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a b s t r a c t

Models representing batch plants, especially flowshop facilities where all the products
require the same processing sequence, have received much attention in the last decades.
In particular, plant design and production scheduling have been addressed as disconnected
problems due to the tremendous combinatory complexity associated to their simultaneous
optimization. This paper develops a model for both design and scheduling of flowshop
batch plants considering mixed product campaign and parallel unit duplication. Thus, a
realistic formulation is attained, where industrial and commercial aspects are jointly taken
into account. The proposed approach is formulated as a Mixed Integer Linear Programming
model that determines the number of units per stages, unit and batch sizes and batch
sequencing in each unit in order to fulfill the demand requirements at minimum invest-
ment cost. A set of novel constraints is proposed where the number of batches of each
product in the campaign is an optimization variable. The approach performance is evalu-
ated through several numerical examples.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Batch processes are characterized by their flexibility and ability to produce low-volume products, sharing the same equip-
ment. The main classification of batch processes is based on the production path involved for products manufacture: flow-
shop or multiproduct batch plants are employed when all the products require all the stages following the same sequence of
operations, while, in jobshop or multipurpose batch plants, products can follow different processing sequences, not neces-
sarily employing all the stages.

In this paper, the study is focused on flowshop or multiproduct batch plants. The general design problem of this type of
facilities consists of determining: (a) the plant configuration, i.e. the number of parallel units required for each stage and,
sometimes, the assignment of intermediate storage between stages; (b) the unit and storage vessel sizes; and (c) the number
and size of batches for all the products, in order to optimize an economic performance measure while satisfying constraints
on the production requirements in the available time horizon. This problem has been generally formulated as a mixed-inte-
ger non linear programming (MINLP) model [1].

On the other hand, taking into account that all products, usually with similar recipes, are processed using the same stages,
production must be scheduled in order to improve the plant performance and avoid large inventory levels. According to
Papageorgiou and Pantelides [2], the campaign mode operation is particularly appropriate for plants working under stable
demand patterns over long planning horizons. The plant can be operated with mixed product campaigns (MPC), where in
. All rights reserved.
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Nomenclature

Sets
I set of products
J set of stages of batch plant
Kj set of available identical parallel units in each batch stage j
L set of production slots
SVj set of discrete sizes for stage j

Indices
i product
j stage
k unit
L slot
n number of batches of a product
p discrete size for batch unit
Pj number of available discrete sizes for a unit of stage j

Parameters
CCF capital charge factor
CTUP upper bound for the variable CTC (cycle time)
H time horizon
NBCUP

i maximum number of batches of product i in the composition of a campaign
Qi demand of product i in the time horizon H
SFij size factor of product i in stage j
tij processing times for each product i in stage j
VFjp discrete size for batch units in stage j

Binary variables
vjp binary variable that denotes if the units of stage j have size p
wijpn binary variable that represents the bilinear term vjp Xin

wwijpn binary variable that represents the cross product wijpnCT
Xin binary variable that denotes if the campaign has n batches of product i
Yijkl binary variable that assigns product i to slot l of unit k in stage j
Zjk binary variable that specify if unit k of stage j is employed

Continuous variables
Bi continuous variable that denotes the batch size of product i
CTC continuous variable that denotes the cycle time of the campaign
CTjk continuous variable that denotes the cycle time of unit k at stage j
ejkp continuous variable that represents the bilinear term Zjk vjp

NBCi continuous variable that represents the number of batches of product i included in the campaign
NBi continuous variable that represents the total number of batches of product i in the time horizon
NC continuous variable that represents the number of times that the campaign is repeated
TFjkl continuous variable that denotes the finishing time of slot l in unit k of stage j
TIjkl continuous variable that denotes the starting time of slot l in unit k of stage j
Vj continuous variable that denotes the size of a batch unit in stage j
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each campaign various batches of different products are manufactured and the same batches arrangement is cyclically
repeated over the time horizon. In this case, several decisions must be made at the scheduling level: the number of batches
of each product involved in the production campaign and their sequencing in order to optimize a suitable performance mea-
sure. This problem represents an important challenge given the combinatorial nature of scheduling decisions. Most formu-
lations for scheduling belong to the set of NP-complete problems [3] and, despite significant advances in optimization
approaches, there is still a number of major challenges and questions that remain unsolved [4]. When the plant design is
not a priori provided, the problem becomes worse, because both the number of batches of each product and the available
equipment are unknown. In this last case, in order to simplify the model, most of the formulations assume single product
campaigns (SPC), where all batches of a given product are manufactured before switching to another product. However, this
proposal is not appropriate for the production or commercial points of view.

The multistage nature of a batch plant allows four different storage options: (i) unlimited intermediate storage (UIS); (i)
finite intermediate storage (FIS); (iii) no intermediate storage (NIS); (iv) zero wait (ZW). In both the NIS and ZW modes, there
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is no storage between stages, while for UIS and FIS modes intermediate storage is provided. Intermediate materials can wait
in storage with unlimited capacity in UIS and limited capacity in FIS, or in the current processing unit in NIS. In the ZW mode,
the batch must be immediately transferred to a unit of the downstream stage after being processed.

In this work, a detailed MILP mathematical formulation for the simultaneous design and scheduling of flowshop plants is
addressed. Unlike the previous proposed approaches, the number and size of batches of each product in the campaign, the
number and size of process units for each stage and the production sequence in each unit are model variables. Considering
that the number of units in each stage and the number of batches in the campaign are unknown, the scheduling formulation
represents a great challenge from the modeling point of view. A slot-based continuous-time representation for modeling the
assignment of batches to units and their sequencing is employed. Taking into account the combinatorial nature of the sched-
uling problem, appropriate constraints must be included in the model to assess the cycle time of the production campaign,
fulfilling demands over the time horizon. In order to attain a general formulation, multistage facilities are assumed, including
out of phase unit duplication at every stage. The unit sizes are restricted to discrete values and an upper bound for the num-
ber of batches of each product in the campaign is provided, in order to keep the linearity of the problem.

Therefore, the proposed MILP model represents a novel approach where the simultaneous optimization of plant design
and scheduling considering MPCs can be solved to global optimality with reasonable computational effort. The approach
performance is assessed through the several examples where different values for the key problem parameters are analyzed.

This paper is organized as follows. In the next section a literature review is presented. In Section 3 the problem descrip-
tion and its main assumptions are stated; in Section 4 the mathematical formulation is described in detail, while in Section 5
several examples are solved in order to illustrate the proposed approach. Finally, conclusions and future works are discussed
in Section 6.
2. Literature review

Many papers have been published dealing with design and scheduling of multiproduct batch plants, but usually as decou-
pled problems. Moreover, in order to simplify the formulation, when both problems have been simultaneously addressed,
the simplest scheduling policy has been considered, namely SPC [1,5,6]. Although this assumption greatly simplifies the
design model, it is inappropriate from the commercial point of view, where a more steady supply of products is required.

Among the few contributions that simultaneously have considered design and scheduling with MPC, Birewar and
Grossmann [7] proved that MPC can reduce idle times, increasing equipment utilization. They proposed Mixed Integer Linear
Programming (MILP) models for the minimization of the cycle time with MPC, involving sequence-dependent transition
times. In order to simplify the formulation, only one unit per processing stage was admitted. In a later work [8], they incor-
porated new design alternatives in order to attain savings in the capital cost of batch plants. They considered simultaneous
synthesis, design and scheduling in a MINLP formulation. However, their model for the case of MPC with Zero Wait (ZW)
transfer policy did not assume parallel units. Later, in order to achieve MILP models, Voudouris and Grossmann [9] reformu-
lated these problems assuming a set of available discrete sizes for the units to be installed in the plant, but maintaining
previous assumptions. Finally these authors extended that approach in order to incorporate parallel units. However this last
approach was limited with an approximation for the cycle time [10]. Corsano et al. [11] proposed an approach for the simul-
taneous synthesis and design of multiproduct batch plant considering MPC, but they used a heuristic resolution strategy
where a limited set of preselected campaigns were included.

The scheduling problem of flowshop plants has also gained much attention in the literature. There are several excellent
review papers [4,12–17] where different modeling approaches and resolution strategies have been analyzed. Most often
scheduling formulations are expressed as mathematical programming models, especially through MILPs. Several papers have
been published dealing with short-term scheduling of multiproduct batch plants with parallel units but considering Unlim-
ited Intermediate Storage (UIS), which simplifies the formulation but is an unreal policy [18–23].

Many works has also resorted to heuristics approaches taking into account the NP nature of scheduling problem. For
example, Soewandi and Elmaghraby [24] compared several heuristics procedures to minimize the makespan. On the other
hand, Nowicki and Smutnicki [25] as well as Wardono and Fathi [26] used Tabu Search for this problem, while Hop and Nag-
urur [27] proposed a resolution strategy based on genetic algorithms.

Recently, focusing on mathematical programming based-approaches, Liu and Karimi [28,29] developed and evaluated a
series of slot-based and sequence-based MILP formulations for scheduling of multistage, multiproduct batch plants with
parallel units considering UIS and ZW policies. Given the plant structure and the number of batches of each product to be
processed in the available time horizon, the proposed model assigns batches to units in each stage in order to minimize
the makespan. Each stage is treated as a black box in which batches enter and exit without distinguishing the units involved.
Hence, these kinds of formulations cannot be incorporated to the design problem of multiproduct batch plants where the
units sizing must be also determined and makespan is not an appropriate performance measure. Taking into account that
long time horizons are used, formulations using MPC are more suitable and, therefore, the calculation of the cycle time must
be modeled in order to attain a more appropriate representation.

Summarizing the literature review in this area, articles have often focused on one problem, design or scheduling. Design
works have strongly simplified the formulation resorting to SPC. On the other hand, scheduling articles have assumed a given
plant and a predetermined number of batches. Though scheduling is a difficult problem, if the number of batches and the
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structure of the plant are unknown, the model complexity is severely increased. Previous approaches have not posed solu-
tions considering MPC, typically appropriate for stable scenarios and a good approximation when a new plant has to be
designed. Also, different performance measures have been used (makespan, earliness, tardiness, etc.) but not the minimiza-
tion of the cycle time, appropriate measure when long term time horizons and MPC are contemplated.

3. Problem description

Fig. 1 shows a flowshop batch plant with NJ stages. The plant processes a set of NI products that follow the same produc-
tion sequence.

The plant can be operated using a SPC or MPC approach. Fig. 2 shows an example of SPC for a plant composed by three
stages and one unit per stage. It can be noted that the total number of batches of product i1, NBi1 , are consecutively manu-
factured before changing to product i2. In the MPC case, a campaign can include several batches of all the products. This cam-
paign is repeated NC times over the time horizon. Fig. 3 shows an example of a multiproduct batch plant that produces three
products and involves three stages, with one unit per stage. The campaign composition is two batches of i3, and one of i1 and
i2, and the batches sequencing is i3–i2–i1–i3 on each unit.

The integrated problem for design, assignment and sequencing of batches for a flowshop plant can be stated as follows:
Given:

(a) a batch plant composed by a set J of processing stages,
(b) a set Kj of identical parallel units that can be allocated in each batch stage j,
(c) a set I of products that must be manufactured,
(d) the processing time of product i at stage j, tij, and the size factor of product i for stage j, SFij, i.e. the size needed at stage j

to produce 1 kg of final product i,
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Fig. 2. Gantt chart for single product campaign.
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(e) a set SVj ¼ fVFj1;VFj2; ::::;VFjPj
g of Pj available discrete sizes for stage j,

(f) a maximum number NBCUP
i of batches of product i in the composition of a campaign,

(g) a time horizon H over which product demands must be satisfied, and
(h) Qi, the demand of each product i over the time horizon H.

Determine:

(a) the batch plant design (number of parallel units operating out of phase in each stage and their corresponding sizes,
number and size of batches for each product),

(b) the configuration of the production campaign,
(c) the assignment of batches to processing units,
(d) the sequencing of batches in each processing unit,
(e) the number of times that the campaign is cyclically repeated over the time horizon.

The performance measure is minimizing the batch plant investment cost fulfilling the product demands over the time
horizon.

In the proposed model, the ZW transfer policy between stages is adopted. Also, batch transfer times between units are
very small and consequently negligible or included in the processing times.

The plant operates in MPC mode, i.e. the production campaign is composed by a set of batches of the different involved
products. The number of batches of each product i in the campaign is a decision variable. Only an upper bound for the num-
ber of batches of product i in the campaign, NBCUP

i , is established.
In order to model the assignment of batches to units and its sequencing, an asynchronous slot-based representation is

introduced. The slots correspond to time intervals of variable length where the batches will be assigned. If a batch of product
i must be processed on unit k of stage j, then it must be assigned to exactly one slot l in that unit. Moreover, in each slot of a
specific unit at most one batch of product can be processed.

The asynchronous representation requires postulating a priori an appropriate number of slots for each unit that inte-
grates the plant. This is not a trivial decision and represents an important trade-off between optimality and computational
performance. Taking into account that the number of batches of each product i in the campaign is a decision variable, with
upper bound equal to NBCUP

i , the same number of production slots for each unit is defined. Let L be the set of postulated
slots for each unit of each stage, then the cardinality of L is jLj ¼

P
iNBCUP

i . This assumption can be improved in order to
reduce the resolution time. It is also assumed that the assignment of batches to slots follows the same order in all the
stages.

Taking into account the numerous ways in which batches can be assigned to units and slots, the sequencing of batches
represents a problem of combinatorial nature. In this paper, in order to reduce alternative solutions and hence decrease com-
putational effort, assumptions about batches preordering and utilization of units and slots in each stage have been included
in the model formulation.
4. Model formulation

As already mentioned, the proposed model simultaneously solves the design and scheduling of multiproduct batch plants
considering MPC, which have been usually treated in decoupled form. This section describes the basic constraints and major
characteristics of the mathematical formulation.

In the following subsections, constraints for units and batches assignment, plant design, and production scheduling are
described. The objective function that minimizes the investment cost for the plant is also presented.

4.1. Allocation constraints

In order to assign products to slots and units, the following binary variables are defined:
Zjk ¼
1 if unit k of stage j is employed
0 otherwise

�

Yijkl ¼
1 if product i is assigned to slot l and

processed in unit k of stage j;

0 otherwise

8><
>:
Since parallel units in each stage j are identical and the number of postulated slots for each unit is the same, a batch of
product i can be processed at any slot of any unit k (k 2 Kj) with the same processing time and size factor. In order to reduce
the search space, it is assumed that units and slots of each stage are utilized in ascending order. Then, the following con-
straint establishes that unit k + 1 is used only if unit k has been already allocated:
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Zjk P Zjkþ1; 8j; k; kþ 1 2 Kj ð1Þ
Similarly, the following inequality assures that slot l + 1 is occupied only if slot l has been already allocated:
X
i

X
k

Yijkl P
X

i

X
k

Yijklþ1; 8j;1 6 l 6 jLj � 1 ð2Þ
Taking into account that if Zjk = 0) Yijkl = 0, i.e. if unit k of stage j is not utilized then this unit is not employed to process
any batch, the assignment variables Zjk and Yijkl can be linked in such a way that Zjk is activated when Yijkl is equal to one. This
condition is guaranteed by the constraint:
Yijkl 6 Zjk; 8i; j; l; k 2 Kj ð3Þ
Also, when unit k of stage j is employed, then at least a batch of product in a slot must be processed in that unit. Thus,
X
l

X
i

Yijkl P Zjk; 8j; k 2 Kj ð4Þ
In order to reduce the search space, assumptions about slots utilization are introducing in this formulation. Slot l can be
only assigned for processing one product at the most in a unit of stage j. Hence, the following constraint must be considered:
X

i

X
k

Yijkl 6 1; 8j; l ð5Þ
In particular, the constraint
X
i

X
l

2lY ijkl P
X

i

X
l

2lY ijkþ1l; 8l; j; k; kþ 1 2 Kj ð6Þ
is used in order to reduce the search space, and it establishes that the succession formed by the weighted sum of the slots
occupied in each unit of a stage forms a decreasing succession [30].

As a result of Eq. (5), the total number of slots used in each stage j is
P

iNBCi, where NBCi is the number of batches of prod-
uct i included in the campaign. Due to the overestimation of the postulated slots in each unit, some slots may be empty.

Finally, a preordering constraint on batches of different products is established. Each product batch must be assigned to
the same slot l in different stages
X

i

X
k

iYijkl ¼
X

i

X
k

iYij0kl 8l; j; j0; ðj < j0Þ ð7Þ
This constraint assures that the assignment of batches to slots follows the same order in all the stages, i.e. a product batch
is processed in exactly the same slot in all stages, but not necessarily in the same unit.

In order to define the number of batches of product i, NBCi, that compose the production campaign, the following binary
variable is defined:
Xin ¼
1 if n batches of product i are processed in a campaign
0 otherwise

�

The following constraint is posed to ensure that exactly one of the options is selected:
XNBCUP
i

n¼1

Xin ¼ 1; 8i ð8Þ
Therefore,
XNBCUP
i

n¼1

nXin ¼ NBCi; 8i ð9Þ
Given the process topology, NBCi batches of product i must be processed in each stage j. This constraint is represented
through the following equation:
X

l

X
k

Yijkl ¼ NBCi; 8i; j ð10Þ
4.2. Timing constraints

In order to obtain the initial and final times of the slots utilized in the plant stages, the following nonnegative continuous
variables are introduced: TIjkl and TFjkl. They denote the starting and finishing times, respectively, of slot l in unit k of stage j.
The relation between these variables and Yijkl is represented by the equation:



1658 Y. Fumero et al. / Applied Mathematical Modelling 37 (2013) 1652–1664
TFjkl ¼ TIjkl þ
X

i

tijYijkl; 8j; l; k 2 Kj ð11Þ
When no product is assigned to slot l of unit k in stage j, Yijkl = 0 "i, and hence TIjkl and TFjkl are equal.
In order to avoid slots overlapping in each unit, the following constraint is added:
TFjkl 6 TIjkl0 ; 8j; k 2 Kj; l; l
0
; ðl < l0Þ ð12Þ
Besides, if no product is assigned to slot l+1 of unit k at stage j (Yijk,l+1 = 0 "i), then the starting time of this slot is enforced
to be equal to the finishing time of slot l. Therefore, taking into account that Eq. (12) is satisfied for successive slots in a unit,
this new condition is represented by:
TFjkl � TIjklþ1 P �M1

X
i

Y ijklþ1; 8j; k 2 Kj;1 6 l 6 jLj � 1 ð13Þ
where M1 is a sufficiently large number that makes the constraint redundant when a product is assigned to slot l + 1.
According to the adopted ZW transfer policy, when a product i utilizes units k in stage j and k0 in stage j+1, the following

equation must hold:
TFjkl ¼ TIjþ1k0 l; 8l; j; jþ 1 2 J; k 2 Kj; k
0 2 Kjþ1 ð14Þ
Taking into account that this constraint must be only satisfied when a batch is assigned to those units, this condition can
be expressed through Big-M constraints, as:
TFjkl � TIjþ1k0 l P �M2 2�
X

i

Yijkl �
X

i

Y ijþ1k0 l

 !
8l; j; jþ 1 2 J; k 2 Kj; k

0 2 Kjþ1 ð15aÞ

�TFjkl þ TIjþ1k0 l P �M2ð2�
X

i

Y ijkl �
X

i

Yijþ1k0 lÞ 8l; j; jþ 1 2 J; k 2 Kj; k
0 2 Kjþ1 ð15bÞ
where M2 is a sufficiently large number that relaxes this constraint when product i does not utilize unit k in stage j or k0 in
stage j + 1.

Considering that the plant operates in MPC mode during the time horizon, the same production sequence will be
executed repeatedly. Hence, it is necessary to obtain an expression for the campaign cycle time. Thus, the number of times
that the campaign can be repeated in the time horizon is determined.

First of all, having defined the initial and final times of slots for each unit in different stages, the cycle time of a unit k
corresponding to stage j is calculated by the following expression:
CTjk ¼ TFjkln � TIjk~lkj
; 8j; k 2 Kj;

~lkj
¼min 1 6 l 6 jLj :

X
i

Yijkl ¼ 1

( )
ð16Þ
where ~lkj
represents the first slot assigned to unit k of stage j and ln the last slot in each unit k of stage j.

This equation is rewritten using a Big-M formulation as:
CTjk P TFjkln � TIjkl þM3

 X
i

Y ijkl � 1

!
�
X

i

X
16l0<l

Y ijkl

0
@

1
A; 8j; k 2 Kj; l 2 L ð17Þ

�CTjk P �TFjkln þ TIjkl þM3

�X
i

Y ijkl � 1
�
�
X

i

X
16l0<l

Yijkl

0
@

1
A; 8j; k 2 Kj; l 2 L ð18Þ
where M3 is a sufficiently large number.
Therefore, the cycle time of the campaign, CTC, is given by:
CTC P CTjk; 8j; k 2 Kj ð19Þ
4.3. Design constraints

In this section appropriate constraints are presented for selecting the number of units in each stage, their sizes, the batch
sizes of each product in the campaign, and the number of times that the MPC is cyclically repeated over the time horizon.

Let Vj be the batch unit size of stage j, Bi the batch size of product i and SFij the size factor of product i in stage j, i.e. the
required size in the stage j to produce a mass unit of product i, then:
Vj P SFijBi; 8i; j ð20Þ
which means that the unit size of stage j has to be large enough to accommodate all products.
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The total number of batches NBi for each product i in the time horizon depends on the demand of product i, Qi, and the
batch size of product i, Bi, and it is defined by:
NBi ¼
Q i

Bi
; 8i ð21Þ
The number of times that the MPC will be repeated in the time horizon H, NC, is a model variable, and the relation with
NBi is given by:
NBCiNC ¼ NBi; 8i ð22Þ
In this way, substituting Eq. (21) and Eq. (22) into Eq. (20), the following nonlinear inequality is obtained:
Vj P
SFijQ i

NBCiNC
; 8i; j ð23Þ
As has been mentioned in the problem description section, a set SVj = fVFj1;VFj2; ::::;VFjPj
g of available discrete sizes for

units of stage j is proposed. Therefore, the following binary variable selects a discrete value for the variable Vj:
v jp ¼
1 if units of stage j have size p
0 otherwise

�

Then, the unit size of stage j is given by:
Vj ¼
X

p

v jpVFjp; 8j ð24Þ
where
X
p

v jp ¼ 1; 8j ð25Þ
Substituting Eq. (9) and Eq. (24) into Eq. (23), the following constraint is obtained:
NC P
X

p

XNBCUP
i

n¼1

SFijQi

VFjpn
v jpXin; 8i; j ð26Þ
This constraint is nonlinear because of the bilinear term vjpXin. In order to eliminate this non linearity, a new binary var-
iable wijpn is defined, and it takes value 1 if both vjp and Xin are 1, and 0 otherwise. Using propositional logic, this condition is
enforced by the expression:
wijpn P v jp þ Xin � 1; 8i; j;p;1 6 n 6 NBCUP
i ð27Þ
Therefore, constraint (26) is reduced to the linear inequality:
NC P
X

p

XNBCUP
i

n¼1

SFijQi

VFjpn
wijpn; 8i; j ð28Þ
As previously mentioned, the campaign is cyclically repeated over the time horizon. Then, the cycle time of the campaign
CTC multiplied by the number of times that the campaign is repeated, NC, must to be less than or equal to the time horizon H.
Therefore, using Eq. (28), the following constraint is posed:
CTC
X

p

XNBCUP
i

n¼1

SFijQ i

VFjpn
wijpn 6 H; 8i; j ð29Þ
As cycle time not depends of p and n, Eq. (29) is rewritten in the following way:
X
p

XNBCUP
i

n¼1

SFijQ i

VFjpn
wijpnCTC 6 H; 8i; j ð30Þ
In order to avoid non linearity in Eq. (30), a new nonnegative continuous variable wwijpn is introduced to represent the
cross product wijpnCTC [9]. Substituting in Eq. (30), the obtained expression is:
X
p

XNBCUP
i

n¼1

SFijQ i

VFjpn
wwijpn 6 H; 8i; j ð31Þ
with the following additional constraints:
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X
p

XNBCUP
i

n¼1

wwijpn ¼ CTC; 8i; j ð32Þ

wwijpn 6 CTCUPwijpn; 8i; j; p;1 6 n 6 NBCUP
i ð33Þ
where CTCUP is an upper bound for CTC.

4.4. Objective function

The objective function minimizes the annual investment cost of batch plant, CI, given by:
CI ¼ CCF
X

j

X
k

ZjkajV
bj

j ð34Þ
where aj and bj are appropriate cost coefficients for unit j and CCF is a capital charge factor on the time horizon, which in-
cludes an amortization term.

Considering Eq. (24) and taking into account Eq. (25), Eq. (34) can be re-written as:
CI ¼ CCF
X

j

X
k

X
p

ajVF
bj

jpZjkv jp ð35Þ
A new variable ejkp is defined to eliminate the bilinear term Zjk vjp in Eq. (35). This variable has to be linked to the assign-
ment variables vjp and Zjk such that ejkp take value 1 if both are one, and 0 otherwise. Using propositional logic, this condition
is enforced by the expression:
ejkp P v jp þ Zjk � 1; 8j; k 2 Kj;p ð36Þ
Nevertheless, this new variable can be settled as continuous if the following upper and lower bounds are incorporated:
0 6 ejkp 6 1; 8j; k 2 Kj; p ð37Þ
Thus, a lineal objective function is obtained:
CI ¼ CCF
X

j

X
k

X
p

ajVF
bj

jpejkp ð38Þ
This objective function subject to the constraints (1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12), (13), (15a), (15b),
(17), (18), (19), (24), (25), (27), (28), (31), (32), (33), (36), (37) defines a novel MILP model to obtain simultaneously the
optimal campaign sequencing and the plant design.

5. Numerical results

In this Section two examples are developed in order to show the attained solutions and the performance of the proposed
approach. All the examples were implemented and solved in GAMS [31] in an Intel Core 2 Duo, 2.64 GHz. The CPLEX solver
was employed for solving the MILP problems, with a 0% optimality gap. The number of continuous and binary variables and
constraints strongly depends on the number of available units in each stage, the maximum number of batches allowed for
each product in the campaign, and the number of discrete options considered for the batch unit sizes. When the number of
binary variables is increased, the computational complexity of the problem and consequently the computational resolution
time is also increased. Example 2 shows how the model performance and the results vary according to the values of these
parameters.

5.1. Example 1

This example considers a batch plant with three stages (j1, j2, j3). The first and second stages can be duplicated up to three
units while the third stage can include up to two in parallel units. Four products (i1, i2, i3, i4) have to be processed in the plant
during a time horizon H = 7000 h. The processing time and size factor of each product in each stage, and the product
parameters for Example 1.

uct Processing time: tij (h) Size factor: SFij NBCUP
i

Demand: Qi

j1 j2 j3 j1 j2 j3

14 25 7 0.7 0.6 0.5 2 400,000
16 18 5 0.6 0.7 0.45 2 480,000
12 15 4 0.7 0.65 0.55 3 850,000
10 20 5 0.65 0.7 0.5 3 1,200,000



Table 2
Discrete sizes and cost coefficients for Example 1.

VFj1 VFj2 VFj3 VFj4 VFj5 aj bj

j1 650 1300 2600 5200 7800 6000 0.6
j2 700 1400 2800 5600 8400 6000 0.6
j3 1000 2000 3000 4000 6000 7000 0.7

2800 

j1 j2 j3

2800 

2800 

2600 

2600 

2000 

Fig. 4. Optimal plant design for Example 1.
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Fig. 5. Optimal Grantt chart for Example 1.
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demands are shown in Table 1. The maximum numbers of batches for each product (NBCUP
i ) have been proposed taking into

account the product demands and they are included in Table 1. The sets of available unit sizes considered in this example are
displayed in Table 2 as well as the unit cost coefficients involved in the investment cost.

The optimal solution of the proposed approach for this example consists in a plant with the design shown in Fig. 4. The
number of batches in the campaign is 1, 1, 2 and 3 for product i1, i2, i3 and i4 respectively, i.e., the upper bound for the number
of batches in the campaign is reached only for product i4. The optimal production sequence in each batch unit for the
different stages is illustrated in Fig. 5. The cycle time of the optimal campaign is equal to 58 h and the campaign is repeated
120 times.

The total investment cost is $1,220,348 and the model computational performance is displayed in Table 3.
As previously mentioned, simultaneous optimization of design and scheduling problems allows assessing all the

trade-offs among the involved decisions. The optimal solution chooses the best plant configuration and production sched-
uling, by jointly evaluating the different optimization variables. In this case, stage j2 is time limiting. Therefore, the use of
three out-of-phase parallel units reduces the cycle time for this stage. On the other hand, demands should be fulfilled while
keeping unit sizes as small as possible. Thus, the number of batches of product i4 in the campaign is equal to its upper bound,
Table 3
Computational resume for Example 1.

Constraints 1840
Binary variables 503
Continuous variables 909
CPU time (s) 847.3



Table 5
Maximum number of batches and unit duplication allowed for each instance of Example 2.

NBCUP
i

|Kj|

i1 i2 j1 j2 j3

Instance 1 4 3 3 3 3
Instance 2 6 4 3 3 3
Instance 3 8 8 3 3 3
Instance 4 8 8 1 1 1

Table 4
Model parameters for Example 2.

Product Processing time: tij (h) Size factor: SFij (L/kg) Demand: Qi (kg)

j1 j2 j3 j1 j2 j3

i1 14 5 3 0.7 0.6 0.5 750,000
i2 16 6 2 0.6 0.5 0.4 550,000
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since its demand is the largest one. Therefore, trade-offs like unit duplication vs. cycle time, unit duplication vs. investment
cost, batch sizes vs. number of batches of each product in the campaign, etc. are simultaneously evaluated and the model is
capable of solving them together.
5.2. Example 2

This example presents four instances for producing two products (i1, i2) with different maximum number of batches
allowed for each product in the campaign in order to evaluate the performance of the proposed model and the different solu-
tions that can be obtained when MPC is considered. The considered batch plant has three stages (j1, j2, j3) for processing both
products in a time horizon H = 7000 h. For instances 1–3, up to three units can be duplicated in each stage while for instance
4 only one unit per stage is allowed. This last instance is performed in order to remark the impact caused by unit duplication
in the plant design and consequently in the objective function. Table 4 shows the model parameters and Table 5 the char-
acteristics for each instance. The set of available unit sizes for all the instances is SVj = {500,650,750,875,1000,1500,2000},
expressed in litres. It is assumed that the same set is valid for all the stages.
Table 7
Optimal scheduling for each instance of Example 2.

NBCi CTC NC

i1 i2

Instance 1 3 2 30 233
Instance 2 5 3 60 115
Instance 3 5 3 60 115
Instance 4 7 4 162 41

Table 6
Optimal plant design for each instances of Example 2.

Units out-of-phase Unit sizes

j1 j2 j3 j1 j2 j3

Instance 1 3 1 1 750 650 650
Instance 2 2 1 1 1000 875 650
Instance 3 2 1 1 1000 875 650
Instance 4 1 1 1 2000 2000 1500

Table 8
Computational results for each instance of Example 2.

Constraints Binary variables Continuous variables Objective function CPU time (s)

Instance 1 1244 310 660 499,300 45.6
Instance 2 1865 430 897 468,700 83.5
Instance 3 3350 670 1371 468,700 931.4
Instance 4 1494 472 933 627,300 1.1
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The optimal plant design and campaign composition for each instance are shown in Table 6 and Table 7 respectively,
while Table 8 displays the computational performance.

The best economical solution is reached at instances 2 and 3, where the optimal plant design consist in two units out of
phase for the first stage, one unit for the second and third stages, and the unit sizes are 1000 L, 875 L, and 650 L, respectively.

Although the optimal number of batches of each product in the campaign is the same in both optimal instances (5 and 3
batches for product i1 and i2, respectively), the campaign scheduling is different, and therefore alternative solutions are
achieved. Computational performance for instance 3 is worse than for instance 2 since the number of variables and
constraints is increased due to a greater maximum number of product batches is considered.

First, analyzing the results of Table 6 and 7, the trade-offs between the different problem elements are clear. In instance 1,
the maximum number of batches for the campaign composition is not enough for fulfil the product demands in a plant like
that obtained in instances 2 and 3. Therefore, three duplicated units have to be used for stage j1, and thus, the investment is
increased 6.5%. Depending on the parameters allowed for the campaign composition, the cost of the plant changes. Hence,
the inclusion of scheduling constraints in this problem is justified due to a strong trade-off among design and scheduling
decisions.

The last instance only permits one unit per stage with the objective of showing the impact caused by unit duplication in
the plant design and the performance of the production process. The optimal solution for this instance employs larger unit
sizes than those of the previous instances since unit duplication is not allowed and the product demands have to be reached
in the time horizon. The attained campaign uses seven batches of i1 and four batches of i2. In this case, there is no idle time in
stage j1 which is limiting time. Idle times in stages j2 and j3 involve the use of larger unit sizes. Therefore, the investment cost
for this instance is increased 33.8% compared with instances 2 and 3.

Finally, a single product campaign approach for the same problem (see Table 4 for problem data) was solved in order to
compare the solutions. In this case, the optimal solution adopts the same plant configuration of instances 2 and 3. Although
both optimal objective functions coincide, through the use of MPC more steady supply of products and reduced stock levels
are achieved, as was previously mentioned. If the objective function only considers investment cost like in this formulation,
no improvement can be shown. Therefore, new considerations about supply, inventory costs, etc. must be included in future
models.
6. Conclusions

This article presents a new approach for simultaneous design and scheduling of flowshop plants. Until now, previous
works had generally solved these problems resorting to decoupled models, without taking into account the trade-offs
between them. Usually, when design problem is formulated, they assumed SPC and, thus, the formulation is strongly
simplified. However, this kind of solutions is not suitable from the commercial point of view since large product stocks
are required.

The approach proposed in this work addresses the joint design and scheduling of flowshop plants with MPC production
mode. For batch plant design, a maximum number of out of phase duplicated units is considered, and batch unit sizes are
selected according to a set of available discrete sizes, as usually found in commercial and industrial practices. For scheduling,
a maximum number of batches for each product in the campaign composition is established. In this way, the nonlinearities
in the mathematical model are avoided. Therefore, the proposed formulation is addressed as a MILP one, which determines
the global optimal solution for the simultaneous flowshop plant design and scheduling.

Taking into account the combinatorial complexity of scheduling models, appropriate preordering constraints have been
developed and incorporated in the proposed formulation. This aims at reducing alternative solutions, search space, and thus
computational effort.

In short, the proposed formulation simultaneously determines plant configuration, including the number of units at each
stage and their sizes, and the number and size of the batches of every product. These batches are produced through MPCs
that are cyclically repeated over the time horizon. The campaign configuration includes the allocation of batches to the
selected units and their sequencing.

This formulation has been applied to several problems in order to highlight the trade-offs among the different involved
decisions and the mathematical characteristics of the model. Also, the performance has been assessed.

Thus, a new modeling strategy has been presented to solve an optimization problem not previously approached with the
assumptions here adopted. From the mathematical point of view, future works will be focused on computational performance
including major problems.
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