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1. Introduction

As stressed by Lévi-Leblond (1974), although it is usual to read
that non-relativistic quantum mechanics is covariant, and even
invariant, under the Galilean transformations, this issue has been
scarcely treated in the standard literature on the theory. For
instance, the commutation relations defining the Galilean group
are often not even quoted in the textbooks on the matter (an
exception is Ballentine, 1998). This fact has several undesirable
consequences. On the one hand, the meanings of the concepts of
covariance and invariance are not precisely elucidated. On the
other hand, one is left with no clear idea about in what sense
covariance and/or invariance can be predicated of quantum
mechanics.

This situation has its counterpart in the field of the interpretation
of quantum mechanics: the relevance of the Galilean group is rarely
discussed in the impressive amount of literature on the subject.
The general premise underlying the present paper is that the
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relationship between interpretation and Galilean transformations
deserves to be seriously analyzed: the fact that the theory is
covariant under the Galilean group does not guarantee the same
property for the interpretation since, in general, interpretations add
interpretative postulates to the formal structure of the theory.

In a recent paper (Lombardi & Castagnino, 2008) we have
presented a new realist interpretation of quantum mechanics
belonging to the modal family (see Dieks & Vermaas, 1998),
where the Hamiltonian plays a decisive role in the main
interpretative postulates. In that work, the Galilean group guided
us in the understanding of the physical content of the theory;
however, the behavior of the interpretation under the Galilean
transformations was not explored. The aim of this paper is to
address this issue by analyzing whether and under what
conditions the modal-Hamiltonian interpretation satisfies the
physical constraints imposed by the Galilean group. To this end,
we shall begin with clarifying the concepts of covariance and
invariance, and with stating the problem at issue in precise terms.
On this basis, and after recalling the main features of the Galilean
group, we shall consider in what sense quantum mechanics is
covariant and under what conditions it is invariant under the
transformations of the group. This conceptual framework will
provide us with the tools for studying the result of the application
of the Galilean transformations to the modal-Hamiltonian



94 0. Lombardi et al. / Studies in History and Philosophy of Modern Physics 41 (2010) 93-103

interpretative postulates. Finally, we shall consider the perspec-
tives opened by this group approach to interpretative issues, in
particular, the possibility of extrapolating the approach to the
interpretation of quantum field theory.

2. Covariance and invariance

As we have pointed out, the covariance—and even the invariance
(see Ballentine, 1998)—of quantum mechanics under the Galilean
transformations is usually assumed as a well-known fact. Never-
theless, only in very few cases this assumption is grounded on a
conceptual elucidation of the involved notions: the meanings of the
words ‘invariance’ and ‘covariance’ are taken for granted. Therefore,
it is worth beginning with a clarification of those concepts.

A generic item is said to be symmetric under a certain
transformation when it is invariant under that transformation.
However, this does not explain yet what kind of items may be
endowed with the property of invariance. As Brading and
Castellani (2007) stress, the first step is to distinguish between
symmetries of objects and symmetries of laws: although related
with each other, both cases should not be confused. In fact, as we
shall see, the symmetry of a law does not imply the symmetry of
the objects (states and operators) contained in the law. Therefore,
the philosophical implications of the symmetries of the law and of
the involved objects under a particular group of transformations
have to be both considered.

Secondly, it is necessary to say a few words about the concept
of covariance. In the literature there is no consensus about what
‘covariance’ means. Often, the term ‘invariant’ is only applied to
objects and the term ‘covariant’ is retained for equations or laws.
Here we shall not follow this path, because the corresponding
concepts can be understood in such a way that the difference
between the invariance and the covariance of a law makes sense.
In rough terms, we shall say that a law is covariant under a certain
transformation when its form is left unchanged by that transfor-
mation (see Suppes, 2000; Brading & Castellani, 2007). On this
basis, we can now introduce the necessary definitions.

Let us consider a set X of objects X;e X, and a group G of
transformations T, € G, where the T,: X —X act on the X; as
Xi—X. An object X; € X is invariant under the transformation T, if,
for that transformation, X';=X;; in turn, X; € X is invariant under the
group G if it is invariant under all the transformations T, € G. In
physical theories, the objects to which the transformations apply
are usually states s, observables O and differential operators D, and
each transformation acts on them in a particular way. For instance,
in the fundamental laws of Hamiltonian mechanics—the Hamilton
equations, the state is s=(q, p), the relevant observable O is the
Hamiltonian H, and the differential operators are D, =d/dt, D,=0/0p
and D;=0/0q. The time-reversal transformation, which acts on the
variable t as t— —t, reverses all the objects whose definitions in
function of t are non-invariant under the transformation:

s=(qp)—s'=q.p)=@q-p O=H-0=H
Dy =d/dt—>D, =d'/dt = —d/dt
D,=0/op—~D, =& /op=—d/op
D3;=0/0q—D3=0'/oq=0/0q

In the fundamental law of Newtonian mechanics—Newton's
second law—the state is s=x, the relevant observables are O;=F
and 0,=m, and the differential operator is D=d?/dt>. Under time-
reversal they transform as

SD =d?/dt? = d?/dt?

/

s=X—>5=X=x D=d?/dt?
01 =F->0;=F 0;=m-0,=m
In physics, these objects are combined in equations represent-
ing the laws of a theory. In particular, a dynamical law is

represented by a differential equation E(s, 0;, D;)=0 including the
state s, certain observables O; and certain differential operators D;.
When a transformation is applied to all these objects, the law may
remain exactly the same, that is, its form may be left invariant by
the transformation. This means that the nomological relationship
among the transformed objects is the same as that linking the
original objects. But it may also be the case that the equation still
holds when only the state is transformed, and this implies that the
evolution of the state is not affected by the transformation.
Precisely, let L be a law represented by an equation E(s, O;, D;)=0,
and let G be a group of transformations T, € G acting on the objects
involved in the equation as s—s’, 0;—0'; and D;—D’;, L is covariant
under the transformation Ty, if E(s’, 0’;, D';)=0, and L is invariant
under the transformation T, if E(s’, O;, D;)=0. Moreover, L is
covariant—invariant—under the group G if it is covariant—
invariant—under all the transformations T,eG. A group G of
transformations is said to be the symmetry group of a theory if the
laws of the theory are covariant under the group G; this means
that the laws preserve their validity even when the transforma-
tions of the group are applied to the involved objects. It is easy to
see that the Hamilton equations, dq/dt=0H/0p and dp/dt= —0H/dq,
are covariant under time-reversal when H'=H, a condition
satisfied when H is time-independent; nevertheless, they are
not invariant under time-reversal because dp'/dt+# —0H/[oq. In
turn, Newton’s second law is covariant under time-reversal when
F =F, a condition satisfied when F is time-independent, and it is
also invariant since d?x'/dt>=F/m.

It is clear that, when a law is covariant under a transformation,
and the observables and the differential operators contained in it
are invariant under that transformation, the law is also invariant
under the transformation: this is the case of Newton’s second
law under time-reversal. Nevertheless, this is not the only
way to obtain the invariance of a law; we shall return to this
point in Section 4.2, for the particular case of the Schrodinger
equation.

Some authors prefer to speak about the symmetry of a law
instead of the covariance of a law. For instance, Earman (2004a)
defines symmetry in the language of the model-view of theories as
follows. Let M be the set of the models of a certain mathematical
structure, and let M; c M be the subset of the models satisfying the
law L. A symmetry of the law L is a map S : M — M that preserves
M., that is, for any m e M, m’ = S(m) e M;. In our case, where L is
represented by a differential equation E(s, 0;, D;)=0, each model
me M, corresponds to a solution s=F (O;, sg) of the equation,
representing a nomologically possible evolution of the system.
Then, the covariance of L under a transformation T—that is,
E(s', 0, D'j)=0—implies that s'=F(0';, so) is also a solution of the
equation and, then, it corresponds to a model m’ e M;. This means
that our definition of covariance and the definition of symmetry in
the model-view language are equivalent.

It is interesting to notice that the covariance of a dynamical
law—represented by a differential equation — does not imply the
invariance of the nomologically possible evolutions—represented
by the solutions of the equation—(see Castagnino, Lara, &
Lombardi, 2003; Earman, 2004b). In fact, the covariance of L,
represented by E(s, O; D;)=0, implies that s=F (0; so) and
s'=F(0';, sg) are both solutions of the equation, but does not imply
that s=s'; in the model-view language, the symmetry of L does
not imply that m=m’. Nevertheless, since the invariance of L
means that E(s’, 0;, D;)=0, in this case s=s'=F (0, so) or, in the
model-view language, m=m'.

On the basis of these concepts, now we can explicitly state the
conditions of covariance and invariance for the fundamental law
of quantum mechanics. Given a group G whose transformations
act on states, observables and differential operator as [@ ) — |’ ),
[0>—|0'> and d/dt—d[dt, the Schrodinger equation
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is covariant when

d/ ’ X , ,

'g’t> —_ihH|¢'> 2.1)
and it is invariant when
de'> . ,

F —ihH|p') (2.2)

3. Stating the problem

Let us recall that a continuous space-time transformation
admits two interpretations. Under the active interpretation, the
transformation corresponds to a change from a system to
another—transformed—system; under the passive interpretation,
the transformation consists in a change of the viewpoint—the
reference frame—from which the system is described (see
Brading & Castellani, 2007). Nevertheless, in both cases the
invariance of the fundamental law of a theory under its symmetry
group implies that the behavior of the system is not altered by the
application of the transformation: in the active interpretation
language, the original and the transformed systems are equiva-
lent; in the passive interpretation language, the original and the
transformed reference frames are equivalent.

We know that the Galilean group of continuous space-time
transformations is the symmetry group of classical and quantum
mechanics. According to the passive interpretation language, the
invariance of the dynamical laws amounts to the equivalence
between inertial reference frames, that is, reference frames time-
displaced, space-displaced, space-rotated or uniformly moving
with respect to each other: the application of a Galilean
transformation does not introduce a modification in the physical
situation, but only expresses a change of the perspective from
which the system is described. For instance, if a classical particle
originally described in the reference frame RF is described in a
different inertial reference frame RF, the invariance of Newton’s
second law means that the time-evolution of the particle does not
change when described in the new reference frame.

The physical meaning of the action of the Galilean transforma-
tions is well-understood in classical mechanics. However, as we
have pointed out in the Introduction, this issue is scarcely
discussed in the field of quantum mechanics, perhaps under the
assumption that the matter is as easy as in the classical case. But
we shall see that quantum mechanics is peculiar also regarding to
this point. In particular, the properties of the Schrédinger
equation under the Galilean group have relevant consequences
for interpretation. As stressed by Brown, Suarez, and Bacciaga-
luppi (1998), any interpretation that selects the set of the
definite-valued observables of a quantum system in a given state
is committed to considering how that set is transformed under
the Galilean group. The study of this question is particularly
urging in the case of realist interpretations, which conceive a
definite-valued observable as a physical magnitude that objec-
tively acquires an actual value among all its possible values: the
actualization of one of the possible values has to be an objective
fact. Therefore, when nomological invariance holds, the set of the
definite-valued observables of a system should be left invariant by
the Galilean transformations: from a realist viewpoint, it would
be unacceptable that such a set changed as the mere result of a
change in the perspective from which the system is described.

Of course, in order to address this issue in a given
interpretative framework, a precise statement of the rule of
definite-value ascription is required: for instance, the traditional
eigenstate-eigenvalue link (Fine, 1973), the Kochen-Dieks rule
based on the biorthogonal decomposition of the state vector
(Dieks, 1988; Kochen, 1985), the Vermaas-Dieks rule based on the

spectral resolution of the reduced density operator (Clifton, 1995;
Vermaas & Dieks, 1995), or the modal-Hamiltonian rule based on
the system’s Hamiltonian (Lombardi & Castagnino, 2008). But one
also needs a clear understanding of the application of the Galilean
transformations in quantum mechanics. For this reason, we shall
proceed to review this point since, as noticed above, it is
addressed with not enough care in the literature.

4. The Galilean group in quantum mechanics

Under the assumption that time can be represented by a
variable te R and position can be represented by a variable
r=(xyz eR3 the Galilean group G={T,}, with a=1 to 10,
is a group of continuous space-time transformations
T, R xR-R3 xR acting as

e Time-displacement: t—»t'=t+71
e Space-displacement: r—1r' =r+p
e Space-rotation: r—1' =Ryr

e Velocity-boost: r—r' =r+ut

where 7eR is a real number representing a time interval,
P =(PxPy:P;) € R3 is a triple of real numbers representing a space
interval, Ry e M3*3 is a 3 x 3 matrix representing a space rotation
an angle 6, and u:(u,(,uy,uz)elR3 is a triple of real numbers
representing a constant velocity.

Since the Galilean group G is a Lie group, the Galilean
transformations T, can be represented by unitary operators U,
over the Hilbert space, with the exponential parametrization
U, = e where s, is a continuous parameter and K, is a
Hermitian operator independent of s,, called generator of the
transformation T,. Then, G is defined by ten group generators
K,: one time-displacement K., three space-displacements K,
three space-rotations Kj,, and three velocity-boosts K, with i=x,
¥, z. The generators of G form the Galilean algebra, that is, the Lie
algebra of the Galilean generators. The combined action of all the
transformations is given by

10
Us= [] e** 4.1
o=1

In the case of quantum mechanics, the symmetry group is the
group corresponding to the central extension of the Galilean
algebra, obtained as a semi-direct product between the Galilean
algebra and the algebra generated by a central charge, which in
this case denotes the mass operator M=ml, where I is the identity
operator and m is the mass (see Bose, 1995; Weinberg, 1995).! In
order to simplify the presentation, from now on we shall use the
expression ‘Galilean group’ to refer to the corresponding central
extension, and we shall take i =1 as usual.

As a Lie group, the Galilean group is defined by the
commutation relations between its generators:

@ [KpKy]=0 ) [KuKy,] = i65M

(b)  [Ky.Ky]1=0 (® [Kp.K]=0

©  [KoKo] =itk () [KyK]=0 42)
() KoKyl =ieguKp, () [KuKel=iKp,

@) [Ko, Kyl =iegKy,

! The mass operator as a central charge is a consequence of the projective
representation of the Galilean group. Precisely, the action of two transformations
is equal to the product of the actions of the two transformations up to a phase; for
instance, Upyy =exp(iKy,) - exp(iKy,) - exp(if (p;,uj)M). Then, a unitary representa-
tion of the Galilean group requires the introduction of the central charge M=mlI
(see Weinberg, 1995).
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where ¢ is the Levi-Civita tensor, such that i#k, j#k,
Eijk=¢&jki=Ekij= 1, €ikj=¢Ejik=Exji= — 1, and ;=0 if i=j. In quantum
mechanics, when the system is free from external fields, the
generators K, represent the basic magnitudes of the theory:
the energy H=K-, the three momentum components P; = K, , the
three angular momentum components J;=hKy, and the three
boost components G; = hK,,. Then, by taking #=1, the commuta-
tion relations result

(@ [P,P]=0 ) [G.P)=iozM

(b) [GiGj1=0 (@ [P,H]1=0

© Ulil=iege () [HI=0 4.3)
(@ [UnPl=ieuP, () [G,H]=iP;

@ [iGjl=ie; Gy

The rest of the physical magnitudes can be defined in terms of
these basic ones: for instance, the three position components are
Q;=G;/m, the three orbital angular momentum components are
Li=&nQiPy, and the three spin components are S;=J;—L;
The—central extension of the—Galilean group has three Casimir
operators which, as such, commute with all the generators of the
group: they are the mass operator M, the operator S?, and the
internal energy operator W=H-—P?/2m. The eigenvalues of
the Casimir operators label the irreducible representations of
the group; so, in each irreducible representation, the Casimir
operators are multiples of the identity: M=ml, S?=s(s+1)I, where
s is the eigenvalue of the spin S, and W=wI, where w is the scalar
internal energy.

In the Hilbert formulation of quantum mechanics, correspond-
ing to each Galilean transformation T, there must be a
transformation of states and of observables such that

> =1y =Us, |y =€l (4.4)

00 =Us,0U;! = efkss: ge-ikss: (45)
Moreover, since
0 =50 K5 = 0= [0,K,] =0 (4.6)

in this context the invariance of an observable O under a Galilean
transformation T, amounts to the commutation between O and
the corresponding generator K,,.

Now we have all the theoretical elements necessary to
consider the Galilean covariance and invariance of quantum
mechanics by analyzing how the Galilean transformations affect
the Schrodinger equation,

de> .
—dar =—iH|p> “4.7)
Let us premultiply both members of the equation by U=e; by

using the property UU~'=I and, then, adding (dU/dt)|¢ > to both
members, we obtain

dley)  dU . ooooadley  du

USG + gple> = —UHU-TUS S + Z2 10> (4.8)
Therefore,

dUiey) . 1, ;dU

T_—I{UHU +i U ]UI(/)} 4.9)

If we recall the action of the Galilean transformations on states
and observables (see Egs. (4.4) and (4.5)), we can write

CIW’/> — _i|:H/+id_UU—1} |(P/>

ar ar 4.10)

On the basis of this equation, we shall analyze the invariance and
the covariance of the Schrédinger equation separately.

4.1. The invariance of the Schrédinger equation

As we have seen, when there are no external fields acting on
the system, the Galilean group is defined by the commutation
relations (4.3). However, there is a difference between the boost
generators G; and the remaining generators.

In a closed, constant-energy system free from external fields, H
is time-independent and the P; and the J; are constants of motion
(see Eqgs. (4.3g,h)). Then, for time-displacements, space-displace-
ments and space-rotations, dU/dt=de™/dt=0, where K and s
stand for H and 7, P; and p;, and J; and 0;, respectively. As a
consequence, Eq. (4.10) yields

de'> .

Qi =—iH|¢") 4.11)
Moreover, for those transformations, H'=H because (see
Eq. (4.6)):

e Time-displacements : H' =eH*"He=H* =H since [H,H]=0
e Space-displacements : H' = ei*iHe= i = H

since [P;,H] = O (relation (4.3g))
e Space-rotaions : H = eVi’iHe Ui% — H

since [J;,H] = 0 (relation (4.3h)) (4.12)

By applying these results to Eq. (4.11), we prove the invariance of
the Schrodinger equation under time-displacements, space-
displacements and space-rotations when there are no external
fields acting on the system:

’
dlgt> — _iHg'>

The case of boost-transformations is different from the
previous cases, because the Hamiltonian is not boost-invariant
even when the system is free from external fields (for the same
claim in classical mechanics, see Butterfield, 2007, p. 6). In fact,
under a boost-transformation corresponding to a velocity u,, H
changes as

4.13)

H =el%"He O + H since [Gy,H]=iPy+ 0 (relation (4.3i))

(4.14)
and the generator Gy is
Gx = mQx = m(Qxo + Vixt) = mQyo + Pxt

Since G, is not time-independent, dU/dt=de'®*/dt 0, and Eq.
(4.10) yields
dl(p/> B deiGXLlX

— _ilH i —iGyltx | |/
dat i +1 dat e lp">

(4.15)

(4.16)

In order to know the value of the bracket in the right hand
side side of Eq. (4.16), we have to compute both terms in the
bracket. By using the Hadamard lemma applied to the Baker-
Campbell-Hausdorff formula, eAe~8 =A+[B,A]+(1/2)[B,[BA]l+
(1/39[B,[B,[BA]]l+ - - -, and by applying the commutation relations
(4.3i) and (4.3f), H' results (see Appendix A)
H' = elO He~ioxt — H_y, P+ %Muf =H+Ts 4.17)
where Tg is the boost contribution to the energy. In turn, by means
of the lemma and the commutation relation (4.3f), P results (see
Appendix A)

P, = el%txpye=iGi — P, _Muy = P'=P+Pg (4.18)

where Pg=(—Mu,,0,0) is the boost contribution to the
momentum. Let us recall that, when there are no external fields,
the internal energy W is a Casimir operator; therefore, the
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Hamiltonian can be written as

2
2m

By means of Egs. (4.18) and (4.19), it is easy to show that the
transformed Hamiltonian can be expressed as

_ (P+Pp)’
- 2m

(4.19)

H +W (4.20)
On the other hand, we have to compute the time-derivative
de®¥/dt of Eq. (4.16). By using the identity e**?=eAefe— 14512
which holds when [A,[A,B]]=[B,[A,B]]=0, and by applying the
commutation relation [P;F(Q;)]= —idoF/oQ; valid on the Galilean
algebra, it can be proved that (see Appendix B)

deiGXuX . 1 .
da = —l(uxpx—jMu’%)ElG"u"
When the results (4.17) and (4.21) are introduced into Eq. (4.16), the
terms added to H in H' cancel with those coming from the term
containing the time-derivative; so, we prove the invariance of the
Schrodinger equation also for boost-transformations:

dig’>

dt

4.21)

=—iH|¢p') (4.22)

Let us summarize the results obtained up to this point. When
there are no external fields acting on the system, the Hamiltonian is
invariant under time-displacements, space-displacements and space-
rotations, but not under boost-transformations. In spite of this fact,
the Schrodinger equation is completely invariant under the Galilean
group, and this conceptually means that the state vector |¢ ) does
not “see” the effect of the transformations: the evolutions of |¢ > and
|@'> are identical. In other words, the time-behavior of the system is
independent of the reference frame used for the description.

When the system is affected by external fields, the harmony of
the previous results gets lost. In fact, the fields modify the
evolution of the system: for instance, if the system is under the
action of a non-isotropic potential, we cannot longer expect that
its behavior does not change when it is rotated in space. But, in
non-relativistic quantum mechanics, fields are not quantized:
they are not quantum systems and, as a consequence, their action
cannot be conceived as an interaction between systems. Then, the
effect of the fields on the system has to be accounted for by its
Hamiltonian: the potentials have to modify the form of the
Hamiltonian because it is the only observable involved in
the time-evolution law. As a consequence, in the presence of
fields the Hamiltonian is no longer the generator of time-
displacements: it only retains its role as the generator of the
dynamical evolution (see Ballentine, 1998; Laue, 1996). This
means that we have to give up the commutation relations
involving the Hamiltonian, Eqs. (4.3g-i): now these relations
hold with the generator of time-displacements d/dt (see Egs.
(4.2g-1)), but not with the Hamiltonian:

[P.H]#0 [,H]#0 [G;,H]# iPy (4.23)

Therefore, we cannot guarantee the time-independence of the P;
and the J;, and the result (4.17) cannot be obtained since based on
the commutation relation (4.3i), [G;,H]=iP,. As a consequence, in
general, the Schrédinger equation loses its Galilean invariance in
the presence of external fields.

4.2. The covariance of the Schridinger equation

In order to understand the covariance of the Schrédinger
equation, let us rewrite Eq. (4.10) as

dg’> du

dt dt

o'y =—iH'|¢"> (4.24)

It is quite clear that covariance obtains when the differential
operator transforms as

d d d dUu, ;4

dt " de—dr dr
This means that the transformed differential operator d’/dt is a
covariant time-derivative D/Dt, which makes the Schrédinger
equation to be Galilean-covariant in the following sense:
Q9 _DIOD gy

As we have seen in the previous subsection, with no external
fields applied on the system, H, the P; and the J; are time-
independent and, as a consequence, dU/dt=0. Therefore, from
eq. (4.25) we see that the time-derivative is invariant under time-
displacements, space-displacements and space-rotations:
d/dt—d|dt. But for boost-transformations this is not the case:
the covariance of the Schrédinger equation implies the transfor-
mation of the differential operator as d/dt— D/Dt. This means that
covariance under boosts amounts to a sort of “non-homogeneity”
of time that requires the covariant adjustment of the time-
derivative. This conclusion should not be surprising since, when
the system is described in a reference frame RF at uniform motion
with respect to the original frame RF, the boost-transformed
state depends on a generator that is a linear function of time
(see Eq. (4.15)); then, if the Schrodinger equation is to be valid in
RF where the state is |¢’ >, the transformed time-derivative has to
be adjusted to compensate this time-depending transformation of
the state.

The case of boost-transformations illustrates a claim advanced
in Section 2: although a law is invariant under a transformation
when it is covariant and all the involved objects are invariant, this
is not the only way to obtain nomological invariance. When the
system is free from external fields, the Schrodinger equation is
invariant under boost-transformations, in spite of the fact that the
Hamiltonian and the differential operator d/dt are not boost-
invariant objects.

When there are external fields applied to the system, Eq. (4.26)
is still valid. But since now the Hamiltonian includes the action of
the fields, the transformed Hamiltonian H'=UHU~! has to
be computed in each case. The conditions to be satisfied by the
external potentials in order to preserve the covariance of the
Schrédinger equation can be deduced by knowing the precise
dependence of the Hamiltonian on those potentials (see Brown &
Holland, 1999; Colussi & Wickramasekara, 2008). However, this is
not the point here; for our purpose it is sufficient to have seen
how the operators are Galilean-transformed and in what sense
the Schrédinger equation is covariant under the Galilean group.

(4.25)

(4.26)

4.3. Galilean-transformed observables

Some authors adopt a different strategy to address the matter
of the Galilean covariance of the Schrodinger equation. By
assuming the Galilean invariance of the differential operator
d/dt, they preserve the Galilean covariance of the Schrodinger
equation by redefining the action of the boost-transformation on
certain dynamical magnitudes, in particular, on the Hamiltonian.
Precisely, a boost-transformation given by U = %% does not act
on H as H=UHU', but as (see Brown, Suarez, & Bacciagaluppi,
1998, Eq. (16); Brown & Holland, 1999, Eq. (33))

H—H = UHU"! +id—[tjU’] 4.27)

whereas the states and the differential operator transform as

o> 19> =Ulpy d/dt—d/dt=d/dt (4.28)
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Since these transformations were deliberately designed for
preserving the Galilean covariance of the Schrodinger equation,
by introducing Eqgs. (4.27) and (4.28) into Eq. (4.9), such a
covariance is immediately obtained

dlst> =—iH|®p) (4.29)

If we take H as the boost-transformed H, when there are no
external fields acting on the system the Hamiltonian turns out to
be invariant also under boost-transformations, since H=H
(introduce Egs. (4.17) and (4.21) into Eq. (4.27)). Therefore, the
invariance of the Schrédinger equation under boosts follows from
its covariance, given by Eq. (4.29), and the boost-invariance of the
objects involved in the equation, d/dt =d/dt and A = H. In this
case, the boost-transformation of H is still unitary—it is the
identity—and the choice between H' and H as the boost-
transformed Hamiltonian seems to be a matter of convention.
However, the preference of H over H' leads to undesirable
consequences, both from a mathematical and from a physical
point of view.

First, this strategy has an unpalatable ad hoc flavor. In fact, the
Galilean covariance of the Schrédinger equation, rather than a
result, turns out to be an a priori truth: no matter the particular
form the equation has, the transformations are specifically
defined for preserving its covariance. But the price to pay for
covariance so obtained is to admit that a given transformation
acts in different ways on different observables. Precisely, the
transformation H— H given by Eq. (4.27), although unitary when
there are no external fields, becomes non-unitary in the presence
of those fields. This means that some observables, in particular the
Hamiltonian, transform with what Brown, Suarez, and
Bacciagaluppi (1998, p. 297) call a “sui generis” non-unitary
transformation. But non-unitarity breaks the basic features of the
Galilean group. On the one hand, non-unitary transformations
cannot be combined in a single operation as that given by
Eq. (4.1), which expresses the sequence of the ten elementary
transformations. On the other hand, non-unitary transformations
do not preserve the commutation relations among transformed
observables. Precisely, given two observables A and B such that
[A, B]=C, it is easy to see that the application of a transformation
represented by a unitary operator U yields

[AB]=C = [A,B]=[UAU " UBU - 1=UCU ' =C (4.30)

This property is what preserves the commutation relations that
define the Galilean group also for the transformed observables;
for instance, [P,Pj]=0 or [J,Gj] = ig;Gj, - But if we use the “sui
generis” transformation (4.27), this property gets lost. In parti-
cular, if A>A and B— B, with some algebra we obtain

du-!

[AB]=UCU" +i UB-A)——

+ d—U(B—A)U’l 4.31)
dt

The right hand side of this equation can be identified neither with
C (C transformed with Eq. (4.27)) nor with C (C unitarily
transformed). Therefore, the adoption of non-unitary transforma-
tions seems to be a too high price to pay for preserving the
Galilean covariance of the Schrédinger equation, to the extent that
this strategy leaves us with no clear idea about what the Galilean
group means when deprived from its basic features.

From the physical viewpoint, a transformation as that of Eq.
(4.27) also leads to undesirable consequences. According to that
equation, when there are no external fields the boost-transformed
Hamiltonian is H = H. This means that, if H is the Hamiltonian of
the system when described in the reference frame RF, then H = H
is the Hamiltonian of the same system when described in the
uniformly moving reference frame RF. But this conclusion
disagrees with the physical fact that the total energy of a system

changes in an additive kinetic value when we change our
descriptive perspective from RF to RF. And this change in the
total energy has its empirical manifestation as a Doppler shift in
the energy spectrum (see Cohen-Tannoudji, Diu, & Laloe, 1977),
which cannot be accounted for by the boost-transformation
(4.27).

Summing up, if we want to preserve the formal structure of the
Galilean group and the physical meaning of its transformations,
we are not free to decide the form of the transformations. The
argument of this subsection shows that any claim about the
Galilean covariance of the Schrédinger equation must be based on
the adequate transformations of the observables, in particular, of
the Hamiltonian. This conclusion not only contributes to the
understanding of the role of the Galilean group in quantum
mechanics, but also has relevant implications for interpretation,
as we shall see in the following section.

5. The modal-Hamiltonian interpretation in the light of the
Galilean group

The modal-Hamiltonian interpretation of quantum mechanics
(Lombardi & Castagnino, 2008) belongs to the modal family: it is a
realist, non-collapse interpretation according to which the
quantum state describes the possible properties of a system but
not its actual properties. Here we shall only recall the inter-
pretative postulates relevant to our discussion.

The first step is to identify the systems that populate the
quantum ontology. By adopting an algebraic perspective, a
quantum system is defined in the following terms:

Systems postulate (SP): A quantum system S is represented by a
pair (O,H) such that (i) O is a space of self-adjoint operators on a
Hilbert space H, representing the observables of the system, (ii)
H e O is the time-independent Hamiltonian of the system S, and
(iii) if py € O’ (where ' is the dual space of O) is the initial state of
S, it evolves according to the Schrodinger equation in its von
Neumann version.

Of course, any quantum system can be partitioned in many
ways; however, not any partition will lead to parts which are, in
turn, quantum systems (see Harshman & Wickramasekara, 2007).
On this basis, a composite system is defined as

Composite systems postulate (CSP): A quantum system repre-
sented by S : (O,H), with initial state p, e O', is composite when it
can be partitioned into two quantum systems S': (O',H') and
82 : (0? H%) such that (i) O=0' ® ©? and (ii) H=H! ® > +1' @ H?
(where I' and I? are the identity operators in the corresponding
tensor product spaces). In this case, the initial states of S! and &2
are obtained as the partial traces p$="Tr2)p0 and pg=Tr1)po; We
say that S' and &% are subsystems of the composite system,
S§=58'U &2 If the system is not composite, it is elemental.

Since the contextuality of quantum mechanics prevents us
from consistently assigning actual values to all the observables of
a quantum system in a given state (see Kochen & Specker, 1967),
the second step is to identify the set of the definite-valued
observables of the system by means of a rule of definite-value
assignment which, in this case, selects the observables that
acquire an actual value:

Actualization rule (AR): Given an elemental quantum system
represented by S : (O,H), the actual-valued observables of S are H
and all the observables commuting with H and having, at least,
the same symmetries as H.

For the conceptual advantages of the modal-Hamiltonian
interpretation, we refer the reader to the original work (Lombardi
& Castagnino, 2008). This brief sketch is sufficient for our present
purpose of analyzing how the interpretation behaves under the
action of the Galilean transformations.
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5.1. Transformation of systems

According to the modal-Hamiltonian postulate SP, a quantum
system S is represented by a pair (O,H). In turn, any Galilean
transformation T,eG has to apply to S as S: (O,H)-S : (O ,H).
However, as we have seen in Section 2, a group G of transforma-
tions T,eG is an automorphism T, : X— X; then, the Galilean
group G applies to the observables of the system in such a way
that

VI,eG, if 0Oe©® and 0—-0/, then 0 € © (5.1)

In other words, the space of observables of a quantum system is
closed under the transformations of the Galilean group,

VT, eG, OO (5.2)

This feature is physically reasonable, since one does not expect
that the mere application of a Galilean transformation on the
system S modifies its identity by modifying its space of
observables O (see Georgi, 1982). Therefore, the result of the
application of the Galilean transformations to a quantum system
will only depend on the way in which the Hamiltonian is
transformed:

VT, eG, S:(OH)-S :(OH) (5.3)

where H transforms unitarily as H =U,HU, "}, U, = e*5« and K,, is
the generator of the transformation T,.

As we have seen, in the presence of external fields the
Schrédinger equation is covariant but not invariant under the
Galilean group. This physically means that the system changes its
behavior when merely displaced in space or time, rotated in
space or uniformly moved: the covariance of the law is preserved
by the transformation of the objects involved in it, in particular, of
the Hamiltonian. According to the modal-Hamiltonian postulate
SP, the original and the transformed systems are not the same
system because the Hamiltonian has changed. Although this
might sound surprising, it is completely consistent with the
interpretative framework of the modal-Hamiltonian interpreta-
tion. In fact, a system that preserves its identity when Galilean-
transformed in the presence of fields is a system having a
principle of identity that reidentifies it under the change of all its
properties. Such a principle has to be given by a sort of substance,
conceived as a characterless substratum to which properties are
“stuck”: the permanence of that substratum is what endows the
system with its identity under property change. But in the modal-
Hamiltonian interpretation, a quantum system is not a substance
acting as a bearer of properties, but a bundle of properties
represented by the observables of the space O (see Lombardi &
Castagnino, 2008, Section 8). Since there is no substratum that
preserves the identity of the system when the properties change,
the identity of the system changes with the change of the
properties.

When there are no external fields, on the contrary, the issue of
the Galilean transformation of a system requires to be considered
with care. In this case, the Schrodinger equation is invariant under
the Galilean group, and this means that the application of a
Galilean transformation does not introduce a modification in the
physical situation, but only expresses a change in the perspective
from which the system is described. As a consequence, we can
expect that, in this case, the system does not change its identity as
the result of being Galilean-transformed: the system should
be a Galilean-invariant object. In the context of the modal-
Hamiltonian interpretation, the invariance of the system under
time-displacements, space-displacements and space-rotations
follows directly from the invariance of the Hamiltonian under
those transformations (see Eqgs. (4.12)):

S (OH)-S : (OH)=S8 : (O,H) (5.4)

But the situation is, again, completely different for boost-
transformations: although the Schrédinger equation is invariant,
the Hamiltonian is not invariant under boosts (see Eq. (4.14)). We
shall analyze this case in detail.

Let us consider a quantum system not affected by external
fields, represented by S: (O,H). In a generic reference frame RF,
the Hamiltonian reads H=P?[2m+W=K+W (see Eq. (4.19)),
where the kinetic energy K=P?/2m only depends on the total
momentum relative to RF, and the internal energy W does not
depend on the position and the momentum relative to RF, but
only depends on differences of positions and, eventually, on their
derivatives. Therefore, it can be guaranteed that [K, W]=0 and, as
a consequence, H can be expressed as

H=K+W =Hg ® Iw+Ix ® Hy (5.5)

where Hy is the kinetic Hamiltonian acting on the Hilbert space
‘Hg, Hw is the internal energy Hamiltonian acting on the Hilbert
space Hy, and Ix and Iy are the identity operators of the
respective tensor-product spaces (for examples in well-known
models, see Ardenghi, Castagnino, & Lombardi, 2009). According
to the modal-Hamiltonian postulate CSP, Eq. (5.5) implies that the
system S is a composite system S= Sy U Sk, whose elemental
subsystems are:

e A system represented by Sw : (Ow, Hy), where Oy is the
space of observables acting on Hy, and Hy € Oy represents
the internal energy.

e A system represented by Sk : (Ox , Hk), where O is the space
of observables acting on Hy, and Hy € Ok represents the kinetic
energy.

If we now apply a boost-transformation of velocity u, to the
system S =Sy UGSk, the unitarily transformed Hamiltonian is
H =H+Tp (see Eq. (4.17)) and, then, it can expressed as

2
H’=H+TB=2P—m+W+TB=K’+W (5.6)
where K’ is the transformed kinetic energy (see Eqs. (4.18) and
(4.20)):

P? , P? (P+Pg)°
K=o K=KtTp= 5o +Tp= —5 >

For the same reasons as before, [K’, W]=0 and, as a consequence,
H' can be written as

H’ZK’-l—WZH;(@Iw-i-IK@HW (5.8)

(5.7)

where Hi=Hy+Hp is the transformed kinetic Hamiltonian acting
on Hg. Therefore, the boost-transformed system is again a
composite system S = Sy U Sk, whose elemental subsystems are
the original Sy and the system Sy : (Ok,Hj) now defined by a
kinetic energy Hj that adds the kinetic energy Hp of the boost to
the original kinetic energy H.

This argument shows that, when there are no external fields, a

boost-transformation acts on a system represented by
S=8w USk as
S=SwUSk—>S =Sw US;( 5.9)

When, in particular, § is described in the reference frame at
rest with respect to its center of mass, P=0; then, S is an
elemental system with Hamiltonian H=W, on which a boost
acts as

S=8w—8 =8y USk (5.10)

where the subsystem Sy is now defined only by the kinetic energy
of the boost. Therefore, the subsystem Sy, carrying the internal
energy of the system, is boost-invariant, in agreement with the
fact that the internal energy W is a Casimir operator of the
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Galilean group. The application of a boost-transformation only
affects the subsystem Sk by adding the kinetic energy of the boost
to its Hamiltonian:

Sw—Sly=Sw H), =Hy (5.11)

Sk—Sk Hi=Hk+Hpg (5.12)

This result leads us to ask ourselves about the ontological status of
both subsystems.

On the one hand, when there are no external fields, the action
of a boost-transformation has a well-defined manifestation in the
energy spectrum of the composite system S = Sy U Sk: the boost
produces a Doppler shift on the energy of S. But we also know
that energy is defined up to a constant value: the relevant
information about the energy spectrum of a system is contained
in its internal energy, and the kinetic energy only introduces a
shift of that spectrum. Therefore, the boost-invariant subsystem
Sw carries the physically meaningful structure of the energy
spectrum, and Sk represents an energy shift which, although
observable, is physically non relevant and merely relative to the
reference frame used for the description. On the other hand, even
the composite or elemental character of the system S depends on
the particular reference frame selected. In fact, in the reference
frame RF at rest with respect to the center of mass, S =Sy is an
elemental system; when, in turn, we decide to describe the
system in a reference frame RF uniformly moving with respect to
RF, the system turns out to be composite, S = Sy U Sk.

Both considerations point to the same direction: the objective
content of the description is given by the internal energy. In other
words, the objective description of a system is Sy, that is, the
description in the reference frame at rest with respect to the
center of mass, where H=W : Sy is completely invariant under
the Galilean group. On the contrary, Sk, which carries the kinetic
energy, is a sort of “pseudo-system”, whose identity is modified
by a mere change of the descriptive perspective, and may even
“appear” and “disappear” as a consequence of such a change. In
order to express this idea with precision, we shall use the
terminology introduced in our previous work (Lombardi &
Castagnino, 2008), which allowed us to distinguish between the
physical language and its ontological reference: the symbol “[e]”
denotes the ontological item referred to by the word “e” of the
physical language.? On this basis, we can say that S = Sy U Sk and
Sw refer to the same ontological system:

[S1=[Sw U Sk]=[Sw]

where the symbol ‘=’ strictly denotes logical identity (that is, if
a=>b, then a and b are two names for the same item). Therefore,
when ontological systems are free from external fields, they are
invariant under all the transformations of the Galilean group, in
particular, under boosts,
[S1=[Sw U Skl = [Sw]=[ST=[Sw U Skl =[Sw]=[S] (5.14)
The intuition about a strong link between invariance and
objectivity is rooted in a natural idea: what is objective should not
depend on the particular perspective used for the description; or,
in group-theoretical terms, what is objective according to a theory
is what is invariant under the symmetry group of the theory. This
idea is not new. It was widely discussed in the context of special
and general relativity with respect to the ontological status of
space and time: “Henceforth space for itself, and time by itself, are
doomed to fade away into mere shadows, and only a kind of union

(5.13)

2 In that paper (Lombardi & Castagnino, 2008), we have said that an
observable O ontologically represents a type-property [O], and its eigenvalues o;
ontologically represent its case-properties [O : 0;]. Moreover, given a composite
system S=S'US?, the observables A' of S' and A=A'®I® of S represent the same
type-property [A]=[A;] with the same case-properties [A: a]]=[A" : a]].

of the two will preserve an independent reality” (Minkowski,
1923, p. 75). The claim that objectivity means invariance is also a
central thesis of Weyl’s book Symmetry (1952). In recent times,
the idea has strongly reappeared in several works. For instance, in
her deep analysis of quantum field theory, Auyang (1995) makes
her general concept of “object” to be founded on its invariance
under transformations among all representations. In turn, the
assumption that invariance is the root of objectivity is the central
theme of Nozick’s book Invariances: The structure of the objective
world (2001).3 Our conclusion about the objective description of a
quantum system is in complete agreement with the general idea
behind those works: when the Galilean group leaves invariant the
Schroédinger equation, the objective description of the system is
also invariant and, as a consequence, the ontological system is left
unaffected by the Galilean transformations.

5.2. Transformation of the actualization rule

The actualization rule AR is not an object but a postulate, a sort
of “interpretative law” that adds content to the theory. Then, the
questions about its covariance and its invariance make sense. If
we call DVO(S) the set of the definite-valued observables of the
elemental quantum system represented by S : (O,H), according to
AR, DVO(S) = {H,A;}, where the A; are the observables commuting
with H and having, at least, the same symmetries as H. Although
AR is not a differential equation, it is easy to apply the concepts of
covariance and invariance to it:

e AR is Galilean-covariant if, VT, € G, the set DVO(S) transforms
as

DVO(S) = {HA;} —»DVO(S') = {H' A} (5.15)

e AR is Galilean-invariant if, VT, € G, the set DVO(S) transforms
as

DVO(S)— DVO(S') = DVO(S) (5.16)

The covariance of AR follows directly from the unitarity of the
Galilean transformations. In fact, each Galilean transformation
can be viewed as a definite rotation of the eigenvectors of all the
observables O € O in the Hilbert space H. This rotation preserves
all the commutation relations under the transformations; so, if [H,
A;]=0, then [H, A’;]=0 (see Eq. (4.30)). But, as a mere rotation,
such a transformation also preserves all the remaining relations
between observables; as a consequence, if A; has, at least, the
same symmetries as H, then A’; has, at least, the same symmetries
as H'. Therefore, if AR selects H and the A; as the definite-valued
observables of S, when we transform these observables we obtain
H and A’;, which are precisely the observables selected as
definite-valued by AR applied to S'.

On the other hand, it is quite clear that, when the system is
free from external fields, AR in invariant under time-displace-
ments, space-displacements and space-rotations, since the system
is invariant under those transformations (see Eq. (5.4)):

S=8 = DVO(S') = DVO(S) (5.17)

The difficulty comes, again, from the boost-transformation, which
does not leave the Hamiltonian invariant. Since DVO(S) depends
on H, it changes with the change of H, and this seems to be a
serious problem for the modal-Hamiltonian interpretation: as a
realist interpretation, the DVO selected by its rule of definite-
value assignment should not be modified by a mere change of

3 The issue of symmetries and invariances has become a increasingly debated
topic in the philosophy of physics during the last years. See also the works of
Brading & Castellani (2003, 2007) and Earman (2002, 2004a, 2004b).
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reference frame, like that represented by a boost on a system free
from external fields. Nevertheless, the problem vanishes when we
recall that AR applies to elemental quantum systems.

As we have seen in the previous subsection, when there are no
external fields, the system represented by S : (O,H) is, in general, a
composite system S = Sy U Sk, where the subsystem represented
by Sw : (Ow,Hw) carries the internal energy and the subsystem
represented by Sk : (Ok,Hy) carries the kinetic energy. Therefore,
AR applies to the elemental subsystems independently:

e Since Sy is boost-invariant, DVO(Sw) = DVO(Sy): the set of the
definite-valued observables of S}, remains unaltered by the
transformation.

e Under a boost, Sk : (Og,Hk) transforms as Sy : (Og.Hy), where
H'y=Hy+Hjg (see Eq. (5.12)); then DVO(Sk) # DVO(Sy).

However, as we have argued, the system Sk has no ontological
reference to the extent that it is a mere artifact of the descriptive
perspective. In ontological terms, [S'] = [Sw]=[S] (see Eq. (5.14)).
As a consequence, when applied to the objective description of
the system, given by Sy, AR turns out to be also boost-invariant.

5.3. An invariant version of the actualization rule

In this subsection we shall focus only on the situation where
there are not external fields acting on the system: it is in this
situation that the Schrédinger equation is invariant under the
Galilean group and, as a consequence, we can expect to have a
reformulation of AR in an explicitly Galilean-invariant form.

The idea presented at the end of the previous subsection can
be expressed with precision in ontological terms by means of the
ontological language introduced in our previous work (Lombardi
& Castagnino, 2008). With that terminology, AR can be reformu-
lated as (see Note 2):

Actualization rule’ (AR’): Given an ontological system [S] free
from external fields and represented by S:(OH)=Sw U Sk,
where the subsystems [Sy] and [Sk] are represented by Sy :
(Ow,Hy) and Sk : (Ok,Hg), the set A([S]) of the actual type-
properties of [S] (the type-properties of [S] that acquire actual
values) is A(S]) = A(Sw]) = {(W1[A;]}, where [W] is the type-
property represented by W = Hyy ® I, and the type-properties [A;]
are represented by the observables A; commuting with W and
having, at least, the same symmetries as W.

Under this form, the actualization rule is explicitly Galilean-
invariant since [S] and [Sw/] are only different names for the same
ontological system, and [Sy] is Galilean-invariant®:

[S1=[Sw] = A(S) = A(Sw) = A(Sw) = A(SD (5.18)

This shows that, when we go beyond the physical language and
think in ontological terms, the seeming non-invariance of the
actualization rule under boosts shows itself as a result of the
descriptive language. In spite of the change of the physical
representation of the system under boosts, with no external fields
acting on the system the set of its actual type-properties is
invariant under all the Galilean transformations due precisely to
the invariance of the ontological system. In other words, the
identity and the behavior of the real quantum system behind the
description are not modified by a mere change of the descriptive
perspective, in agreement with the physical meaning of the
Galilean group.

4 Let us recall the relationship between type-properties of [S] and [Sy] in the
modal-Hamiltonian interpretation (see IP4 of Lombardi & Castagnino, 2008; see
also Note 2): since S=Sw U Sk, the observable Hy of [Sw] and the observable
W=Hw®I of [S] represent the same type property, [Hy|=[W], with the same
case-properties, [Hy : W,]=[W : wy].

Although AR’ is conceptually meaningful from an ontological
viewpoint, we may consider the possibility of reformulating it in
such a way that it results Galilean-invariant also in the physical
language. The natural way to reach this goal is to appeal to the
Casimir operators of the Galilean group: if the actualization rule
has to select a Galilean-invariant set of definite-valued observa-
bles, such a set must depend on those Casimir operators, which
are invariant under all the transformations of the Galilean group.
Precisely,

Actualization rule” (AR”): Given a quantum system free from
external fields and represented by S: (O,H), its definite-valued
observables are the observables C; represented by the Casimir
operators of the Galilean group in the corresponding irreducible
representation, and all the observables commuting with the C;
and having, at least, the same symmetries as the C.

Since the Casimir operators of the Galilean group are M, S? and
W, this reformulation of the rule is in agreement with the original
AR when applied to a system free from external fields:

o The definite-valuedness of M and S?, postulated by AR”, follows
from AR: these observables commute with H and do not break
its symmetries because, in non-relativistic quantum
mechanics, both are multiples of the identity in any irreducible
representation. The fact that M and S? always acquire definite
values is completely natural from a physical viewpoint, since
mass and spin are properties supposed to be always possessed
by any quantum system and measurable in any physical
situation.

e The definite-valuedness of W might seem to be in conflict with
AR because W is not the Hamiltonian: whereas W is Galilean-
invariant, H changes under the action of a boost. However, as
we have seen, this is not a real obstacle when the elemental
subsystems to which AR applies are considered from an
ontological viewpoint.

In addition to supplying an explicitly invariant version of the
rule of definite-value assignment in the physical language, AR”
leads us to a final reflection. As we have seen, the identity and the
behavior of any ontological quantum system free from external
fields are invariant under the Galilean group. On the other hand,
from a realist viewpoint, the fact that certain observables acquire
an actual definite value is an objective fact in the behavior of the
system; therefore, the set of definite-valued observables selected
by a realist interpretation must be also Galilean-invariant. But the
Galilean-invariant observables are always functions of the Casimir
operators of the Galilean group. As a consequence, one is led to
the conclusion that any realist interpretation that intends to
preserve the objectivity of actualization may not stand very far
from the modal-Hamiltonian interpretation.

6. Conclusions and perspectives

In spite of the impressive literature on the interpretation of
quantum mechanics, the constraints imposed by the group
properties of the theory on interpretation have not been
sufficiently studied. The aim of this paper has been to address
this issue in the context of the modal-Hamiltonian interpretation,
with its particular definition of quantum system and its specific
rule of definite-value assignment. The arguments developed in
the paper led us to the following conclusions:

e The modal-Hamiltonian actualization rule mirrors the Gali-
lean-covariance/invariance of the Schrédinger equation:
O In general, the rule is as covariant as the Schrédinger
equation.
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O When the Schrédinger equation is invariant—no external
fields acting on the system—, the rule is also invariant
when expressed in ontological terms.

e In the Galilean-invariant situation:

O The ontological system identified by the modal-Hamilto-
nian interpretation is Galilean-invariant, in agreement with
the idea that the Galilean transformations express a mere
change of the perspective selected for describing the
system.

O The modal-Hamiltonian actualization rule can be reformu-
lated under an explicitly Galilean-invariant form in terms of
the Casimir operators of the Galilean group, leading to
results that agree with usual assumptions in the practice of
physics.

The last conclusion opens up a promising new research path. In
non-relativistic quantum mechanics, the external fields acting on
a system are not quantized, and this fact is what breaks down the
harmony of the free case: the Schrodinger equation loses its
Galilean invariance, and the Hamiltonian is no longer the
generator of time-displacements in the Galilean group. In
quantum field theory (QFT), on the contrary, fields are quantum
items and not “external” fields affecting the behavior of the
quantum system. As a consequence, the generators of the
Poincaré group do not need to be reinterpreted in the presence
of “external” factors, and the the dynamical laws are always
Poincaré-invariant. These features of QFT lead us to consider
whether the actualization rule, expressed in terms of the Casimir
operators of the Galilean group in non-relativistic quantum
mechanics, can be transferred to QFT by changing accordingly
the symmetry group: the definite-valued observables of a system
in QFT would be those represented by the Casimir operators of the
Poincaré group, and the observables commuting with them and
having, at least, the same symmetries. Since M and S? are the only
Casimir operators of the Poincaré group, they would always be
definite-valued observables. This conclusion would stand in
agreement with a usual physical assumption in QFT: elemental
particles always have definite values of mass and spin, and those
values are precisely what define the different kinds of elemental
particles of the theory. Of course, these brief remarks do not
amount to a full interpretation of QFT, but they point towards a
research program whose viability deserves to be examined in the
future.
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Appendix A

Under a boost-transformation of velocity u,, the Hamiltonian
changes as

H' — eiGxix [o—iGxux (A1)

So, H' can be computed by means of the Hadamard’s lemma
applied to the Baker-Campbell-Hausdorff formula (see Dynkin,
1947; Greiner & Reinhardt, 1995),

PAe A+ IBAI+ 5 BIBAI+ 5 BIBIBAI+ --- A2)

Then, H' can be expressed as

. 1. . 1. . .
H' = H+[iGyuyx,H]+ j[zcxux,[lcxux.H]H 31 [1Gx U, [iGx Uy, [iGxUx,H]]+ - - -

(A3)
By the commutation relation (4.3i), we know that
[iGxux,H] = iux[Gy,H] = iuxiPx = —uxPx (A4)
Then,
[iGxtt [iGtix H]] = [iGtt,—UxPy] = —itiZ[Gy,P] (A5)
By the commutation relation (4.3f), we obtain
—iu2[Gy,Py] = —iu2iM = u2M (A.6)

Then, by means of Egs. (A.5) and (A.6), the fourth term of the r.h.s.
of Eq. (A.3) results

(Gt [iGx iy, [iGx Ly, H]]] = [iGxlix, u2M] = O (A7)

Therefore, all the terms following the fourth term of the r.h.s. of
Eq. (A.3) are also zero. So, by introducing Egs. (A.4)-(A.7) into Eq.
(A.3), we obtain
1
2
where T is the boost contribution to the energy.

Under a boost-transformation with velocity u,, the momentum
in direction x changes as

H' = H—ugPy+ - Mu2 = H+Tp (A8)

P; — eicxux Pxe*icxux (Ag)

Again, on the basis of the Hadamard’s lemma (see Eq. (A.2)), Py
can be expressed as

, . 1. .
Px = Py +[iGxux,Px]+ 31 [iGxux,[iGxux,Px]]

1. . .
+ ?[IGXux,[lGxle,[lGxux,Px]]]+ e (A.10)
By the commutation relation (4.3f), we know that
[iGxUy,Pyx] = iux[Gx,Px] = ityiM = —Muy (A11)
Then,
[iGxux,[iGxux,Px]] = [iGxux,—Mux] = 0 (A.12)

Therefore, all the terms following the third term of Eq. (A.10) are
also zero. By introducing Eqs. (A.11) and (A.12) into Eq. (A.10), we
obtain

P}, = Py—Muy (A13)
On the basis of Eq. (A.8), we can write
H=H+Tg= %—uxPx—i- %Mug
=W+ %(Pf—ZMuXPX+M2u§ +P}+P2) (A14)
Therefore,
W (Py—Muiy)* + P2 + P2 A15)

2m

If we call the boost-momentum Pg=(-—Mu,, 0, 0), the trans-
formed Hamiltonian results

(P—Pp)?
2m
It is interesting to note that, when we have to give up the
commutation relations (4.3g-i), involving H due to the action of
external fields, Eq. (A.8) and, as a consequence, Eq. (A.16) are no
longer valid since they rely on the relation (4.3i), but Eq. (A.13)

H =W+

(A.16)
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still holds because its derivation does not require the abandoned
relations.

Appendix B

Under a boost-transformation of velocity uy, the boost-
generator G, reads

Gx:mQx:m(Qx0+th):mQx0+th (B~l)
By knowing that
eA+B = pheBe—IABI/2 (B.2)

which holds when [A,[AB]]=[B,[A,B]]=0, the exponential ei¢:
results

etiux _ eimonuxe—iPXuxfe—(i/Z)muft (B.3)
Then, the time-derivative dei®!/dt has to be computed as

detiux

o — eimngux(_i)PXuxe—iquxte—(i/Z)muft

+ eiMmQuotix e—iPXuxt(_i/z)muge—(i/Z)mu,%t (B.4)

The second term of the r.h.s. of Eq. (B.4) is simply (—i/2)ei%%, But
the exponential e cannot be directly reconstructed in the first
term because [ei™Qotx P,] 0. This commutator can be computed
by knowing that, in the Galilean algebra (see Cohen-Tannoudji,
Diu, & Lalde, 1977, Eq. (48), p. 172),

. OF
[PLFQ)] = ~i (B5)
Therefore,
. . imQyo Uy .
[ezmonuX Pil= _[nyezquoux] _ iaean; _ _muxethxqu (B.6)
This means that
eMmQotxp, — Py Moty Mot — (P, —muy)e Mot (B.7)

By introducing Eq. (B.7) into Eq. (B.4) we obtain

deiGtx . 1571 G

P —i [ (P—muy)uy + jmux e (B.8)
and, finally, the time-derivative de!®t /dt results
deiCxtix . 1 51 ica,

T —I[Pux—jmux}e (B.9)
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