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Abstract

Here we explore the effect of missing data in phylogenetic analyses using a large number of real morphological matrices. Different
percentages and patterns of missing entries were added to each matrix, and their influence was evaluated by comparing the accuracy
and error of most parsimonious trees. The relationships between accuracy and error and different parameters (e.g. the number of
taxa and characters, homoplasy, support) were also evaluated. Our findings, based on real matrices, agree with the simulation
studies, i.e. the negative effect increases with the percentage of missing entries, and decreases with the addition of more characters.
This indicates that the main problem is the lack of information, not just the presence of missing data per se. Accuracy varies with
different distribution patterns of missing entries; the worst case is when missing data are concentrated in a few taxa, while the best is
when the missing entries are restricted to just a few characters. The results expand our knowledge of the missing data problem,
corroborate many of the findings previously published using simulations, and could be useful for empirical or theoretical studies.
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The negative effect of missing data cells (usually
represented by a ‘‘?’’) in phylogenetic analyses was first
noticed more than 20 years ago (e.g. Gauthier et al.,
1988). Since then, several authors have discussed this
issue, covering how and why the missing data entries
affect the phylogenetic reconstructions under different
conditions (Nixon and Davis, 1991; Platnick et al., 1991;
Maddison, 1993). Some authors have empirically analy-
sed the effect of the missing data in the context of
phylogenetic studies (e.g. Gauthier et al., 1988; Novacek,
1992; Wiens and Reeder, 1995; Wilkinson and Benton,
1996; Flynn et al., 2005; Fulton and Strobeck, 2006),
whereas others have proposedmethodologies to avoid the
problem (Wilkinson, 1995, 2003; Anderson, 2001; Kear-
ney, 2002; Kearney and Clark, 2003), or evaluated
whether the inclusion of incomplete taxa could prevent,
or at least diminish, the long-branch attraction effect
(Wiens, 2005).Cobbett et al. (2007), by contrast, explored

whether fossil taxa (usually with many missing cells) were
more unstable than recent taxa in phylogenies. Recent
studies have evaluated the effect of missing data in
phylogenomic or large sequence database projects, and
different phylogenetic inference methods (e.g. Driskell
et al., 2004; Philippe et al., 2004; Wiens, 2006; Hartmann
and Vision, 2008; Wiens and Moen, 2008; Wolsan and
Sato, 2009). Other contributions have evaluated the
potential change of the results obtained (nodes and
branch support) when filling the missing cells (Norell and
Wheeler, 2003), studied strategies of taxa and character
sampling (Wiens, 2003b; Wiens et al., 2005), or per-
formed simulation studies to analyse the missing data
effect under a range of different parameters (e.g. percent-
age and pattern of distribution ofmissing data, number of
taxa and characters, branch lengths; see Huelsenbeck,
1991; Wheeler, 1992; Wiens, 1998, 2003a,b, 2006; Wiens
and Moen, 2008; and references therein cited).

Most of these contributions have shown that a consid-
erable number of missing data in a particular taxon may
cause it to change its position (i.e. to ‘‘float’’) without
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changes in tree length, thus generating a great number of
most parsimonious trees and a poorly resolved strict
consensus (the ‘‘wildcard’’ taxa effect; see Nixon and
Wheeler, 1992). However, the authors generally agree
that the level of incompleteness is not a good predictor of
the negative effect of a taxon ⁄character inclusion. In
addition, they have shown that the inclusion of taxa or
characters with several missing entries usually improves
the results (e.g. Novacek, 1992; Wiens, 1998, 2003a,b,
2005, 2006; Wiens and Moen, 2008).

More missing data implies more problems? Simula-
tion-based studies have shown that as the percentage of
missing data increases, the accuracy of the phylogenetic
methods decreases (Wheeler, 1992; Wiens and Reeder,
1995; Wiens, 2006). These studies have shown results
that are invariant to changes in the distribution pattern
of missing entries, or the use of binary versus multistate
characters.

Does having more taxa or more characters counteract
the negative effect of the missing data better? According
to previous studies based on simulations, an increase in
the number of characters improves accuracy, while long
branches decrease the accuracy of phylogenetic methods
(Wheeler, 1992; Wiens, 2003a,b, 2006; Wiens and Moen,
2008).

What patterns of distribution of missing entries are
expected to be more problematic? Are the most
destructive patterns common or rare? A non-random
distribution of missing entries was suggested as the most
common pattern (Wheeler, 1992; Wiens, 2003a),
although these studies explored only a small number
of real matrices. Previous studies based on simulations
have explored only the effect of two patterns: missing
entries distributed in several taxa and in blocks of taxa
and characters (e.g. Wiens, 1998, 2003a,b). Conse-
quently, a broader sampling of patterns is needed in
order to determine which is the most detrimental.

Do simulations represent real data sets? As stated by
several authors (e.g. Wiens, 2005; Wiens and Moen,
2008), the results obtained from simulations come from
simple scenarios, with limited kinds of characters and
taxon numbers, and only a few patterns of missing data.
Thus, extrapolation of these results to empirical and
more complex data is not as straightforward, and must
be contrasted with more realistic scenarios. The evalu-
ation of published matrices could allow us to explore the
effect of missing data in phylogenetic analyses more
deeply.

Here we explore the effect of missing data in phylo-
genetic analyses by using a large number of published
morphological matrices, with a wide range of numbers
of characters and taxa. We compared the relationship
between the effects of the missing data and several
parameters: percentage and pattern of distribution of
the missing data, type of characters, levels of homo-
plasy, and phylogenetic signal. Finally, we contrasted

the published results, mainly based on simulation
analyses, with the exploration of a large sample of real
matrices that span a wider range of parameter values.

Our main conclusions are: (i) the missing entries have
a negative effect on the cladistic performance of the
matrices, and this effect is more pronounced in real
matrices, as compared with simulations, due to the
higher levels of homoplasy present in the real data sets;
(ii) the inclusion of more characters could make the
matrices more robust to this problem, meaning that the
bias is mainly caused by the lack of information, not just
the presence of missing data; and (iii) the most preju-
dicial distribution of missing data is when missing
entries are accumulated in several taxa (i.e. taxon bias),
an uncommon pattern in real matrices.

Methods

Here we deal only with morphological matrices and
the maximum parsimony method of phylogenetic infer-
ence. We restricted our analysis to morphological data
for practical reasons, i.e. in order to put a workable limit
to the study, and also because we work mainly with
morphology and fossil taxa. In addition, it is known that
the analysis of real molecular data implies the additional
problem of alignment, which can affect the resulting
trees (e.g. Martin et al., 2007; Ogden and Rosenberg,
2007a). Moreover, as the treatment of gaps in molecular
analyses is not a trivial issue (for further discussion of
this issue see Ogden and Rosenberg, 2007b) and the
treatment of alignment and gap issues is beyond the
scope of this paper, we did not consider molecular data
in the analyses.

Data sets

A sample of 354 matrices used in real phylogenetic
analyses was compiled. The matrices were obtained
from the online databases Cladestore (palae-
o.gly.bris.ac.uk ⁄cladestore ⁄default.html) and Treebase
(http://www.treebase.org), and both published (e.g.
Goloboff et al., 2008a) and unpublished analyses (see
supplementary Appendices S1 and S2).

The 354 matrices were classified as palaeontological
(having at least one extinct taxon) and non-palaeonto-
logical. The percentage of missing data (hereafter
referred to as %MISS) of each matrix was calculated.
We considered the inapplicable code ‘‘–’’ as missing data
because, beyond the theoretical differences, the available
algorithms evaluate it in the same way as missing data.
The distribution of missing cells in the original matrices
was determined by comparing the original distribution
with a random distribution in characters and taxa
separately using the v2 parameter. This was made by
contrasting the v2 parameter of the distribution of the

327F.J. Prevosti and M.A. Chemisquy / Cladistics 26 (2010) 326–339

� The Willi Hennig Society 2009



original missing entries in characters and taxa versus the
v2 of a random distribution of missing data in the
matrices. The v2 value of the random distribution was
calculated and compared 100 times, by replacing the
original missing data with the same number of missing
entries randomly distributed. It is important to point
out that we use the terms missing data, missing cells or
missing entries interchangeably throughout the text.

For the ‘‘Missing data analyses’’ (see below), all those
matrices with more than 40 taxa and 100 characters were
included, whereas smaller matrices were randomly
selected, resulting in 168 matrices for further analysis.
We restricted the analysis to this subset of matrices
mainly for three reasons: (i) to keep an even sample
along the range of characters and taxa number (the
complete sample is very skewed to small matrices, see
Prevosti and Chemisquy, 2007); (ii) a previous pre-
liminary study of the complete sample gave results
similar to those obtained in this paper with a subset of
matrices (Prevosti and Chemisquy, 2007); and (iii) to
process all this information in reasonable times.

Missing data analyses

For all analyses, the original matrices were modified
by replacing the original missing entries with states
randomly selected among the possible ones for each
character (see Norell and Wheeler, 2003), with an equal
probability for each state (i.e. 0.5 for a binary character,
0.33 for a three-state character, and 0.25 for a four-state
character), using a specially designed TNT script
(Fig. 1b; Appendix S3). As the missing entries present
in each original matrix had a particular distribution, it
was necessary to replace them to explore different
distribution patterns and different percentages of miss-
ing cells. Two methods were used to distribute the
missing data cells. First, the missing data were intro-
duced randomly among all characters and taxa (this
distribution will be referred to as ‘‘random’’; Fig. 1c).
Secondly, the missing data were concentrated in a few
characters (‘‘character bias’’), taxa (‘‘taxa bias’’), or
blocks of characters and taxa (‘‘block bias’’). These last
three analyses are referred to as ‘‘bias’’ analyses. In
‘‘character bias’’, 15 and 50% of the characters were
randomly selected to have missing entries (Fig. 1e). The
same proportions of taxa were chosen to be incomplete
in the ‘‘taxa bias’’ analyses (Fig. 1d). Finally, blocks of
cells representing 5 and 25% of the matrix were replaced
by missing data (‘‘block bias’’; Fig. 1f), corresponding
to 25 and 50% of characters and taxa, respectively. In
the ‘‘block bias’’ analyses, taxa and characters were
previously arranged in a random way to avoid any effect
of the original order. In all cases, except for the ‘‘block
bias’’ analyses, the probability of each cell being
replaced with a missing data entry (‘‘?’’) varied between
0.15 and 0.9, with intervals of 0.15. Note that when we

say that a matrix possesses 50% of missing data, this
means that half of its cells were scored with ‘‘?’’ (for
example, a matrix of 10 taxa and 10 characters, with a
total of 100 entries, has 50 cells with ‘‘?’’). This mode of
assigning missing entries is different from that imple-
mented by other authors (e.g. Wiens, 2006; Wiens and
Moen, 2008) who only introduced missing entries in a
subset of taxa.

As the replacement of missing cells with random
character states can introduce ‘‘noise’’ in the phyloge-
netic signal (see Wenzel and Siddall, 1999), its effect was
tested by comparing the results of the ‘‘random’’ and
‘‘block bias’’ analyses (Fig. 1c and f, respectively) with
the results obtained by adding missing data in a
‘‘random’’ and ‘‘block bias’’ distribution, but also
retaining the original missing entries (i.e. without
replacing them with a random character state;
Fig. 1g,h).

All the analyses were performed with TNT (Goloboff
et al., 2008b). Searches were carried out with all
characters equally weighted, and under implied weight-
ing (Goloboff, 1993) with two different values of the
concavity constant k: 15 and 100. Heuristic searches
were performed using 1000 random addition sequences
(RAS) and tree bisection-reconnection (TBR). For
matrices with more than 70 taxa, searches were carried
out by building 20 RAS trees, swapping each one with
TBR, sectorial search (with the default parameters), and
20 iterations of tree-drifting (Goloboff, 1999). The strict
consensus was calculated in all the cases.

The strict consensus obtained with each matrix with
the missing cells replaced by random character states
(Fig. 1b) was considered the ‘‘true’’ phylogeny, and the
strict consensus obtained with the matrix with the new
missing cells was considered the estimated phylogeny. In
analyses where the original missing entries were
retained, the strict consensus obtained from the original
matrix was considered the ‘‘true’’ phylogeny. In simu-
lation studies (e.g. Wiens, 1998, 2003a,b, 2006; Wiens
and Moen, 2008) the effect of the added missing data
was measured by comparing the accuracy along different
numbers of missing cells and distribution patterns. As
the authors of those studies had the true trees (in fact,
they built the matrix based on the trees) they conse-
quently could measure how many true nodes were
recovered with different amounts of added missing data
(and different distributions). This is not possible with
real matrices, where the true tree is not known. In this
context we can use the trees (the strict consensus in this
case) obtained from the matrices without missing cells as
the ‘‘true’’ or target tree. This strategy was used in other
contexts by using different kinds of jackknife analyses,
with the aim to compare search strategies of parameters
values (see Goloboff, 1997; Ramı́rez, 2003; Goloboff
et al., 2008a). In an analogous view, we interpret that
with the addition of missing cells, the information
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content present in the matrices is reduced and the
unfeasibility of recovering original nodes, or new nodes
(i.e. not present in the original tree), is an artefact
generated by the missing entries. The use of the reduced
strict consensus instead of the strict consensus (see
Wilkinson, 2003) could help to separate the effect of the
‘‘wild card’’ taxa. However, we considered these taxa as
part of the bias imposed by the missing data, and as our
objective was to explore the general effect of the missing
entries we preferred to use the strict consensus.

For each analysis, accuracy was measured with the
Consensus Fork Index: the number of clades shared by
the ‘‘true’’ tree and the consensus tree obtained from the
modified data sets (i.e. matrix with added missing cells;
‘‘new’’ tree) divided by the total number of possible
clades (CFI; Colless, 1980). The error was measured as
the number of nodes of the ‘‘new’’ tree not present in the
‘‘true’’ tree, divided by the total number of nodes of the
‘‘new’’ tree (PE; Ramı́rez, 2003). Other measurements
(e.g. SPR distance, quartet distance; Goloboff, 2007;
Hartmann and Vision, 2008) could be used to explore
the effect of the missing data (M. Willis, pers. comm.),
but we considered that a measure based on recovered
‘‘true’’ or spurious nodes was more explicit. In addition,
as these kinds of measures have been used in other
studies, they are preferred for comparability.

Comparisons were made contrasting accuracy and
error with the number of taxa, the number of infor-
mative characters, the percentage of binary characters,
the tree imbalance index and the Consistency Index
(CI; an estimation of the homoplasy of the matrix).
The imbalance index was calculated as the number of
not balanced dichotomic nodes (i.e. that have more
descents in a daughter branch than in the other)
divided by the number of resolved nodes in the tree
(excluding polytomies and the root node). In the case
of completely dichotomic trees, the number of not
balanced nodes is divided by the number of resolved
nodes (excluding the root node) minus 1, because in a
completely pectinated tree one node (the most termi-
nal) is always balanced; this does not necessarily occur
in trees with polytomies. Group support was evaluated
by using symmetric resampling with average group
frequencies and frequency differences (GC; Goloboff
et al., 2003, 2008a), obtained from the original matrices
or the modified ones before the introduction of new
missing cells.

Correlations between accuracy values and the error
rate with the other computed variables were evaluated
with Spearman�s rank correlation coefficient; this corre-
lation was calculated for each weighting scheme, and
each rank of missing cells.

Fig. 1. Procedure used in the missing data analyses. (a) Unmodified matrices with missing entries (?). (b) Replacement of the original missing cells
with a random state. (c–f) Introduction of new missing cells in different distribution patterns: (c) ‘‘random’’; (d) ‘‘taxa bias’’; (e) ‘‘characters bias’’; (f)
‘‘block bias’’. (g) ‘‘Random’’ but maintaining the original missing entries. (h) ‘‘Block bias’’ but maintaining the original missing entries.
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For assessing the effect of the percentage of missing
data, the significance of differences between the accuracy
values and the error rate of consecutive groups (i.e.
successive percentages of missing data with the same
distribution) were tested with the bootstrap T test with
5000 repetitions (Manly, 1997), as the data did not fulfil
the assumptions of normal distribution and homosce-
dasticity. The same test was used to compare the effect
of different distributions of missing data, and in other
comparisons, such as original matrices versus matrices
with the missing entries replaced. In the analyses with
non-randomly distributed missing entries (i.e. ‘‘bias’’
analyses), the percentage of missing entries in the matrix
is not necessarily that expected by the probability
assigned for the cells. In order to make the comparisons
easier, matrices were ordered by the observed percentage
of missing data, and divided in ranks comparable with
the expected number of missing cells (i.e. those obtained
in ‘‘random’’ analyses).

Results

Characteristics of the matrices sampled

The complete sample contained 354 matrices, with
5–207 taxa (median: 27) and 4–427 characters (median:
58), but most of the matrices were small, with fewer than
40 taxa or 100 characters.

The proportion of missing data ranged between 0 and
54.31% with most matrices having between 0 and 15%
MISS (median: 10.07%). Only 2% of the matrices had a
random distribution of missing cells; in 76% of the data
sets the missing cells were not randomly distributed, but
concentrated on specific characters and ⁄or taxa, whereas
in 10% they were randomly distributed only across the
characters and the remaining 12% had the missing cells
randomly located only in the taxa.

The ‘‘palaeontological’’ matrices had a higher per-
centage of missing cells than ‘‘neontological’’ matrices
(median: 14.6%, maximum: 54.31%; versus 6.75 and
45.87%, respectively). This difference was statistically
significant (t: 17.1733 P < 0.0002), but the range of
percentages of missing entries widely overlapped
between these groups of matrices (Appendix S1).

Different proportions of missing data

The general trend observed in all the analyses is that an
increase in the percentage of MISS clearly decreases the
accuracy and increases the error. At 15% MISS the
median accuracy values were between 0.28 and 0.50 and
the median error rate was between 0.43 and 0.53; these
values reached 0 and 1, respectively, at 90%MISS (Figs 2
and 3a; Table 1). The differences in accuracy and error
between successive percentages of MISS were highly

significant based on the bootstrap T test (with P usually
below 0.0002), with the exception of ‘‘character bias
15%’’ and ‘‘taxa bias 15%’’ (9 versus 15% MISS) and
‘‘character bias 50%’’ (30 versus 45% MISS; Appen-
dix S4). The variation in accuracy and error ratewas large
and ranged almost between 0 and 1, but decreased at high
levels of MISS (75–90%; Fig. 2; Table 1). The searches
under implied weights showed higher median accuracy
values than under equal weights.

Relationship between cladistic performance (accuracy
and error rates) and other parameters

In most analyses the number of characters showed a
positive moderate to low significant correlation with
accuracy values, and a negative low significant correla-
tion with error rate, but some analyses like ‘‘taxa bias
15%’’ and ‘‘character bias 15%’’ were not significantly
correlated with error rate (Fig. 3b; Table 2; Appen-
dix S5).

The number of taxa showed an inverse correlation
with the number of characters, with low negative
coefficients with accuracy values and low positive
coefficients with error rates (Fig. 3c; Table, 2; Appen-
dix S5).

Node support values were positively correlated with
accuracy values and negatively correlated with error
rates, showing the highest absolute correlation values
(Fig. 3d; Table 2; Appendix S5). Homoplasy, expressed
as the CI index, presented a pattern of correlation
similar but inverse to that observed between support
and error rates and accuracy values (Fig. 3e; Table 2;
Appendix S5).

The percentage of binary characters in the ‘‘random’’
and ‘‘bias’’ analyses was sometimes positively correlated
with accuracy values (r � 0.18) and negatively corre-
lated with error rates (r � )0.16), but in most cases was
not significant at P < 0.01 (Appendix S5).

The imbalance index showed low or very low corre-
lation coefficients, negative with accuracy values and
positive with error rates, and only in a few cases was this
significant at P < 0.05 (Appendix S5).

In summary, more characters led to higher accuracy
values and lower error rates, while the inverse tendency
was observed with matrices with more taxa. By contrast,
matrices with well-supported nodes showed higher
accuracy values, while matrices with elevated levels of
homoplasy were correlated with higher error rates.
Neither the imbalance index nor the percentage of
binary characters showed clear patterns of correlation
with accuracy or error rates.

Different distribution patterns of missing data

With 15% MISS, ‘‘random’’, ‘‘characters bias 50%’’,
and ‘‘taxa bias 50%’’ showed similar median accuracy
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values, higher than for ‘‘taxa bias 15%’’, but lower than
for ‘‘character bias 15%’’ (Fig. 4a). These differences
were in most cases significant under the bootstrap T test
(P < 0.005; Appendix S4).

With 30% MISS, ‘‘taxa bias 50%’’ had the lowest
median accuracy; ‘‘character bias 50%’’ the highest, and
‘‘random’’ intermediate values, but the only significant

differences (P < 0.0007) were between ‘‘random’’ and
‘‘character bias 50%’’, and between ‘‘taxa bias’’ and
‘‘character bias’’ analyses (Fig. 4b; Appendix S4). These
differences were greater with 45% MISS and highly
significant (P < 0.0002) between all the pairs (Fig. 4c).

When comparing the ‘‘bias’’ analyses, the general
pattern was that ‘‘taxa bias 15%’’ had the lowest

Fig. 2. Accuracy and error with different percentages of missing data (%MISS) and distribution patterns. (a,b) ‘‘Random’’ analysis; (c,d) ‘‘taxa bias
15%’’ analysis; (e,f) ‘‘taxa bias 50%’’ analyses; (g,h) ‘‘characters bias 15%’’ analysis; (i,j) ‘‘characters bias 50%’’ analysis; (k,l) ‘‘block bias’’ analysis.
These graphs are based on equal weights searches, but analyses using implied weighting give similar results.
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Table 1
Statistics of accuracy (CFI) and error (PE) values. %MISS, percentage of missing cells; K15, K100, implied weighting with K15 and K100,
respectively. Originals, analysis keeping the original missing cells

Equal Weights K15 K100

Mean Median SD Mean Median SD Mean Median SD

Random

CFI 15%MISS 0.352 0.327 0.170 0.480 0.475 0.181 0.445 0.435 0.182
PE 15%MISS 0.495 0.529 0.216 0.487 0.509 0.196 0.523 0.553 0.199
CFI 30%MISS 0.266 0.244 0.151 0.357 0.355 0.162 0.332 0.318 0.158
PE 30%MISS 0.609 0.674 0.228 0.604 0.623 0.189 0.631 0.656 0.187
CFI 45%MISS 0.171 0.148 0.109 0.239 0.227 0.133 0.226 0.202 0.137
PE 45%MISS 0.705 0.736 0.218 0.718 0.737 0.167 0.734 0.764 0.164
CFI 60%MISS 0.090 0.072 0.083 0.123 0.105 0.089 0.122 0.109 0.086
PE 60%MISS 0.823 0.870 0.183 0.833 0.862 0.137 0.832 0.855 0.133
CFI 75%MISS 0.020 0.011 0.026 0.026 0.019 0.032 0.027 0.020 0.031
PE 75%MISS 0.911 0.968 0.187 0.945 0.969 0.087 0.941 0.968 0.104
CFI 90%MISS 0.002 0 0.015 0.003 0 0.016 0.003 0 0.016
PE 90%MISS 0.983 1 0.102 0.988 1 0.039 0.982 1 0.064
Character bias 15%

CFI 9%MISS 0.418 0.405 0.183 0.535 0.526 0.210 0.538 0.517 0.190
PE 9%MISS 0.415 0.444 0.230 0.428 0.430 0.227 0.434 0.453 0.201
CFI 15%MISS 0.395 0.040 0.186 0.491 0.483 0.211 0.508 0.506 0.194
PE 15%MISS 0.454 0 0.222 0.470 0.485 0.232 0.461 0.468 0.206
Character bias 50%

CFI 15%MISS 0.352 0.333 0.160 0.478 0.463 0.186 0.448 0.432 0.177
PE 15%MISS 0.481 0.521 0.218 0.487 0.500 0.201 0.521 0.550 0.195
CFI 30%MISS 0.297 0.275 0.154 0.392 0.376 0.177 0.379 0.345 0.167
PE 30%MISS 0.562 0.600 0.222 0.569 0.586 0.200 0.583 0.621 0.194
CFI 45%MISS 0.273 0.250 0.159 0.361 0.337 0.182 0.347 0.318 0.180
PE 45%MISS 0.568 0.609 0.223 0.603 0.636 0.201 0.619 0.666 0.201
Taxa Bias 15%

CFI 9%MISS 0.361 0.346 0.179 0.467 0.461 0.192 0.467 0.461 0.192
PE 9%MISS 0.434 0.470 0.244 0.463 0.479 0.213 0.463 0.479 0.213
CFI 15%MISS 0.234 0.203 0.144 0.333 0.299 0.192 0.312 0.285 0.176
PE 15%MISS 0.514 0.538 0.23 0.496 0.500 0.222 0.532 0.553 0.211
Taxa bias 50%

CFI 15%MISS 0.352 0.333 0.160 0.478 0.463 0.186 0.448 0.432 0.177
PE 15%MISS 0.481 0.521 0.218 0.487 0.500 0.201 0.521 0.550 0.195
CFI 30%MISS 0.297 0.275 0.154 0.392 0.376 0.177 0.379 0.345 0.167
PE 30%MISS 0.562 0.600 0.222 0.569 0.586 0.200 0.583 0.621 0.194
CFI 45%MISS 0.273 0.250 0.159 0.361 0.337 0.182 0.347 0.318 0.180
PE 45%MISS 0.568 0.609 0.223 0.603 0.636 0.201 0.619 0.666 0.201
Block bias

CFI 5%MISS 0.419 0.421 0.192 0.561 0.586 0.195 0.550 0.538 0.197
PE 5%MISS 0.379 0.397 0.230 0.389 0.370 0.213 0.405 0.424 0.211
CFI 25%MISS 0.286 0.256 0.160 0.386 0.384 0.178 0.372 0.347 0.181
PE 25%MISS 0.519 0.556 0.233 0.562 0.584 0.203 0.580 0.610 0.208
Originals ‘‘Random’’

CFI 15%MISS 0.365 0.367 0.163 0.490 0.503 0.159 0.482 0.475 0.167
PE 15%MISS 0.403 0.446 0.225 0.423 0.433 0.168 0.448 0.443 0.189
CFI 30%MISS 0.348 0.333 0.204 0.439 0.423 0.209 0.430 0.407 0.208
PE 30%MISS 0.456 0.440 0.260 0.470 0.482 0.226 0.486 0.511 0.232
CFI 45%MISS 0.264 0.230 0.189 0.337 0.306 0.200 0.331 0.295 0.203
PE 45%MISS 0.529 0.545 0.273 0.562 0.597 0.240 0.561 0.595 0.249
CFI 60%MISS 0.140 0.105 0.132 0.190 0.144 0.159 0.188 0.144 0.153
PE 60%MISS 0.642 0.741 0.291 0.680 0.722 0.244 0.679 0.761 0.242
CFI 75% MISS 0.035 0.017 0.052 0.057 0.026 0.081 0.052 0.025 0.075
PE 75%MISS 0.861 0.947 0.221 0.853 0.937 0.200 0.854 0.925 0.192
CFI 90%MISS 0.003 0 0.016 0.003 0 0.016 0.003 0 0.016
PE 90%MISS 0.982 1 0.061 0.984 1 0.048 0.970 1 0.109
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accuracy values, ‘‘character bias 15%’’ the highest, and
the other analyses intermediate values (Fig. 4g). This
pattern was more evident with 25% MISS than with 5%
MISS (Fig. 4h). The only significant differences were
between ‘‘taxa bias 15%’’ versus ‘‘character bias 15%’’,

‘‘character bias 15%’’ versus ‘‘block bias’’, and ‘‘taxa
bias 15%’’ versus ‘‘block bias’’ (Appendix S4).

The rate of error showed non-significant differences
between the different analyses. The only significant
differences that remained stable under the different

Table 1
(Continued)

Equal weights K15 K100

Mean Median SD Mean Median SD Mean Median SD

Originals ‘‘Block Bias’’

CFI 5%MISS 0.458 0.424 0.223 0.596 0.639 0.187 0.582 0.555 0.189
PE 5%MISS 0.272 0.184 0.233 0.296 0.230 0.196 0.308 0.261 0.205
CFI 25%MISS 0.323 0.288 0.176 0.407 0.400 0.178 0.423 0.375 0.181
PE 25%MISS 0.426 0.473 0.219 0.473 0.470 0.205 0.455 0.488 0.208

Fig. 3. Graphical representation of the general relationships between accuracy and error with (a) %MISS, (b) number of characters (NCHAR), (c)
number of taxa (NTAX), (d) branch support, and (e) homoplasy (CI).
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searches were ‘‘random’’ versus ‘‘characters bias 50%’’
with 45% MISS (Fig. 4d–f,i,j; Appendix S4).

In summary, the analyses with higher accuracy levels
were both ‘‘character bias’’, while ‘‘taxa bias’’ analyses
showed the poorest cladistic performance, and ‘‘ran-
dom’’ and ‘‘block bias’’ showed intermediate levels of
accuracy. The differences between character bias and
block bias became higher at elevated percentages of
missing data. The error rate remained constant under
the different searches, showing no major differences
between the analyses.

Effect of replacement of the original missing entries

The random addition of MISS in the original matrices
(i.e. without replacing the original missing entries with
random selected states) gave more robust results than
the ‘‘random’’ analyses. In most of the analyses, the
median accuracy values in the former approach were
� 0.09 higher, and the median error rates � 0.10 lower
than ‘‘random’’, both of which were significant under
the bootstrap T test (P usually < 0.0002; Fig. 5a,b).

When comparing the effect of the addition of MISS
with a ‘‘block bias’’ distribution, the only effect observed
was that maintaining the original MISS produced
significantly lower error rates (P < 0.02; Fig. 5c,d).
However, the original matrices approach had more
missing entries than the ‘‘block bias’’ approach, because
the new ‘‘?’’ were placed in sites without the original ‘‘?’’.
Therefore, the approach in which the original missing
entries are retained possessed higher accuracy values
relative to the percentage of MISS present in the

matrices, which agrees with the comparison of the
‘‘random’’ analyses.

The correlations between accuracy values and error
rates with other parameters showed patterns similar to
those observed in the analyses in which the MISS were
replaced, with the exception that in ‘‘random’’ the
percentage of binary characters was never correlated
with accuracy values or error rates (Appendix S5).

Discussion

Number and distribution of missing data in the real
matrices

Our general results, obtained with 354 matrices from
real phylogenetic analyses, agree with general knowledge
regarding missing data. It is clear that the missing data
distribution in most matrices is not random, but concen-
trated on some characters and ⁄or taxa; although our test
for the distribution of missing data does not evaluate the
randomness of the distribution in characters and taxa at
the same time (i.e. ifMISS are in a block composed of taxa
lacking information for the same characters), it is very
likely that this happens in most of the matrices that have
the original missing entries not randomly distributed in
characters and taxa. In fact, a non-randomdistribution of
the missing entries is expected due to the non-random
preservation of anatomical structures or tissues in fossils,
or the combination of different sources of phylogenetic
characters in different taxon sampling (e.g. osteology and
soft anatomy, or morphology and DNA; Wheeler, 1992;

Table 2
Summary of the pattern of correlations between accuracy (CFI) and error (PE), and number of characters (NCHAR), number of taxa (NTAX),
branch support, and consistency index (CI)

Analysis

NCHAR NTAX

CFI PE CFI PE

Random 0.14–0.54*** (30–75%) )0.36 ⁄ )0.15*** (30% and 60%) )0.16* (15–60%) 0.17–0.37**
Taxa bias 15% 0.19–0.39*** n.s. )0.30 ⁄)0.17** (5%) 0.22–0.25***
Taxa bias 50% 0.27–0.46*** (15%) )0.25 ⁄)0.16** (15%) )0.21 ⁄ )0.12* 0.16–0.37**
Character bias 15% 0.17–0.47** n.s. )0.27 ⁄)0.17** 0.20–0.29**
Character bias 50% 0.28–0.47*** )0.21 ⁄ )0.18* (30%)–0.20** 0.23–0.37***
Block bias 0.20–0.41*** (25%) )0.20 ⁄)0.16* n.s. 0.20–0.27**

Analysis

Branch supports CI

CFI PE CFI PE

Random (15–60%) 0.55–0.76*** (15–60%) )0.78 ⁄ )0.62*** (15–60%) 0.11–0.29** (15–60%) )0.56 ⁄)0.34***
(75%) 0.25–0.32*** (75%) )0.42*** (75%) )0.19*

Taxa bias 15% 0.48–0.66*** )0.66 ⁄ )0.50*** (5%) 0.26–0.36*** )0.39 ⁄)0.55***
Taxa bias 50% 0.40–0.73*** )0.76 ⁄ )0.55*** (15–30%) 0.15–0.37** )0.52 ⁄)0.40***
Character bias 15% 0.61–0.68*** )0.70 ⁄ )0.48*** 0.16–0.46*** )0.57 ⁄)0.37***
Character bias 50% 0.62–0.77*** 0.77 ⁄)0.57*** 0.21–0.44*** )0.54 ⁄)0.42***
Block bias (5%) 0.66–0.69*** (5%) )0.71 ⁄)0.60*** (5%) 0.20–0.20** (5%) )0.52 ⁄)0.38***

Values in parentheses refer to the percentage of missing data that presented those correlation values. If not specified, the correlation values
correspond to the complete range of percentages of missing data explored. Significant at: *P < 0.05; **P < 0.01; ***P < 0.001.
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Fig. 4. Effect of patterns of distribution of missing cells on accuracy and error rate. (a) CFI with 15% missing data; (b) CFI with 30% missing data;
(c) CFI with 45%missing data; (d) PE with 15% missing data; (e) PE with 30%missing data; (f) PE with 45%missing data; (g) CFI with 5% missing
data; (h) CFI with 25% missing data; (i) PE with 5% missing data; (j) PE with 25% missing data; TB15%, ‘‘taxa bias 15%’’; TB50%, ‘‘taxa bias
50%’’; CB15%, ‘‘characters bias 15%’’; CB50%, ‘‘characters bias 50%’’; BB, ‘‘block bias’’. Graphs only show results under equal weights.
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Wiens, 2003a). Thus, one would expect themost common
pattern of distribution of missing entries to be the one in
which some taxa lack data for the same characters (i.e. our
‘‘block bias’’ analysis). In spite of this predominance, the
other patterns evaluated here are also present in several of
the matrices included in this study.

A second area of agreement is that the palaeontolog-
ical matrices possess more missing data than the
matrices comprising only recent taxa (e.g. Wilkinson,
1995). In our sample the first group (almost half of the
matrices analysed) had significantly higher median and
mean %MISS. However, the range of values observed in
both groups overlapped widely, and some neontological
matrices showed a considerable level of MISS that could
reach 45% that of the matrix. Thus, as noted by other
authors (e.g. Gauthier et al., 1988; Flynn et al., 2005;
Fulton and Strobeck, 2006) the missing data problem is
not exclusively related to the inclusion of fossils in a
phylogenetic analysis (cf. Cobbett et al., 2007).

Impact of the number of characters, branch support and
homoplasy

The main pattern observed when analysing the effect
of missing data in real matrices is that increasing the
number of missing data decreases the performance of
the phylogenetic analyses (i.e. less accuracy and more
error). As observed by other authors in empirical or
simulated analyses (e.g. Huelsenbeck, 1991; Novacek,
1992; Wiens, 1998, 2006), such a pattern is independent
of the distribution of the missing data and the kind of

weighting scheme used (i.e. equal or implied weighting).
This pattern is not explained by the number of missing
cells per se, but rather by the number of scored
characters per taxon (Wiens, 2003a,b). Our results
support this claim, as we found a positive correlation
between the number of characters and accuracy and a
negative correlation with error rate in most of the
analyses, both using four different distribution patterns
and varying the weighting method.

It is interesting to note that branch supports showed
the same pattern as that of the number of characters,
although with stronger correlation values, thus implying
that matrices with high mean branch supports will have
higher accuracy values and lower error rates. The similar
behaviour shown by the number of characters and
branch support reflects the positive relationship between
them, as previously noted by several authors (e.g.
Sanderson and Donoghue, 1996; Bremer et al., 1999;
Siddall, 2002). This means that the inclusion of more
characters may produce a more robust phylogenetic
signal, providing additional ‘‘resistance’’ to the missing
data bias. A similar pattern has been observed between
support values and ‘‘phylogenetic noise’’ (i.e. more
‘‘noise’’ is needed to lose nodes with higher support
values; Wenzel and Siddall, 1999), and in the positive
correlation of jackknife support values with the missing
entry replacement data analysis (MERDA) index
(r: 0.56–0.89 P < 0.03; calculated here using the tables
from Norell and Wheeler, 2003). Consequently, more
characters may lead to more synapomorphies that could
help to rescue the clades from the negative impact of the

Fig. 5. Comparisons among original and modified matrices in the missing data analysis. (a,b) ‘‘Random’’ analyses; (c,d) ‘‘block bias’’ analyses.
Original matrices: analysis that retains the original missing cells; modified matrices: analyses where the missing cells present in the matrices were
replaced by random states. For other abbreviations see legend to Fig. 2. Graphs only show results under equal weights.
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missing entries, or from other kinds of matrix ‘‘pertur-
bations’’.

The relationship between the number of characters
and cladistic performance (expressed as the consensus
fork index and the error rate) along with the neutral or
negative correlation between the number of taxa and
accuracy (or positive with the error rate) suggests that, in
this context, sampling more characters instead of sam-
pling more taxa will be a better way to temper the effect
of missing data. Several authors are in agreement that
adding more characters is the best strategy for obtaining
more robust phylogenies in general (e.g. Wheeler, 1992;
Bremer et al., 1999; Poe and Swofford, 1999; Mitchell
et al., 2000; but see Graybeal, 1998; Pollock et al., 2002).
The presence of missing entries on the characters appears
to have no influence on the benefit obtained from adding
more characters (cf. Wiens, 1998, 2003a,b; Kearney,
2002; Kearney and Clark, 2003), and thus our results do
not support the idea of excluding characters because they
have missing cells.

Homoplasy shows an inverse pattern, in which less
homoplasy (i.e. higher CI) is related to higher accuracy
values and lower error rates, and vice versa. This is
expected, because more homoplasy may reflect more
incongruence in a matrix, thus implying a less robust
phylogenetic signal; in fact, CI is inversely correlated
with branch support values. One interesting issue is that
homoplasy increases with the number of characters
(Archie, 1989, 1996; Sanderson and Donoghue, 1996;
this contribution), but this increase is not strong enough
to interfere with the positive correlation between the
number of characters, branch support, and cladistic
performance.

Although the replacement of the original missing
entries present in the matrices by randomly chosen
character states adds a random ‘‘noise’’, the only
consequence we observed was a lower accuracy and
higher error rate compared with the analyses performed
without replacing the original missing entries. Despite
the fact that the phylogenetic analyses performed with
the modified matrices (i.e. with the missing entries
replaced) underestimated the phylogenetic performance
of the original morphological matrices, they still could
be considered as conservative indicators of phylogenetic
performance. Other patterns related to the effect of
different percentages and distributions of missing data
and the relationship between accuracy and error
rates with other parameters were similar between
analyses with the original matrices and analyses with
the matrices with missing entries replaced.

Effect of the pattern of distribution

Our analyses suggest that some patterns of distribu-
tion of missing data are more detrimental than others.
Concentration of missing entries in a few taxa (‘‘taxa

bias 15%’’) showed the worst performance, while
concentration in a few characters (‘‘characters bias
15%’’) showed the least detrimental effect. The other
patterns of distribution (i.e. ‘‘character bias 50%’’,
‘‘random’’, ‘‘block bias’’, and ‘‘taxa bias 50%’’) were
placed between these extremes, although a wide overlap
in accuracy and error rate values was observed between
the different distributions. An explanation for this is
that concentrating most of the missing cells in a few taxa
could deplete the information necessary to place them
correctly in a tree, or even that some of those taxa can
become redundant (Wilkinson, 2003). If this is the case,
this taxon could float in the tree and collapse several
nodes in the consensus tree, behaving as wildcard taxa
(Nixon and Wheeler, 1992; Wilkinson, 1995, 2003;
Wiens, 2003a). In contrast, a character with 90%
missing entries only loses information, and this could
lead to node loss or a slight increase in error rate,
although the expected impact is much less extreme (cf.
Wiens, 1998, 2003a). Fortunately, the ‘‘worst’’ pattern
(‘‘taxa bias’’) is not the predominant one in the real
matrices surveyed here. However, if one has to deal with
redundant or wildcard taxa that may be generated by
this missing data distribution pattern, there are several
tools available, such as the ‘‘safe taxonomic reduction’’
approach or the reduced consensus (see Wilkinson,
1995, 2003).

Comparison with simulations

Our results are similar to those obtained using
simulated matrices (e.g. Huelsenbeck, 1991; Wheeler,
1992; Wiens, 1998, 2003a,b, 2006). However, it is
noteworthy that here we explored a more heterogeneous
data set (as it came from real analyses) and a wider
range of parameter values (e.g. homoplasy, branch
support). One apparent discrepancy is that the absolute
values of accuracy are much lower here than those
obtained in other analyses, but this could be explained
because previous authors have not used very long
branches to simulate the data, an thus their matrices
have less homoplasy than the real matrices studied here.
In fact, studies that have explored a wider range of
branch lengths have obtained results similar to ours,
when using higher branch length values (see figs 2–5 in
Wiens, 1998; fig. 3 in Wiens, 2003b). This is related to
the negative correlation observed here between accuracy
and homoplasy (CI), and the positive correlation
between CI and the error rate (see above). In the
analyses where the original missing entries were pre-
served we generally obtained better results than in the
analyses where the missing data were replaced by a
random character state. This better performance may be
another side of the negative relationship between
homoplasy and performance under the presence of
missing data. The approach in which the original
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missing entries were maintained showed lower homo-
plasy, higher branch support, and higher accuracy than
with the alternative approach.

Our results are also in accordance with recent
simulations that have shown that the ‘‘taxa bias’’
approach has clearly lower accuracy than the ‘‘block
bias’’ approach, especially with few characters (500 or
fewer) and more than 70% missing cells (see Wiens,
2003a,b figs 2 and 4). It is noteworthy that the
simulations mentioned above explored limited patterns
of missing data distribution, namely the ‘‘taxa bias’’ and
‘‘block bias’’ of the present study.

The relationship between accuracy and other param-
eters is similar to that obtained in the simulations; Wiens
(1998, 2003a,b) used two model trees, one fully asym-
metric and the other fully symmetric, and obtained
similar results in both kinds of trees. This is in
agreement with our results, as we found no significant
correlations between the imbalance index and accuracy.
Regarding the number of states of the characters, we
also obtained results similar to those obtained with the
simulation analyses, indicating a lack of influence on
accuracy.

Conclusion

Our analyses are relevant to current knowledge of the
‘‘missing data problem’’ in morphological phylogenetic
analyses as we have explored a very large sample of real
matrices, and a wider and more heterogeneous range of
variables (e.g. size, homoplasy, phylogenetic signal) than
that used in simulations and previous studies. As a
result, we found the same negative effect of missing data
entries as that previously reported. However, our results
showed lower average values than the simulations due to
higher levels of homoplasy present in the real data sets.
We also noted that the inclusion of more characters
could make the matrices more robust to this bias,
indicating that the problem is mainly a lack of
information, not just the presence of missing data
per se. Regarding the distribution of missing data, the
most prejudicial case is when missing entries are
accumulated in several taxa (i.e. taxon bias); fortu-
nately, this is one of the less common patterns in real
matrices.

Acknowledgements

We thank Lone Aagesen, Silvana Sede, Matthew
Willis, and Juan C. Fernicola for comments on drafts of
the manuscript; Marcos Mirande for helping with the
final version of the manuscript and three anonymous
reviewers for their helpful comments; to Victoria Gonz-
alez Eusevi for checking the English, Pablo Goloboff and

Diego Pol for their helpwith scripts and commentaries; to
colleagues and friends who sent us matrices; to the Willi
Hennig Society for the free version of TNT; and to
CONICET for financial support.

References

Anderson, J.S., 2001. The phylogenetic trunk: maximal inclusion of
taxa with missing data in an analysis of the Lepospondyli
(Vertebrata, Tetrapoda). Syst. Biol. 50, 170–193.

Archie, J.W., 1989. Homoplasy excess ratios: new indices for measur-
ing levels of homoplasy in phylogenetic systematics and a critique
of the consistency index. Syst. Zool. 38, 253–269.

Archie, J.W., 1996. Measures of homoplasy. In: Sanderson, M.J.,
Hufford, L. (Eds.), Homoplasy: The Recurrence of Similarity in
Evolution. Academic Press, New York, pp. 153–206.

Bremer, B., Jansen, R.J., Oxelman, B., Backlund, M., Lantz, H., Kim,
K.-J., 1999. More characters or more taxa for a robust phylogeny-
case study from coffee family (Rubiaceae). Syst. Biol. 48, 413–435.

Cobbett, A., Wilkinson, M., Wills, M., 2007. Fossils impact as hard as
living taxa in parsimony analyses of morphology. Syst. Biol. 56,
753–766.

Colless, D.H., 1980. Congruence between morphometric and allo-
zyme data for Menidia species: a reappraisal. Syst. Zool. 29, 288–
299.
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