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The current trend towards integrating software agents in safety-critical systems such as drones, auton-
omous cars and medical devices, which must operate in uncertain environments, gives rise to the need of
on-line detection of an unexpected behavior. In this work, on-line monitoring is carried out by comparing
environmental state transitions with prior beliefs descriptive of optimal behavior. The agent policy is
computed analytically using linearly solvable Markov decision processes. Active inference using prior
beliefs allows a monitor proactively rehearsing on-line future agent actions over a rolling horizon so
as to generate expectations to discover surprising behaviors. A Bayesian surprise metric is proposed
based on twin Gaussian processes to measure the difference between prior and posterior beliefs about
state transitions in the agent environment. Using a sliding window of sampled data, beliefs are updated
a posteriori by comparing a sequence of state transitions with the ones predicted using the optimal pol-
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icy. An artificial pancreas for diabetic patients is used as a representative example.
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1. Introduction

Anomaly or novelty detection refers to the process of pinpoint-
ing unusual and unexpected events, behaviors or patterns that give
rise to concerns regarding system safety or performance. This is
especially important for monitoring safety-critical systems in
which faulty conditions need to be fast accounted for [1]. The issue
of anomaly detection has generated substantial research over past
years. Complete reviews of the novelty detection literature during
the last decade can be found in [2,3]. It is rather clear from the
existing works that the most common form of anomaly detection
in use today is based on thresholds, fixed limits or crisp boundaries
between what would be considered “normal” or expected and
something unexpected or abnormal. Typically, when the value of
a key variable is above or below of a pre-specified bound or limit,
the system is considered to be in an anomalous state. For example,
a performance monitor for model-based controllers was proposed
using a minimum variance benchmark for a model residuals
obtainable from closed-loop data [4]. Similarly in [5], the temper-
ature measured across bridge girders was correlated to a certain
state of structural performance degradation. Patterns of physiolog-
ical deterioration in hospital patients (evident in the vital signs,
such as heart and respiratory rate) have been classified using
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support vector machines [6]. Automatic detection of landmarks
in the environment for topological mapping has been associated
with surprising measurements, where a location is classified to
be a landmark if its surprise value exceeds a given threshold [7].
In a method for detecting lane deviation of a vehicle [8], the differ-
ence between a center point of lane markers and the center point
of the vehicle is computed in order to alert the driver that a dan-
gerous deviation exists.

In system monitoring, the most active research area is control
loop performance monitoring based on statistics computed from
plant data. The most significant development was due to the work
of Harris [9], who proposed the novel concept of a minimum vari-
ance controller as the characteristic behavior of an optimal regula-
tor. Thus, performance monitoring can be based on comparing the
observed mean squared error of the controlled output against its
corresponding minimum variance. This optimal behavior is based
on the theoretical framework of minimum variance control previ-
ously developed [10] and has already been implemented with
some success in monitoring the performance of a control loop for
a diabetic patient [11]. More recently, Harrison and Qin [12] devel-
oped a minimum variance performance map that address the
impact of constraints on a predictive controller operation, which
highlights the inadequacy of the minimum variance criterion for
more complex control tasks such as real-time optimization and
intelligent control with economic objectives. Unlike the well-
known minimum variance index for SISO loops, a recent approach
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Nomenclature

a(x) uncontrolled or passive dynamics

B(x) input-gain matrix

D dictionary of training examples

glzZ](x)  integral operator of the desirability function

GP(m,k) Gaussian process with mean m and covariance k

k(x;,x;) covariance function

KL(||) Kullback-Leibler distance

p° transition probability distribution for the passive
dynamics

p transition probability distribution for the controlled
dynamics

() state transition distribution under optimal control

pé(|) state transition distribution under any implemented
control

Py ki1 matrix of transition probabilities for the passive
dynamics

q(x) cost function

s environment internal or hidden state

SI surprise index

Tke(l])  Twin Kullback-Leibler distance

u current control action of agent

v(X) optimal cost-to-go function

X observable environmental state

X each state dimension

X% sequence of state transition given system observations

X* sequence of state transition given the specification

Ax transition for each state dimension.

z(x) desirability function

Greek symbols

" monitor’s beliefs

¥(x) a given state transition distribution in the agent
environment

¥(u) monitor’s belief distributions over future state
transitions

E=D(¥(u)||¥(x)) distance between belief and state transition
distributions

Vr kernel width parameter

Ar noise variance

Jjj Kronecker delta function

T (X) optimal control policy

T8(X) an implemented control policy
o scaling parameter for Brownian noise
dw Brownian noise

Glycemic symbols

BG blood glucose level

Sh hepatic sensitivity

Sp insulin sensitivity

I insulin infusion level

S glycemic sensor output

T sensor time-lag parameter

£ sensor calibration parameter

was proposed by Srinivasan et al. [13], which does not require for
performance monitoring any knowledge about time delays or
other plant parameters. However, due to unavoidable uncertainties
about environmental conditions, none of the existing performance
monitoring algorithms can give a conclusive answer regarding nor-
mality or abnormality in a control loop operation [14,15].

It is worth noting that most of the existing literature about on-
line monitoring assumes that the observed system is a “passive”
entity not situated in an environment. Therefore, a passive moni-
toring approach assumes that certain environmental variables are
simply correlated to a certain system state or condition according
to an immutable relationship; e.g., a temperature distribution
across a structure have a strong correlation with structural
response. However, agents are “situated” entities and usually per-
form in time-varying environments that maintain a feedback loop
with them. By responding to an external stimulus, the agent carry
out actions whose effects give rise to a sequence of state transi-
tions in its environment, which is in turn affected by other agent’s
actions, setting a dynamic structure as depicted in Fig. 1. An agent
behavior is thus an emergence of its control policy for responding
to different environmental stimulus and hence it cannot be
regarded to a fixed reference, threshold or bound. Unfortunately,
an agent policy cannot be directly monitored since it remains hid-
den to any external observer.

Behavior monitoring aims at characterizing the control policy
that an agent uses to react to external stimuli by inferring the state
transition distribution ¥(x,) in the agent environment as a result
of its actions. Besides noise and variability, uncertainty arises as
a consequence of hidden states either because some variables are
only partially observable or because they are related to the percep-
tion an agent has of its environment. As an example consider high-
way monitoring where a driver’s actions (e.g. to change lane) can
only be inferred through observable changes in its immediate envi-
ronment (the car steering), as well as the effect on it of other
nearby affected agents (drivers). Clearly, the monitor perception

change over time as sensory information from the agent environ-
ment is updated [16]. Thus, for behavior monitoring, the main con-
sequence of the assumption of a situated agent is that any change
in the environmental dynamics is mostly a consequence of the
agent’s policy. Furthermore, notice that the raw readings from sen-
sors do not usually correspond to the agent actions nor the states it
perceives or the rewards it obtains, which are difficult if not impos-
sible to measure directly by the monitor. It is thus reasonable to
assume that only changes occurring in the nearby environment
in which the agent performs are part of the monitor’s perception.
For example, a highway monitor may recognize if a driver
increases the speed by considering temporal variations in the vehi-
cle position, as opposed to predicting car velocity based on the
specific force applied on the car’s throttle.

By ascribing the evolution of environmental transitions to a cer-
tain agent policy, a representation that captures much of the rele-
vant information of an agent behavior is obtained. Since behavior
in uncertain environments is a phenomenon that unfolds over

Monitor
v

Beliefs

<

expectation

Hi X;

E=D(¥y, || ¥x;) perception

Fig. 1. Active inference approach to agent behavior monitoring. The probabilistic
process involved by the real environmental dynamics is repetitively contrasted to
the expectation of such dynamics that is modeled by the monitor.
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time, the monitor needs to constantly infer potential outcomes of
future agent actions in response to sensory information (x;) of
the environmental state. To achieve this, the monitor continuously
revises its hypotheses in order to update prior beliefs (u,) that
include predictive distributions ¥(u,) over future state transitions.
This strategy is characterized in this work in terms of an active
inference approach [17], in which the monitor perceives the
nearby environment of an agent in order to contrast its prior
beliefs about expected state transitions. These prior beliefs are
built around a generative model of an optimally controlled
stochastic process for state transitions, which involves predictions
of what should be sampled in order to validate prior beliefs. Since
this stochastic process has been a priori optimized, some of the
state transitions are expected to be observed more frequently than
others and labeled accordingly as “desirable” [18]. In particular, an
optimal behavior is one that reduces the divergence between
desirable state transitions and the observed ones. Therefore, any
deviation between the agent behavior and the desired one can be
detected in a natural way through the Kullback-Leibler distance
between belief distributions and posterior distributions for state
transitions perceived through sensory data ¢ = D(W(u,)||¥(Xk)).

For on-line monitoring, an indication of surprise should arise
from a mismatch between expectations and what is actually per-
ceived. Surprise is thus an information measure that requires an
active inference of the environmental effect of future agent actions,
which may change an observer beliefs as the environmental
dynamics unfolds. However, it is important to figure out expecta-
tions about the different environmental situations the agent may
face and how each situation may be characterized. In general,
expectations are representations of the values that some percep-
tual features are likely to assume in the future. Because of uncer-
tainty, expectations are naturally expressed in probabilistic terms
such that a probability distribution over the range of possible
observations can be considered to be a “belief state,” usually con-
ditioned on a particular unobservable state or hidden context. This
approach has been applied in [19] to support patients with demen-
tia during hand-washing tasks. The position of certain objects (e.g.,
hands and towel) is evaluated by the monitor to estimate the pro-
gress of the user in the task as well as its current mental condition.
This is expressed as a belief state over a range of possible sub-tasks
and mental states. Therefore, if an estimated probability of an
observation is available, then the certainty of a sequence of percep-
tions can be compared to its probability of occurrence yielding a
measure of surprise.

This article is structured as follows. Section 2 describes agent
behavior monitoring as an active inference problem based on an
optimal control policy. Section 3 briefly introduces the principles
of optimal action selection to characterize the expected behavior
under uncertainty. Expected behavior is formalized as a controlled
stochastic process that makes the agent policy as close as possible
to the desired one by describing environmental transitions in prob-
abilistic terms. In Section 4, surprise is quantified as the Kullback-
Leibler divergence between distributions about the desired and the
actual state transitions in order to pinpoint any deviation from the
expected agent behavior. In Section 5, an artificial pancreas is used
as case study in which sensor and actuator faults which may
endanger safety or optimal operation are considered. Finally, in
Section 6 some remarks and future works are discussed.

2. Active inference
2.1. Action and perception

Perception is essential to intelligent systems since it helps cog-
nitive agents to build their hypotheses and select an optimal

course of action in the face of a changing environment. A rational
agent chooses actions seeking to maximize the utility obtained
despite uncertainty and unplanned events. As it is shown in
Fig. 1, the agent influences the nearby environment which is
mostly affected by its actions whereas the environment responds
by means of rewards and state transitions. As a result, the
sequence of observable state transitions in the agent environment
is important for monitoring its behavior. This is fundamental, since
the agent’s policy usually remains unobservable to an external
observer in most cases. Bearing this in mind, and through a prob-
abilistic characterization of the agent policy under uncertainty, it
is possible to indirectly monitor the agent policy by accounting
for changes in the environmental dynamics. These changes are
considered as the observable responses to the agent actions, but
could be influenced by actions taken by other agents and uncer-
tainty about internal agent states.

Our monitoring approach starts by differentiating the proba-
bilistic process descriptive of the real environmental dynamics that
generates new observations, from the expectation of such dynam-
ics that is modeled by the monitor. As an example, Fig. 2 highlights
that by perceiving an internal state sy, the driver chooses the action
u,, which causes the environment to evolve to the state s, while
the driver obtains a (unobserved) reward r,. The Markovian depen-
dences between the driver actions affecting internal states, which
subsequently yield observable responses X, to the monitor, are
highlighted in Fig. 2. Notice how the given sequence of actions per-
formed by the agent does not have a direct influence on the mon-
itor’s posterior beliefs u,_,; the agent policy just becomes apparent
when it manipulates the sequence of environmental transitions.
Therefore, the monitor perception cannot be directly related to
the agent actions, but rather to the observable changes in the envi-
ronmental dynamics which is affected as a result. Thus, active
inference necessarily involves on-line rehearsing of future actions
of agents over a rolling horizon so as to generate expectations that
help discovering surprising agent behaviors.

From the monitor’s perspective, each environmental state x;
perceived is able to modify or reinforce the prior beliefs u,, contin-
uously transforming them into a posterior distribution g, ,
according to the Bayes rule. This constitutes a behavior monitoring
approach that employs, from a Bayesian point of view, the proba-
bility distribution for the next environmental response as a refer-
ence to the monitor. It is important to remark this is a moving
horizon method, since the posterior state transition density
obtained corresponds to the a priori distribution for the next time
interval.

The active inference monitoring approach is based on an opti-
mal control policy for the agent under uncertainty. This policy
allows simulating fictitious state transitions that serve as reference
to the monitor. In this sense, prior beliefs correspond to a descrip-
tion of how the agent is expected to act, and hence beliefs are
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Fig. 2. Markovian dependencies among hidden states generating a sequence of
sensory data, which in turn modify or reinforce prior beliefs.
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described as a probabilistic model of expected state transitions
that the monitor uses to assess the agent behavior. It is important
to differentiate between the probabilistic process over which the
monitor makes predictions, and the actual environmental dynam-
ics that generates the sensor signals perceived by the monitor.
Predictions about state transitions are the result of a generative
model, which has been trained to infer a sequence of fictive state
transitions and is described in the next section. Predicted transi-
tions are optimal in the sense they are the result of an optimally
acting agent in the face of uncertainty. However, predicted transi-
tions are nothing more than an internal representation used by the
monitor that may or may not match the future evolution of the
environmental dynamics.

The active inference approach to agent monitoring implies that
based on prior beliefs, new predictions about environmental state
transitions can be made. The monitor’s specification is built upon
Gaussian distributions that embody a sequence of state transitions,
which take place when the environmental dynamics is controlled
by an optimal policy under uncertainty. The optimal policy is
obtained using a type of Markov decision process whose control
law can be framed as a linear problem with an analytical solution
(see Section 3). This linearization is accomplished through an
exponential transformation of the Bellman’s equation, which leads
to more efficient numerical methods. Since the sequence of state
transitions simulated by the generative model embeds an optimal
policy, any agent that behaves properly is one that reinforces the
monitor beliefs over time.

Consider for instance the problem of monitoring a vehicle on a
road, as in Fig. 3. The image describes the virtual environment per-
ceived by a monitor that is observing the vehicle while the driver is
about to make a left turn. There exist pedestrians, cyclists and
other vehicles setting a dynamical scene which assists the driver
and the monitor to characterize the situation by means of only
observable information. Detection dropouts caused by noise, occlu-
sions, and other artifacts are assumed to be hidden states since
they can influence sensory data but cannot be measured directly.
Based on an optimal behavior specification, the monitor infers a
hypothetical trajectory for the vehicle, depending on its prior
knowledge and the environment state [20]. After observing the
agent environment, the monitor contrasts incoming sensory infor-
mation with prior beliefs that describe the expected behavior of a
proficient driver, such that the car efficiently avoids static and
dynamic obstacles while obeying traffic rules. Any deviation from
the expected behavior can be detected by quantifying the distance
between the observed state transitions and the predicted ones.

It is worth noting that the environmental states perceived by
the driver are not necessarily the same states perceived by the

Fig. 3. Virtual environment perceived by a monitor that is observing the vehicle
while the driver is about to make a left turn.

monitor, since the driver may discern a number of activities that
remain unobservable to the monitor. For instance, a mobile phone
vibrating may alter the driver attention, but the monitor is clearly
unaware of such situation. As a result, the monitor must infer the
agent (driver) behavior just through the evolution of the state tran-
sitions in the system composed by the driver and its vehicle.

As another example (left side of Fig. 3), a rolling ball on the lane
should prompt -for both the driver and the monitor- the possibility
of a child running out from the sidewalk. From the point of view of
the monitor, a proficient driver should react by slowing down the
car to a halt and looking out for someone. This is because the mon-
itor beliefs should consider as prior knowledge both normal and
abnormal situations and specify the optimal agent behavior in each
scenario. In turn, a rolling ball may be an unexpected or surprising
event for the driver considering its prior beliefs, yet the driver
behavior to handle it should not to be surprising to the monitor.
This example shows that for on-line monitoring of an agent behav-
ior, an event is surprising not because its probability is small in an
absolute sense, but rather because its probability is relatively small
given the prior belief distribution of the observer (monitor) [21].

2.2. Prior beliefs specification

A distinctive problem in monitoring situated agents is that the
monitor’s perception is partially blinded, which creates uncer-
tainty about the agent policy that explains the observed state tran-
sitions. Prior beliefs about the optimal policy are instrumental in
order to predict expected responses given the history of observed
state transitions over a rolling horizon. In this work, the monitor
beliefs are transformed into a generative (probabilistic) model
which makes possible to infer future state transitions resulting
from an optimally behaving agent.

In the generative model, state transition probabilities are mod-
eled using Gaussian processes (GPs) [22] that provide information
about confidence intervals for the predicted next state. A GP is a
collection of random variables, any finite number of which has a
joint Gaussian distribution. For Gaussian process regression, those
random variables represent the value of the function f(x) for inputs
x. It is assumed that f(x) is a zero mean stationary Gaussian process
with covariance function k(x;,x;), encoding correlations between
pairs of random variables

cov(f(xi,x;)) = k(xi,X;) (1)

One covariance function particularly useful is the Gaussian
k(xi, X)) = exp(=7, 1% — x;[|*) + 2 2)

with y, > 0 the kernel width parameter, 2. > 0 the noise variance
and §; the Kronecker delta function, which is 1 if i = j and 0 other-
wise. This prior for the kernel function constrains input samples
that are nearby to have highly correlated outputs.

GPs are parameterized based on a sequence of observations
resulting from on-going interactions between the agent and its
environment. Given a state vector X, a separate GP model is
trained for each state dimension x, in such a way the uncertainty
about its change due to a (hidden) agent action is modeled statis-
tically as

Ay, ~ GP(m, k) (3)

where m is the mean function and k is the covariance function. The
training inputs for a Gaussian model GP are the environmental
states, whereas the targets are the differences between the succes-
sor state and the state in which the action was applied. For an input
X, the multivariate predictive distribution p(Xy.1|Xx) is Gaussian
distributed.
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To describe the monitor’s prior beliefs, the transition probabil-
ity p*(X¢.1/Xx) should correspond to an optimally controlled system
dynamics. The superscript indicates that the transition probability
is shifted by the optimal control policy 7*(x). As a result, the mon-
itor is allowed to ascribe any change in the environmental dynam-
ics to the agent policy. On the other hand, another Gaussian model
would describe the current observed system behavior in terms of a
Gaussian process p#(Xy.1|Xx) which may deviate from the corre-
sponding Gaussian process for optimal action selection. The super-
script indicates that the transition probability is shifted by any
implemented control policy 7#(x). It is worth noting that the
Gaussian model that characterizes the current implementation
needs to be updated on-line as new data is available. This vis-a-
vis comparison between p&(X;.1|Xx) and p*(Xy,1|Xx) allows the
monitor to contrast the characterization of the observed agent
behavior to its specification. As it will be discussed later, this com-
parison can be performed through Bayesian methods that can mea-
sure the divergence between two stochastic processes.

3. Optimal control under uncertainty
3.1. Linearly-solvable control problems

As expressed above, the main challenge for monitoring an agent
behavior is how the environmental response to an optimal agent
policy can be characterized in the face of uncertainty. To this
aim, a probabilistic representation of the desired behavior has to
be built upon a stochastic process of the optimally controlled sys-
tem dynamics. To obtain the expected agent policy under uncer-
tainty a class of Markov decision process is used. Linearly-
solvable Markov decision processes (LSMDPs) [23] correspond to
a class of optimal control problems in which the Bellman’s equa-
tion can be converted into a linear equation by an exponential
transformation of the state value function. The Bellman’s equation
is fundamental to optimal control theory. This equation was first
introduced as the cornerstone of the Dynamic Programming frame-
work (DP) [24]. Later on, the Bellman’s optimality condition was
instrumental for reinforcement Learning (RL) [25] algorithms,
which are very general but can be inefficient [23]. The RL problem
consists of learning iteratively to achieve a goal from ongoing
interactions with a real or simulated system, while DP is a general
method of solving sequential optimization problems using a prob-
abilistic model of state transitions. In both cases, the idea is to pre-
dict the value or utility of future actions. Accordingly, optimal
actions cannot be found by greedy optimization of the immediate
cost, but instead all future costs must be taken into account. To this
aim, the optimal cost-to-go function v(x) is defined as the
expected cumulative cost for starting at state x and acting opti-
mally thereafter. Indeed, the Bellman equation characterizes v(x)
only implicitly, as the solution to a dynamic optimization problem.
A major advantage of using this optimization method is that it pro-
vides an explicit optimal decision policy for the agent. Therefore,
based on LSMDP it is possible to build a specification of the system
dynamics over time when the agent acts according to the obtained
optimal policy. The latter is instrumental to detect on-line discrep-
ancies between the beliefs and the environmental dynamics
affected by the agent behavior.

Stochastic processes do not have time derivatives in the con-
ventional sense and, as a result, they cannot be manipulated using
the ordinary rules of calculus. Ito [26] provided a way around this
problem by defining a particular kind of uncertainty representation
based on the Wiener process as a building block. An Ito process is
thus a stochastic process whose state transition function is repre-
sented by the equation

dx = a(x)dt + B(X)(udt + odw) (4)

where w € R™ (same space as actions) and ¢ denote Brownian noise
and its scaling parameter, respectively. The expression a(x)
describes the uncontrolled or passive dynamics [23] and B(x) is the
input-gain matrix. It is important to remark that, since noise and
control signals act over the same space, any state can be reached
by the effect of either inherent system variability or control actions.

In order to express Eq. (4) in a more convenient form, the h-step
transition probability for the passive dynamics p° is expressed as a
Gaussian distribution A as

P° (X1 [Xk) = N (Xesr |Xi + ha(x) + hB(X), haB(X)"B(X)) ()

The controlled diffusion process p" is approximated as a deter-
ministic function expressed as a Gaussian distribution whose mean
and covariance are given as

D™ (Xpy1Xk) = N (Xgp1|Xk + h(a(X) + hB(X)u), X) (6)

One way of thinking of the net effect of control actions is
noting how they change the distribution of the next state
from (x; + ha(x) + hB(X),X) to (X + h(a(x)+ hB(x)u),X), where
S = hoB(x)"B(x) is the covariance. In other words, the controller
shifts the probability distribution from one region of the state
space to another [27]. More generally, we can think of the system
under study as having a passive dynamics with a distribution p°
over future states, thus the controller acts by modifying this distri-
bution to obtain a new dynamics p".

Thereby, the situated agent shifts the probability distribution
for state transitions from one region of its state space to another
by acting on its environment. A control policy 7(x) is thus defined
as the probability of choosing the control action u, at state x;. For
any optimal control application, the main objective is to find an
optimal policy 7*(x) which minimizes the expected cumulative
cost function (X) as

v'(X) = muin{f(x, (X)) + By pupep [0(X)]} (7)
where X' denotes the next state for a given control action u. The
minimum cumulative cost for starting at state x, and acting opti-
mally thereafter enables greedy computation of optimal actions.
Notice that Eq. (7) corresponds to the Bellman fundamental equa-
tion, which can be simplified by assuming that the immediate cost
function is

£(%,u) = hq(X) + KL(p" (Xice1 %) [P (X1 X)) 8)

The state cost g(x) is an arbitrary function encoding how (un)
desirable different states are, and KL is the Kullback-Leibler diver-
gence that measures the distance between the optimally-
controlled dynamics and the passive one. This distance can be
understood as the price to pay for the optimal shift of the passive
dynamics by action u. The KL divergence between the above
Gaussian processes can be proven to be h/2¢2||u|* which is the
quadratic energy cost accumulated over interval h. By introducing
the exponential transformation z = exp(—v), the Bellman’s equa-
tion can be conveniently re-written as [23]:

z(x) = exp(=hp(x))g(z}(x) 9)
where z(x) is the desirability function defined as

z(x) = exp(-v"(x)) (10)
and g[z](x) is an integral operator defined as

x) = [P (1)

In contrast to the cost function v(x), the negative exponential
portrays which states are more desirable. Once the desirability
function is found, the optimal control policy is computed analyti-
cally and expressed in closed form as
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' (x) = —02B(x)" vx(X) (12)

In this manner, optimal actions can be expressed analytically
given the optimal cost-to-go. Thus, instead of finding a
trajectory-based optimal solution, the goal is to find a globally
optimal policy over the entire state space.

The continuous problem given in Eq. (4) is solved by choosing a
set of states {X,} and adjusting the matrix Py, of transition prob-
abilities from x; to X, ; given by the passive dynamics described in
Eq. (5). Since the operator G[z](x) is linear, Eq. (9) is also linear and
can be expressed in vector notation. Defining the vector z with
elements z(X,) and the matrix Q with elements exp(—hq(x,)) on
its main diagonal Eq. (9) becomes

z=0QPz (13)

for the first exit formulation, namely goal-direct problems.
Noteworthy, Eq. (13) can be solved by an iteration method in
exponential form [18].

3.2. Example: car-on-a-hill problem

The mountain car problem provides a challenging problem, par-
ticularly when random fluctuations affect the observable state
transitions. The model dynamics simulates a point mass moving
along a convex surface in the presence of gravity, see Fig. 4. The
admissible range of forces is not sufficient to drive up the car
greedily from the initial state to the goal position. The observable
state vector is X = [x1,X;], where x; and x, denote horizontal posi-
tion and the tangential velocity of the car, respectively. The car
dynamics is given by

car-on-a-hill

hill elevation

-3 0
horizontal position

(@)

v{x)

w

-3 0
position

(c)

w

dx; = x, cos(atan(s'(x;)))dt

dx, = —gx,sgn(x;)sin(atan(s'(x;)))dt — px,dt + udt + adw (14)

where g=9.8 m/s? is the gravitational constant and g =0.5 is the
damping coefficient. The goal for the driving agent is defined by
all states such that |x; — 2.5] < 0.2 and |x;| < 0.5. The cost model thus
encodes the task of parking the car at the horizontal position 2.5 in
minimal time and with minimal terminal velocity. Costs are accu-
mulated from time 0 to infinity but accumulation stops when the
car achieves the goal. Error tolerance is needed because the system
dynamics is stochastic.

To approximate the desirability function in Eq. (13), we use a
discretization of the environment using a 101-by-101 grid span-
ning x; € +£3 and x;, € +9 for the car problem. The passive dynam-
ics is constructed by a discretization of the time axis (with time
step h = 0.05) and defining probabilistic transitions among discrete
states. The noise distribution is discretized at 9 points spanning + 3
standard deviations in the x, direction and using a noise scale
parameter ¢ =0.1.

Once the desirability function is optimized using the passive
dynamics, the control policy is derived from the computed desir-
ability function using Eq. (12). The results are shown in Fig. 4;
where (b) corresponds to the state cost function q(x) bearing that
the agent is goal-driven; (c) is the optimal cost-to-go function
obtained (solid lines show stochastic trajectories resulting from
the optimal behavior with different levels of variability and initial
states); (d) depicts the obtained optimal control policy regarding
prior beliefs about the agent behavior. In all plots blue correspond
to smaller values and red to larger values.

g(x)

3 0 3
position
(b)
u(x)
Fy
80 ~
] . N
-9
-3 0 3

position

(d)

Fig. 4. (a) The car moves along a curved road in the presence of gravity. The control signal is the tangential acceleration. (b) State cost function q(x) of the first exit cost
formulation. (c) The optimal cost-to-go function. Solid lines show stochastic trajectories resulting from the optimal behavior with different scales of noise and initial states.
(d) The obtained optimal control policy used as the specification for agent behavior monitoring.
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4. Bayesian surprise
4.1. Twin Gaussian processes

Surprise quantifies how observing new data affects the internal
beliefs a monitor may have about an agent behavior and its control
policy. Observations that leave the prior beliefs unaffected are not
surprising and -revealing that the monitor hypotheses are con-
firmed by data-, whereas data observations that cause the monitor
to significantly revise their prior beliefs give rise to a surprising
condition. Thus, a surprising agent behavior is related to a
sequence of state transitions which become suspicious whenever
the stochastic process describing the agent policy through environ-
mental state transitions deviates with respect to the monitor’s
beliefs based on an optimal policy.

The monitor’s beliefs are updated on-line as new sensory infor-
mation arrives, transforming prior belief distributions into poste-
rior ones. According to this, the fundamental effect of data D on
the monitor is to change its prior distribution P(M) into a posterior
distribution P(M|D) via the Bayes theorem. Conveniently, Bayesian
surprise is measured using the distance between the posterior and
prior distributions based on the Kullback-Leibler divergence
T(D,M) = KL(P(M|D)||P(M)). The KL divergence, or relative entropy,
should be understood as a measure of the difficulty of discriminat-
ing between two distributions.

Since the environmental dynamics is affected by uncertainty, a
robust metric of Bayesian surprise must be considered. To quantify
the similarity between the optimal behavior and a given stochastic
implementation of the agent policy, twin Gaussian processes (TGP)
proposed by Bo and Sminchisescu [28] are used (see Fig. 5). A TGP
provides a powerful strategy for structured prediction using GP
priors on both covariates and responses [29]. Hyper-parameters
for both multivariate inputs and estimated outputs are obtained
through minimization of the Kullback-Leibler divergence between
two GPs modeled over finite input sets of training examples,
emphasizing the goal that similar inputs should produce similar
responses. Instead of computing surprise point-wise for each
new estimation using the GPs models, two data sets containing a

sequence of the last W state transitions, X& = {Ax }k w and

= {Ax;}f_,, are used to characterize the observed and the spec-
iﬁed environmental dynamics, respectively. Then, the joint distri-
bution of observed state differences can be modeled using a
zero-mean multivariate Gaussian distribution as

KL,, @

Fig. 5. The data ordinates are x and GP are the distributions for the implementation
and the specification. The horizontal lines indicate fully-connected GP sets. While
green connectors describe pointwise KL distance, red connectors illustrates twinned
distance between the two stochastic processes. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

X8 ~ N (0, [R” r"]D (15)

rlr

whose covariance K# is given by the kernel matrix R; = k(Axf, Ax?),
the kernel ri = k(Axf,Ax?) and the kernel
r =k(Ax§,Ax¢). The kernel used here, is the one given in Eq. (2).
For the implementation modeled as A/¥(0,K®) based on a sampled
sequence of state transitions, the offset or distance to the prior
beliefs distribution A"(0,K") is key to calculate a robust measure
of surprise. This is achieved by computing the Kullback-Leibler
divergence between Gaussian processes as

vector value

" N 1 1 X
T (N8N = -3-3 log |K%| —s—iTr{Kg(K ) }+

3 log |K"|

(16)

The Kullback-Leibler divergence is therefore non-negative, and
zero if and only if the two multivariate Gaussian distributions have
the same covariance. In the latter case, the sequence of state tran-
sitions caused by a given agent policy has no surprise regarding
observed environmental transitions, i.e. they can be associated to
an optimal behavior. In Fig. 5, T is used to compute the perfor-
mance of the implemented dynamics GP? against the dynamics
GP? for the optimal agent behavior. Notice that instead of comput-
ing the KL distance point-wise for each new estimation Ax, Ty
uses a sequence of the observed state transitions {Axk}ﬁW over a
rolling horizon, which gives a more robust description of any devi-
ant behavior.

4.2. The surprise index

To quantify the impact of changes in the agent policy, it is nec-
essary to introduce metrics aimed to describe in relative terms the
resulting performance under uncertainty. Here, a ratio between the
computed surprise value and the maximum value of surprise
observed when the agent performs optimally is proposed. This is
a good indicator of a deviant agent behavior, since meaningful
peaks in the Ty index produced by unexpected state transitions
are many orders of magnitude larger than “background” stochastic
values associated with nominal data. The surprise index (SI) is then
expressed as

TKL
T*

KL max

NES

(17)

where Ty, is the surprise value for the observed transitions (subject
to anomalies) and Ty, ., IS the maximum surprise value faced
when the agent behaves optimally. From Eq. (17) we can presume
that any SI value bigger than the unit might be a symptom of an
anomaly (or anomalies) affecting the agent behavior or its nearby
environment.

A general description of the approach for on-line monitoring
using Bayesian surprise is shown in the flowchart in Fig. 6. To start,
the monitor observes the environmental state X;. Based on the cur-
rent state, the posterior transition distributions for prior beliefs
and the implementation are computed. The associated estimations
Ax¢ and Ax;, are included in their respective data sets in order to
estimate Ty;. This is achieved through a moving window strategy
which adds new estimations whereas the oldest one is removed.
This allows maintaining the monitor’s beliefs updated so as to fast
detect changes in the agent behavior. At every moment the Ty
value obtained is compared against its maximum value allowed
through the SI index. If at any instant the index is bigger than 1,
a warning signal should be activated.
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Fig. 6. Flowchart for the on-line monitoring approach. Ty is used to compare the
statistical distribution of a test data set against that of a reference.

4.3. Example: car-on-a-hill problem (cont’d)

To fast detect any change in the agent behavior, it is clear the
importance of training the corresponding GPs using a reduced
and relevant set of state transitions. Hence, the last Ny.x = 50 tran-
sitions are used as the input set to train the GP model for the opti-
mally controlled stochastic process (see Section 2.2). Bayesian
surprise is later computed using a moving window strategy over
the last W =30 state transition estimations given by Eq. (15). The
number of estimations used is a tradeoff between the speed of
detection of any event or disturbance and the proper characteriza-
tion of the degradation in the agent behavior, and may change
depending on the dynamics of each implementation.

The SI index is measured by comparing the implemented
dynamics GP® to the desired one GP* in Fig. 7. This measure
emphasizes the fact that similar states should produce equivalent
estimates of both covariates and responses, and so, the SI value
should be less than 1 if no anomalies or changes in the agent policy
exist. In Fig. 7a, the noise scale parameter ¢ is increased from 0.1 to
0.5 and 1.0, to simulate different degrees of variability. It is quite
clear that an increase of the parameter ¢ might deteriorate the
agent behavior. In Fig. 7b, a temporary failure in the car actuator
is simulated. In the set of samples from #100 to #150, the car
dynamics is governed by a random policy with control actions
sampled from the interval u € [1,+1]. This type of actuator mal-
functioning which alters the driver behavior is notably captured
by the proposed Bayesian surprise index.

5. Case study: artificial pancreas
5.1. Agents in medical systems
Agent based applications have definitely entered into the chal-

lenging fields of medical decision making, where faults or errors
prompt serious consequences to patients. The importance of

intelligent agents in this area lays on a number of properties such
as autonomy in operation, communication and cooperation with
other agents or systems and their perception capabilities. An agent
in a medical systems interacts with the environment by executing
different actions autonomously and communicating with other
agents and humans, which may allow cooperative problem solving
[30]. In doing so, agent based medical systems can support physi-
cians and patients in different medical decisions and monitoring
tasks. Technological devices for supporting safety—critical systems
and safe patient management require of systematic methods
aimed to continuously evaluate their performance and fast pin-
pointing any life-threaten situation. However, effective monitoring
of health care situations is complex as involves interpretation of
many variables and evaluation of many patient relative parame-
ters, a great number of which cannot be measured directly.

The potential of agent based technologies can be successfully
applied to aid diagnosis, treatment and prediction of many clinical
problems. In this sense, recent technology breakthroughs towards
a fully automated artificial pancreas (AP) give rise to the need of
improved monitoring tools aimed to increase both reliability and
performance of closed-loop glycemic control. Briefly, the goal of
diabetes management is to mimic the basal and postprandial pat-
terns of insulin secretion produced by normal pancreatic function
[31], i.e., maintaining blood glucose (BG) levels between 80 and
140 mg/dl. Successful glucose regulation in the face of unknown
changes in diet, exercise, stress, medications and most important
of all diminishing the risks of hypoglycemia or hyperglycemia
events is a challenging problem.

Poor predictability of BG dynamics is a key issue that both
patients and doctors must deal with, mainly because the glucose-
insulin dynamics shows great variability among different patients
according to the carbohydrate content of meals, exercise level, age
and stress. Because of this variability even the same insulin dose
with the same meal routine may give rise to different blood glu-
cose responses to insulin boluses on consecutive days. Closing
the glycemic loop with a fully automated AP will certainly improve
the quality of life for insulin-dependent patients. Such a device is
made up of (i) a glucose measuring device, (ii) an automated insu-
lin infusion pump, and (iii) an intelligent control algorithm, which
calculates the optimal insulin bolus to be delivered based upon
glycemic data and facilitates the communication between the com-
ponents and other systems. However, besides the dynamics of
human physiology, errors in glucose sensors and failures in insulin
infusion pumps give rise to a number of challenges for implement-
ing an artificial pancreas. The safety-critical condition of such an
automated device makes its performance monitoring task of para-
mount importance in order to reduce glucose level variability and
to minimize the risks of dangerous excursions outside the eug-
lycemic range.

5.2. Modeling variability in glucose dynamics

In this work, glycemic variability and other sources of uncer-
tainty in a diabetic patient are simulated using a stochastic process
superimposed on an otherwise deterministic model of the glucose-
insulin dynamics. To this aim, the Lehmann and Deutsch model
[32] parameterized as described in Acikgoz and Diwekar [33] is
used as the basis to describe the deterministic dynamics in a dia-
betic patient. All sources of variability are accounted for by adding
an Ito’s stochastic process to a deterministic model of the
glucose dynamics. Introducing a stochastic process ensures a
heterogeneous cohort of in silico subjects that accounts sufficiently
well for the observed inter- and intra-subject variability, a key
aspect in characterizing an optimal control policy under
uncertainty. The glycemic variability in a diabetic patient is thus
modeled as
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Fig. 7. (a) Sample trajectories are generated using different values of the noise scale parameter ¢. The performance degradation in the agent behavior is clearly revealed

below by T;. (b) Simulation outcome for random actions between samples 100-150.

dBG Gy + NHGB — Goyr — Gron G
dBG _ + € 18
dr Ve NG (18)

where BG is the blood glucose concentration, G;, is the systemic
appearance of glucose via glucose absorption from the gut, NHGB
is net hepatic glucose balance, G, is the overall rate of peripheral
and insulin dependent glucose utilization, G, is the renal excretion
of glucose and V is the volume of distribution of glucose. The meal
routine in Table 1 described in terms of the carbohydrate intakes is
used.

Notice that the only available measurement of glucose concen-
tration in blood is the one obtained by the subcutaneous sensor
which is an estimation of the real plasmatic concentration -and
corresponds to a hidden quantity to be inferred-. As the sensor
needle is placed in the subcutaneous tissue, it measures interstitial
fluid glucose concentration (IG) rather than the plasma glucose
concentration. In the simulation model, each IG value can be esti-
mated through integrating a BG-IG dynamics, where § is the static
gain (considered equal to 1) and 7 is the time-lag constant

Table 1

Carbohydrate intake schedule.
Carbohydrate content (g) 47 16 63 31 63 31
Meal times (h) 8.00 10.00 1230 16.00 19.30 22.00

diG(k) = —%IG(k) +gBG(k) (19)

Furthermore, sensor readings are corrupted by a random time-
varying calibration error ¢(k) and a white Gaussian noise process
v(k) so that

S(k) = (1 + &(k)IG(k) + v(k)

ek +1) = 3¢(k) — 3¢(k — 1) + E(k — 2) + w(k) (20)

where S(k) is the glycemic sensor output and the calibration error
£(k) has been created using a triple integrator of a zero mean white
noise w(k). For simplicity, BG is used instead of IG hereafter but
recall it refers to the outcome of a continuous glucose sensor.

5.3. Glycemic control

The specification of the expected behavior when monitoring an
artificial pancreas is here built upon the state transition distribu-
tion for an optimally controlled glucose dynamics. To obtain the
optimal control policy using the LSMDP technique, it is required
in advance a model of the passive (uncontrolled) dynamics of the
glucose regulatory system. Even if different methods exist to model
the passive dynamics according the each problem, most of them
require of previous knowledge of the transition matrix given in
Eq. (13) and immediate costs over the entire state-space [34,35].
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However, since the passive dynamics describes nothing but the
space of likely state transitions, it would be a valid to use an
approximation of the matrix. This approximation can be obtained
by means of a reduced model of the glycemic system. In this sense,
the Lehmann and Deutsch model above described corresponds to
an augmented representation of the two-compartments model
described in Bergman et al. [36]
dBG
ar (py — 10)BG +p, Gy

(21)
dla
ar pola+psl(t)

where Ia represents the time course of insulin infusion and G, is the
basal glucose level. In this minimal model of glucose kinetics,
plasma insulin I(t) enters a remote compartment where it acts by
accelerating the glucose disappearance into the periphery and liver,
and inhibiting hepatic glucose production. While some of the
parameters p; given in Table 2, describe important physiological
responses, as the insulin sensitivity S; = —(p;/p,), others lack a
meaningful interpretation. Beyond any limitation of this minimal
model, it is still useful to describe the glucose-insulin state transi-
tions in the passive dynamics.

The control task corresponds to maintaining acceptable
glycemic variability. For this purpose, the cost function is
conveniently designed in such a way that allows guaranteeing an
acceptable behavior of blood glucose dynamics within a target
band (80-140 mg/dl). Thereby, the state cost function q(x) is
represented by a square exponential form which saturates for
great deviations from a chosen reference blood glucose value
(BG =110 mg/dl) and basal insulin (I, = 30 mU/I). In this way, the
control system will aim to keep the patient glucose level as
close as possible to the reference. Note that the glycemic control
problem has a two-dimensional state x = [BG,Ia] with only one
control input corresponding to the insulin bolus, i.e. u=I(t).
Consequently, Eq. (13) can be now solved by an iteration method
in exponential form. The approximation uses a state space dis-
cretization with a 151-by-151 grid spanning BG € [0,220] mg/dl
and Ia € [0,60] mU/l. The passive dynamics is constructed by a
discretization of the time axis (with time step h=0.05) and defining
probabilistic transitions among discrete states so that the mean
and variance of the continuous state dynamic are preserved. The
noise distribution is discretized at 9 points spanning +3 standard
deviations and using a noise scale parameter ¢ = 0.1. Thus, the real
system dynamics has to be inferred by the controller. The
desirability function was computed using the estimated passive
dynamics matrix whereas the control policy was subsequently
derived from the obtained expression. Results are displayed in
Fig. 8, where (a) depicts a scheme of the Bergman’s minimal
model and (b) is the state cost function g(x) -in all plots blue
corresponds to small values and red to high values-; (c) is the
optimal cost-to-go function obtained -the two small paths
correspond to stochastic trajectories generated by the optimal
policy-. More specifically, the red one was obtained using a noise
scale o = 0.1 whereas the black with ¢ = 0.25. Higher insulin levels
are desirable (lower costs) when BG is high, whereas smaller
insulin levels are needed when BG is lower. In (d) the obtained
optimal control policy for agent behavior monitoring is shown.

Table 2
Parameters of the Bergman’s minimal model.
Parameter Value
P 2.96 x 1072 [min~"]
D2 1.86 x 1072 [min~"]
p3 6.51 x 107° [min~2/uU/ml]
Gp 97 [mg/dl]

5.4. On-line monitoring

The controlled dynamics of the implemented AP is represented
using a suboptimal insulin policy, assuming a certain degree of gly-
cemic variability ¢ and multiple meal consumption as in Table 1.
The desired dynamics -the one controlled by the optimal insulin
policy- is parameterized with: variability parameter ¢ = 0.10; cal-
ibration error ¢ =2% and time-lag 7 =5 min. In this way, a typical
level of uncertainty in the system is considered. A set of
Nmax = 50 training examples are selected to set up the sequence
D of training examples, while W =30 observed state transitions
are used to compute the surprise with Ty;. At the 12th hour, sensor
parameters are varied to simulate performance degradation in the
AP components, whereas ¢ is increased to augment patient glyce-
mic variability. To sum up, this allows us to evaluate the clinical
impact of real-life glycemic control that is affected by sensor errors
as well as time-lags compounded with the effect of patient vari-
ability in diabetes management. In Fig. 9, a realization (obtained
by applying the optimal control policy for a scale of variability
o =0.10) of the glucose stochastic process is shown. From the
12th hour onwards, glycemic variability is increased by changing
the corresponding parameter to ¢ = 0.50. The predicted state tran-
sitions distributions are presented in the lower part of Fig. 9;
shaded areas describe the uncertainty in predictions whereas solid
lines correspond to prediction means. An advantage of using GPs is
that they also provide information about confidence intervals for
each prediction. It is worth noting that increasing variability not
only affects the predicted means but also the prediction errors,
which reveals a significant degradation in the behavior of the AP
controller.

5.4.1. Glycemic variability

In Fig. 10, the ability of the optimal control policy to mitigate
excessive glycemic variability is evaluated. The scale of the noise
parameter of the glucose-insulin model is increased from
0 =0.25 to 0 = 0.50 from the 12 h onwards, giving rise to a larger
glycemic variability. It is noticeable how the performance of the
closed-loop quickly degrades. The computed Ty, metric is irregular
at the beginning while the training set D is still capturing enough
information to properly describe the current system behavior.
Moreover, stochastic behavior in the glycemic model gives rise to
T values that are not strictly equal to 0, even if the observed
and expected behaviors include the same degree of variability over
the interval [0,12] hours. It is worth noting that performance
degradation is quickly revealed when parameters are varied from
the 12 h onwards in the simulation model of a diabetic patient.

5.4.2. Sensor miscalibration

Any failure resulting in an sudden change in glycemic levels
should be followed by a similar increment in the surprise index.
Glucose sensor readings affected by miscalibration due ¢=10%
are depicted in Fig. 11 for optimal control. Since the control algo-
rithm responds to glycemic states acquired by sensory devices sus-
ceptible to noise and disturbances, the loop performance degrades
if a failure in the device occurs. Similarly, a stuck fault in the sensor
starting from the 12 h and onwards it is also considered. Because of
this, the sensor outcome freezes at the 120 mg/dl reading giving
rise to a significant deviation from the expected performance, even
when BG levels is maintained in the desired euglycemia range.
However, since the performance of the AP implementation is con-
trasted with its specified behavior this anomaly is fast detected
using the Ty, metric.

5.4.3. Insulin pump failures
To end the analysis for this case study, Fig. 12 simulates a likely
scenario in which a catheter blockage occurs during the use of a
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Fig. 8. (a) Reduced model of the glucose-insulin dynamics. (b) State cost function q(x). (c) The optimal cost-to-go function. Sample trajectories are generated using different
values of the noise scale parameter o. (d) The optimal control policy used as the specification for agent behavior monitoring.
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Fig. 9. Increase in glycemic variability using stochastic optimal control. Mean and
standard deviation values are generated using Ito’s parameter o.

continuous infusion pump. As a consequence, the insulin dose is
considerably reduced such that only 80% of the level prescribed
by the optimal control algorithm is in fact administrated. This
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Fig. 10. Assessment of the effect of high glycemic variability using parameter
o =0.25 and 0.50.

mitigates the effect of the insulin bolus and leads to a poorly con-
trolled glycemic variability. In a different, a chaotic controller is
simulated by considering u(t) = u* + fdw, where u* corresponds
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Fig. 11. Performance loss due to glucose sensor miscalibration using ¢ = 10% and a
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Fig. 12. Performance degradation due to a catheter blockage and a chaotic
controller.

to the value given by the optimal policy, dw is the differential of a
Brownian random noise and 8 = 3 is the standard deviation of the
added noise. As a result, even if the control algorithm can still com-
pute the optimal action, it is unable to properly adjust the amount
of insulin administrated to the patient. Since a zero mean noise is
used, the path still converges to the vicinity of the target level
BG =110 mg/dl, despite the significant increase in the variability
of the glucose dynamics.

6. Final discussion

This work presents a novel probabilistic approach built upon an
optimally controlled stochastic system for on-line monitoring of an
agent behavior under uncertainty, which has been conceived in
terms of active inference and optimal action selection. Checking
if an autonomous agent behavior fulfills expectations is a key issue
to guarantee safety and performance of an increasing number of
autonomous agent applications such as driverless cars, drones
and biomedical systems. The main problem for behavior monitor-
ing is generating prior beliefs under the uncertainty the agent
should face in its own environment. In this work, the desired
behavior is modeled by a prior Gaussian distribution for state

transitions, in order to verify if a given agent control policy
respects its specification. The desired optimal behavior is obtained
analytically using a class of Markov decision processes which are
linearly solvable. Through an exponential transformation, the
Bellman equation for such problems can be made linear, despite
nonlinearity in the stochastic dynamical models, which facilitates
applying efficient numerical methods.

The availability of an optimal control policy allows simulating
the desired behavior over time and comparing it with the current
system performance in order to identify deviations from the
desired behavior. To favor on-line monitoring, a robust metric
based on surprise and twin Gaussian processes is introduced to
characterize the progressive degradation in the agent behavior by
quantifying the distance between the implementation and prior
beliefs. A distinctive advantage of computing surprise using
Gaussian processes is that the divergence from prior beliefs can
be estimated not only using the expected value of state transitions
but also the corresponding prediction uncertainty for optimal
action selection.

The proposed active inference approach to on-line monitoring
of an agent behavior allows its incorporation to a number of appli-
cations in diverse domains. Typical examples include the detection
of unauthorized access to computer systems [37], irregularities in
vital signs and other variables in intensive care patients [38], fraud
in financial services [39], detection of saccadic objects for visual
applications [40] and detection of path deviation in autonomous
vehicles [41].

Future work, aims to extend the approach to multi-agent sys-
tem monitoring by characterizing the desired collective behavior
using a game-theoretic perspective. In turn, despite the efficiency
of the LSMDP scheme, it is yet necessary to previously know the
passive dynamics of the system, which probably is the most crucial
and complex task in applying the proposed methodology. Instead
of using a simplistic model of the system under study, current
research work aims to include the estimation of the passive
dynamics while finding the optimal cost-to-go, by using a temporal
difference algorithm called z-learning.
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