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Koszul calculus

Roland Berger, Thierry Lambre and Andrea Solotar ∗

Abstract

We present a calculus which is well-adapted to homogeneous quadratic algebras.
We define this calculus on Koszul cohomology –resp. homology– by cup products –
resp. cap products. The Koszul homology and cohomology are interpreted in terms
of derived categories. If the algebra is not Koszul, then Koszul (co)homology provides
different information than Hochschild (co)homology. As an application of our calculus,
the Koszul duality for Koszul cohomology algebras is proved for any quadratic algebra,
and this duality is extended in some sense to Koszul homology. So, the true nature of
the Koszul duality theorem is independent of any assumption on the quadratic algebra.
We compute explicitly this calculus on a non-Koszul example.
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1 Introduction

In this paper, a quadratic algebra is an associative algebra defined by homogeneous quadratic
relations. Since their definition by Priddy [16], Koszul algebras form a widely studied class
of quadratic algebras [15]. In his monograph [14], Manin brings out a general approach of
quadratic algebras – not necessarily Koszul – including the fundamental observation that
quadratic algebras form a category which should be a relevant framework for a noncom-
mutative analogue of projective algebraic geometry. According to this general approach,
non-Koszul quadratic algebras deserve more attention.

The goal of this paper is to introduce new homological tools for studying quadratic alge-
bras and to give an application to the Koszul duality. These tools consist in a (co)homology
theory, called Koszul (co)homology, together with products, called Koszul cup and cap prod-
ucts. They are organized in a calculus, called Koszul calculus. If two quadratic algebras are
isomorphic in Manin’s category [14], their Koszul calculi are isomorphic. If the quadratic
algebra is Koszul, then the Koszul calculus is isomorphic to the Hochschild (co)homology

2



endowed with the usual cup and cap products – called Hochschild calculus. In this intro-
duction, we would like to describe the main features of the Koszul calculus and how they
are involved in the course of the paper.

In Section 2, we define the Koszul homology HK•(A,M) of a quadratic algebra A with
coefficients in a bimodule M by applying the functor M ⊗Ae − to the Koszul complex of
A, analogously for the Koszul cohomology HK•(A,M). If A is Koszul, the Koszul complex
is a projective resolution of A, so that HK•(A,M) (resp. HK•(A,M)) is isomorphic to
Hochschild homology HH•(A,M) (resp. Hochschild cohomology HH•(A,M)). Restricting
the Koszul calculus to M = A, we present in Section 9 a non-Koszul quadratic algebra A
which is such that HK•(A) ≇ HH•(A) and HK•(A) ≇ HH•(A), showing that HK•(A)
and HK•(A) provide new invariants associated to the category of quadratic algebras, be-
sides those provided by the Hochschild (co)homology. We prove that the Koszul homology
(cohomology) is isomorphic to a Hochschild hyperhomology (hypercohomology), showing
that this new homology (cohomology) becomes natural in terms of derived categories.

In Section 3 and Section 4, we introduce the Koszul cup and cap products by restricting
the definition of the usual cup and cap products on Koszul cochains and chains respectively,
providing differential graded algebras and differential graded bimodules. These products
pass to (co)homology.

For any unital associative algebra A, the Hochschild cohomology of A with coefficients
in A itself, endowed with the cup product and the Gerstenhaber bracket [−,−], is a Ger-
stenhaber algebra [5]. We organize the Gerstenhaber algebra structure and the Hochschild
homology of A, endowed with cap products, in a Tamarkin-Tsygan calculus of the kind de-
veloped in [18, 11]. In the Tamarkin-Tsygan calculus, the Hochschild differential b is defined
in terms of the multiplication µ of A and the Gerstenhaber bracket by

b(f) = [µ, f ] (1.1)

for any Hochschild cochain f .
It seems difficult to see the Koszul calculus as a Tamarkin-Tsygan calculus because the

Gerstenhaber bracket does not make sense on Koszul cochains. However, this obstruction
can be bypassed by the following formula

bK(f) = −[eA, f ]⌣
K

(1.2)

where bK is the Koszul differential, eA is the Koszul 1-cocycle defined as the restriction of
the Euler derivation DA of A, and f is any Koszul cochain.

In Formula (1.2), the symbol [−,−]⌣
K

stands for the graded bracket associated to the

Koszul cup product ⌣
K
, so that the Koszul differential may be defined from the Koszul cup

product. The Koszul calculus is more flexible than the usual calculus since the formula (1.2)
is valid for any bimodule M , while the definition of the Gerstenhaber bracket is meaningless
when considering other bimodules of coefficients [6]; it is also more symmetric since there is
an analogue of (1.2) in homology, where the Koszul cup product is replaced by the Koszul
cap product.

In the Tamarkin-Tsygan calculus, the homology of the Hochschild homology HH•(A)
endowed with the Connes differential plays the role of a (generalized) de Rham cohomology
of A. Since the quadratic algebra A is N-graded and connected, A is acyclic in characteristic
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zero for this de Rham cohomology (Theorem 6.3). We give the following Koszul analogue:
if A is Koszul, A is acyclic for the higher Koszul homology, where we define the higher
Koszul homology as the homology of the Koszul homology endowed with the left Koszul cap
product by the Koszul class of eA (Theorem 6.4). However, if A is the algebra in the non-
Koszul example of Section 9, we prove that A is not acyclic for the higher Koszul homology
(Proposition 9.3). Thus the higher Koszul homology is a new invariant of the non-Koszul
algebra A. We conjecture that the Koszul algebras are exactly the acyclic objects of the
higher Koszul homology.

In [11], the second author defined the Tamarkin-Tsygan calculi with duality. Specializing
this general definition to the Hochschild situation, the Tamarkin-Tsygan calculus of an
associative algebra A is said to be with duality if there is a class c in a space HHn(A),
called the fundamental Hochschild class, such that the k-linear map

−⌢ c : HHp(A) −→ HHn−p(A)

is an isomorphism for any p. If the algebra A is n-Calabi-Yau [7], such a calculus exists, and
for any bimodule M ,

−⌢ c : HHp(A,M) −→ HHn−p(A,M)

is an isomorphism coinciding with the Van den Bergh duality [20, 11]. Consequently, if
A is an n-Calabi-Yau Koszul quadratic algebra in characteristic zero, the higher Koszul
cohomology of A vanishes in any homological degree p, except for p = n for which it is
one-dimensional (Corollary 7.2). This last fact does not hold for a certain Koszul algebra A
of finite global dimension and not Calabi-Yau (Proposition 7.4).

In Remark 5.4.10 of [7], Ginzburg mentioned that the Hochschild cohomology algebras
of A and its Koszul dual A! are isomorphic if the quadratic algebra A is Koszul. This
isomorphism of graded algebras was already announced by Buchweitz in the Conference on
Representation Theory held in Canberra in 2003, and it has been generalized by Keller in
[10]. As an application of the Koszul calculus, we obtain such a Koszul duality theorem
linking the Koszul cohomology algebras of A and A! for any quadratic algebra A, either
Koszul or not (Theorem 8.3), revealing that the true nature of the Koszul duality theorem
is independent of any assumption on quadratic algebras. Our proof of Theorem 8.3 uses
some standard facts on duality of finite dimensional vector spaces, allowing us to define the
Koszul dual of a Koszul cochain (Definition 8.5).

Our proof shows two phenomena that already hold for the Koszul algebras. Firstly, the
homological weight p is changed by the duality into the coefficient weight m. Secondly, the
exchange p ↔ m implies that we have to replace one of both cohomologies by a modified
version of the Koszul cohomology and of the Koszul cup product, denoted by tilde accents.
The statement of Theorem 8.3 is the following.

Theorem 1.1 Let V be a finite dimensional k-vector space and A = T (V )/(R) be a quadratic
algebra. Let A! = T (V ∗)/(R⊥) be the Koszul dual of A. There is an isomorphism of N×N-
graded unital associative algebras

(HK•(A),⌣
K
) ∼= (H̃K

•
(A!), ⌣̃

K
). (1.3)

In particular, for any p ≥ 0 and m ≥ 0, there is a k-linear isomorphism

HKp(A)m ∼= H̃K
m
(A!)p. (1.4)
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We illustrate this theorem by an example, with direct computations. Both phenom-
ena are shown to be essential in this example. Theorem 8.3 is completed by a bimodule
isomorphism in which HK•(A) acts on HK•(A) by cap products (Theorem 8.8).

In Section 9, we compute the Koszul calculus on an example of non-Koszul quadratic al-
gebra A. Moreover, we prove that the Koszul homology (cohomology) of A is not isomorphic
to the Hochschild homology (cohomology) of A. For computing the Hochschild homology
and cohomology of A in degrees 2 and 3, we use a projective bimodule resolution of A due
to the third author and Chouhy [3].

2 Koszul homology and cohomology

Throughout the paper, we denote by k the base field and we fix a k-vector space V . The
symbol ⊗ will mean ⊗k. The tensor algebra T (V ) =

⊕

m≥0 V
⊗m of V is graded by the

weight m. For any subspace R of V ⊗2, the associative k-algebra A = T (V )/(R) is called a
quadratic algebra, and it inherits the grading by the weight. We denote the homogeneous
component of weight m of A by Am.

2.1 Recalling the bimodule complex K(A)

Let A = T (V )/(R) be a quadratic algebra. For the definition of the bimodule complexK(A),
we follow Van den Bergh, precisely Section 3 of [19]. Notice that our K(A) is denoted by
K ′(A) in [19]. For any p ≥ 2, we define the subspace Wp of V ⊗p by

Wp =
⋂

i+2+j=p

V ⊗i ⊗ R⊗ V ⊗j, where i, j ≥ 0,

while W0 = k and W1 = V . It is convenient to use the following notation: an arbitrary
element of Wp will be denoted by a product x1 . . . xp, where x1, . . . , xp are in V . This
notation should be thought of as a sum of such products. Moreover, regarding Wp as
a subspace of V ⊗q ⊗ Wr ⊗ V ⊗s where q + r + s = p, the element x1 . . . xp viewed in
V ⊗q ⊗ Wr ⊗ V ⊗s will be denoted by the same notation, meaning that xq+1 . . . xq+r is
thought of as a sum belonging to Wr and the other x’s are thought of as arbitrary elements
in V . We will systematically use this notation throughout the paper.

Clearly, V is the component of weight 1 of A, so that V ⊗p is a subspace of A⊗p. As
defined by Van den Bergh [19], the Koszul complex K(A) of the quadratic algebra A is a
weight graded bimodule subcomplex of the bar resolution B(A) of A. Precisely,K(A)p = Kp

is the subspace A⊗Wp ⊗A of A⊗A⊗p ⊗A. It is easy to see that K(A) coincides with the
complex

· · ·
d

−→ Kp
d

−→ Kp−1
d

−→ · · ·
d

−→ K1
d

−→ K0 −→ 0 , (2.1)

where the differential d is defined on Kp as follows

d(a⊗ x1 . . . xp ⊗ a′) = ax1 ⊗ x2 . . . xp ⊗ a′ + (−1)pa⊗ x1 . . . xp−1 ⊗ xpa
′, (2.2)

for a, a′ in A and x1 . . . xp in Wp, using the above notation. The homology of K(A) is
equal to A in degree 0, and to 0 in degree 1. The following definition takes into account the
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bimodule complex K(A), instead of the left or right module versions of the Koszul complex
commonly used for defining Koszul algebras [15, 13]. The following definition is equivalent
to the usual one, according to Proposition 3.1 in [19] and its obvious converse.

Definition 2.1 A quadratic algebra A is said to be Koszul if the homology of K(A) is 0 in
any positive degree.

The multiplication µ : K0 = A ⊗ A → A defines a morphism from the complex K(A)
to the complex A concentrated in degree 0. Whereas µ : B(A) → A is always a quasi-
isomorphism, A is Koszul if and only if µ : K(A) → A is a quasi-isomorphism. So, if the
quadratic algebra A is Koszul, the bimodule free resolution K(A) may be used to compute
the Hochschild homology and cohomology of A instead of B(A). In the two subsequent
subsections, the same (co)homological functor is defined by replacing B(A) by K(A) even if
A is not Koszul. The goal of this paper is to show that the so-obtained Koszul (co)homology
is of interest for quadratic algebras, providing invariants that are not obtained with the
Hochschild (co)homology.

2.2 The Koszul homology HK•(A,M)

Let M be an A-bimodule. As usual, M can be considered as a left or right Ae-module,
where Ae = A⊗Aop. Applying the functor M ⊗Ae − to K(A), we obtain the chain complex
(M ⊗W•, bK), where W• =

⊕

p≥0Wp. The elements of M ⊗Wp are called the Koszul p-
chains with coefficients inM . From Equation (2.2), we see that the differential bK =M⊗Aed
is given on M ⊗Wp by the formula

bK(m⊗ x1 . . . xp) = m.x1 ⊗ x2 . . . xp + (−1)pxp.m⊗ x1 . . . xp−1, (2.3)

for any m in M and x1 . . . xp in Wp, using the notation of Subsection 2.1.

Definition 2.2 Let A = T (V )/(R) be a quadratic algebra and M be an A-bimodule. The
homology of the complex (M ⊗W•, bK) is called the Koszul homology of A with coefficients
in M , and is denoted by HK•(A,M). We set HK•(A) = HK•(A,A).

The inclusion χ : K(A) → B(A) induces a morphism of complexes χ̃ = M ⊗Aeχ from
(M ⊗W•, bK) to (M ⊗A⊗•, b), where b is the Hochschild differential. For each degree p, χ̃p

coincides with the natural injection of M ⊗Wp into M ⊗A⊗p. Since the complex

A⊗R⊗A
d

−→ A⊗ V ⊗A
d

−→ A⊗A
µ

−→ A→ 0 (2.4)

is exact, the k-linear map H(χ̃)p : HKp(A,M) → HHp(A,M) is an isomorphism for p = 0
and p = 1. The following is clear.

Proposition 2.3 Let A = T (V )/(R) be a Koszul quadratic algebra. For any A-bimodule
M and any p ≥ 0, H(χ̃)p is an isomorphism.

For the non-Koszul algebra A of Section 9, we will see that H(χ̃)3 is not surjective when
M = A. Quadratic k-algebras form Manin’s category [14]. In this category, a morphism u
from A = T (V )/(R) to A′ = T (V ′)/(R′) is determined by a linear map u : V → V ′ such that
u⊗2(R) ⊆ R′. For each p, u⊗p mapsWp intoW ′

p, with obvious notation. Moreover, the maps
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a⊗ x1 . . . xp 7→ u(a)⊗ u(x1) . . . u(xp) define a morphism of complexes from (A⊗W•, bK) to
(A′ ⊗W ′

•, bK). So we obtain a covariant functor A 7→ HK•(A).

Let us now show that the Koszul homology is isomorphic to a Hochschild hyperhomology,
namely

HK•(A,M) ∼= HH•(A,M ⊗A K(A)). (2.5)

Denote by A (resp. E) the abelian category of A-bimodules (resp. k-vector spaces). For any

A-bimodule M , the left derived functor M
L
⊗Ae − is defined from the triangulated category

D−(A) to the triangulated category D−(E), so that we have

HKp(A,M) ∼= Hp(M
L
⊗Ae K(A)). (2.6)

The following lemma is standard, used e.g. in the proof of the Van den Bergh duality [20].

Lemma 2.4 Let M and N be A-bimodules. The k-linear map

ζ :M ⊗Ae N → (M ⊗A N)⊗Ae A

defined by ζ(x ⊗Ae y) = (x ⊗A y) ⊗Ae 1 is an isomorphism. Moreover, for any complex of
A-bimodules C, the map ζ :M ⊗Ae C → (M ⊗A C)⊗Ae A is an isomorphism of complexes.

In other words, the functor F : C 7→ M ⊗Ae C coincides with the composite H ◦ G
where G : C 7→ M ⊗A C and H : C′ 7→ C′ ⊗Ae A. So their left derived functors satisfy
LF ∼= L(H) ◦ L(G), in particular for C = K(A),

M
L
⊗Ae K(A) ∼= (M

L
⊗A K(A))

L
⊗Ae A. (2.7)

Passing to homology and using the definition of hypertor [21], we obtain

HKp(A,M) ∼= TorA
e

p (M ⊗A K(A), A), (2.8)

which proves the isomorphism (2.5). If A is Koszul, we recover usual Tor and Proposition
2.3.

2.3 The Koszul cohomology HK•(A,M)

Throughout, Homk will be denoted by Hom. Applying the functor HomAe(−,M) to the
complex K(A), we obtain the cochain complex (Hom(W•,M), bK), where

Hom(W•,M) =
⊕

p≥0

Hom(Wp,M).

The elements ofHom(Wp,M) are called the Koszul p-cochains with coefficients in M . Given
a Koszul p-cochain f : Wp →M , its differential bK(f) = −(−1)pf ◦ d is defined by

bK(f)(x1 . . . xp+1) = f(x1 . . . xp).xp+1 − (−1)px1.f(x2 . . . xp+1), (2.9)

for any x1 . . . xp+1 in Wp+1, using the notation of Subsection 2.1.
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Definition 2.5 Let A = T (V )/(R) be a quadratic algebra and M an A-bimodule. The
homology of the complex (Hom(W•,M), bK) is called the Koszul cohomology of A with
coefficients in M , and is denoted by HK•(A,M). We set HK•(A) = HK•(A,A).

The map χ∗ = HomAe(χ,M) defines a morphism of complexes from (Hom(A⊗•,M), b)
to (Hom(W•,M), bK), where b is the Hochschild differential. For each degree p, χ∗

p coincides
with the natural projection ofHom(A⊗p,M) ontoHom(Wp,M). The k-linear mapH(χ∗)p :
HHp(A,M) → HKp(A,M) is an isomorphism for p = 0 and p = 1.

Proposition 2.6 Let A = T (V )/(R) be a Koszul quadratic algebra. For any A-bimodule
M and any p ≥ 0, H(χ∗)p is an isomorphism.

In the non-Koszul example of Section 9, we will see that H(χ∗)2 is not surjective for
M = A. Here again, the same functorial properties of Hochschild cohomology stand for
Koszul cohomology. In particular, there is a contravariant functor A 7→ HK•(A,A∗), where
the A-bimodule A∗ = Hom(A, k) is defined by: (a.f.a′)(x) = f(a′xa) for any k-linear map
f : A→ k, and x, a, a′ in A.

As we prove now, the Koszul cohomology is isomorphic to the following Hochschild
hypercohomology

HK•(A,M) ∼= HH•(A,HomA(K(A),M)). (2.10)

For any A-bimodule M , the right derived functor RHomAe(−,M) is defined from the tri-
angulated category D−(A) to the triangulated category D+(E), so that we have

HKp(A,M) ∼= Hp(RHomAe(K(A),M)). (2.11)

The proof continues as in homology by using the next lemma. We leave details to the reader.

Lemma 2.7 Let M and N be A-bimodules. The k-linear map

η : HomAe(N,M) → HomAe(A,HomA(N,M))

defined by η(f)(a)(x) = f(xa) for any A-bimodule map f : N → M , a in A and x
in N , is an isomorphism, where HomA(N,M) denotes the space of left A-module mor-
phisms from M to N . Moreover, for any complex of A-bimodules C, η : HomAe(C,M) →
HomAe(A,HomA(C,M)) is an isomorphism of complexes.

2.4 Coefficients in k

In this subsection, the Koszul homology and cohomology are examined for the trivial bi-
module M = k. Denote by ǫ : A → k the augmentation of A, so that the A-bimodule k is
defined by the following actions: a.1.a′ = ǫ(aa′) for any a and a′ in A. It is immediate from
(2.3) and (2.9) that the differentials bK vanish in case M = k. Denoting Hom(E, k) by E∗

for any k-vector space E, we obtain the following.

Proposition 2.8 Let A = T (V )/(R) be a quadratic algebra. For any p ≥ 0, we have
HKp(A, k) =Wp and HKp(A, k) =W ∗

p .
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Let us give a conceptual explanation of this proposition. We consider quadratic algebras
as connected algebras graded by the weight [15]. Let A = T (V )/(R) be a quadratic algebra.
In the category of graded A-bimodules, A has a minimal projective resolution P (A) whose
component of homological degree p has the form A⊗ Ep ⊗A, where Ep is a weight graded
space. Moreover, the minimal weight in Ep is equal to p and the component of weight p in
Ep coincides with Wp. Denote by Hom the graded Hom w.r.t. the weight grading of A,
and by HH the corresponding graded Hochschild cohomology. The following fundamental
property of P (A) holds for any connected graded algebra A.

Lemma 2.9 The differentials of the complexes k ⊗Ae P (A) and HomAe(P (A), k) vanish.

Consequently, there are isomorphisms HHp(A, k) ∼= Ep and HHp(A, k) ∼= Hom(Ep, k)
for any p ≥ 0. Since K(A) is a weight graded subcomplex of P (A), H(χ̃)p coincides with
the natural injection of Wp into Ep and H(χ∗)p with the natural projection of Hom(Ep, k)
onto W ∗

p . So we obtain the following converses of Proposition 2.3 and Proposition 2.6.

Proposition 2.10 Let A = T (V )/(R) be a quadratic algebra. The algebra A is Koszul if
either (i) or (ii) hold.

(i) For any p ≥ 0, H(χ̃)p : HKp(A, k) → HHp(A, k) is an isomorphism.
(ii) For any p ≥ 0, H(χ∗)p : HHp(A, k) → HKp(A, k) is an isomorphism.

3 The Koszul cup product

3.1 Definition and first properties

We define the Koszul cup product⌣
K

of Koszul cochains by restricting the usual cup product

⌣ of Hochschild cochains recalled e.g. in [11]. We use the notation of Subsection 2.1.

Definition 3.1 Let A = T (V )/(R) be a quadratic algebra. Let P and Q be A-bimodules.
For any Koszul p-cochain f : Wp → P and any Koszul q-cochain g : Wq → Q, define the
Koszul (p+ q)-cochain f ⌣

K
g :Wp+q → P ⊗A Q by the following equality

(f ⌣
K
g)(x1 . . . xp+q) = (−1)pqf(x1 . . . xp)⊗A g(xp+1 . . . xp+q), (3.1)

for any x1 . . . xp+q ∈Wp+q.

The Koszul cup product ⌣
K

is k-bilinear and associative, and we have the formula

χ∗(F ⌣ G) = χ∗(F )⌣
K
χ∗(G) (3.2)

for any Hochschild cochains F : A⊗p → P and G : A⊗q → Q. We deduce the identity

bK(f ⌣
K
g) = bK(f)⌣

K
g + (−1)pf ⌣

K
bK(g), (3.3)

from the identity known for the usual⌣. In particular, Hom(W•, A) is a differential graded
algebra (dga). For any A-bimodule M , Hom(W•,M) is a differential graded bimodule over
the dga Hom(W•, A). The proof of the following statement is clear.
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Proposition 3.2 Let A = T (V )/(R) be a quadratic algebra. The Koszul cup product ⌣
K

defines a Koszul cup product, still denoted by ⌣
K
, on Koszul cohomology classes. A formula

similar to (3.2) holds for H(χ∗). Endowed with this product, HK•(A) and HK•(A, k) are
graded associative algebras. For any A-bimodule M , HK•(A,M) is a graded HK•(A)-
bimodule.

Since HK0(A) = Z(A) is the center of the algebra A, HK•(A,M) is a Z(A)-bimodule.
From Proposition 2.8, HK•(A, k) coincides with the graded algebra W ∗

• =
⊕

p≥0W
∗
p en-

dowed with the graded tensor product of linear forms composed with inclusions Wp+q →֒
Wp ⊗ Wq. Recall that the graded algebra (HH•(A, k),⌣) is isomorphic to the Yoneda
algebra E(A) = Ext∗A(k, k) of the graded algebra A [15].

Proposition 3.3 Let A = T (V )/(R) be a quadratic algebra. The map H(χ∗) defines a
graded algebra morphism from the Yoneda algebra E(A) of A onto W ∗

• , and this is an
isomorphism if and only if A is Koszul.

3.2 The Koszul cup bracket

Definition 3.4 Let A = T (V )/(R) be a quadratic algebra. Let P and Q be A-bimodules,
at least one of them equal to A. For any Koszul p-cochain f : Wp → P and any Koszul
q-cochain g :Wq → Q, we define the Koszul cup bracket by

[f, g]⌣
K

= f ⌣
K
g − (−1)pqg ⌣

K
f. (3.4)

The Koszul cup bracket is k-bilinear, graded antisymmetric, and it passes to cohomology.
We still use the notation [α, β]⌣

K

for the cohomology classes α and β of f and g. The Koszul

cup bracket is a graded biderivation of the graded associative algebras Hom(W•, A) and
HK•(A). We will see that the Koszul cup bracket plays in some sense the role of the
Gerstenhaber bracket. For this, we will consider the Euler derivation of A as a Koszul
1-cocycle.

3.3 The fundamental 1-cocycle

Lemma 3.5 Let A = T (V )/(R) be a quadratic algebra. Let f : V → V be a k-linear map
considered as a Koszul 1-cochain with coefficients in A. If f is a coboundary, then f = 0.
If f is a cocycle, then its cohomology class contains a unique 1-cocycle with image in V and
this cocycle is equal to f .

Proof. If f = bK(a) for some a in A, then f(x) = ax − xa for any x in V . Since f(x) ∈ V ,
this implies that f(x) = a0x− xa0 with a0 ∈ k, thus f = 0.

Definition 3.6 Let A = T (V )/(R) be a quadratic algebra. The Euler derivation –also called
weight map– DA : A→ A of the graded algebra A is defined by DA(a) = ma for any m ≥ 0
and any homogeneous element a of weight m in A.

We denote by eA the restriction of DA to V . The map eA : V → A is a Koszul 1-
cocycle called the fundamental 1-cocycle of A. It is defined by eA(x) = x for any x in

10



V . It corresponds to the canonical element ξA of Manin [14]. By the previous lemma, eA
is not a coboundary if V 6= 0. The Koszul class of eA is denoted by eA and it is called
the fundamental 1-class of A. The following statement is easily proved, but it is of crucial
importance for the Koszul calculus.

Theorem 3.7 Let A = T (V )/(R) be a quadratic algebra. For any Koszul cochain f with
coefficients in any A-bimodule M , the following formula holds

[eA, f ]⌣
K

= −bK(f). (3.5)

Proof. For any x1 . . . xp+1 in Wp+1, one has (eA ⌣
K
f)(x1 . . . xp+1) = (−1)px1.f(x2 . . . xp+1)

and (f ⌣
K

eA)(x1 . . . xp+1) = (−1)pf(x1 . . . xp).xp+1, so that Formula (3.5) is immediate

from (2.9).

The fundamental formula (3.5) shows that the Koszul differential bK may be defined
from the Koszul cup product, and doing so, we may deduce the identity (3.3) from the
biderivation [−,−]⌣

K

. The simple formula (3.5) is replaced in the Hochschild calculus by the

“more sophisticated” and well-known formula

b(F ) = [µ, F ], (3.6)

where [−,−] is the Gerstenhaber bracket, multiplication µ = b(IdA) is a 2-coboundary and
F is any Hochschild cochain.

Let us show that it is possible to deduce the fundamental formula (3.5) from the Gersten-
haber calculus, that is, from the Hochschild calculus including the Gerstenhaber product ◦.
We recall from [5] the Gerstenhaber identity

b(F ◦G) = b(F ) ◦G− (−1)pF ◦ b(G)− (−1)p[F,G]⌣ (3.7)

for any Hochschild cochains F : A⊗p → A and G : A⊗q → A, where

[F,G]⌣ = F ⌣ G− (−1)pqG ⌣ F.

The Gerstenhaber product F ◦G is the (p+ q − 1)-cochain defined by

F ◦G (a1, . . . , ap+q−1) =
∑

1≤i≤p

(−1)(i−1)(q−1)
F (a1, . . . ai−1, G(ai, . . . ai+q−1), ai+q, . . . , ap+q−1),

(3.8)

for any a1, . . . , ap+q−1 in A.
For G = DA, identity (3.7) becomes

b(F ◦DA)− b(F ) ◦DA = −(−1)p[F,DA]⌣.

Restricting this identity to Wp+1, the right-hand side coincides with [eA, f ]⌣
K

where f is the

restriction of F to Wp. Since F ◦ DA = pf on Wp, the restriction of b(F ◦ DA) is equal
to pbK(f). The restriction of b(F ) ◦ DA is equal to (p + 1)bK(f). Thus we recover the
fundamental formula [eA, f ]⌣

K

= −bK(f).
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3.4 Koszul derivations

Definition 3.8 Let A = T (V )/(R) be a quadratic algebra and let M be an A-bimodule. Any
Koszul 1-cocycle f : V → M with coefficients in M will be called a Koszul derivation of A
with coefficients in M . When M = A, we will simply speak about a Koszul derivation of A.

According to equation (2.9), a k-linear map f : V → M is a Koszul derivation if and
only if

f(x1)x2 + x1f(x2) = 0, (3.9)

for any x1x2 in R (using the notation of Subsection 2.1). If this equality holds, the unique
derivation f̃ : T (V ) → M extending f defines a unique derivation Df : A → M from the
algebra A to the bimodule M . The k-linear map f 7→ Df is an isomorphism from the space
of Koszul derivations of A with coefficients in M to the space of derivations from A to M .
As for (3.5), it is possible to deduce the following from the Gerstenhaber calculus.

Proposition 3.9 Let A = T (V )/(R) be a quadratic algebra and let M be an A-bimodule.
For any Koszul derivation f : V →M and any Koszul q-cocycle g : Wq → A, one has

[f, g]⌣
K

= bK(Df ◦ g). (3.10)

Proof. Applying Df to equation g(x1 . . . xq).xq+1 = (−1)qx1.g(x2 . . . xq+1), we get

Df (g(x1 . . . xq)).xq+1 + g(x1 . . . xq).f(xq+1) = (−1)q(f(x1).g(x2 . . . xq+1) + x1.Df (g(x2 . . . xq+1))),

and equality (3.10) follows from (2.9).

Corollary 3.10 Let A = T (V )/(R) be a quadratic algebra and let M be an A-bimodule.
For any α ∈ HKp(A,M) with p = 0 or p = 1 and β ∈ HKq(A), one has the identity

[α, β]⌣
K

= 0. (3.11)

Proof. The case p = 1 follows from the proposition. The case p = 0 is clear since HK0(A,M)
is the space of the elements of M commuting to any element of A.

If A is Koszul, then [α, β]⌣
K

= 0 for any p and q, using the Gerstenhaber calculus and the

isomorphisms H(χ∗). We do not know whether [α, β]⌣
K

= 0 holds for any p and q when A is

not Koszul. It holds for M = A by direct verifications in the non-Koszul example of Section
9. Observe that, in this example, H(χ∗)2 is not surjective for M = A, so that there exists a
Koszul 2-cocycle which does not extend to a Hochschild 2-cocycle. Consequently, it seems
hard to prove the identity (3.11) for p = q = 2 in general from the Gerstenhaber calculus.
Notice also that the equality (3.8) defining the Gerstenhaber product does not make sense
for f ◦ g : Wp+q−1 → A when f :Wp → A and g : Wq → A.

3.5 Higher Koszul cohomology

Let A = T (V )/(R) be a quadratic algebra. Let f : V → A be a Koszul derivation of A.
Denote by [f ] the cohomology class of f . Assuming char(k) 6= 2, identity (3.11) shows that
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[f ]⌣
K

[f ] = 0, so that the k-linear map [f ]⌣
K

− is a cochain differential on HK•(A,M) for

any A-bimoduleM . We obtain therefore a new cohomology, called higher Koszul cohomology
associated to f . The Gerstenhaber identity (3.7) implies that 2Df ⌣ Df = b(Df ◦ Df),
therefore [Df ] ⌣ − is a cochain differential on HH•(A,M), defining a higher Hochschild
cohomology associated to f . MoreoverH(χ∗) induces a morphism from the higher Hochschild
cohomology to the higher Koszul cohomology, which is an isomorphism if A is Koszul.

Let us limit ourselves to the case f = eA, the fundamental 1-cocycle. In this case,
without any assumption on the characteristic of k, the formula eA ⌣

K
eA = 0 shows that the

k-linear map eA ⌣
K

− is a cochain differential on Hom(W•,M), and eA ⌣
K

− is a cochain

differential on HK•(A,M).

Definition 3.11 Let A = T (V )/(R) be a quadratic algebra and let M be an A-bimodule.
The differential eA ⌣

K
− of HK•(A,M) is denoted by ∂⌣. The homology of HK•(A,M)

endowed with ∂⌣ is called the higher Koszul cohomology of A with coefficients in M and is
denoted by HK•

hi(A,M). We set HK•
hi(A) = HK•

hi(A,A).

If we want to evaluate ∂⌣ on classes, it suffices to go back to the formula

(eA ⌣
K
f)(x1 . . . xp+1) = f(x1 . . . xp).xp+1

for any cocycle f : Wp → M , and any x1 . . . xp+1 in Wp+1. Since HK0(A,M) equals the
space Z(M) of the elements of M commuting to any element of A, we obtain the following.

Proposition 3.12 Let A = T (V )/(R) be a quadratic algebra and let M be an A-bimodule.
HK0

hi(A,M) is the space of the elements u of Z(M) such that there exists v ∈M satisfying
u.x = v.x − x.v for any x in V . In particular, if the bimodule M is symmetric, then
HK0

hi(A,M) is the space of elements of M annihilated by V . If A is a commutative domain
and V 6= 0, then HK0

hi(A) = 0.

The differential eA ⌣
K

− vanishes for M = k, hence Proposition 2.8 implies that

HKp
hi(A, k) =W ∗

p for any p ≥ 0.

3.6 Higher Koszul cohomology with coefficients in A

Lemma 3.13 Let A = T (V )/(R) be a quadratic algebra. Given α in HKp(A) and β in
HKq(A),

∂⌣(α ⌣
K
β) = ∂⌣(α)⌣

K
β = (−1)pα ⌣

K
∂⌣(β).

Proof. The first equality comes from eA ⌣
K

(α ⌣
K
β) = (eA ⌣

K
α) ⌣

K
β. The second one is

clear from the relation [eA, α]⌣
K

= 0.

Consequently, the Koszul cup product is defined on HK•
hi(A), still denoted by ⌣

K
, and

(HK•
hi(A),⌣

K
) is a graded associative algebra. Remark that, if V 6= 0, then ∂⌣(1) = eA 6= 0

and so 1 and eA do not survive in higher Koszul cohomology. To go further in the structure
of HK•

hi(A), we require a finiteness assumption.
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Throughout the remainder of this subsection, assume that V is finite dimensional. A
Koszul p-cochain f : Wp → Am is said to be homogeneous of weight m. The space of
Koszul cochains Hom(W•, A) is N× N-graded by the biweight (p,m), where p is called the
homological weight and m is called the coefficient weight. If f :Wp → Am and g :Wq → An

are homogeneous of biweights (p,m) and (q, n) respectively, then f ⌣
K
g :Wp+q → Am+n is

homogeneous of biweight (p+ q,m+ n) (see Definition 3.1). Moreover, bK is homogeneous
of biweight (1, 1). Thus the unital associative k-algebras Hom(W•, A) and HK•(A) are
N×N-graded by the biweight. The homogeneous component of biweight (p,m) of HK•(A)
is denoted HKp(A)m. Since

∂⌣ : HKp(A)m → HKp+1(A)m+1,

the algebra HK•
hi(A) is N×N-graded by the biweight, and its (p,m)-component is denoted

by HKp
hi(A)m. From Proposition 3.12, we deduce the following.

Proposition 3.14 Let A = T (V )/(R) be a quadratic algebra. Assume that V is finite
dimensional. If V 6= 0, then HK0

hi(A)0 = 0. If A is finite dimensional, HK0
hi(A)max = Amax

where max is the highest nonnegative integer m such that Am 6= 0. If the algebra A is
commutative, then for any m ≥ 0, HK0

hi(A)m equals the space of elements of Am annihilated
by V .

3.7 Higher Koszul cohomology of symmetric algebras

Throughout this subsection, A = S(V ) is the symmetric algebra of the k-vector space V .
We need no assumption on dim(V ) or char(k). The following is standard.

Lemma 3.15 Let V be a k-vector space and A = S(V ) be the symmetric algebra of V . For
any p ≥ 0, the space Wp is equal to the image of the k-linear map Ant : V ⊗p → V ⊗p defined
by

Ant(v1, . . . , vp) =
∑

σ∈Σp

sgn(σ) vσ(1) . . . vσ(p),

for any v1, . . . , vp in V , where Σp is the symmetric group and sgn is the signature.

Proposition 3.16 Let V be a k-vector space and A = S(V ) be the symmetric algebra of
V . Let M be a symmetric A-bimodule. The differentials bK of the complexes M ⊗W• and
Hom(W•,M) vanish. Therefore, HK•(A,M) =M⊗W• and HK•(A,M) = Hom(W•,M).

Proof. Equation (2.3) can be written as

bK(m⊗ x1 . . . xp) = m.(x1 ⊗ x2 . . . xp + (−1)pxp ⊗ x1 . . . xp−1),

and the right hand side vanishes according to the previous lemma and the relation

Ant(vp, v1, . . . , vp−1) = (−1)p−1Ant(v1, . . . , vp).

Similarly, bK(f) = 0 for any Koszul cochain f .
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Let us recall some facts about quadratic algebras [15]. Applying the functor − ⊗A k
to the bimodule complex K(A) = (A ⊗W• ⊗ A, d), one obtains the left Koszul complex
Kℓ(A) = (A⊗W•, dℓ) of left A-modules. The algebra A is Koszul if and only if Kℓ(A) is a
resolution of k. Note that µ⊗A k coincides with the augmentation ǫ. From (2.2) and using
obvious notation, we have

dℓ(a⊗ x1 . . . xp) = ax1 ⊗ x2 . . . xp. (3.12)

Theorem 3.17 Let V be a k-vector space and A = S(V ) be the symmetric algebra of V .
Assume that dim(V ) = n is finite. We have

HKn
hi(A)

∼= k,

HKp
hi(A)

∼= 0 if p 6= n.

Proof. Proposition 3.16 shows that the differential ∂⌣ on HK•(A) coincides with the dif-
ferential eA ⌣

K
− on Hom(W•, A). Given f : Wp → A, denote by F : A⊗Wp → A the left

A-linear extension of f to A⊗Wp. From equation (3.12) applied to 1⊗x1 . . . xp+1, and from

(eA ⌣
K
f)(x1 . . . xp+1) = (−1)px1.f(x2 . . . xp+1),

we deduce that
eA ⌣

K
f = (−1)pF ◦ dℓ,

where dℓ : A⊗Wp+1 → A⊗Wp is restricted toWp+1. Thus the differential eA ⌣
K

− coincides

with the opposite of the differential HomA(dℓ, A). Since A is Koszul, we have obtained that

HK•
hi(A)

∼= Ext•A(k,A).

Using that A is AS-Gorenstein of global dimension n [15], the theorem is proved.

4 The Koszul cap products

4.1 Definition and first properties

As for the cup product, we define ⌢
K

by restricting the usual ⌢ and using the notation of

Subsection 2.1.

Definition 4.1 Let A = T (V )/(R) be a quadratic algebra. Let M and P be A-bimodules.
For any Koszul p-cochain f :Wp → P and any Koszul q-chain z = m⊗x1 . . . xq in M ⊗Wq,
we define the Koszul (q − p)-chains f ⌢

K
z and z ⌢

K
f with coefficients in P ⊗A M and

M ⊗A P respectively, by the following equalities

f ⌢
K
z = (−1)(q−p)p(f(xq−p+1 . . . xq)⊗A m)⊗ x1 . . . xq−p, (4.1)

z ⌢
K
f = (−1)pq(m⊗A f(x1 . . . xp))⊗ xp+1 . . . xq. (4.2)

The element f ⌢
K
z is called the left Koszul cap product of f and z, while z ⌢

K
f is called

their right Koszul cap product.
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If q < p, then one has f ⌢
K
z = z ⌢

K
f = 0. By definition, we have

χ̃(χ∗(F )⌢
K
z) = F ⌢ χ̃(z), (4.3)

χ̃(z ⌢
K
χ∗(F )) = χ̃(z)⌢ F, (4.4)

for any Hochschild cochain F : A⊗p → P and any Koszul chain z ∈ M ⊗Wq. Considering
both Koszul cap products ⌢

K
respectively as left or right action, M ⊗W• becomes a graded

bimodule over the graded algebra (Hom(W•, A),⌣
K
), since these properties hold for the

usual cup and cap products.
Similarly, we deduce the identities

bK(f ⌢
K
z) = bK(f)⌢

K
z + (−1)pf ⌢

K
bK(z), (4.5)

bK(z ⌢
K
f) = bK(z)⌢

K
f + (−1)qz ⌢

K
bK(f), (4.6)

from the identities known for the usual ⌢. So M ⊗W• is a differential graded bimodule
over the dga Hom(W•, A). The proof of the following is clear.

Proposition 4.2 Let A = T (V )/(R) be a quadratic algebra. Both Koszul cap products
⌢
K

at the chain-cochain level define Koszul cap products, still denoted by ⌢
K
, on Koszul

(co)homology classes. Formulas (4.3) and (4.4) pass to classes. Considering Koszul cap
products as actions, for any A-bimodule M , HK•(A,M) is a graded bimodule on the graded
algebra HK•(A). In particular, HK•(A,M) is a Z(A)-bimodule. Moreover, HK•(A, k) =
W• is a graded bimodule on the graded algebra HK•(A, k) =W ∗

• .

4.2 The Koszul cap bracket

Definition 4.3 Let A = T (V )/(R) be a quadratic algebra. Let M and P be A-bimodules
such that M or P is equal to A. For any Koszul p-cochain f : Wp → P and any Koszul
q-chain z ∈M ⊗Wq, we define the Koszul cap bracket [f, z]⌢

K

by

[f, z]⌢
K

= f ⌢
K
z − (−1)pqz ⌢

K
f. (4.7)

For z = m⊗ x1 . . . xq, the explicit expression of the bracket is

[f, z]⌢
K

= (−1)(q−p)pf(xq−p+1 . . . xq)m⊗ x1 . . . xq−p −mf(x1 . . . xp)⊗ xp+1 . . . xq. (4.8)

If p = 0, then [f, z]⌢
K

= [f(1),m]c ⊗ x1 . . . xq, where [−,−]c denotes the commutator. The

Koszul cap bracket passes to (co)homology classes. We still use the notation [α, γ]⌢
K

for

classes α and γ corresponding to f and z. When M = A, the maps [f,−]⌢
K

and [α,−]⌢
K

are graded derivations of the graded Hom(W•, A)-bimodule A ⊗ W•, and of the graded
HK•(A)-bimodule HK•(A), respectively.

Similarly to what happens in cohomology, the Koszul differential bK in homology may
be defined from the Koszul cap product, and defining bK by (4.9) below, we may deduce the
identities (4.5) and (4.6) from the derivation [f,−]⌢

K

. The subsequent theorem is analogous

to Theorem 3.7. The proof is left to the reader.
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Theorem 4.4 Let A = T (V )/(R) be a quadratic algebra. For any Koszul cochain z with
coefficients in any A-bimodule M , we have the formula

[eA, z]⌢
K

= −bK(z). (4.9)

4.3 Actions of Koszul derivations

Using Subsection 3.4, we associate to a bimodule M and a Koszul derivation f : V → M
the derivation Df : A→M . The linear map Df ⊗ IdW•

from A⊗W• to M ⊗W• will still
be denoted by Df . The proof of the following proposition is easy.

Proposition 4.5 Let A = T (V )/(R) be a quadratic algebra and let M be an A-bimodule.
For any Koszul derivation f : V →M and any Koszul q-cycle z ∈ A⊗Wq,

[f, z]⌢
K

= bK(Df (z)). (4.10)

Corollary 4.6 Let A = T (V )/(R) be a quadratic algebra and let M be an A-bimodule. For
any p ∈ {0, 1, q}, α ∈ HKp(A,M) and γ ∈ HKq(A),

[α, γ]⌢
K

= 0. (4.11)

Proof. The case p = 1 follows from the proposition. The case p = 0 is clear. Assume that
p = q, α is the class of f and γ is the class of z = a⊗ x1 . . . xp. The equality (4.8) gives

[f, z]⌢
K

= f(x1 . . . xp).a− a.f(x1 . . . xp)

which is an element of [M,A]c. Since [α, γ]⌢
K

belongs to HK0(A,M), we conclude from the

isomorphism
H(χ̃)0 : HK0(A,M) → HH0(A,M) =M/[M,A]c.

Note that the same proof shows that [α, γ]⌢
K

= 0 if α ∈ HKp(A) and γ ∈ HKp(A,M).

We do not know whether the identity [α, γ]⌢
K

= 0 in the previous corollary holds for any p

and q – even if A is Koszul! It holds for M = A in the non-Koszul example of Section 9.

5 Higher Koszul homology

5.1 Higher Koszul homology associated to a Koszul derivation

A similar procedure to the one developed in Subsection 3.5 leads to the definition of a
higher homology theory in the following situation. Let A = T (V )/(R) be a quadratic
algebra, f : V → A a Koszul derivation of A and M an A-bimodule. Assuming char(k) 6= 2,
the identity [f ] ⌣

K
[f ] = 0 shows that the linear map [f ] ⌢

K
− is a chain differential on

HK•(A,M). We obtain therefore a new homology, called higher Koszul homology associated
to f . Analogously, [Df ]⌢ − is a chain differential onHH•(A,M), hence a higher Hochschild
homology associated to f . The map H(χ̃) induces a morphism from the higher Koszul
homology to the higher Hochschild homology, which is an isomorphism wheneverA is Koszul.
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For z = m⊗a1 . . . ap in M ⊗A⊗p, we deduce from the Hochschild analogue of equality (4.1)
that

Df ⌢ z = (−1)p−1(Df (ap)m)⊗ a1 . . . ap−1.

Thus Df ⌢ − coincides with the Rinehart-Goodwillie operator associated to the derivation
Df of A [17, 8].

5.2 Higher Koszul homology associated to eA

Let us fix f = eA for the rest of the paper. Without any assumption on the characteristic of
k, the k-linear map eA ⌢

K
− is a chain differential on M ⊗W•, and next eA ⌢

K
− is a chain

differential on HK•(A,M).

Definition 5.1 Let A = T (V )/(R) be a quadratic algebra and let M be an A-bimodule. The
differential eA ⌢

K
− of HK•(A,M) will be denoted by ∂⌢. The homology of HK•(A,M)

endowed with ∂⌢ is called the higher Koszul homology of A with coefficients in M and is
denoted by HKhi

• (A,M). We set HKhi
• (A) = HKhi

• (A,A).

If we want to evaluate ∂⌢ on classes, it suffices to go back to the formula

eA ⌢
K
z = mx1 ⊗ x2 . . . xp

for any cycle z = m⊗ x1 . . . xp in M ⊗Wp. If M = k, the differential eA ⌢
K

− vanishes, so

HKhi
p (A, k) =Wp for any p ≥ 0.

5.3 Higher Koszul homology with coefficients in A

Lemma 5.2 Let A = T (V )/(R) be a quadratic algebra. Given α in HKp(A) and γ in
HKq(A), the following equalities hold

∂⌢(α ⌢
K
γ) = ∂⌣(α)⌢

K
γ = (−1)pα ⌢

K
∂⌢(γ),

∂⌢(γ ⌢
K
α) = ∂⌢(γ)⌢

K
α = (−1)qγ ⌢

K
∂⌣(α).

The proof is left to the reader. Consequently, the Koszul cap products are defined in
HK•

hi(A) acting on HKhi
• (A) and are still denoted by ⌢

K
. This makes HKhi

• (A) a graded

bimodule over the graded algebra HK•
hi(A). More generally, HKhi

• (A,M) is a graded
bimodule over the graded algebra HK•

hi(A) for any A-bimodule M .
As we have already done in cohomology, but without any assumption on V , we show that

the space HKhi
• (A) is bigraded. A Koszul q-chain z in An⊗Wq is said to be homogeneous of

weight n. The space of Koszul chains A⊗W• is N×N-graded by the biweight (q, n), where
q is called the homological weight and n is called the coefficient weight. Moreover, bK is
homogeneous of biweight (−1, 1). Thus the space HK•(A) is N×N-graded by the biweight.
The homogeneous component of biweight (q, n) of HK•(A) is denoted by HKq(A)n. Since

∂⌢ : HKq(A)n → HKq−1(A)n+1,
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the space HKhi
• (A) is N × N-graded by the biweight, and its (q, n)-component is denoted

by HKhi
q (A)n.

Assume now that V is finite dimensional. If f : Wp → Am and z ∈ An ⊗Wq are homo-
geneous of biweights (p,m) and (q, n) respectively, then f ⌢

K
z and z ⌢

K
f are homogeneous

of biweight (q − p,m+ n) where

f ⌢
K
z = (−1)(q−p)pf(xq−p+1 . . . xq)a⊗ x1 . . . xq−p, (5.1)

z ⌢
K
f = (−1)pqaf(x1 . . . xp)⊗ xp+1 . . . xq, (5.2)

and z = a⊗ x1 . . . xq. The Hom(W•, A)-bimodule A⊗W•, the HK
•(A)-bimodule HK•(A)

and the HK•
hi(A)-bimodule HKhi

• (A) are thus N×N-graded by the biweight. The proof of
the following is left to the reader.

Proposition 5.3 For any quadratic algebra A = T (V )/(R),

HK0(A)0 = HKhi
0 (A)0 = k.

Moreover HK0(A)1 = HK1(A)0 = V and ∂⌢ : HK1(A)0 → HK0(A)1 is the identity map
of V . As a consequence,

HKhi
0 (A)1 = HKhi

1 (A)0 = 0.

5.4 Higher Koszul homology of symmetric algebras

Theorem 5.4 Given a k-vector space V and the symmetric algebra A = S(V ), we have

HKhi
0 (A) ∼= k,

HKhi
p (A) ∼= 0 if p > 0.

Proof. Proposition 3.16 shows that the differential ∂⌢ on HK•(A) coincides with the differ-
ential eA ⌢

K
− on A ⊗W•. From equation (3.12), we see that the complex (HK•(A), ∂⌢)

coincides with the left Koszul complex Kℓ(A) = (A⊗W•, dℓ). Since A is Koszul, we deduce
HKhi

• (A) as stated.

Our aim is now to generalize this theorem to any Koszul algebra, in characteristic zero.
This generalization is presented in the next section. The proof given below uses some
standard facts on Hochschild homology of graded algebras including the Rinehart-Goodwillie
operator.

6 Higher Koszul homology and de Rham cohomology

6.1 Standard facts on Hochschild homology of graded algebras

For Hochschild homology of graded algebras, we refer to Goodwillie [8], Section 4.1 of Loday’s
book [12], or Section 9.9 of Weibel’s book [21]. In this subsection, A is a unital associative
k-algebra which is N-graded by a weight. The homogeneous component of weight p of A
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is denoted by Ap and we set |a| = p for any a in Ap. We assume that A is connected, i.e.
A0 = k, so that A is augmented. Recall that the weight map D = DA : A→ A of the graded
algebra A is defined by D(a) = pa for any p ≥ 0 and a in Ap. As recalled in Subsection 5.1,
the Rinehart-Goodwillie operator eD = D ⌢ − of A⊗A⊗• is defined by

eD(a⊗ a1 . . . ap) = (−1)p−1(|ap|apa)⊗ a1 . . . ap−1,

for any a, a1, . . . , ap in A with ap homogeneous. If p = 0, note that eD(A) = 0.
Denote by [D] the Hochschild cohomology class of D. Assuming char(k) 6= 2, Gersten-

haber’s identity 2D ⌣ D = b(D ◦ D) shows that the map H(eD) = [D] ⌢ − is a chain
differential on HH•(A), and [D] ⌣ − is a cochain differential on HH•(A). We denote by
HHhi

• (A) (resp. HH•
hi(A)) the so-obtained higher Hochschild homology (resp. cohomology)

of A with coefficients in A, already defined if A is a quadratic algebra in Subsections 3.5
and 5.1.

Let B be the normalized Connes differential of A⊗Ā⊗• where Ā = A/k [12, 21]. Denoting
the augmentation of A by ǫ, we identify Ā to the subspace ker(ǫ) =

⊕

m>0Am of A. Recall
that

B(a⊗ a1 . . . ap) =
∑

0≤i≤p

(−1)pi1⊗ (ap−i+1 . . . apāa1 . . . ap−i), (6.1)

for any a ∈ A, and a1, . . . , ap in Ā, where ā denotes the class of a in Ā. Note that B(a) = 1⊗ā
for any a in A. The operator B passes to Hochschild homology and defines the cochain
differential H(B) on HH•(A). We follow Van den Bergh [19] for the subsequent definition.

Definition 6.1 The complex (HH•(A), H(B)) is called the de Rham complex of A. The
homology of this complex is called the de Rham cohomology of A and is denoted by H•

dR(A).

If char(k) = 0, it turns out that one of both differentials H(B) and H(eD) of HH•(A)
is – up to a normalization – a contracting homotopy of the other one. This duality linking
H(B) and H(eD) is a consequence of the Rinehart-Goodwillie identity (6.2) below. Let us
introduce the weight map LD of A⊗ Ā⊗• by

LD(z) = |z|z,

for any homogeneous z = a⊗ a1 . . . ap, where |z| = |a|+ |a1|+ · · ·+ |ap|. Clearly, LD defines
an operator H(LD) on HH•(A). Note that A ⊗ A⊗•, HH•(A) and HHhi

• (A) are graded
by the total weight (called simply the weight), and that the operators H(eD), H(B) and
H(LD) are weight homogeneous. Let us state the Rinehart-Goodwillie identity; for a proof,
see for example Corollary 4.1.9 in [12].

Proposition 6.2 Let A be a connected N-graded k-algebra. The identity

[H(eD), H(B)]gc = H(LD), (6.2)

holds, where [−,−]gc denotes the graded commutator with respect to the homological degree.

The following consequence is a noncommutative analogue of Poincaré Lemma.

Theorem 6.3 Let A be a connected N-graded k-algebra. Assume char(k) = 0. We have

H0
dR(A)

∼= HHhi
0 (A) ∼= k,

Hp
dR(A)

∼= HHhi
p (A) ∼= 0 if p > 0.
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Proof. Let α 6= 0 be a weight homogeneous element in HHp(A). Assume that H(eD)(α) = 0.
The identity (6.2) provides

H(eD) ◦H(B)(α) = |α|α. (6.3)

If p > 0, then |α| 6= 0, so that α is a H(eD)-boundary, showing that HHhi
p (A) = 0. If p = 0,

any α in HH0(A) is a cycle forH(eD) and if |α| 6= 0, it is a boundary by (6.3). If p = |α| = 0,
α cannot be a boundary since H(eD) adds 1 to the coefficient weight. Thus HHhi

0 (A) = k.
The proof for the de Rham case is similar. Note that the assumption char(k) = 0 is essential
in this proof, except for proving that H0

dR(A)
∼= k and that HHhi

0 (A)0 ∼= k.

6.2 Consequences for quadratic algebras

If A is quadratic, then H(χ̃) : HKp(A) → HHp(A) is always an isomorphism for p = 0 and
p = 1; moreover, if A is Koszul it is an isomorphism for any p. As a consequence, H(χ̃)
induces an isomorphism from HKhi

p (A) to HHhi
p (A) for p = 0, and for any p if A is Koszul.

So, generalizing Theorem 5.4 in characteristic zero, we obtain the following consequence of
the previous theorem.

Theorem 6.4 Let A = T (V )/(R) be a quadratic algebra. Assume that char(k) = 0. We
have HKhi

0 (A) ∼= k. If A is Koszul, then for any p > 0,

HKhi
p (A) ∼= 0.

It would be more satisfactory to find a proof within the Koszul calculus, possibly without
any assumption on char(k). We would also like to know if the converse of this theorem holds,
namely, if the following conjecture is true.

Conjecture 6.5 Let A = T (V )/(R) be a quadratic algebra. The algebra A is Koszul if and
only if there are isomorphisms

HKhi
0 (A) ∼= k,

HKhi
p (A) ∼= 0 if p > 0.

Let us comment on this conjecture. In the non-Koszul example of Section 9, we will
find that HKhi

2 (A) 6= 0 – agreeing the conjecture. Within the graded Hochschild calculus,
this conjecture is meaningless, since any graded algebra has a trivial higher Hochschild
homology as stated in Theorem 6.3. Consequently, the higher Koszul homology provides
more information on quadratic algebras than the higher Hochschild homology. Moreover, if
Conjecture 6.5 is true, then the Koszul algebras would be exactly the acyclic objects for the
higher Koszul homology.

In Subsection 3.7, the left Koszul complex Kℓ(A) = K(A) ⊗A k associated to any
quadratic algebra A was recalled. Since A is Koszul if and only if Kℓ(A) is a resolution
of k, Conjecture 6.5 is an immediate consequence of the following.

Conjecture 6.6 Let A = T (V )/(R) be a quadratic algebra. For any p ≥ 0

HKhi
p (A) ∼= Hp(Kℓ(A)). (6.4)
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A stronger conjecture asserts that there exists a quasi-isomorphism from the complex
(HK•(A), ∂⌢) to the complex Kℓ(A). The proof of Theorem 5.4 shows that the stronger
conjecture holds for symmetric algebras. For any quadratic algebra A, it is well-known that
H0(Kℓ(A)) ∼= k and H1(Kℓ(A)) ∼= 0, therefore Conjecture 6.6 would imply that HKhi

0 (A) ∼=
k and HKhi

1 (A) ∼= 0. What we know about HKhi
1 (A) is that HKhi

1 (A)0 ∼= 0 (Proposition
5.3), and HKhi

1 (A)1 ∼= 0 (next subsection). Note that the non-Koszul example of Section 9
will satisfy Conjecture 6.6.

6.3 The Connes differential on Koszul classes

From the equality (6.1) defining the Connes differential B ofA⊗Ā⊗•, observe thatB(A⊗Wp)
is not included in A ⊗Wp+1, so that it seems hard to find an analogue to B at the Koszul
chain level. We prefer to search an analogue to H(B) at the Koszul homology level. In this
subsection, the notation H(B) is simplified and replaced by B. We are interested in the
following question. Let A = T (V )/(R) be a quadratic algebra.

Does there exist a k-linear cochain differential BK on HK•(A) such that the diagram

HKp(A)
BK−→ HKp+1(A)

↓ H(χ̃)p ↓ H(χ̃)p+1 (6.5)

HHp(A)
B
−→ HHp+1(A)

commutes for any p ≥ 0?
Since B and H(χ̃) preserve the total weight, BK should preserve the total weight too.

Therefore, using our notation for coefficient weight, we impose that

BK : HKp(A)m → HKp+1(A)m−1.

The answer to the question is affirmative if A is Koszul since the vertical arrows are
isomorphisms, and in this case the corresponding Rinehart-Goodwillie identity linking the
differentials BK and ∂⌢ of HK•(A) holds. If the answer is affirmative for a non-Koszul
algebra A, Conjecture 6.5 would imply that this Koszul Rinehart-Goodwillie identity does
not hold in characteristic zero, and it would be interesting to measure the defect to be an
identity, e.g. in the explicit example of Section 9.

Let us begin by examining the diagram (6.5) for p = 0. In this case, such a BK exists
since the vertical arrows are isomorphisms. It suffices to pre and post compose the map

B : HH0(A) → HH1(A), [a] 7→ [1⊗ ā],

with the isomorphism and its inverse in order to obtain BK , however an explicit expression
of BK is not clear. It is easy to obtain it for small coefficient weights. Clearly,

BK : HK0(A)1 = V → HK1(A)0 = V

is the identity of V . Next, assume char(k) 6= 2 and consider the projections ant and sym
of V ⊗ V defined by

ant(x⊗ y) =
1

2
(x ⊗ y − y ⊗ x), sym(x⊗ y) =

1

2
(x⊗ y + y ⊗ x),

for any x and y in V . The proof of the following lemma is straightforward.
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Lemma 6.7 Let A = T (V )/(R) be a quadratic algebra. If char(k) 6= 2, we have

HK2(A)0 = R ∩ ant(V ⊗ V ), HK1(A)1 =
ant−1(R)

sym(R)
, HK0(A)2 ∼=

V ⊗ V

ant(V ⊗ V ) +R
.

The map BK : HK0(A)2 → HK1(A)1 is thus defined by BK([a]) = [sym(a)] for any [a]
in V ⊗V

ant(V⊗V )+R
. Let us continue a bit further by defining the map

BK : HK1(A)1 → HK2(A)0

by BK([a]) = 2ant(a) for any [a] in ant−1(R)
sym(R) . The proof of the following lemma is direct.

Lemma 6.8 The map BK : HK1(A)1 → HK2(A)0 is surjective and together with BK :
HK0(A)2 → HK1(A)1 it satisfies the Koszul Rinehart-Goodwillie identity

(∂⌢ ◦BK +BK ◦ ∂⌢)([a]) = 2[a],

for any [a] in HK1(A)1. Moreover, H(χ̃)2 : HK2(A)0 → HH2(A)2 is an isomorphism.

Note that HHp(A)t denotes the homogeneous component of total weight t. Using the
previous BK , the diagram (6.5) corresponding to p = 1 and total weight 2 commutes. From
Lemma 6.8, we obtain immediately the following proposition.

Proposition 6.9 Let A = T (V )/(R) be a quadratic algebra. If char(k) 6= 2, we have

HKhi
2 (A)0 ∼= HKhi

1 (A)1 ∼= 0.

Generalizing BK : HK1(A)1 → HK2(A)0 as below, we obtain the following.

Proposition 6.10 Let A = T (V )/(R) be a quadratic algebra. If p ≥ 2 is not divisible by
char(k), then HKhi

p (A)0 ∼= 0.

Proof. Denote bK,p : Wp → V ⊗Wp−1 and bK,p−1 : V ⊗Wp−1 → A2 ⊗Wp−2 the differential
bK on p-chains of weight 0 and on (p− 1)-chains of weight 1. We have

HKp(A)0 = ker(bK,p) ⊆Wp ⊆ V ⊗Wp−1, HKp−1(A)1 =
ker(bK,p−1)

im(bK,p)
,

and eA ⌢ z = z for any z in ker(bK,p). The map

∂⌢ : HKp(A)0 → HKp−1(A)1

is defined by ∂⌢(z) = [z] for any z in ker(bK,p). In order to show that this map is injective
under the hypothesis on the characteristic, it suffices to define

BK : HKp−1(A)1 → HKp(A)0

such that BK ◦ ∂⌢ = p IdHKp(A)0 . For this, restrict the operators t and N of cyclic homol-
ogy [12] to V ⊗p. We get the operators τ and γ of V ⊗p given for any v1, . . . , vp in V and z
in V ⊗p by

τ(v1 ⊗ . . .⊗ vp) = (−1)p−1vp ⊗ v1 ⊗ . . .⊗ vp−1,

γ(z) = z + τ(z) + · · ·+ τp−1(z).

Clearly τp = IdV ⊗p and (1− τ) ◦ γ = γ ◦ (1− τ) = 0.
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Lemma 6.11 If z ∈ V ⊗Wp−1 is such that bK,p−1(z) = 0, then γ(z) ∈ Wp and bK,p(γ(z)) =
0.

Proof. Write z = x⊗ x1 . . . xp−1 with usual notation. For 1 ≤ i ≤ p− 1, define

µi,i+1 = IdV ⊗i−1 ⊗ µ⊗ IdV ⊗p−i−1 : V ⊗p → V ⊗i−1 ⊗A2 ⊗ V ⊗p−i−1,

so that µi,i+1(v1 ⊗ . . .⊗ vp) = v1 ⊗ . . .⊗ vi−1 ⊗ (vivi+1)⊗ . . .⊗ vp. Clearly,

µi+1,i+2 ◦ τ = −τ ◦ µi,i+1 (6.6)

where τ on the right-hand side acts on A⊗p−1 by the same formula, hence with sign (−1)p−2.
The formula

bK,p−1(z) = (xx1)⊗ x2 . . . xp−1 + (−1)p−1(xp−1x) ⊗ x1 . . . xp−2

shows that bK,p−1 coincides with the restriction of µ1,2 ◦ (1 + τ) to V ⊗Wp−1. Since γ(z) is
equal to

x⊗x1 . . . xp−1+(−1)p−1xp−1⊗x⊗x1 . . . xp−2+xp−2⊗xp−1 . . . xp−3+· · ·+(−1)p−1x1⊗x2 . . . x

we see that
µ1,2(γ(z)) = µ1,2(z + τ(z)) = bK,p−1(z) = 0

by assumption. Therefore, using equation (6.6), we get

µ2,3(γ(z)) = µ2,3(τ(z) + τ2(z)) = −τ ◦ µ1,2(z + τ(z)) = 0,

and we proceed inductively, up to

µp−1,p(γ(z)) = µp−1,p(τ
p−2(z) + τp−1(z)) = −τ ◦ µp−2,p−1(τ

p−3(z) + τp−2(z)) = 0.

Thus, we have proved successively that γ(z) belongs to R⊗ V ⊗p−2, V ⊗R⊗ V ⊗p−3, up to
V ⊗p−2 ⊗ R, which means that γ(z) ∈ Wp. Next, the equality bK,p(γ(z)) = 0 is clear since
bK,p coincides with the restriction of 1− τ to Wp.

So we set BK([z]) = γ(z) for any [z] in HKp−1(A)1 where z ∈ ker(bK,p−1). It is imme-
diate that (BK◦∂⌢)(z) = γ(z) = pz for any z in ker(bK,p). Proposition 6.10 is thus proved.

Note that the corresponding diagram (6.5) w.r.t. p − 1 and total weight p commutes.
Remark as well that Hp(Kℓ(A))0 = 0, thus Conjecture 6.6 is satisfied in characteristic zero
for coefficient weight zero.

7 Higher Koszul cohomology and Calabi-Yau algebras

For the definition of Calabi-Yau algebras, we refer to Ginzburg [7]. The following is a higher
Hochschild cohomology version of Poincaré duality, and it is based on the material recalled
in Subsection 6.1.
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Theorem 7.1 Let A be a connected N-graded k-algebra. Assume that char(k) = 0. If A is
n-Calabi-Yau, then

HHn
hi(A)

∼= k,

HHp
hi(A)

∼= 0 if p 6= n.

Proof. Let c ∈ HHn(A) be the fundamental class of the Calabi-Yau algebra A. As proved by
the second author in [11] (Théorème 4.2), the Van den Bergh duality [20] can be expressed
by saying that the k-linear map

−⌢ c : HHp(A,M) −→ HHn−p(A,M)

is an isomorphism for any p and any A-bimodule M . As in Subsection 6.1, D denotes the
weight map of A, the map [D] ⌢ − is a chain differential on HH•(A), and [D] ⌣ − is a
cochain differential on HH•(A). Clearly the diagram

HHp(A)
[D]⌣−
−→ HHp+1(A)

↓ −⌢ c ↓ −⌢ c (7.1)

HHn−p(A)
[D]⌢−
−→ HHn−p−1(A)

commutes for any p ≥ 0. Since the vertical arrows are isomorphisms, they induce isomor-
phisms HHp

hi(A)
∼= Hhi

n−p(A). The result thus follows from Theorem 6.3.

Corollary 7.2 Let A = T (V )/(R) be a quadratic algebra. Assume that char(k) = 0. If A
is Koszul and n-Calabi-Yau, then

HKn
hi(A)

∼= k,

HKp
hi(A)

∼= 0 if p 6= n.

Proof. Since A is Koszul, H(χ∗) induces an isomorphism from HH•
hi(A) to HK

•
hi(A).

Analogously to Conjecture 6.5, we formulate the following.

Conjecture 7.3 Let A = T (V )/(R) be a Koszul quadratic algebra. The algebra A is n-
Calabi-Yau if and only if there are isomorphisms

HKn
hi(A)

∼= k,

HKp
hi(A)

∼= 0 if p 6= n.

We will illustrate this conjecture by the example A = T (V ) when dim(V ) ≥ 2. The
complex Kℓ(A) is in this case

0 −→ A⊗ V
µ

−→ A −→ 0,

so that A is Koszul of global dimension 1, and A is not AS-Gorenstein since dim(V ) ≥ 2,
thus A is not Calabi-Yau. The following proposition shows that Conjecture 7.3 is valid for
these algebras.
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Proposition 7.4 Let V be a finite-dimensional k-vector space such that dim(V ) ≥ 2, and
A = T (V ) the tensor algebra of V . We have

HK0
hi(A)

∼= 0
HK1

hi(A)0
∼= V ∗

HK1
hi(A)1

∼= Hom(V, V )/k.IdV
HK1

hi(A)m
∼= Hom(V, V ⊗m)/ < v 7→ av − va; a ∈ V ⊗m−1) > if m ≥ 2

HKp
hi(A)

∼= 0 if p ≥ 2.

(7.2)

Proof. The homology of the complex 0 −→ A
bK−→ Hom(V,A) −→ 0, where bK(a)(v) =

av − va for any a in A and v in V , is HK•(A). Thus

HK0(A) ∼= Z(A) ∼= k
HK1(A) ∼= Hom(V,A)/ < v 7→ av − va; a ∈ A >
HKp(A) ∼= 0 if p ≥ 2.

(7.3)

Next, ∂⌣ is defined from HK0(A)0 ∼= k to HK1(A)1 ∼= Hom(V, V ) by ∂⌣(λ) = λ.IdV for
any λ in k, hence it is injective. Equations (7.2) follow immediately.

8 Application of Koszul calculus to Koszul duality

Throughout this section, V denotes a finite dimensional k-vector space and A = T (V )/(R) is
a quadratic algebra. Let V ∗ = Hom(V, k) be the dual vector space of V . For any p ≥ 0, the
natural isomorphism from (V ⊗p)∗ to V ∗⊗p is always understood without sign. The reason
is that in this paper, we are only interested in the ungraded situation, meaning that there is
no additional Z-grading on V . Let R⊥ be the subspace of V ∗⊗V ∗ defined as the orthogonal
of the subspace R of V ⊗V , w.r.t. the natural duality between the space V ⊗V and its dual
(V ⊗ V )∗ ∼= V ∗ ⊗ V ∗.

Definition 8.1 The quadratic algebra A! = T (V ∗)/(R⊥) is called the Koszul dual of the
quadratic algebra A.

Recall that A is Koszul if and only if A! is Koszul [15]. The homogeneous component of
weight m of A! is denoted by A!

m. The subspace of V ∗⊗p corresponding to the subspace Wp

of V ⊗p is denoted by W !
p. By definition,

A!
m = V ∗⊗m/

∑

i+2+j=m

V ∗⊗i ⊗R⊥ ⊗ V ∗⊗j , (8.1)

W !
p =

⋂

i+2+j=p

V ∗⊗i ⊗R⊥ ⊗ V ∗⊗j . (8.2)

8.1 Koszul duality in cohomology

Recall that HK•(A) is N × N-graded by the biweight (p,m), where p is the homological
weight and m is the coefficient weight. The homogeneous component of biweight (p,m) of
HK•(A) is denoted by HKp(A)m. It will be crucial for the Koszul duality to exchange
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the weights p and m in the definition of the Koszul cohomology of A, leading to a modified
version of the Koszul cohomology algebra denoted by tilde accents. More precisely, for
Koszul cochains f :Wp → Am and g :Wq → An, define b̃K(f) and f⌣̃

K
g by

b̃K(f)(x1 . . . xp+1) = f(x1 . . . xp)xp+1 − (−1)mx1f(x2 . . . xp+1), (8.3)

(f⌣̃
K
g)(x1 . . . xp+q) = (−1)mnf(x1 . . . xp)g(xp+1 . . . xp+q). (8.4)

Let us also define the corresponding cup bracket by

[f, g]⌣̃
K

= f⌣̃
K
g − (−1)mng⌣̃

K
f.

Lemma 8.2 The product ⌣̃
K

is associative and the following formula holds

b̃K(f) = −[eA, f ]⌣̃
K

for any Koszul cochain f with coefficients in A.

The proof is immediate. Associativity implies that [−,−]⌣̃
K

is a graded biderivation for

the product ⌣̃
K
. Consequently, one has b̃K(b̃K(f)) = 0 and

b̃K(f⌣̃
K
g) = b̃K(f)⌣̃

K
g + (−1)mf⌣̃

K
b̃K(g).

Therefore, (Hom(W•, A), ⌣̃
K
, b̃K) is a dga w.r.t. the coefficient weight. The following con-

vention is essential for stating the Koszul duality in the next theorem.

Convention: (Hom(W•, A), ⌣̃
K
) is considered as N×N-graded by the inverse biweight (m, p).

The homology of the complex (Hom(W•, A), b̃K) is denoted by H̃K
•
(A), it is a unital

associative algebra, N × N-graded by the inverse biweight (m, p). The homogeneous com-

ponent of biweight (m, p) is denoted by H̃K
p
(A)m. Note that HK•(A) and H̃K

•
(A) are

different in general. For example, HK0(A) = Z(A), while H̃K
0
(A) = Z̃(A) is the graded

center of A, considering A graded by the weight.

Theorem 8.3 Let V be a finite dimensional k-vector space, A = T (V )/(R) a quadratic
algebra and A! = T (V ∗)/(R⊥) the Koszul dual of A. There is an isomorphism of N × N-
graded unital associative algebras

(HK•(A),⌣
K
) ∼= (H̃K

•
(A!), ⌣̃

K
). (8.5)

In particular, for any p ≥ 0 and m ≥ 0, there is a k-linear isomorphism

HKp(A)m ∼= H̃K
m
(A!)p. (8.6)
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Proof. Let us first explain the strategy: it suffices to exhibit a morphism of N × N-graded
unital associative algebras

ϕA : (Hom(W•, A),⌣
K
) → (Hom(W !

•, A
!), ⌣̃

K
), (8.7)

which is a morphism of complexes w.r.t. bK and b̃K , such that ϕA!◦ϕA = id and ϕA◦ϕA! = id
– using the natural isomorphisms W !!

•
∼= W• and A!! ∼= A. In fact, the isomorphism (8.5)

will be then given by

H(ϕA) : (HK
•(A),⌣

K
) → (H̃K

•
(A!), ⌣̃

K
).

We begin by the definition of ϕA. Using (8.2) and the natural isomorphism V ∗⊗p ∼=
(V ⊗p)∗, the space W !

p is identified to the orthogonal space of
∑

i+2+j=p V
⊗i ⊗ R ⊗ V ⊗j in

(V ⊗p)∗. The following lemma is standard.

Lemma 8.4 For any subspace F of a finite dimensional vector space E, denote by F⊥

the subspace of E∗ whose elements are the linear forms vanishing on F . The canonical map
(E/F )∗ → E∗, transpose of can : E → E/F , defines an isomorphism (E/F )∗ ∼= F⊥, and the
canonical map E∗ → F ∗, transpose of can : F → E, defines an isomorphism E∗/F⊥ → F ∗.

Applying the lemma, we define the k-linear isomorphism ψp : W !
p → A∗

p, where A
∗
p denotes

the dual vector space of

Ap = V ⊗p/
∑

i+2+j=p

V ⊗i ⊗R⊗ V ⊗j .

The transpose ψ∗
p : Ap → W !∗

p is an isomorphism. Replacing A by A! and using that

W !!
p
∼=Wp, the map ψ!∗

p : A!
p →W ∗

p is an isomorphism as well. According to the lemma, ψ!∗
p

is induced by the map sending any linear form on V ⊗p to its restriction to Wp.

Definition 8.5 For any p ≥ 0, m ≥ 0 and for any Koszul cochain f :Wp → Am, we define
the Koszul cochain ϕA(f) :W

!
m → A!

p by the commutative diagram

W !
m

ϕA(f)
−→ A!

p

↓ ψm ↓ ψ!∗
p (8.8)

A∗
m

f∗

−→ W ∗
p .

The so-defined k-linear map ϕA is homogeneous for the biweight (p,m) of Hom(W•, A)
and the biweight (m, p) of Hom(W !

•, A
!). Diagram (8.8) applied to A! and to ϕA(f) provides

the commutative diagram

Wp

ϕ
A! (ϕA(f))
−→ Am

↓ ψ!
p ↓ ψ∗

m (8.9)

A!∗
p

ϕA(f)∗

−→ W !∗
m .
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Comparing this diagram to the transpose of Diagram (8.8), we obtain ϕA! ◦ϕA(f) = f . The
proof of ϕA ◦ ϕA!(h) = h for any h :W !

m → A!
p is similar. So

ϕA : Hom(W•, A) → Hom(W !
•, A

!)

is a k-linear isomorphism whose inverse isomorphism is ϕA! . We continue the proof of
Theorem 8.3 by the following.

Claim 8.6 The map ϕA is an algebra morphism.

Proof. Let f : Wp → Am and g : Wq → An. For the proof, it is necessary to introduce the
cup product without sign ⌣̄

K
defined on Hom(W•, A) by

(f⌣̄
K
g)(x1 . . . xp+q) = f(x1 . . . xp)g(xp+1 . . . xp+q).

Conformally to the ungraded situation stated in the introduction of this section, the ten-
sor products of linear maps are understood without sign in the sequel. In particular, the
following diagram, whose transpose is used below, commutes.

Wp ⊗Wq
f⊗g
−→ Am ⊗An

↑ can ↓ µ

Wp+q

f⌣̄
K
g

−→ Am+n.

Tensoring Diagram (8.8) by its analogue for g, we write down the commutative diagram

W !
m ⊗W !

n

ϕA(f)⊗ϕA(g)
−→ A!

p ⊗A!
q

↓ ψm ⊗ ψn ↓ ψ!∗
p ⊗ ψ!∗

q (8.10)

A∗
m ⊗A∗

n

f∗⊗g∗

−→ W ∗
p ⊗W ∗

q .

Combining this diagram with the following four commutative diagrams

W !
m+n

can
−→ W !

m ⊗W !
n

↓ ψm+n ↓ ψm ⊗ ψn

A∗
m+n

µ∗

−→ A∗
m ⊗A∗

n

and
A!

p ⊗A!
q

µ!

−→ A!
p+q

↓ ψ!∗
p ⊗ ψ!∗

q ↓ ψ!∗
p+q

W ∗
p ⊗W ∗

q
can
−→ W ∗

p+q

W !
m+n

ϕA(f)⌣̄
K
ϕA(g)

−→ A!
p+q

↓ can ↑ µ!

W !
m ⊗W !

n

ϕA(f)⊗ϕA(g)
−→ A!

p ⊗A!
q

and

A∗
m ⊗A∗

n

f∗⊗g∗

−→ W ∗
p ⊗W ∗

q

↑ µ∗ ↓ can

A∗
m+n

(f⌣̄
K
g)∗

−→ W ∗
p+q

we obtain the commutativity of

W !
m+n

ϕA(f)⌣̄
K
ϕA(g)

−→ A!
p+q

↓ ψm+n ↓ ψ!∗
p+q

A∗
m+n

(f⌣̄
K
g)∗

−→ W ∗
p+q.

(8.11)
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Finally, it is sufficient to compare this diagram to Diagram (8.8) applied to f⌣̄
K
g instead of

f , for showing that ϕA(f⌣̄
K
g) = ϕA(f)⌣̄

K
ϕA(g). Multiplying the latter equality by (−1)pq,

we conclude that ϕA(f ⌣
K
g) = ϕA(f)⌣̃

K
ϕA(g).

Consequently, one has ϕA([f, g]⌣
K

) = [ϕA(f), ϕA(g)]⌣̃
K

. In particular, ϕA([eA, f ]⌣
K

) =

[eA! , ϕA(f)]⌣̃
K

, and therefore ϕA(bK(f)) = b̃K(ϕA(f)) by using the fundamental formulas.

Theorem 8.3 is thus proved.

We illustrate Theorem 8.3 by the example A = k[x], that is V = k.x and R = 0. The
Koszul dual of A is A! = k⊕ k.x∗ with x∗2 = 0. It is straightforward to verify the following
isomorphisms for any m ≥ 0

HK0(A)m ∼= k.(1 7→ xm) ∼= k.(x∗m 7→ 1) ∼= H̃K
m
(A!)0

HK1(A)m ∼= k.(x 7→ xm) ∼= k.(x∗m 7→ x∗) ∼= H̃K
m
(A!)1

HKp(A)m ∼= 0 ∼= H̃K
m
(A!)p for any p ≥ 2,

and it is also direct to check that the products work well. Remark that HK0(A)m is not

isomorphic to H̃K
0
(A!)m for any m ≥ 2, so the exchange p ↔ m is essential in Theorem

8.3. Passing to the modified version H̃K
m
(A!)p is also essential, since HKm(A!)0 is not

isomorphic to HK0(A)m when m is odd. Moreover, it is clear that HK0(A!) ≇ HK0(A).

8.2 Koszul duality in higher cohomology

As in Subsection 3.5, we define the tilde version of the Koszul higher cohomology. Clearly,
eA⌣̃

K
eA = 0, so that eA⌣̃

K
− is a cochain differential on Hom(W•, A). Next, eA⌣̃

K
− is a

cochain differential on H̃K
•
(A) denoted by ∂̃⌣. The homology of H̃K

•
(A) endowed with

∂̃⌣ is denoted by H̃K
•

hi(A). The associative algebra (H̃K
•

hi(A), ⌣̃
K
) is N×N-graded by the

inverse biweight. Since
H(ϕA)(eA ⌣

K
α) = eA!⌣̃

K
H(ϕA)(α),

for any α in HK•(A), Theorem 8.3 implies that the isomorphism H(ϕA) : HK•(A) →

H̃K
•
(A!) is also an isomorphism of complexes w.r.t. the differentials ∂⌣ and ∂̃⌣. We have

thus proved the following higher Koszul duality theorem.

Theorem 8.7 Let V be a finite dimensional k-vector space and A = T (V )/(R) a quadratic
algebra. Let A! = T (V ∗)/(R⊥) be the Koszul dual of A. There is an isomorphism of N×N-
graded associative algebras

(HK•
hi(A),⌣

K
) ∼= (H̃K

•

hi(A
!), ⌣̃

K
). (8.12)

In particular, for any p ≥ 0 and m ≥ 0, there is a k-linear isomorphism

HKp
hi(A)m

∼= H̃K
m

hi(A
!)p. (8.13)
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8.3 Koszul duality in homology

We proceed as we have done for cohomology in Subsection 8.1. We define a modified
version of Koszul homology by exchanging homological and coefficient weights. Precisely,
for f : Wp → Am and z = a⊗ x1 . . . xq in An ⊗Wq, we define b̃K(z), f⌢̃

K
z and z⌢̃

K
f by

b̃K(z) = ax1 ⊗ x2 . . . xq + (−1)nxqa⊗ x1 . . . xq−1, (8.14)

f⌢̃
K
z = (−1)(n−m)mf(xq−p+1 . . . xq)a⊗ x1 . . . xq−p, (8.15)

z⌢̃
K
f = (−1)mnaf(x1 . . . xp)⊗ xp+1 . . . xq. (8.16)

The corresponding cap bracket is

[f, z]⌢̃
K

= f⌢̃
K
z − (−1)mnz⌢̃

K
f.

It is just routine to verify the following associativity relations:

f⌢̃
K

(g⌢̃
K
z) = (f⌣̃

K
g) ⌢̃

K
z,

(z⌢̃
K
g) ⌢̃

K
f = z⌢̃

K
(g⌣̃

K
f),

f⌢̃
K

(z⌢̃
K
g) = ( ˜f ⌢

K
z) ⌢̃

K
g,

and the fundamental formula
b̃K(z) = −[eA, z]⌢̃

K

.

The associativity relations imply that [−,−]⌢̃
K

is a graded biderivation for the product

⌣̃
K

in the first argument and the actions ⌢̃
K

in the second argument. From that, it is

straightforward to deduce b̃K(b̃K(z)) = 0 and

b̃K(f⌢̃
K
z) = b̃K(f) ⌢̃

K
z + (−1)mf⌢̃

K
b̃K(z),

b̃K(z⌢̃
K
f) = b̃K(z) ⌢̃

K
f + (−1)nz⌢̃

K
b̃K(f).

Therefore, (A ⊗W•, ⌢̃
K
, b̃K) is a differential graded bimodule w.r.t. the coefficient weight

over the dga (Hom(W•, A), ⌣̃
K
, b̃K).

The homology of the complex (A ⊗W•, b̃K) is denoted by H̃K•(A). It is a H̃K
•
(A)-

bimodule, N×N-graded by the inverse biweight. The homogeneous component of biweight
(n, q) is denoted by H̃Kq(A)n. Note that HK0(A)0 ∼= k, while H̃K0(A)0 ∼= 0 if char(k) 6= 2.

In order to state the Koszul duality in homology, we need to slightly generalize the
formalism described up to now in this section, by replacing the graded space of coefficients,
namely A, by an arbitrary Z-graded A-bimodule M , whose degree is still called the weight.
The formalism described up to now for M = A extends immediately to such a graded M by
using the same bK , ⌣

K
, ⌢

K
, b̃K , ⌣̃

K
, ⌢̃

K
. We obtain the following general formalism.
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1. Hom(W•,M) is a (Hom(W•, A),⌣
K
)-bimodule for ⌣

K
, N× Z-graded by the biweight,

and HK•(A,M) is a N× Z-graded (HK•(A),⌣
K
)-bimodule.

2. Hom(W•,M) is a (Hom(W•, A), ⌣̃
K
)-bimodule for ⌣̃

K
, Z × N-graded by the inverse

biweight, and H̃K
•
(A,M) is a Z× N-graded (H̃K

•
(A), ⌣̃

K
)-bimodule.

3. M ⊗W• is a (Hom(W•, A),⌣
K
)-bimodule for ⌢

K
, N × Z-graded by the biweight, and

HK•(A,M) is a N× Z-graded (HK•(A),⌣
K
)-bimodule.

4. M ⊗W• is a (Hom(W•, A), ⌣̃
K
)-bimodule for ⌢̃

K
, Z×N-graded by the inverse biweight,

and H̃K•(A,M) is a Z× N-graded (H̃K
•
(A), ⌣̃

K
)-bimodule.

Apart from the case M = A, we will need to consider the graded dual M = A∗ =
⊕

m≥0A
∗
m. It would be more natural to grade A∗ by the weight −m, but in order to avoid

notational complications, we prefer to use the nonnegative weight m. So all the biweights
used below will belong to N × N. We recall the actions of the graded A-bimodule A∗. For
any u in A∗

m and a in An, they are defined by a.u and u.a in A∗
m−n, where

(a.u)(a′) = (−1)nu(a′a), (8.17)

(u.a)(a′) = u(aa′), (8.18)

for any a′ in Am−n. We are now ready to state the following Koszul duality theorem in
homology, completing Theorem 8.3.

Theorem 8.8 Let V be a finite dimensional k-vector space and A = T (V )/(R) a quadratic
algebra. Let A! = T (V ∗)/(R⊥) be the Koszul dual of A. There is an isomorphism

HK•(A) ∼= H̃K
•
(A!, A!∗), (8.19)

from the (HK•(A),⌣
K
)-bimodule HK•(A) with actions ⌢

K
, N × N-graded by the biweight,

to the (H̃K
•
(A!), ⌣̃

K
)-bimodule H̃K

•
(A!, A!∗) with actions ⌣̃

K
, N × N-graded by the inverse

biweight. In particular, for any p ≥ 0 and m ≥ 0, there is a k-linear isomorphism

HKp(A)m ∼= H̃K
m
(A!, A!∗)p. (8.20)

Proof. It is sufficient to exhibit an isomorphism

θA : A⊗W• → Hom(W !
•, A

!∗), (8.21)

from the (Hom(W•, A),⌣
K
)-bimodule A ⊗W• with actions ⌢

K
to the (Hom(W !

•, A
!),⌣

K
)-

bimodule Hom(W !
•, A

!∗) with actions ⌣̃
K
, such that θA is homogeneous for the biweights as

in the statement and θA is a morphism of complexes w.r.t. bK and b̃K . After doing so, the
isomorphism (8.19) will be given by

H(θA) : HK•(A) ∼= H̃K
•
(A!, A!∗).
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For defining the linear map θA : Am⊗Wp → Hom(W !
m, A

!∗
p ), we use the linear isomorphisms

ψ∗
m : Am → W !∗

m and ψ!
p : Wp → A!∗

p defined in the proof of Theorem 8.3. For any
z = a⊗ x1 . . . xp in Am ⊗Wp, set

θA(z)(w) = ψ∗
m(a)(w)ψ!

p(x1 . . . xp), (8.22)

for any w in W !
m. The so-defined linear map θA is homogeneous for the biweight of A⊗W•

and the inverse biweight of Hom(W !
•, A

!∗).
Defining

θ′A : Hom(W !
m, A

!∗
p ) → Am ⊗Wp, (8.23)

by θ′A(f) =
∑

i∈I ei ⊗ (ψ!−1
p ◦ f ◦ ψ−1

m (e∗i )) for any linear f : W !
m → A!∗

p , where (ei)i∈I

is a basis of the space Am and (e∗i )i∈I is its dual basis, it is easy to verify that θA is an
isomorphism whose inverse is θ′A.

Claim 8.9 Using ϕA, consider the Hom(W !
•, A

!)-bimodule Hom(W !
•, A

!∗) as a Hom(W•, A)-
bimodule. The map θA : A⊗W• → Hom(W !

•, A
!∗) is a morphism of Hom(W•, A)-bimodules.

Proof. This amounts to prove that

θA(f ⌢
K
z) = ϕA(f)⌣̃

K
θA(z), (8.24)

θA(z ⌢
K
f) = θA(z)⌣̃

K
ϕA(f), (8.25)

for any z = a⊗ x1 . . . xp in Am ⊗Wp and f :Wq → An, with p ≥ q.
Analogously to ⌣̄

K
, define the cap products without sign ⌢̄

K
. Firstly we prove

θA(f⌢̄
K
z) = ϕA(f)⌣̄

K
θA(z), (8.26)

leaving to the reader the proof of

θA(z⌢̄
K
f) = θA(z)⌣̄

K
ϕA(f). (8.27)

For any w = y1 . . . ym+n ∈ W !
m+n, we deduce from equality (8.22) that

θA(f⌢̄
K
z)(w) = ψ∗

m+n(f(xp−q+1 . . . xp)a)(w)ψ
!
p−q(x1 . . . xp−q).

Write w = w1w2 where w1 = y1 . . . yn ∈W !
n and w2 = yn+1 . . . ym+n ∈W !

m, so that

θA(z)(w2) = ψ∗
m(a)(w2)ψ

!
p(x1 . . . xp).

Denoting by .̄ the left action of an element of A!
q on an element A!∗

p giving an element of

A!∗
p−q as in (8.17) but without sign, we have

(ϕA(f)⌣̄
K
θA(z))(w) = ϕA(f)(w1) .̄ θA(z)(w2)

= ψ!∗−1
q ◦ f∗ ◦ ψn(w1) .̄ (ψ

∗
m(a)(w2)ψ

!
p(x1 . . . xp))

= ψ∗
m(a)(w2) (ψ

!∗−1
q ◦ f∗ ◦ ψn(w1) .̄ ψ

!
p(x1 . . . xp)).
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Next, for any a′ ∈ A!
p−q, one has

(ψ!∗−1
q ◦ f∗ ◦ ψn(w1) .̄ ψ

!
p(x1 . . . xp))(a

′) = ψ!
p(x1 . . . xp)(a

′(ψ!∗−1
q ◦ f∗ ◦ ψn(w1))).

The right-hand side is equal to ψ!
p−q(x1 . . . xp−q)(a

′)ψ!
q(xp−q+1 . . . xp)(ψ

!∗−1
q ◦ f∗ ◦ψn(w1)),

by using the commutative diagram

Wp
can
−→ Wp−q ⊗Wq

↓ ψ!
p ↓ ψ!

p−q ⊗ ψ!
q

A!∗
p

µ!∗

−→ A!∗
p−q ⊗A!∗

q .

Therefore, we obtain

(ϕA(f)⌣̄
K
θA(z))(w) = ψ∗

m(a)(w2)ψ
!
q(xp−q+1 . . . xp)(ψ

!∗−1
q ◦ f∗ ◦ ψn(w1))ψ

!
p−q(x1 . . . xp−q).

By duality, ψ!
q(xp−q+1 . . . xp)(ψ

!∗−1
q ◦f∗◦ψn(w1)) is equal to ψ

∗
n(f(xp−q+1 . . . xp))(w1). More-

over, the commutative diagram

An ⊗Am
µ

−→ Am+n

↓ ψ∗
n ⊗ ψ∗

m ↓ ψ∗
m+n

W !∗
n ⊗W !∗

m
can
−→ W !∗

m+n

shows that

ψ∗
n(f(xp−q+1 . . . xp))(w1)ψ

∗
m(a)(w2) = ψ∗

m+n(f(xp−q+1 . . . xp)a)(w1w2).

Thus equality (8.26) is proved. We draw the following

θA(f ⌢
K
z) = (−1)pq(−1)qϕA(f)⌣̄

K
θA(z).

Recall that ϕA(f) : W
!
n → A!

q and θA(z) : W
!
m → A!∗

p , so that (−1)pq is equal to the sign

defining ⌣̃
K

from ⌣̄
K
, without forgetting the sign (−1)q defining the left action of A!

q on A!∗
p

as in (8.17). Therefore θA(f ⌢
K
z) = ϕA(f)⌣̃

K
θA(z).

Similarly, θA(z ⌢
K
f) = (−1)pq θA(z)⌣̄

K
ϕA(f) = θA(z)⌣̃

K
ϕA(f).

Consequently, one gets θA([f, z]⌢
K

) = [ϕA(f), θA(z)]⌣̃
K

, and θA(bK(z)) = b̃K(θA(z)) by

using the fundamental formulas. Theorem 8.8 is proved.

Remark 8.10

Denote by C the Manin category of quadratic k-algebras over finite dimensional vector
spaces, and by E the category of the N × N-graded k-vector spaces whose components are
finite dimensional. We know that A 7→ HK•(A) is a covariant functor F from C to E .
Moreover, A 7→ HK•(A,A∗) is a contravariant functor G from C to E where A∗ is the

graded dual, hence the same holds for G̃ : A 7→ H̃K
•
(A,A∗). The proof of Theorem 8.8

shows that the duality functor D : A 7→ A! defines a natural isomorphism θ from F to G̃◦D.
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8.4 Koszul duality in higher homology

Generalizing the modified version of higher Koszul cohomology to any Z-graded bimodule
M , we obtain the following higher Koszul duality theorem in homology, completing Theorem
8.7.

Theorem 8.11 Let V be a finite dimensional k-vector space and A = T (V )/(R) a quadratic
algebra. Let A! = T (V ∗)/(R⊥) be the Koszul dual of A. There is an isomorphism of N×N-
graded HK•

hi(A)-bimodules

HKhi
• (A) ∼= H̃K

•

hi(A
!, A!∗). (8.28)

In particular, for any p ≥ 0 and m ≥ 0, there is a k-linear isomorphism

HKhi
p (A)m ∼= H̃K

m

hi(A
!, A!∗)p. (8.29)

9 A non-Koszul example

9.1 Koszul algebras with two generators

The Koszul algebras with two generators were explicitly determined by the first author
in [1]. The result is recalled below without proof. The paper [1] was devoted to study
changes of generators in quadratic algebras and their consequences on confluence. The
result was obtained by using Priddy’s theorem, which asserts that any weakly confluent
quadratic algebra is Koszul, and some lattice techniques for the converse “Koszulity implies
strong confluence” in case of two generators and two relations.

Assume that V = k.x ⊕ k.y, R is a subspace of V ⊗ V and A = T (V )/(R). If R = 0 or
R = V ⊗ V , then A is Koszul. If dim(R) = 1, then A is Koszul according to Gerasimov’s
theorem [4, 2]. If dim(R) = 3, A is Koszul since dim(R⊥) = 1 and A! is Koszul. For two
relations, the Koszul algebras are given by the following proposition.

Proposition 9.1 Under the previous assumptions and identifying A to its quadratic rela-
tions, the Koszul algebras with two generators and two relations are the following.

{

xy = 0
x2 = 0

and

{

yx = αxy
x2 = 0

are Koszul. (9.1)

{

yx = αx2

xy = βx2
is Koszul ⇔ α = β. (9.2)

{

y2 = αxy + βyx
x2 = 0

is Koszul ⇔ α = β. (9.3)

{

y2 = αx2 + βyx
xy = γx2

is Koszul ⇔ α = 0 and β = γ. (9.4)

{

y2 = αx2 + βxy
yx = γx2 + δxy

is Koszul ⇔

{

β(1 − δ) = γ(1 + δ)
α(1 − δ2) = −βγδ

(9.5)
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Throughout the remainder of this section, A denotes the non-Koszul quadratic algebra

A = k〈x, y〉/〈x2, y2 − xy〉.

It is immediate that the cubic relations y3 = xy2 = yxy = 0 and y2x = xyx hold in A.
Moreover, A3 is 1-dimensional generated by xyx and Am = 0 for any m ≥ 4. Therefore,
dim(A) = 6 and 1, x, y, xy, yx, xyx form a linear basis of A. This basis will be continually
used during the rather long but routine calculations of the various homology and cohomology
spaces. We will just state the results, assuming that the characteristic of k is zero. It is easy
to show that Wp = k.xp for any p ≥ 3.

9.2 The Koszul homology of A

The complex of Koszul chains of A with coefficients in A is given by

. . .
bK−→ A⊗ x4

bK−→ A⊗ x3
bK−→ A⊗R

bK−→ A⊗ V
bK−→ A −→ 0, (9.6)

where the maps bK are successively given by

bK(a⊗ x) = ax− xa and bK(a′ ⊗ y) = a′y − ya′,

bK(a⊗ x2) = (ax+ xa)⊗ x and bK(a′ ⊗ (y2 − xy)) = −ya′ ⊗ x+ (a′y + ya′ − a′x)⊗ y,

bK(a⊗ xp) = (ax+ (−1)pxa)⊗ xp−1,

for any a, a′ in A, and p ≥ 3.

Proposition 9.2 The Koszul homology of A is given by

1. HK0(A) is 4-dimensional, generated by the classes of 1, x, y and xy,

2. HK1(A) is 3-dimensional, generated by the classes of 1⊗ x, 1⊗ y and y ⊗ y,

3. HK2(A) is 3-dimensional, generated by the classes of x ⊗ x2, yx⊗ x2 + (xy + yx) ⊗
(y2 − xy) and xyx⊗ (y2 − xy),

4. for any p ≥ 3 odd (resp. even), HKp(A) is 1-dimensional, generated by the class of
1⊗ xp (resp. x⊗ xp).

Proposition 9.3 The higher Koszul homology of A is given by

1. HKhi
0 (A) ∼= k,

2. HKhi
1 (A) ∼= 0,

3. HKhi
2 (A) is 2-dimensional, generated by the classes of [yx⊗x2+(xy+yx)⊗ (y2−xy)]

and [xyx⊗ (y2 − xy)],

4. HKhi
p (A) ∼= 0 for any p ≥ 3.

The next proposition shows that A satisfies Conjecture 6.6.
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Proposition 9.4 The homology of the complex Kℓ(A) is given by

1. H0(Kℓ(A)) ∼= k,

2. H1(Kℓ(A)) ∼= 0,

3. H2(Kℓ(A)) is 2-dimensional, generated by the classes of yx ⊗ (y2 − xy) and xyx ⊗
(y2 − xy),

4. Hp(Kℓ(A)) ∼= 0 for any p ≥ 3.

9.3 The Koszul cohomology of A

Recall that for any finite dimensional vector space E, the linear map can : A ⊗ E∗ →
Hom(E,A) defined by can(a ⊗ u)(x) = u(x)a for any a in A, u in E∗ and x in E, is an
isomorphism. Using this, define the isomorphism of complexes

can : A⊗W ∗
•
∼= Hom(W•, A).

The differential of A⊗W ∗
• is obtained by carrying the differential bK of Hom(W•, A), and

is still denoted by bK .
The dual basis of V ∗ corresponding to the basis (x, y) of V is (x∗, y∗). Denote by x∗2

the restriction to R of the linear form x∗ ⊗ x∗ on V ⊗ V , and analogously for x∗y∗, y∗x∗

and y∗2. Clearly x∗2 and y∗2 form a basis of R∗, and we have the following relations in R∗:

x∗y∗ = −y∗2, y∗x∗ = 0.

For any p ≥ 3, denote by x∗p the restriction to Wp of the linear form x∗⊗p on V ⊗p, so that
W ∗

p is generated by x∗p. Then it is routine to write down the complex (A ⊗W ∗
• , bK), and

to get the following.

Proposition 9.5 The Koszul cohomology of A is given by

1. HK0(A) is 2-dimensional, generated by 1 and xyx,

2. HK1(A) is 2-dimensional, generated by the classes of x⊗x∗+y⊗y∗ ∼= eA and xy⊗y∗,

3. HK2(A) is 4-dimensional, generated by the classes of 1 ⊗ x∗2, 1 ⊗ y∗2, y ⊗ y∗2 and
xyx⊗ y∗2,

4. for any p ≥ 3 odd (resp. even), HKp(A) is 1-dimensional, generated by the class of
x⊗ x∗p (resp. 1⊗ x∗p).

Proposition 9.6 The higher Koszul cohomology of A is given by

1. HK0
hi(A) is 1-dimensional, generated by the class of xyx,

2. HK1
hi(A) is 1-dimensional, generated by the class of [xy ⊗ y∗],

3. HK2
hi(A) is 3-dimensional, generated by the classes of [1⊗y∗2], [y⊗y∗2] and [xyx⊗y∗2],

4. HKp
hi(A)

∼= 0 for any p ≥ 3.
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We do not know whether the following proposition holds or not for any quadratic algebra.

Proposition 9.7 The algebra (HK•(A),⌣
K
) is graded commutative. The (HK•(A),⌣

K
)-

bimodule HK•(A) is graded symmetric for the actions ⌢
K
.

We leave the verifications of this proposition to the reader by calculating the cup and
cap products of the explicit classes given in Proposition 9.2 and Proposition 9.5. In higher
Koszul cohomology, the products of two biweight homogeneous classes vanish, except

[xyx] ⌣
K

[[1⊗ y∗2]] = [[1⊗ y∗2]]⌣
K

[xyx] = [[xyx⊗ y∗2]].

Examining the possible biweights, we see also that the higher Koszul cohomology of A
acts on the higher Koszul homology of A by zero.

9.4 The Hochschild (co)homology of A

Apart from standard examples including Koszul algebras, it is difficult to compute the
Hochschild (co)homology of an associative algebra given by generators and relations. The
bar resolution is too large and, if the algebra is graded, a construction of the minimal
projective resolution is too hard to perform in general. Fortunately, in case of monomial
relations, Bardzell’s resolution provides a minimal projective resolution whose calculation
is tractable. The differential and the contracting homotopy of Bardzell’s resolution are
simultaneously defined in homological degree p from (p − 1)-ambiguities. The ambiguities
are monomials simply defined from the well-chosen reduction system R defining the algebra.

The third author and Chouhy have extended Bardzell’s resolution to any algebra, not
necessarily graded, defined by relations on a finite quiver [3]. Guiraud, Hoffbeck and Mal-
bos [9] have constructed a resolution which may be related to the construction of [3]. The
first step consists in well-choosing a reduction system R of the algebra A. The resolution
S(A) of [3] is in some sense a deformation of Bardzell’s one. The bimodules of the res-
olution S(A) are free, and the free bimodule in homological degree p is generated by the
(p−1)-ambiguities of the associated monomial algebra. The differential and the contracting
homotopy are simultaneously defined by induction on p. We apply this construction to our
favorite non-Koszul algebra A, without giving the details.

The construction of S(A) starts with x < y, the corresponding deglex order on the
monomials in x and y, and the reduction system

R = {x2, y2 − xy, yxy}.

We obtain that S(A) =
⊕

p≥0A⊗k.Sp⊗A, where k.Sp denotes the k-vector space generated

by the set Sp. Explicitely, S0 = {1}, S1 = {x, y} and S2 = {x2, y2, yxy} – denoted by S
in [3]. For each p ≥ 3, Sp is the set of the (p − 1)-ambiguities defined by S2. The p-
ambiguities are the monomials obtained as minimal proper superpositions of p elements of
S2. For example, S3 = {x3, y3, yxy2, y2xy, yxyxy} and

S4 = {x4, y4, yxy3, y3xy, y2xy2, yxy2xy, y2xyxy, yxyxy2, yxyxyxy}.

The differential d is defined in S2 by d(1 ⊗ x2 ⊗ 1) = x⊗ x⊗ 1 + 1⊗ x⊗ x, and

d(1 ⊗ y2 ⊗ 1) = y ⊗ y ⊗ 1 + 1⊗ y ⊗ y − x⊗ y ⊗ 1− 1⊗ x⊗ y,
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d(1⊗ yxy ⊗ 1) = yx⊗ y ⊗ 1 + y ⊗ x⊗ y + 1⊗ y ⊗ xy.

For any p ≥ 3, xp belongs to Sp and d(1 ⊗ xp ⊗ 1) = x ⊗ xp−1 ⊗ 1 + (−1)p1 ⊗ xp−1 ⊗ x.
Therefore, the morphism of graded A-bimodules χ : K(A) → S(A) defined by the identity
map on the generators of all the spacesWp, except y

2−xy which is sent to y2, is a morphism
of complexes, allowing us to view K(A) as a subcomplex of the resolution S(A). The proof
of the following is omitted; it lies on rather long computations.

Proposition 9.8 Let A = k〈x, y〉/〈x2, y2 − xy〉 be the algebra considered in this section.

• H(χ̃)2 : HK2(A) → HH2(A) is an isomorphism.

• HH3(A) is 3-dimensional, generated by the classes of 1 ⊗ x3, y ⊗ y3 + 1 ⊗ yxy2 and
xy ⊗ y3 + y ⊗ yxy2. Moreover, H(χ̃)3 : HK3(A) → HH3(A) sends [1 ⊗ x3] to itself.
In particular, H(χ̃)3 is injective and not surjective.

• HH2(A) is 2-dimensional, generated by the classes of 1 ⊗ x∗2 + y ⊗ y∗x∗y∗ and x ⊗
x∗2 − y ⊗ y∗2. Moreover, H(χ∗)2 : HH2(A) → HK2(A) sends the first one to the
class of 1 ⊗ x∗2, and the second one to the class of − 1

2y ⊗ y∗2. In particular, H(χ∗)2
is injective and not surjective.

• HH3(A) is 1-dimensional, generated by the class of xyx ⊗ y∗x∗y∗2 + xyx ⊗ y∗2x∗y∗.
Moreover, H(χ∗)3 = 0.
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