07), Washington,
DC: IEEE Computer Society, 11–11. DOI = 10.1109/SHARK-
ADI.2007.1.

BACHMANN, F., L. BASS and M. KLEIN (2003) Preliminary design of
ArchE: a software architecture design assistant, Technical Report
CMU/SEI-2003-TR-021, Carnegie Mellon University, Pittsburgh,
Pennsylvania.

BASS, L., P. CLEMENTS and R. KAZMAN (2003) Software architecture
in practice, 2nd edn, MA: Addison-Wesley.

CAPILLA, R., F. NAVA and A. TANG (2007) Attributes for character-
izing the evolution of architectural design decisions, in Proceedings
of the Third International IEEE Workshop on Software Evolvability,
IEEE CS, Paris, France, 15–22.

CLEMENTS, P., F. BACHMANN, L. BASS, D. GARLAN, J. IVERS, R. LIT-
TLE, P. MERSON, R. NORD and J. STAFFORD (2010) Documenting
Software Architectures: Views and Beyond, 2nd edn, MA: Addison
Wesley.

DINGSØYR, T. and H. VAN VLIET (2009) Introduction to software
architecture and knowledge management, in M. Ali Babar, T.
Dingsøyr, P. Lago and H. van Vliet (eds), Software Architec-
ture Knowledge Management, Theory and Practice, Heidelberg:
Springer, 1–17.

GARLAN, D., R. T. MONROE and D. WILE (2000) Acme: architectural
description of component-based systems, in G. T. Leavens and M.
Sitaraman (eds), Foundations of component-based systems, New
York: Cambridge University Press, 47–68.

GONNET, S., H. LEONE and G. HENNING (2007) A model for captur-
ing and representing the engineering process, Expert Systems with
Applications, 33, 881–902, DOI = 10.1016/j.eswa.2006.07.004.

HOFMEISTER, C., P. KRUCHTEN, R. L. NORD, H. OBBINK, A. RAN

and P. AMERICA (2007) A general model of software architecture
design derived from five industrial approaches, Journal of Systems
and Software, 80, 106–126.

IEEE (2000) IEEE 1417 Recommended Practice for Architectural De-
scription of Software-Intensive Systems, New York: IEEE Press.

JANSEN, A. and J. BOSCH (2005) Software architecture as a set of ar-
chitectural design decisions, in Proceedings of the 5th IEEE/IFIP
Working Conference on Software Architecture (WICSA 2005),
Washington, DC: IEEE Computer Society, 109–120.

JANSEN, A., J. BOSCH and P. AVGERIOU (2008), Documenting after the
fact: recovering architectural design decisions, Journal of Systems
and Software, 81, 536–557.

JEUSFELD, A., C. QUIX and M. JARKE (2010) ConceptBase V7.2 User
Manual, Aachen: RWTH Aachen, Informatik 5.

KOUBARAKIS, M. and D. PLEXOUSAKIS (2002) A formal framework
for business process modelling and design, Information Systems,
27, 299–319.

KRUCHTEN, P., P. LAGO and H. VAN VLIET (2006) Building up and
reasoning about architectural knowledge, Quality of Software Ar-
chitecture (QoSA), Heidelberg: Springer-Verlag, 43–58.

MALIAPPIS, M. T. and A. B. SIDERIDIS (2004) A framework of knowl-
edge versioning management, Expert Systems, 21, 149–156.

MCCARTHY, J. (1963) Situations, Actions, and Causal Laws, Memo 2,
Stanford, CA: Stanford University Artificial Intelligence Project.

MEDVIDOVIC, N., D. ROSENBLUM, D. REDMILES and J. ROBBINS (2002)
Modeling software architectures in the Unified Modeling Lan-
guage, ACM Transaction on Software Engineering and Methodol-
ogy, 11, 2–57.

MEDVIDOVIC, N., E. DASHOFY and R. TAYLOR (2007) Moving archi-
tectural description from under the technology lamppost, Infor-
mation and Software Technology, 49, 12–31.

REITER, R. (2001) Knowledge in Action: Logical Foundation for De-
scribing and Implementing Dynamical Systems, Cambridge, Mas-
sachusetts: The MIT Press.

ROLDAN, M. L. (2009) Un modelo para la representación de
conocimiento y razonamiento en el proceso de diseño de arquitecturas

52 Expert Systems, February 2013, Vol. 30, No. 1 C© 2012 Wiley Publishing Ltd



de software, PhD Dissertation, Universidad Tecnológica Nacional,
Facultad Regional Santa Fe, Argentina.

ROLDAN, M. L., S. GONNET and H. LEONE (2006) A model for
capturing and tracing architectural designs, in Advanced Soft-
ware Engineering: Expanding the Frontiers of Software Technology,
IFIP International Federation for Information Processing, Boston:
Springer, Vol. 219/2006, 16–31.

ROLDAN, M. L., S. GONNET and H. LEONE (2010) TracED: a
tool for capturing and tracing engineering design processes, Ad-
vances in Engineering Software, 41, 1087–1109. DOI = 10.1016/
j.advengsoft.2010.06.006.

SCHERL, R. and H. LEVESQUE (2003) Knowledge, action, and the
frame problem, Artificial Intelligence, 144, 1–39.

SHAW, M. (1994) Beyond objects: a software design paradigm based
on process control, Technical Report CMU-CS-94–154, Carnegie
Mellon University, Pittsburgh.

SHAW, M., D. GARLAN, R. ALLEN, D. KLEIN, J. OCKERBLOOM, C.
SCOTTT and M. SCHUMACHER (1995) Candidate Model Problems
in Software Architecture, Pittsburgh: The Software Architecture
Group Computer Science Department, Carnegie Mellon Univer-
sity

TANG, A., P. AVGERIOU, A. JANSEN, R. CAPILLA and M. ALI (2010) A
comparative study of architecture knowledge management tools,
Journal of Systems and Software, 83, 352–370.

TAYLOR, R. and A. VAN DER HOEK (2007) Software design and ar-
chitecture: the once and future focus of software engineering, in
International Conference on Software Engineering, Future of Soft-
ware Engineering (FOSE ’07), 226–243.

TYREE, J. and A. AKERMAN (2005) Architecture decisions: demysti-
fying architecture, IEEE Software, 22, 19–27.

WEINREICH, R. and G. BUCHGEHER (2011) Towards supporting the
software architecture life cycle, Journal of Systems and Software,
85(3), 546–561.

WEINREICH, R. and G. BUCHGEHER (2011) Towards supporting the
software architecture life cycle, Journal of Systems and Software,
In Press, Corrected Proof, Available online 7 June 2011.

WESTFECHTEL, B. (1999) Models and tools for managing development
processes, Lecture Notes in Computer Science, Berlin, Heidelberg:
Springer, 1646.

WESTFECHTEL, B. and R. CONRADI (2003) Software architecture and
software configuration management, Lecture Notes in Computer
Science, Berlin, Heidelberg: Springer, Vol. 2649, 24–39.

The authors

Marı́a Luciana Roldán

Marı́a Luciana Roldán received her Information Systems
Engineering degree from ‘Universidad Tecnológica Na-

cional’ (UTN), Santa Fe, Argentina, in 2002. She also ob-
tained her PhD degree in Engineering from ‘Universidad
Tecnológica Nacional’ in 2009. She also has a Postdoctoral
Research Fellowship from the National Council for Scien-
tific and Technical Research of Argentina (CONICET), to
work at ‘Instituto de Desarrollo y Diseño’ (INGAR). Her re-
search interests focus on software architectures, specially in
models and methods for capturing the design process and its
rationale. Additionally, she works as an Assistant Professor
at Universidad Tecnológica Nacional.

Silvio Gonnet

Silvio Gonnet received an Engineering degree in Information
Systems from ‘Universidad Tecnológica Nacional’ (UTN),
Santa Fe, Argentina, in 1998, and also obtained his PhD de-
gree in Engineering from ‘Universidad Nacional del Litoral’
(UNL) in 2003. He currently holds a Researcher position at
the National Council for Scientific and Technical Research of
Argentina (CONICET), to work at ‘Instituto de Desarrollo y
Diseño’ (INGAR). Also, he works as an Assistant Professor
at Universidad Tecnológica Nacional. His research interests
are in models to support the design process, software archi-
tectures, and semantic web.

Horacio Leone

Horacio Leone is a full Professor at the Department of In-
formation Systems Engineering of the ‘Facultad Regional
Santa Fe, Universidad Tecnológica Nacional’ (Santa Fe, Ar-
gentina), where he is currently the Department Head. He
also holds a Researcher position at the National Council for
Scientific and Technical Research of Argentina (CONICET),
working at ‘Instituto de Desarrollo y Diseño’. He obtained
his PhD degree in Chemical Engineering from ‘Universidad
Nacional del Litoral’ (Santa Fe, Argentina) in 1986 and was
a Postdoctoral Fellow at the Massachusetts Institute of Tech-
nology (1986–1989). His current research activities focus on
software architectures, models for supporting the design pro-
cess, semantic web applications to supply chain information
systems, and enterprise modelling. He has supervised several
PhD students.

C© 2012 Wiley Publishing Ltd Expert Systems, February 2013, Vol. 30, No. 1 53


