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a b s t r a c t

In this work we present a fast, robust and flexible procedure to simulate electronic signals of scintillator
units: plastic scintillator material embedded with a wavelength shifter optical fiber coupled to a photo-
multiplier tube which, in turn, is plugged to a front-end electronic board. The simple rationale behind
the simulation chain allows to adapt the procedure to a broad range of detectors based on that kind of
units. We show that, in order to produce realistic results, the simulation parameters can be properly
calibrated against laboratory measurements and used thereafter as input of the simulations. Simulated
signals of atmospheric background cosmic ray muons are presented and their main features analyzed
and validated using actual measured data. Conversely, for any given practical application, the present
simulation scheme can be used to find an adequate combination of photo-multiplier tube and optical
fiber at the prototyping stage.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Plastic scintillators (PSC) are widely used in many kinds of
radiation detectors. From elementary particle physics to astron-
omy and astrophysics, they often constitute a basic unit of very
complex apparatuses where they play the role of either veto,
counting or tracking devices [1–6]. Despite the fact that PSC can
be easily shaped to meet almost any detector needs, in many
circumstances, the scintillation light produced by charged
particles inside the plastic cannot be readily collected at its
surface. In such cases, it is a common practice to wrap the
scintillator with a highly reflective material and to embed a
wavelength shifter (WLS) optical fiber inside the plastic, in order
to transport the light from its production site out to the optical
sensitive devices responsible for the photon detection. Among the
latter, the photo-multiplier tubes (PMTs) are a quite general
solution. Once the light is converted into an electronic pulse, and
before any subsequent higher level trigger criteria is applied, it is
usual to discriminate the analog pulses with front-end electronic
boards (FEBs) where the photo sensor devices are plugged. More
generally, FEBs are also in charge of amplification and digitaliza-
tion of the incoming signals.

A wide variety of scintillator detectors have their basic units
(BUs) subsystems composed of PSCs, WLS fibers, PMTs, and FEBs
as described above. The role of these BUs is to convert the energy
deposited in the scintillator material into an electronic signal.

Therefore, it is important to have simulation techniques that are
able to reliably reproduce that process.

The aim of this work is to present a framework that enables the
fast implementation of realistic and robust simulations of the
above mentioned BUs.

Sections 2 and 3 describe the general assumptions on which the
present simulation scheme relies. Section 4 shows the laboratory
measurements needed to properly characterize a particular BU
design. The calibration of the remaining free parameters of the
simulation is presented in Section 4. The simulation chain thus
implemented is used in Section 6 to analyze the response of a
simple muon counting rate experiment. General results and
conclusions are discussed in Section 7.

2. Simulation technique

As stated earlier, our goal is to convert the energy deposited
Edep in a scintillator, into an electronic signal Vtot(x, t), taking into
account all relevant physical processes (i.e., the scintillation
photon yield, the photon transport and reflection inside the
plastic, the light absorption, re-emission, and attenuation within
the WLS fiber, and the quantum efficiency of the PMT cathode)
required in order to reproduce realistically the voltage signal of a
general PMT.

The total PMT signal depends on the actual number of photo-
electrons extracted from the photo-cathode by the scintillation
light and their time distribution. The total number of photo-
electrons nphe(x) depends, in turn, on both the distance x from the
PMT window at which the light was produced and on the energy
deposited inside the scintillator by the impinging particle. Indeed,
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one can write

npheðxÞ ¼ kðxÞEdep ð1Þ

where k(x) is a proportionality constant that accounts for the
several physical processes we are considering. Given nphe(x), the
PMT signal is constructed by adding up the contribution of each
photo-electron

V totðx,tÞ ¼
XnpheðxÞ

i ¼ 1

uðt$tiÞ: ð2Þ

Therefore, the conversion of the energy deposited into the
scintillator into voltage signal is performed through Eqs. (1) and
(2) and depends on the choice of:

% the single photo-electron function uðtÞ,
% the distribution of the times ti, and
% the tuning function k(x).1

Hence, the reliability of the simulation technique rests on how
realistic are the criteria used to deal with each one of the previous
topics.

2.1. The single photo-electron function, uðtÞ

Because of the presence of stabilizing capacitors, we can
generally assume that the PMT internal circuit is a C1R1$ðR2C2Þa

network, i.e., a single high-pass filter (a differentiator, with time
constant t1 ¼ C1R1) followed by a low-pass filters (integrators
with t2 ¼ C2R2). In the case in which all filters have the same time
constant t¼ t1 ¼ t2, the output voltage of the PMT can be written
as

uðtÞ ¼
QR

tGð1þaÞ
t
t

! "a
e$t=t ð3Þ

where Q is the characteristic single photo-electron charge, R is the
circuit load resistance, and Gð1þaÞ is the gamma function.

2.2. The distribution of times ti

The actual instant at which an electron is pulled out from the
surface of the photo-cathode by the arriving scintillator light
depends on three factors: (a) the de-excitation time of the
scintillation molecules after the passage of the charged particle
through the plastic, (b) the elapsed time before the decay of the
fluor molecules which dope the optical fiber and which are
responsible for shifting the light from blue to green and, finally,
(c) the delay due to the propagation from the production point, x,
to the PMT. Later on, the transit time within the multiplication
stages of the PMT, may add an additional delay and time spread.

The scintillation and fiber excitation processes are Poissonian.
Therefore, the occurrence of an event consisting in the combina-
tion of two serial decays of the excited molecules, is a random
variable that is the sum of two independent, exponentially
distributed, random times. The probability density function for
such events is of the form:

pDðtdecayjtÞ ¼
e$t=tp$e$t=tf

tp$tf
ð4Þ

where tp and tf are the characteristic decay times for the plastic
and the fiber respectively.

On the other hand, assuming the meridional approximation
for the green light within the fiber (see Fig. 1), the propagation
delay is

tprop ¼
x

cosf
'

ncore

c
ð5Þ

where the angle f is uniformly distributed due to the isotropic
nature of the emission process.

Since the gain is of the order 107, the multiplication of one
photo-electron through the PMT dynodes involves a large number
of electrons. Consequently, the transit times, tTT, can be assumed
to follow a Gaussian distribution. The typical time spread in
modern PMTs is a few ns [7].

Therefore, under the previous assumptions, for each produced
photo-electron contributing to Eq. (2), we consider

ti ¼ tdecayi þtpropi þtTTi : ð6Þ

2.3. The tuning parameter k(x)

Several factors are included in the function k(x): the photon
yield of the scintillator, the absorption probability of the produced
photons in the bulk of the plastic, the reflection probability off the
scintillator walls, the probability of hitting the fiber and of later
re-emission within the proper acceptance cone for further
propagation, the quantum efficiency of the PMT and, finally, the
attenuation of the light along the fiber from the production point
to the photo-cathode. In contrast to the former issues, the
attenuation can be easily characterized from simple laboratory
measurements and, therefore, we can factorize k(x) in the
following form:

kðxÞ ¼ kSimAttðxÞ ð7Þ

where kSim does not depend on the distance x and Att(x) is the
attenuation function.

The parameter kSim is the key factor in the construction of the
current simulation scheme. kSim acts as a tuning parameter which
can be adjusted to match real data, simplifying and speeding up
the simulation of, many times, poorly known (or difficult to
characterize) processes. In any case, it is valuable to be able to
make at least a first order estimate of its expected value.

Charged particles crossing the scintillator leave a wake of excited
molecules from which blue photons will be radiated isotropically. If
we assume that the photon yield is Yield ( 1:25' 104 photons=MeV,

γgreen
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αcrit ≈ 21°

WLS fiber
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x
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Fig. 1. Assuming the meridional approximation within the fiber, the propagation
delay of the green light can be easily estimated as indicated in the figure (any
difference in the distance x due to different production points between the blue
and green photons is neglected).

1 The discussion of competing approaches for the evaluation of the energy
deposition process inside the scintillator is beyond our scope. Edep is obtained from
the Geant4 package and, in the present context, it is a mere input for our
simulation chain. See Section 5 for further details.
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which is a typical value for organic plastic scintillators, then we
roughly expect that

kSim ¼ Yield ' pH ' pR ' pQ ð8Þ

where pH is the probability of a blue photon to hit the WLS fiber, pR
is the probability of a green photon to propagate within the fiber by
total internal reflection, and pQ is the quantum efficiency of the
photo-cathode.

Most PMTs have a quantum efficiency distribution which
reaches ( 30% at its maximum. When integrating over all possible
wavelengths, this value is lowered. Conservatively, despite the
specific spectral response of the cathode, we can assume pQ ) 10%.

The transmission probability, pR, can be easily estimated if we
assume a meridional propagation approximation. In this case,

pR ¼
Oacc

4p ¼
R 2p
0

Rfcrit
0 dO
4p ¼

1
2
ð1$nclad=ncoreÞ ð9Þ

where Oacc is the solid angle subtended by the acceptance cone,
nclad is the refractive index of the fiber cladding, and nclad is the
refractive index of the fiber core. Therefore, if nclad¼1.6 and
nclad¼1.49 (which are common values in commercial off-the-shelf
fibers), we obtain pR ) 3%.

Using a Bayesian reasoning, the probability of hitting the fiber
given that a blue photon was emitted in the plastic, can be written
as

pH ¼ PðHitjEmiÞ ¼
PðHitÞ

PðHitÞþPðAbsÞ

where PðAbsÞ is the probability of a photon to be not absorbed in
the plastic (either, in the bulk volume or in its reflective walls).
The bulk absorption probability depends on the self-absorption
length, Ls, while the absorption in the walls depends on the
reflection coefficient, Rs. Therefore, considering at most one
reflection,

PðAbsÞ ¼ PðAbsbulk ÞþPðAbswall Þ ¼ ð1$e$ðws þhsÞ=Ls Þþð1$RsÞ

where ws and hs, are the plastic width and height, respectively. On
the other hand, if the fiber diameter, df, is much smaller than ws

and hs, we can estimate P(Hit) as df =wsþhs. Hence, if we consider
a scintillator strips such that wsþhs ) 5 cm, Ls ) 25cm, and
Rs ) 0:98, we obtain pH ) 13%.

With all the above numbers, we arrive to a crude estimation
which gives kSim ) 4:8 photo-electrons/MeV. In Section 5, we
show that this value is in good agreement with the results
obtained from the simulation-tuning performed using laboratory
measurements.

3. Signal features vs. model parameters

In this section, we analyze the dependence of the output
voltage signal Vtot(t, x0) at a fix distance x0, on a and t (which are
determined by the single photo-electron characteristics of the
PMT) on the one hand, and on tp and tf (which are properties of
the scintillator and the fiber) on the other hand.2

3.1. Single photo-electron parameters, a and t

As previously mentioned, the functional form of Eq. (3) is
appropriate for a circuit which can be considered as a network of
low and high-pass filters. In this case, choosing C ( nF and R (O,

the rise and fall time are of the order of a few ns. Furthermore, if
the PMT produces a gain G( 107, the anode current per photo-
electron charge e$ , is

Iphe ¼ G' e$ '
1
t ( 107 ' 1:610$19 Coulomb'

1
ns

) 1:6mA:

If the load resistance is a few tens of O, then the peak voltage
of the single photo-electron pulse will be around 10–20mV
and its charge Q ( pC. The time required by a pulse, described by
Eq. (3), to reach its maximum is at while its width is
spheða,tÞ ¼ ð1þaÞt2. The actual rise and fall times of the single
photo-electron pulse are defined by both t and a. As an example,
the top-left panel of Fig. 2 shows the pulse shape uðtÞ for different
selections of the parameters t and a. The corresponding
accumulated charges as function of time are shown in the top-
right panel of the same figure. It can be seen that both, the rise
time D50$10 ¼ t50$t10 and fall time D90$10 ¼ t90$t10, increase with
increasing t while the pulse shape gets closer to a Gaussian with
increasing values of a. The dependence of D50$10 and D90$10 on t
and a are shown in the bottom panels of Fig. 2.

3.2. Scintillator and fiber parameters, tp and tf

When the PMT is coupled to the scintillator, many photons
are expected to arrive to the photo-cathode per energy
deposition event. The total output signal at a given distance,
V totðt,x0Þ * V totðtÞ, is the superposition of nphe(x0) single photo-
electron pulses distributed over time in accordance with the
probability given by Eq. (4). The top-left panel of Fig. 3 shows 4
cases of pD for different realizations of the plastic and fiber decay
times. It is straightforward to demonstrate that the mean time of
the distribution is t ¼ tpþtf while its spread is st ¼ t2pþt2f . Given a
fix number of photo-electrons, i.e., a fix charge or energy
deposited in the scintillator by an impinging particle, the values
of st and sphe determine the shape of the total voltage signal
Vtot(t), such that, the smaller the st=sphe ratio, the larger the
probability of overlapping of single photo electron pulses and,
therefore, the larger the probability of having higher amplitude
signals. Larger st=sphe ratios, on the other hand, produce wider
output signals. The dependence of st on the fiber and scintillation
decay times is shown in the top-right panel of Fig. 3.

As an example, we show a random realization of the resulting
train of single photo-electron pulses for the particular case of
nphe ¼ 6, a¼ 4, t¼ 0:5ns, tp¼1ns and tf¼6ns in the top-right
panel of Fig. 3. The times required to reach 10%, 50% and 90% of
the total charge are also indicated in the figure by vertical lines. It
is worth noting that, even if all the above mentioned parameters
are kept constant, the total signal is a random variable and,
therefore, the outcomes for the rise and fall times (as well as the
resulting Vtot(t)) are different in each realization. The distributions
of D50$10 and D90$10, for the previous choice of parameters, are
shown in the reduced canvas of the top-right panel of Fig. 3.

It is interesting to note that, even if the mean number of photo-
electrons per particle increases (e.g., by doubling the width of the
scintillator or by increasing the PMT quantum efficiency) while
the remaining parameters are kept constant, the resulting
temporal features are almost not affected, as can be appreciated
in the bottom-right panel of Fig. 3 (although, clearly, the signal
amplitude will be doubled on average).

4. Extracting parameters from laboratory measurements

In this section we discuss the characterization through
laboratory measurements of the parameters Q and t, as well as
the function Att(x), which are essential to perform a realistic signal

2 We are not interested in this section on the attenuation features which have
the unique consequence of reducing the total amount of photo-electrons nphe(x)
available for the signal superposition. The attenuation issues will be discussed in
the following section.
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simulation. We study a particular case3: a 2m'4 cm'1 cm
scintillator strip embedded with a 1.5 cm diameter Bicron BC92
optical fiber, plugged onto a H7546B Hamamatsu multi-anode
photo-multiplier. We choose 950V as reference input high
voltage for the PMT, but all the results can be easily scaled to
other supply voltages if the PMT gain curve is known. In order to
improve the walls reflectivity of the strip, we consider the case of
a plastic scintillator wrapped inside a TiO2 thin layer.

4.1. Fiber characterization

Light suffers attenuation when propagating along the fiber.
The transmission along optical fibers with a core and a cladding of
close refractive indexes is well described by a double exponential
decay law of the form

AttðxÞ ¼ af e
$x=L1f þð1$af Þe$x=L2f ð10Þ

where L1f and L2f are a short and a long effective attenuation
length, respectively. The attenuation response given by Eq. (10)
can be measured recording the output voltage of a photo-
transistor located at one end of the fiber while a light emitting

diode (LED) illuminates the fiber at different distances from the
photo-transistor. The opposite free edge of the fiber must be black
painted in order to avoid reflections which would lead to an
overestimation of the attenuation length. The intensity of the light
emitted by the LED can be controlled by varying the supplied
current and the photo-transistor can be operated in photo
voltaic mode. The linearity of the system has to be checked
before proceeding to the characterization of the fiber. The LED and
fiber emission spectra were also measured. The results of these
measurements are shown in the top left and right panels of
Fig. 4. It can be seen there that the blue light emitted by the
LED (peaked at around 470nm) is shifted towards longer
wavelength when re-emitted by the fiber (peaked at ( 525nm).
The result of fitting the light intensity as a function of distance
with the decay behavior described by Eq. (10) is shown in the
bottom panel of Fig. 4. The obtained fitting parameters are also
indicated in the figure. It can be seen that, in the present example,
almost 30% of the light is attenuated by the short length
ðL1f ( 40 cmÞ while the longer length (L2f is ( 6m) accounts
for the remaining 70%.

4.2. PMT single photo-electron features

Essential to the simulation approach presented in this work,
are the single photo-electron features of the PMT actually used in
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Fig. 2. Single photo-electron simulated features. Different pulse shapes corresponding to different values of t and a (top-left). Time required to accumulate 10%, 50% and
90% of the total single photo-electron charge (top-right). Dependence of rise time, t50$t10, and width time, t90$t10, as a function of a (bottom-left) and t (bottom-right).

3 Despite being a particular example, it is a useful one since many actual
detectors use this kind of scintillation units, e.g. Ref. [3].
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the detector to be simulated. Considering a fix a4 we can see from
Eq. (3) that each photo-electron pulse is determined by its charge,
Q, and its characteristic time, t. Therefore, we need to know the
distribution functions of these two parameters in order to
reproduce signal-to-signal fluctuations adequately and simulate
a realistic output signal. These distribution functions were
obtained by illuminating the PMT with a LED, at the level of one
single photo-electron, and recording the produced signals. As an
example, the top left panel of Fig. 5 shows some of those signals,
together with the corresponding fits using Eq. (3). It can be
appreciated that the selected function adjusts very well the
observed signals.

The same procedure was applied for the measurement of the
distribution functions of Q and t for all the 64 channels of a
H7546B photo-tube. The results for one PMT anode are shown as
an example in the top right and bottom panels of Fig. 5. It can be
seen that, after the subtraction of the baseline, the distribution
function of Q can be well approximated by a Gaussian, while the

distribution function of t is closer to a Landau. Both approxima-
tions can be, therefore, used to fluctuate the single photo-electron
pulses during the simulation.

The electronic white noise of the PMT was also measured and
parametrized by a Gaussian function.

5. Calibration of free parameters for muon signals

After the determination of the attenuation function Att(x) and
of the appropriate distribution functions for Q and t, the
remaining free parameters of the simulation are kSim, tp and tf.
These three latter variables can be calibrated using the atmo-
spheric muon background. To this end, we simulated muons with
momentum spectrum following the zenith distribution below

Iðpm,yÞ ¼ cos3ðyÞIvðpmcosðyÞÞ ð11Þ

which reproduces the observed distribution at ground level [8].
The energy deposited in the scintillator strip by the impinging
muons, Edep, was calculated using the GEANT4 package [9]. The
momenta and angular distribution of the simulated muons are
shown in the top left and right panels of Fig. 6 respectively, while
the calculated distribution of Edep is shown in the bottom panel of
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Fig. 3. Muon signal simulated features. Time probability distributions pD for different scintillation tp and fiber tf decay times (top-left). Spread of pD as a function of tf (top-
right). A random realization of a muon pulse summing the contributions of six single photo-electron pulses (bottom-left). Dependence of rise time, t50$t10, and width time,
t90$t10, as a function of tf (bottom-right).

4 We took a¼ 4, which adjusted quite well the single photo-electron pulses
we measured for our PMT. Nevertheless, it must be noted that a varies from one
PMT to another.
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the same figure. Clipping corner muons traversing the scintillator
strip, are responsible the low energy tail of the Edep distribution in
Fig. 6. For each event, the energy deposited by the muon was

converted to photo-electrons using Eq. (1). This number was then
fluctuated using a Poisson distribution in order to build the
electronic PMT response using Eq. (2).
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The statistical features of signals coming out from the
simulation were compared with those of the real signals and
the three simulation parameters (kSim, tp and tf) adjusted until a
good statistical agreement between simulation output and
laboratory measurements was achieved. The experimental setup
used to acquire real muon signals is shown schematically in Fig. 7.
The selected distance was x0¼385 cm5 corresponding to muons
impinging the farthest edge of the scintillator strip. A coincidence
in the P1 and P2 detectors triggered the acquisition system.

We found that the time structures of the measured signals can
be reasonably matched by the simulations for tp¼1ns and tf¼6.5
ns. We also found that, in agreement with our numerical estimate
on Section 2.3, around five photo-electrons per energy unit, i.e. that
kSim ( 5phe=MeV, is the optimum value to reproduce the real
charge and amplitude distributions of the measured muon signals.
As an example of the good agreement between simulation and real
data, Fig. 8 shows two real (right panels) and two simulated (left
panels) signals. The rise time D50$10, and the width time, D90$10, are
also indicated in the figures for each pulse. Finally, in Fig. 9, we
show that the validation of the whole simulation chain is
statistically meaningful. The figure shows the comparison of real
versus simulated distributions of charge, amplitude, rise and fall
time. It can be see that, for the selected set of parameters, the
agreement is very good for all the observables considered.

6. Atmospheric muon rate experiment

The thorough study of the response of a scintillator detector of
complex geometry, is beyond the scope of this work. Never-

theless, as a simple example, we will use here the presented
simulation strategy to predict the efficiency of a single scintillator
strip used as a counting rate device.

We assume a scenario, routinely used in a large variety of
experiments, consisting of a PMT attached to a front-end
electronic board which discriminates and digitizes the signals at
a given sampling rate.6 Fast FPGA can be used to actually count
how many times the outcome signal is above a given discrimi-
nator threshold. The schematic channel of such electronic board is
shown in the right panel of Fig. 7. Modern FPGA can work at
320MHz, corresponding to one sample each 3ns. On the other
hand, the resolution of standard discriminators is around 1–2ns.
The double peak resolution tdpr of a counting device as the one we
are considering (defined as the time between the leading edges of
the two most closely spaced input pulses for which the device is
still able to produce two output pulses) is a very important
characteristic to have under control during the design phase of
the experiment. Because the time structure of the muon pulses (as
the double peak shown in Fig. 8), an ideal device (i.e., tdpr-0) with
its threshold set to a low value resolves the multiple peaks of the
signals possibly leading to an over-counting of individual muons
(if a naive algorithm of counting one muon per threshold crossing
is assumed). On the other hand, if the threshold is too high, many
signals do not go beyond the threshold and the rate is under-
estimate. Fig. 10 shows both effects for two particular values of
tdpr. It can be seen, that a discriminator with tdpr ( 5ns would
over-count muons by 80% or, in other words, would count nearly
two peaks per muon. One way to avoid the over-counting
problem is to inhibit the second or subsequent peaks by means
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Energy deposit by the simulated muons in 1 cm thick scintillator plastic with a Landau function fit superimposed (bottom).

5 In order to check the independence of the results on the distance, the
procedure was later repeated at x0¼160 cm. No changes were appreciated.

6 Despite the fact that many times the signal is also amplified by the FEB,
neglecting the amplification phase will not change considerably our results. In fact,
fast amplifiers only change the electronic transfer function, broadening a bit the
signal but without changing its shape.
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of a time veto window, tveto. In this way, once a pulse is detected,
subsequent pulses are ignored during a time tveto. The best value
for tveto depends on the details of detector being designed and on
the physics observables to be measured. In our example, we show
that a tveto around 50ns should be enough to eliminate the over-
counting for thresholds in the range ) 2220mV.

To test our prediction and further validate our simulation,
we applied the veto criteria to real muon data. Fig. 10 shows that
the agreement between measurements and simulations is very
good.

7. Results and conclusion

We present a robust and fast simulation strategy which is able
to reproduce, reliably, the response of generic scintillator
detectors widely used in particle and cosmic ray physic experi-
ments. The simulation chain starts with the energy deposited by
particles inside plastic scintillators and, after taking into account
the propagation of light along a wavelength-shifting optical fiber,
outputs the corresponding electronic signals produced by a fast
PMT. The simulation relies on only three free parameters, and we

Fig. 7. Experimental setup used to record atmospheric background muons and emulated in the simulation (top). Schematic view of the front-end electronic board used to
discriminate muon pulses as function of voltage threshold (bottom).
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show how to tune them using laboratory measurements. Thus,
the time structure features and statistical properties of the signals
are accurately reproduced. We also study the dependence of the

output signals on the simulation parameters and demonstrate, in
this way, the potential of the presented model as an optimization
tool for the design of scintillator detectors. In this later context,
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the simulation can also aid in the selection of the most adequate
components in order to attain specific time, amplitude or charge
features of the output signals required by the application in
question. Most importantly, the present simulation approach
provides a deeper physical understanding of the behavior of a
given detector and, due to its modularity and simplicity, it can be
replicated and combined in order to reproduce much more
complex devices.
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