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a b s t r a c t

Let G = (V , E) be a graph and d a positive integer. We study the following problem:
for which labelings fE : E → Zd is there a labeling fV : V → Zd such that fE(i, j) =
fV (i) + fV (j) (mod d), for every edge (i, j) ∈ E? We also explore the connections of the
equivalent multiplicative version to toric ideals. We derive a polynomial algorithm to
answer these questions and to obtain all possible solutions.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Graph labeling is a broad subject encompassing a myriad of variants. In general, it involves assigning a value to each
vertex or each edge of a graph, subject to some restrictions. For an extensive list of references on the subject, see the dynamic
survey [2].
A classic example of graph labeling is graph coloring. Other examples are harmonious labelings [3] and felicitous

labelings [7]. In the present work, we study a problem similar to these, but dropping the one-to-one conditions and allowing
modular arithmetic over an arbitrary positive integer d. The particular case d = 2 is applied in [1] to the study of monotone
dynamical systems.
Let G = (V , E) be a graph and let Zd denote as usual the set of integers modulo d. A function fE : E → Zd is called an

e-labeling of G and a function fV : V → Zd is called a v-labeling. The pair (G, fE) denotes the graph Gwith its edges labeled
with fE , and we say it is an e-labeled graph.
In this paper, we answer completely the question of when a given labeling of the edges of G with integers modulo d

admits a labeling of the nodes of G such that the label of each edge is the sum, modulo d, of the labels of its vertices. More
formally, we study the following problem.

Problem 1.1. Let (G, fE) be an e-labeled graph. When is there a v-labeling fV of G such that

fE((v, v′)) = fV (v)+ fV (v′) (mod d) (1.1)

for every edge (v, v′) ∈ E?
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Fig. 1. (a) An e-labeling of a graph over Z3 and (b) a valid v-labeling of it. (c) A non-additive e-labeling of a graph, again over Z3 .

Definition 1.2. We say that a v-labeling fV satisfying (1.1) is a valid v-labeling of (G, fE). If such an fV exists, we say that fE is
an additive e-labeling of G. We also say that (G, fE) is an additively e-labeled graph.

Note that we are not imposing the restriction that adjacent vertices have different labels.
Once we know that an e-labeling fE of a graph G is additive, we can investigate how many valid v-labelings it admits.

We denote this number by κ(G, fE). For example, the graph of Fig. 1(a), with the edge labels in Z3, is additive and admits a
unique valid v-labeling over Z3, shown in Fig. 1(b), whereas the e-labeling of the graph of Fig. 1(c) is not additive.
We characterize completely the existence of valid v-labelings in Theorem 2.8 and we compute κ(G, fE) in Theorem 2.9.

Moreover, we present a polynomial algorithm to decide the existence of valid v-labelings of an e-labeled graph (G, fE) in
Theorem4.5.We also show thatwe can enumerate all such valid v-labelings in polynomial time.We derive these complexity
results in Section 4 from the cost of computing the Smith Normal Form (SNF) [6] of the incidence matrix of the graph [4]
and Theorem 4.4.
In Section 5, we comment on the equivalent multiplicative version Problem 5.1 of Problem 1.1, linking graphs and

toric ideals. In particular, we obtain in Theorem 5.2 a modular version of classic results on the implicitization of toric
parametrizations.

2. Characterization of additive e-labelings

In this section, we show that, not surprisingly, if a given e-labeling is additive, this imposes restrictions on the cycles in
G. Throughout this work, the term cycle will not necessarily mean simple cycle. Theorem 2.8 shows that these restrictions
are in fact sufficient.
If C = (V , E) is a cycle of length k in G, we number its nodes ‘‘consecutively’’ v1, . . . , vk and its edges e1, . . . , ek, where

ei = (vi, vi+1) for all i < k, and ek = (vk, v1).

Definition 2.1. We say that an e-labeled graph (G, fE) has the even cycle property if every cycle of even length in G, with
edges e1, . . . , e2k, satisfies∑

l odd

fE(el) =
∑
l even

fE(el) (mod d).

Definition 2.2. Let d be an even positive integer. We say that an e-labeled graph (G, fE) has the odd cycle property if every
cycle of odd length in G, with edges e1, . . . , e2k+1, satisfies

d
2

2k+1∑
l=1

fE(el) = 0 (mod d). (2.1)

Equivalently, the odd cycle property holds if the sum
∑2k+1
l=1 fE(el) is an even number for all odd cycles in G. Note that if

d = 2, then both properties mean that the number of 1’s in the edges of a cycle of any length is even. This case was studied
in [1] in a multiplicative setting as in Section 4.

Definition 2.3. Let (G, fE) be an e-labeled graph. We say that (G, fE) is compatible if one of the following conditions holds.
• d is odd and (G, fE) has the even cycle property.
• d is even and (G, fE) has both the even and the odd cycle properties.

Remark 2.4. The preceding definitions take into account all the cycles of a graph, not just its simple cycles. The example
in Fig. 2 shows two simple cycles joined at a vertex. Assume d ≥ 3. Then, each cycle, considered as a graph, satisfies the
odd cycle property. Furthermore, each cycle trivially satisfies the even cycle property. However, the whole graph does not
satisfy the even cycle property, because the non-simple cycle obtained by traversing both triangles in succession does not
satisfy it.
We show in Theorem4.4 that the number of conditions to be checked to ensure that (G, fE) is compatible is in fact ‘‘small’’.

Lemma 2.5. Assume d is even. Let (G, fE) be a connected e-labeled graph satisfying the even cycle property. Let C be any odd
cycle in G. Then, (G, fE) satisfies the odd cycle property if and only if (2.1) holds for C.
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Fig. 2. Two simple cycles joined at a vertex.

Proof. Suppose that (G, fE) satisfies the even cycle property and that (2.1) holds for C . Let C ′ be an odd cycle in G. Let v ∈ C
and v′ ∈ C ′. Since G is connected, there is a path P from v to v′. Let e1, . . . , e2k+1, e′1, . . . , e

′

2s+1 and e
P
1, . . . , e

P
r be the edges

of C , C ′ and P , such that v is a vertex of e1 and of eP1 and that v
′ is a vertex of e′1 and e

P
r . The even cycle property of (G, fE)

applied to the even cycle made up of C , P from v to v′, C ′ and then P from v′ to v, implies that

2k+1∑
i=1

(−1)i+1fE(ei)+
r∑
i=1

(−1)ifE(ePi )+
2s+1∑
i=1

(−1)r+ifE(e′i)+
r∑
i=1

(−1)ifE(ePi ) = 0 (mod d).

If we multiply both sides by d/2, and since d/2 = −d/2 (mod d), we obtain d2
(∑2k+1

i=1 fE(ei)+
∑2s+1
i=1 fE(e

′

i)
)
= 0 (mod d).

Using the odd cycle property of (C, fE), we obtain d2
∑2s+1
i=1 fE(e

′

i) = 0 (mod d), which means that (2.1) holds for C
′ too. �

The following two lemmas show that compatibility is a necessary condition for additivity.We leave their straightforward
proofs to the reader.

Lemma 2.6. If (G, fE) is an additive e-labeled graph, then (G, fE) has the even cycle property.

Lemma 2.7. If d is even, and (G, fE) is an additive e-labeled graph, then G has the odd cycle property.

In fact, the compatibility conditions are sufficient for additivity.

Theorem 2.8. An e-labeled graph (G, fE) is additive if and only if it is compatible.

Let G1, . . . ,Gr be the connected components of G, and let fE be an e-labeling of G. Then,

κ(G, fE) =
∏
i

κ(Gi, fE).

In particular, an e-labeled graph is additive if and only if each connected component is additive. Therefore, we restrict
ourselves to connected graphs.

Theorem 2.9. Let (G, fE) be a connected additive e-labeled graph.
If (G, fE) has no odd simple cycles, κ(G, fE) = d.
If (G, fE) has at least one odd simple cycle, then

• if d is odd, then κ(G, fE) = 1
• if d is even, then κ(G, fE) = 2

We prove Theorems 2.8 and 2.9 in Section 3.

3. Proof of Theorems 2.8 and 2.9

Lemmas 2.6 and 2.7 show that compatibility is a necessary condition for additivity. We now turn our attention to
sufficient conditions and to the number of valid v-labelings that an additive e-labeled graph admits, through a series of
preparatory lemmas.

Lemma 3.1. Let (G, fE) be a connected additive e-labeled graph, and suppose that fV and f ′V are valid v-labelings of (G, fE). If
there is v ∈ V such that fV (v) = f ′V (v), then fV = f

′

V .

The proof follows easily by induction on the distance between v and v′. As a consequence, once we fix the label for one
vertex in a connected additive e-labeled graph, the rest of the vertex labels are fixed. Furthermore, Lemma 3.1 implies that
κ(G, fE) ≤ d.

Definition 3.2. Given a simple cycle C and three vertices v, v′ and v′′ in C , we define C[v, v′, v′′] as the simple path in C
from v to v′ that contains v′′. Conversely, C[v, v′, v′′] is the simple path from v to v′ in C that does not contain v′′ (see Fig. 3.)
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Fig. 3. Two simple paths from v to v′ in C .

Definition 3.3. Let P be a path with vertices v1, . . . , vk and edges e1 = (v1, v2), . . . , ek−1 = (vk−1, vk), and consider an
e-labeling fE of P . Let ϕP : Zd → Zd be defined by

ϕP(c) = (−1)k−1c +
k−1∑
l=1

(−1)k−1−lfE(el) (mod d). (3.1)

In other words, ϕP(c) is the label that vk would have if we assigned label c to v1 and propagated it through P .

Remark 3.4. Let (C, fE) be an additive e-labeled simple cycle. Let v, v′, v′′ be in C and set C1 = C[v, v′, v′′] and C2 =
C[v, v′, v′′]. For any valid v-labeling fV of (C, fE), we have that ϕC1(fV (v)) = ϕC2(fV (v)) = fV (v

′).

We now prove Theorems 2.8 and 2.9 for simple cycles of odd length.

Lemma 3.5. If (C, fE) is a compatible e-labeled simple cycle of odd length then it is additive. If d is odd, κ(C, fE) = 1. If d is even,
κ(C, fE) = 2.

Proof. Let v1, . . . , v2k+1 be the nodes of the cycle. Suppose that we have a valid v-labeling fV . We want to see which are the
possible values of fV (v1). We need

ϕC[v1,v2k+1,v2](fV (v1)) = ϕC[v1,v2k+1,v2](fV (v1)) (mod d).

Replacing each side by its definition, we obtain

(−1)2kfV (v1)+
2k∑
l=1

(−1)2k−lfE(el) = fE(e2k+1)− fV (v1) (mod d),

and since 2k is even, this expression is equivalent to

2fV (v1) =
2k+1∑
l=1

(−1)l+1fE(el) (mod d). (3.2)

If d is odd, then 2 is invertible modulo d and Eq. (3.2) has a unique solution. That implies that there is at most one possible
value for fV (v1). Since propagating this value yields a valid v-labeling, there is a unique valid v-labeling of (C, fE).
If d is even, then we use the odd cycle condition. Recall that this implies that the sum of the labels of the edges in the

cycle is an even number. Since changing the sign of some summands does not alter the parity of a sum, the right-hand side
of (3.2), ` :=

∑2k+1
l=1 (−1)

l+1fE(el), is also even. Eq. (3.2) is then of the form 2X = 2b (mod 2c). This equation has exactly
two solutions: X = b and X = b+ c . This means that fV (v1) is either `/2 or (`+ d)/2. Since propagating these two values
for fV (v1) yields valid v-labelings, the proof is complete. �

The proof of Lemma 3.5 allows us to deduce the following

Corollary 3.6. Let (C, fE) be an additive e-labeled simple cycle of odd length, with d even. If fV and f ′V are its two different valid
v-labelings, then fV (v) = f ′V (v)+ d/2 (mod d) for all v ∈ V .

Let (G, fE) be an e-labeled graph. In the following proofs, given a subgraph C of G, we will denote by (C, fE) the graph C
labeled with the restriction of fE to the edges of C .

Lemma 3.7. Let (G, fE) be a compatible e-labeled connected graph. Let C and C ′ be two cycles of odd length in G. Let e1, . . . , er
be the edges of C and e′1, . . . , e

′
s be the edges of C

′. Assume that C and C ′ share at least one vertex v1, such that both e1 and e′1
are incident to v1. Then,

r∑
l=1

(−1)r−lfE(el) =
s∑
l=1

(−1)s−lfE(e′l) (mod d).

Lemma 3.7 follows from the even cycle condition applied to the cycle e1, . . . , er , e′1, . . . , e
′
s.
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Proof of Theorems 2.8 and 2.9. Let (G, fE) be a compatible e-labeled graph. Without loss of generality, we can assume that
it is connected. We prove the theorems by constructing a valid v-labeling of it.
If G has odd simple cycles, call one of them C . Choose a valid v-labeling f of (C, fE). Pick a vertex v in C and set ` = f (v).

If G has no odd cycles, choose any vertex v in G and label it with any ` in Zd.
We build a valid v-labeling fV of (G, fE) by propagating the label of v to the rest of the graph. For that, set fV (v) = `. For

any vertex v′ ∈ V , choose a path P from v to v′ and set fV (v′) = ϕP(`), where ϕP is as in (3.1). We have to prove that fV is
well-defined and that it is a valid v-labeling of (G, fE).
Given v′ and two simple paths P1 and P2 from v to v′, we have to prove that ϕP1(`) = ϕP2(`). Let e1, . . . , er and e

′

1, . . . , e
′
s

be the edges of P1 and P2, respectively, and assume that v is an endpoint of e1 and e′1. We call C
′ the cycle formed by the

union of P1 and P2.
If the sum of the lengths of P1 and P2 is even, we can use the even cycle property of (G, fE) applied to C ′. That is,

fE(e1)− fE(e2)+ · · · + (−1)r+1fE(er)+ (−1)r+2fE(e′s)+ · · · − fE(e
′

1) = 0 (mod d).

This condition is equivalent to the identity

r∑
l=1

(−1)lfE(el) =
s∑
l=1

(−1)lfE(e′l) (mod d). (3.3)

We have ϕP1(`) = (−1)
r`+

∑r
l=1(−1)

r−lfE(el) (mod d), and ϕP2(`) = (−1)
s`+

∑s
l=1(−1)

s−lfE(el) (mod d). Since r and s
have the same parity, it follows that ϕP1(`) = ϕP2(`).
If r is odd and s is even, the cycle C ′ has odd length. The equality ϕP1(`) = ϕP2(`) is equivalent to

2` =
r∑
l=1

(−1)l+1fE(el)+
s∑
l=1

(−1)l+1fE(el) (mod d). (3.4)

The right-hand side of (3.4) is the alternating sum of the labels of the edges of the odd cycle C ′, starting at v. By Lemma 3.7,
this sum is equal, modulo d, to the alternating sum of the labels of the edges of C , starting at v. By Lemma 3.5, this sum is
equivalent to 2`, which is what we needed to prove.
We now know that fV is a well-defined labeling. Similar arguments show that it is also a valid v-labeling of (G, fE). �

Remark 3.8. Given a compatible e-labeled graph (G, fE), it is not difficult to see that if we add any edge e to G, there is
an extension of fE that assigns a label to e such that the resulting e-labeled graph is compatible. So any partial compatible
labeling of a graph G can be extended to an additive e-labeling.

4. An efficient additivity test

Theorems 2.8 and 2.9 give a theoretical characterization of additive e-labeled graphs. These results are not practical per
se, since they involve verifying certain conditions on all the cycles of a graph. In this section, we develop a polynomial
algorithm to test for additivity.
We tackle this problem by studying the incidence matrix AG of G = (V , E). The matrix AG has size n×m, where n = |V |

andm = |E|, and its entries are defined by

[AG]i,j =
{
1 if the vertex vi is incident with the edge ej,
0 otherwise.

Weuse the SmithNormal Form (SNF) S ofAG togetherwith the left and rightmultipliersU, V . Here,U ∈ Zn×n, V ∈ Zm×m, S ∈
Zn×m have the following properties:

- U and V are unimodular (so that U−1 and V−1 are integer matrices),
- S is a diagonal matrix, with si,i|si+1,i+1 for all i, and
- AG = USV .

Let 0 be the n×m− nmatrix of 0’s. Then the SNF S of AG is [4][
D 0

]
, (4.1)

where D is an n× n diagonal matrix, with Di,i = 1 for i ≤ n− 1, and Dn,n = α. Here, α = 0 if G is bipartite (i.e. has no odd
cycles) and 2 otherwise.

Definition 4.1. Let G = (V , E) be a graph and let C be any cycle of G. We associate a vector ωC ∈ Z|E| with C . We index the
coordinates of ωC using the edges of G. Label the consecutive edges of C e1, e2, . . . , ek−1, ek,with e1 any edge of the cycle. If
C is an even cycle, we adjoin (−1)i+1 to ei:

e1,−e2, . . . , (−1)i+1ei, . . . , ek−1,−ek. (4.2)
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If C is an odd cycle and d is even, we adjoin d/2 to each edge:

d
2
e1, . . . ,

d
2
ei, . . . ,

d
2
ek. (4.3)

Since C need not be a simple cycle, some edges may appear more than once in (4.2) and (4.3). Let e′1, . . . , e
′
r be the distinct

edges of C . For each distinct edge e′i , we define ωe′i to be the sum of the coefficients of each appearance of e
′

i in (4.2) or (4.3).
For example, if an edge e′i appears twice, both times accompanied by a 1, then the corresponding ωe′i is 2. If one of the
appearances has a 1 and the other one a (−1), then ωe′i is 0.
Given a cycle C , we define ωC ∈ ZE as

(ωC )(u,v) =

{
ω(u,v) if (u, v) is in C ,
0 otherwise.

Notice that in (4.2), the choice of e1 may swap the 1’s and the−1’s. This only changes ωC into−ωC .

Remark 4.2. Let C be a cycle of G. If the length of C is even, then the sum of the coordinates of ωC is 0. If the length of C is
odd, then the sum of the coordinates of ωC is d/2 (mod d).

Let πd : Z|E| → Zd|E| denote the projection πd(x)(u,v) = (x(u,v)) (mod d), and C the set of even cycles in G. The integer
kernel of AG is computed in [9], and is shown to be the submodule spanned by {ωC , C ∈ C}:

kerZ(AG) = 〈ωC , C ∈ C〉. (4.4)

We prove a modular version of this result. GivenM ∈ Za×b, we define kerZd(M) = {x ∈ Zdb,Mx = 0 (mod d)}.

Proposition 4.3. Let G be a connected graph, and let AG be its incidence matrix. Then,

(i) If d is odd or if G has no odd cycles, then kerZd(AG) = πd(kerZ(AG));
(ii) If d is even and there is an odd cycle C ′ in G, then

kerZd(AG) = πd(kerZ(AG))⊕ 〈πd(ωC ′)〉.

Proof. Let S be the SNF of AG, and U ,V such that AG = USV , as described in (4.1). Equivalently, U−1AG = SV . Therefore,
kerZ(AG) = kerZ(SV ) and kerZd(AG) = kerZd(SV ), implying that

kerZ(AG) = V−1 kerZ(S) and kerZd(AG) = πd(V
−1 kerZd(S)). (4.5)

Let x = (x1, . . . , xm) ∈ kerZd(S). This means that

Sxt = (x1, . . . , αxn) = 0 (mod d). (4.6)

If G has no odd cycles, α = 0 and so Eq. (4.6) holds if and only if xi = 0 (mod d) for i ∈ {1, . . . , n − 1}. Then,
kerZd(S) = 〈zn, . . . , zm〉 and kerZ(S) = 〈zn, . . . , zm〉, where {z1, . . . , zm} denotes the canonical basis either in Zm or in
Zdm. Therefore, we have kerZd(S) = πd(kerZ(S)), whence kerZd(AG) = πd(kerZ(AG)).
If G has an odd cycle, α = 2 and so when d is odd, Eq. (4.6) holds if and only if xi = 0 (mod d) for i ∈ {1, . . . , n}. Again

kerZd(S) = πd(kerZ(S)), implying kerZd(AG) = πd(kerZ(AG)).
Assume α = 2 and d even. From Eq. (4.6), we now deduce that

kerZd(S) = 〈zn+1, . . . , zm〉 ⊕
〈
d
2
zn

〉
and kerZ(S) = 〈zn+1, . . . , zm〉. (4.7)

Combining Eqs. (4.5) and (4.7), we have

kerZd(AG) = 〈πd(V
−1zn+1), . . . , πd(V−1zm)〉 ⊕

〈
πd

(
V−1

d
2
zn

)〉
. (4.8)

kerZ(AG) = 〈V−1zn+1, . . . , V−1zm〉. (4.9)

Let C ′ be an odd cycle of G. Then, πd(ωC ′) ∈ kerZd(AG). To see why, recall that entry ej of ωC ′ is d/2 times the number
of occurrences of the edge ej in C ′. For every vertex vi of the cycle, the number of edges that enter and leave it must be the
same. That means that the vi-th entry of AGωC ′ is an even number times d/2 (if vertex vi is in the cycle) or 0. In both cases,
AGωC ′ = 0 (mod d). Now, since πd(ωC ′) ∈ kerZd(AG), we must have

πd(ωC ′) =

m∑
l=n+1

γlπd(V−1zl)+ επd

(
V−1

d
2
zn

)
, (4.10)
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where ε, γl ∈ Zd and ε is 0 or 1, since 〈 d2 zn〉 = {0,
d
2 zn}. The first summand consists of multiples of the projections of

even cycles (see (4.4)). This means that if we take the sum of the coordinates of both sides of Eq. (4.10), we get ε = 1 (see
Remark 4.2.) Set γ =

∑m
l=n+1 γlπd(V

−1zl). Then

πd

(
V−1

d
2
zn

)
= γ − πd(ωC ′). (4.11)

Now, take any x ∈ kerZd(AG), x =
∑m
l=n+1 βlπd(V

−1zl)+ βπd(V−1 d2 zn). Plugging in Eq. (4.11) and setting β̃l = βl + γl, we
have

x =
m∑

l=n+1

β̃lπd(V−1zl)+ (−β)πd(ωC ′),

which shows that kerZd(AG) = πd(kerZ(AG))⊕ 〈πd(ωC ′)〉. �

Let (G, fE) be an e-labeled graph and ω ∈ ZE . We set

〈ω, fE〉 :=
∑
(u,v)∈E

ω(u,v)fE((u, v)).

The results we have discussed allow us to obtain the following

Theorem 4.4. Let (G, fE) be an e-labeled connected graph. Let AG be the incidence matrix of G. The following statements are
equivalent.
(i) (G, fE) is a compatible e-labeled graph.
(ii) 〈πd(ωC ), fE〉 = 0 (mod d), for every cycle C of G.
(iii) 〈ω, fE〉 = 0 (mod d), for all ω ∈ kerZd(AG).
(iv) If d is odd or G has no odd cycles, 〈ω, fE〉 = 0 (mod d), for all ω belonging to the projection of a finite set of generators of

kerZ(AG). If d is even and has an odd cycle, 〈ω, fE〉 = 0 (mod d), for all ω belonging to a finite set of generators of kerZ(AG)
and for ωC , for some odd cycle C.

(v) (G, fE) is an additive e-labeled graph.
Proof. Clause (i) is equivalent to clause (v) by Theorem2.8. Clause (ii) is a restatement of clause (i) using a different notation.
Clauses (ii) and (iii) are equivalent by Proposition 4.3. Clauses (iii) and (iv) also follow from that proposition: the finite sets
described in clause (iv) were shown to be generators of kerZd(AG). �

The equivalence of clauses (iv) and (v) in Theorem 4.4 provides the following complexity result.

Theorem 4.5. Let (G, fE) be an e-labeled connected graph. The additivity of (G, fE) can be tested in time polynomial in the size
of the graph. Furthermore, we can obtain all its valid v-labelings in polynomial time too.
Proof. We compute the Smith Normal Form (SNF) S of AG described in the proof of Proposition 4.3, togetherwith the left and
right multipliers U and V . This computation can be carried out using the polynomial algorithm presented in [6], modified to
work with rectangular matrices in the way the authors of that paper suggest.
We saw in Proposition 4.3 that we can obtain generators of kerZd(AG) from the columns of V

−1. If G has no odd cycles
(i.e. α = 0), we use the lastm− n+ 1 columns. If α = 2 and d is odd, we use the lastm− n columns. If α = 2 and d is even,
we use the last m− n columns and d/2 times its n-th column. To check the additivity of (G, fE), we just need to verify that
these generators satisfy the conditions stated in clause (iv) of Theorem 4.4.
Oncewe know that (G, fE) is additive, we can efficiently obtain all its valid v-labelings.Wemust first knowwhetherG has

an odd cycle or not. This can be read directly off the SNF S of AG: G has an odd cycle if and only if the diagonal of S contains
a 2. Having no odd cycles is classically known to be equivalent to G being bipartite (cf. for instance [5], p. 18) and can be
checked in time O(n+m). We can also obtain an odd cycle in G as a byproduct of this check.
If G has no odd cycles, we can assign any of the d possible labels to an arbitrary vertex, and then propagate the label to

the rest of the graph using breadth-first search (BFS). If G does have odd cycles, choose one of them and call it C . Choose a
vertex v1 in C . Formula (3.2) showswhich label (or labels, if d is even) we can assign to v1 in order to obtain valid v-labelings
of (G, fE). We then propagate the label of v1 to the rest of the graph using BFS. �

Remark 4.6. Given a graph G, consider the cycle space of G [5]. It is the Z2-vector space generated by the fundamental cycles
of G. That is, the cycles obtained when adding an edge of G to a spanning tree.
One might be tempted to think that checking the compatibility conditions on these generators suffices to verify the

compatibility of a graph with labels in Zd for any d, as in the case d = 2. However, consider for instance the graph in Fig. 4,
in which we marked the spanning tree with edges {e14, e23, e24}: the sum of the two fundamental triangle cycles C1 and C2
(represented by their 0, 1 vectors) equals the square cycle C only when d = 2. This situation is depicted informally in Fig. 5.
However, if d is odd we do not impose any conditions on C1 and C2, and so this cannot insure the even cycle condition we
need to check.When d 6= 2 is even, we get d2 times the even cycle condition, which again is not sufficient to insure additivity.
Consider for instance the labeling f (e12) = f (e24) = f (e34) = 1, f (e14) = f (e23) = 0 and d = 4. The odd cycle property is
verified for C1 and C2 but the labeling is not additive.
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Fig. 4. A spanning tree of a graph.

Fig. 5. Adding two odd cycles to obtain an even one.

5. Multiplicative version

In the previous sections, we used labelings that assigned integers modulo d to the edges and vertices of a graph. But
actually, everything we wrote is also valid if the labels belong to any finite cyclic group, via the isomorphism with Zd. In
particular, we can use labelings in Gd, the d-th roots of unity. In this case, the isomorphism between Zd and Gd is given by

k 7→ e2π ik/d.

This alternate formulation links our problem with the theory of toric ideals. As a general text on this subject, we refer the
reader to [8].
Let us state this equivalent version. Let G = (V , E) be a connected graph and d an integer greater than 1. Let v1, . . . , vn

be the vertices of G and let e1, . . . , em be its edges. We work with complex variables xvi for each vi ∈ V , and yei for each
ei ∈ E. The value of xvi corresponds to the label of vertex vi, and the value of yei corresponds to the label of edge ei. We can
restate Problem 1.1 in this multiplicative setting.

Problem 5.1. For which y ∈ Gdm are there x ∈ Gdn such that

yei = xuixvi , (5.1)

holds for every edge ei = (ui, vi) ∈ E?

According to a classic result for toric parametrizations, given a vector y ∈ (C∗)m of complex nonzero numbers, there is
an x ∈ (C∗)n satisfying (5.1) if and only if yu = yu11 · · · y

um
m = 1, for every u = (u1, . . . , um) ∈ kerZ(AG). Furthermore, under

these conditions, the number of such solutions is

g = gcd({maximal minors of AG}), (5.2)

provided that g 6= 0, in which case there are infinitely many solutions. We deduce from (4.1) that g = 2 or 0, depending on
whether G has an odd cycle or not, respectively. It was this result which prompted us to study the incidence matrix of G in
connection with Problem 1.1.
We now state a modular version of the toric result. We impose the additional restriction that

xdvi = 1, (5.3)

for all vi ∈ V . Together with (5.1), this implies that yei ∈ Gd.

Theorem 5.2. Let G = (V , E) be a connected graph. Given y ∈ Gdm, there exists x ∈ Gdn satisfying (5.1) if and only if

yu = 1,

for every u ∈ kerZd(AG). If g is 0, there are d solutions to (5.1) and (5.3) simultaneously. If g is 2 and d is even, there are two
solutions. Otherwise, there is a unique solution.

The result can be translated from Theorem 2.9. Alternatively, we could prove that given y ∈ Gdm, there are as many
solutions x ∈ Gdn as stated using the knowledge of g in (5.2), by checking how many of the complex solutions x ∈ (C∗)n
consist of d-th roots of unity.
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