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1. Introduction

n the standard way of studying quantum

mechanical problems, the time independent
Schrodinger equation is considered as an eigenprob-
lem for the energy and the wave function of the
particle. However, from a mathematical point of
view, there are other parameters in the equation
and some of them can be used as eigenvalues. The
solutions of these problems are called Sturmian func-
tions because they are known to be solutions of
a Sturm-Liouville equation [1, 2]. They have been
widely used as a basis set in atomic physics calcula-
tions, e.g., to expand the Coulomb Green function [3]
or to determine atomic energy levels [4-6] with excel-
lent accuracy. These functions are defined to be the
solutions of the time independent Schrodinger equa-
tion for fixed energy plus some boundary conditions
according to the physical features of the problem
to be solved. In addition, in this approach, it is the
strength of the potential that acts as the eigenvalue.
The main advantage of using these Sturmian func-
tions as a basis set is that they make this interaction
potential diagonal, thus providing a rapidly con-
vergent expansion of the solution even in complex
atomic problems [7].

To define a Sturm-Liouville problem completely,
a two point boundary condition must be given. For
example, one can ask for regularity at the origin
and the correct asymptotic behavior for large dis-
tances according to the energy domain: for negative
energies, the solutions should decrease exponen-
tially like bound-states and form a complete, dis-
crete set of square integrable functions. The case
of positive energy Sturmians is slightly different,
because they might be defined to satisfy outgo-
ing, incoming, or standing wave boundary condi-
tions. The spectrum of eigenvalues thus depends
on the choice of the asymptotic behavior of the
eigenfunction.

A discrete set of Sturmian eigenvalues and eigen-
functions with purely outgoing wave condition for
the two-body Coulomb problem has been used, see
e.g. [8]. However, for positive energies these func-
tions became unbounded as the distance r between
the particles increases. Rawitscher [9] was able to
define a set of Sturmians functions with outgoing
wave condition making use of the Coulomb or free
particle Green’s function. He showed that, even in
the case where a long range potential was present,
they constitute a discrete basis set with discrete,
complex eigenvalues.

Following his approach, we propose here two
systematic methods to obtain Sturmian functions
for both negative and positive energies. In the first
scheme, we expand the solution of the radial part
of the Schrédinger equation in a L? Laguerre type
basis set, whereas in the second one, we discretize
the equation in a radial grid.

The outline of this work is as follows. In Section
2, we present a brief review of the Sturm-Liouville
problem, where we consider the different types
of asymptotic behavior according to the energy
domain. In Section 3, we introduce two different
methods to find the Sturmian functions whose eigen-
values form a discrete set given any boundary con-
dition, and we plotted some of the results for a
modified attractive Coulomb potential with a short
range interaction. Finally, in Section 4, we show some
applications of both the negative as well as positive
energy Sturmians as basis set to solve the A'-electron
atom with a one-active electron model [10]. We show
that this basis set is therefore suitable to construct the
wave function of a given bound or scattering prob-
lem for both long range Coulomb potentials or short
range ones.

Atomic units are used unless otherwise stated.

2. Theory: Review of the
Sturm-Liouville Problem

To precisely state our theoretical framework,
we start with the two-body time independent
Schroédinger equation,

[—iv2+vo+ﬁV—E} o(r) =0. (1)
2u

It is convenient for our purposes to split the inter-
action in two terms, V,, and BV. The first term V,,
includes the long range Coulomb tail of the poten-
tial. The second one, BV, describes the behavior of
the interaction at short distances, and the coefficient
B controls the strength of V. The explicit form of this
potential is not relevant.

As usual, E = k*/2u is the energy, k is the rela-
tive momentum between the particles, and u is the
reduced mass. Many of the applications in atomic
physics involve spherically symmetric potentials,
which allows one to solve Eq. (1) by separation of
variables. Writing Eq. (1) in spherical coordinates
and assuming that the wave function is the product
of an angular spherical harmonic Y}" “and” a radial
part 5;/r, we have
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1
o(r,0,¢) = ;Sl(r)Yzm(@,(ﬁ), 2)
and the following radial equation results for 5;(r):
[Ho + BV — E1S(r) = 0. 3)
The radial Hamiltonian Hj is given by

1 42 11+1
Ho——ﬂﬁ'i- 2 + Vo, 4)

where as usual /(I 4 1) represents the eigenvalue of
the squared angular momentum L? [11].

Theradial Schrédinger equation (3) is usually con-
sidered as an eigenvalue problem where S;(r) and
E (or the momentum k) are defined as the eigen-
function and eigenvalue, respectively. However, we
consider here the situation where the coefficient
is assumed to be the eigenvalue and the energy
is a fixed parameter in the equation [12]. We can
completely define the Sturm-Liouville problem with
two boundary conditions for the Eq. (3) that can be
written as [13]:

WO | S =0 (5)
dr r=a

5O || sy = 0 ©6)
ar |,_,

for the domain r € [a,b]. In our case, r is defined
from 0 to oo, thus we can take s = 0 and b = R, with
R — o0. Our function S5;(r) must be regular at the
origin,

Si(r)y=0, r=0 (7)

We require this condition for both negative and
positive energies. The boundary condition at large
distances depends on the value of the energy. On
one hand, for negative energies we ask for

SI(R) — 0, R — 0. (8)
On the other hand, for positive energy we have
different choices: standing, outgoing or incoming
waves boundary conditions. The standing wave
Sturmian function is obtained with

Si(R) =0 whenR — oo. 9)

The outgoing (4) and incoming (—) waves can be
cast in the form (6) as:

for short range potentials, and

dSZ(T) . Z _
|: ar +1 <k + k_r> S[(T’)j|r_R = O,

R — o

(11)

for Coulomb ones, where we assumed that V, goes
as Z/r for large distances, and that V is a short
range potential. Alternatively, one can write these
conditions as

Si(R) — H™(R), R — oo (12)

where H,™ (r) represent the exact solutions of Eq. (3)
irregular at the origin and having incoming (—) or
outgoing (+) waves.

The solution of Eq. (3) with boundary conditions
at r = 0 and r = R leads to the discretization of 8.
For all the cases considered, a finite set of eigenval-
ues B, with v = 1,2,... and eigenfunctions S, ;(r)
results from the Sturm-Liouville problem for large
but finite values of R. The solutions and eigenvalues
for negative as well as positive energy with standing-
wave boundary condition are real valued. However,
complex eigenvalues and eigenfunctions result for
positive energy and incoming or outgoing boundary
conditions.

For all those cases, the Sturm-Liouville theory
establishes that closure property and orthogonality
condition

Y Su)S, V) =8¢ =) (13)

v

R
(SualV(P)ISus) = / dr Sy NV (PSui(r) = 8, (14)
0

must be fulfilled by the eigenfunctions.

A formal solution can be obtained for positive
energies, which can also be extended to negative
energies. The Eq. (3) can be rewritten as follows

[E — HolSi(r) = BV () Si(r). (15)

The Green’s function associated with the left hand
side is defined by the equation

[E — HlGS"™ (r,7) = 8(r — 1) (16)

where st represents standing and + (—) are out-
going (incoming) boundary conditions. Multiplying
Eq. (15) by left with G5** and integrating over the
domain r € [0, co] we obtain the following integral
equation

ds ) 00 _
# +ikS(R)=0, R— o0  (10) Si(r) =B / ar'Ge 2 (r, HV S, (17)
r=R 0
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3. Evaluation of the Sturmian
Functions

In this section, we present two different ways to
obtain the Sturmian basis for a given short range
V and asymptotic potential V. The first one uses
a finite L? basis set of N elements and reduces the
problem toa N x N eigensystem. The second method
introduces a discretization of either the radial Stur-
mians equation Eq. (3) or the integral equation
Eq. (17).

3.1. L? BASIS SET REPRESENTATION

In a previous article [14] we studied the L? dis-
cretization of Coulomb and Coulomb-like potentials
using a Laguerre-type basis set with a free, real
parameter A

@ui(A, 1) = QAT 24r), (18)

L%(x) is a generalized Laguerre polynomials [15].
This basis set is orthogonal with respect to the weight
function 1/r

<‘pn’,l

where I' is the Gamma function as usual. We
expanded the Sturmian function in a finite basis set

1

3n’,n (19)
r

n!

> r@l+2+n)
Cnl)| = ——F—

N-1
S?] (7’) = Z anPn,l ()\/ 7’), (20)
n=0

and replacing this in Eq. (15), we obtained a N x N
matrix system. The boundary conditions satisfied by
these Sturmian functions are regularity at origin (7)
and asymptotic condition given by Eq. (8) for neg-
ative energy. For positive energy, we only ask 5;(R)
to be bounded for R — oo. These conditions do not
lead to a discretization of the eigenvalue g and then,
positive energy Sturmians have a continuous spec-
trum that spans over all real values of . An example
of functions satisfying these boundary conditions
have been discussed by Szmytkowski [16] and Gasa-
neo and Colavecchia [17] for the two-body Coulomb
problem. The eigenvalues given by solving Eq. (15)
with this standing wave condition are real and rep-
resent a discretization of the continuum eigenvalues
of the exact solution.

Now we want to define other asymptotic con-
ditions for positive energy, such as outgoing or

incoming waves. To this end, we introduce the finite
Laguerre expansion (20) into Eq. (17), and project
onto the basis elements ((pm,,|%,

FQI+24m) "~  [®
amT =,3n2_;an/(;

00 1 —
/ ardr @, (A, 1) P G (r, YV ()@ O, 7). (21)
0

To obtain these matrix elements we open with the
Laguerre representation of the Green'’s function [18]

Go" (1) =) Y e g o). (22)

j=0 j'=0

As pointed out in the previous section, the Stur-
mian function S; has a boundary condition at large
distances satisfying Eq. (8), Eq. (10), or Eq. (11)
according to the energy domain, which are defined
by the asymptotic behavior of the Green’s function.
In the positive energy case, the matrix elements of
the outgoing Green’s function were defined in [18]
as

—apj_ (Mg (E; )
(E+22/2)( + D1 " + Do
with j. and j. are the lesser and greater of j and j/,
x = (E = A2/2)/(E + A?/2), (n); is the Pochhammer
symbol and p} and g;" are Pollaczek polynomials [19].

With the expansion of the Green’s function in
terms of the basis set, we obtain the matrix system

S = (23)

N-1 ] 00
am=p Z ay { Z 8m,j’ |:/0 dr,(p]'/’l *, I’/)V(I’/)q)n,l (A, r/)i|}
n=0 j/:O
(24)

The terms inside the brackets define the matrix
elements

Ton =D &0 {011V 1) (25)
j'=0

and the integral equation in (17) is then transformed
into a standard eigenvalues problem

Ta = %a (26)

T is a N x N matrix, whose eigenvalues are
found by solving Eq. (26), and leads to a discrete
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set of elgenvalues B, and eigenfunctions SV o (1) with
v =1,2,...,N. As stated in the previous section,
in the case of outgoing or incoming wave condi-
tion for the Green'’s function, the N eigenvalues are
complex, and tend to the exact ones as N increases.
Having a convergent expression for the Green’s func-
tion within the Laguerre-type basis set, the problem
is thus reduced to find the matrix elements of the
potential V in this basis and to find the eigenvalues
B, and the eigenvectors a;,.

The Sturmian functions obtained satisfy orthonor-
mality

(SNIVISY) = 8.0, (27)

and closure relation

N
D oSN HSN V() =8N —1) (28)

v=1

with 8N (' —r) — 8(+'—r) as the number of elements
basis N increases.

3.2. DISCRETIZATION OF THE HAMILTONIAN
AND RADIAL INTEGRAL

Here we discuss how to numerically solve the
radial Sturmians Eq. (15) or Eq. (17) within the frame-
work of the finite difference method [20]. Applica-
tion of this method leads to a generalized eigenvalue
problem where box boundary conditions 5;(r = 0) =
5i(r = rmax) = O arenaturally fulfilled. As we will see
later, it can be modified to accommodate arbitrary
conditions at 7, of the form (5).

Let us start with a discretization of the wave
function S, (1)

S, =S, i=12,...,N (29)
in a uniform radial grid r; = i x Ar (we have sup-
pressed the indexes v, [ for the sake of simplicity). We
also assume that the functions S, ;(r) are defined up
toagivenradius rm. = (N—1)Ar, such that V) =0
for ¥ > rmax. The second order derivative in Eq. (15)
can be approximated up to O(Ar?) on the grid by

a*s,,(r _ 1
drlz = E[Siﬂ =25+ 5,41 (30)

Then, Eq. (15) is

where

zZ K
T 2,

11 Id+1

—_ + [
u Ar? 2ur?

1

i=1,...,N (32)

i =

As we are solving the eigenvalue problem only
within the box of radius 7.y, this recurrence relation
takes the matrix form:

LI 03 /s,
_ﬁﬁ hy S
0 —L Ly ) \S
V(T’l) 0 0
5
0 V(T’z) 0 SZ
==tl o o
0 0 - V| \sy

Note that the three term recurrence relation is trun-
cated at the borders. As a consequence, the solutions
of the generalized eigenvalue problem of Eq. (33)
exactly satisfy the condition Sy = 0; that is, the right
behavior at the origin. Besides, the system includes
implicitly the condition Sy;1 = 0, which describes
only the standing wave condition at the exterior bor-
der of the grid. Let us assume that the behavior at the
border of the grid is given by an arbitrary, non- zero
function F,(r) [Eq. (11), for example]. Then, we have
to include the relation

SN+1 _ Fas(NAr)
Sy Fus((N=1Ar)

(34)

to set exactly the right boundary condition at » =
T'max, Which can be written as:

F..(NAr)
S =S _— 35
N+1 N X F.((N —1)Ar) (35)
Then, the contribution from the exterior boundary
condition in the recurrence relation can be intro-
duced through the substitution

F.s(NAr) j|

hy — hy — 11
N N 20 A | Fas((N = DAY

(36)

Eq. (11) can be exactly satisfied at rmax if we set
F.s(r) = H®(r). For bound states, we can use box
boundary conditions, or their asymptotic form

1 1 1 1 —
T AN T 2 Ay 5 Sim1+hiSi = =B,V (r)S; (31) F..(r) = e VM Zum ZiE (V2T 37)
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which is valid for Coulomb (Z # 0) as well as for
short range potentials (Z = 0).

Once the proper matrix elements in the boundary
are included, we solve the generalized eigenvalue
problem and obtain the spectrum of the resulting
functions, which is discrete and complex in case of
outgoing or incoming waves.

The disadvantage of finding solutions through Eq.
(17) is that the evaluation of the kernel of the inte-
gral involves multiple evaluations of the Coulomb
Green’s function. However, it is instructive to solve it
to compare with the matrix method discussed earlier.
The discretized form of Eq. (17) is:

N
Si=BY_ ArGy(Ar,jANV(ANS;  (38)

j=1

Multiplying each side of Eq. (38) by (V(iAr))~""/? we
have

N
yi = BAr Y VEAr'2GE ™ (iAr, jANV (jAr)y,
=1

(39)

were we have made the substitution V(iAr)'/2S; —
yi, such that the matrix of the discretized integral
equation becomes symmetric. Then we have to solve
the eigenvalue problem:

where A = 1/8 and
[Ml;; = ArV(AN2GS ™ (iar, ANV (Ar2. (41)

As stated before, the Green’s function imposes the
correct outgoing (incoming) boundary conditions to
the solution, so the set S; = (V(iAr)"/?)~"/2y; result-
ing from the system (39) are the functions we were
looking for.

3.3. COMPARISON OF NUMERICAL METHODS

We show here some numerical results of the
calculation of Sturmian functions with the three dif-
ferent methods of the preceding paragraphs. Differ-
ent boundary conditions can be chosen for positive
energy states. First, we show some results for the
standing wave Sturmians. In the frame of the L2
Laguerre expansion, the eigenvalues obtained by
solving Eq. (15) represent a discretization of the

0.5- 4
041 .

0,3 4
o

02+ -
0,1 =

0 4

T R
N
FIGURE 1. First eigenvalue of the Laguerre expansion
for the Sturmians with standing wave condition as a
function of the size of the basis set. We set E = 2,
Vo = —1/r, I = 0 and the short range potential was
chosen to be the V = ¢ %01 /r,

continuum real axis. In Figure 1 we show the first
eigenvalue obtained by setting V) = —1/r, 1 = 0,
and a Yukawa short range potential V = e~ /r with
a = 0.01, for a fixed free parameter A, varying the
number of basis elements N. The eigenvalue does
not seem to converge to a specific value, but it merely
represents a discretization of the continuum, which
becomes more dense as the number of basis elements
increases.

Within the radial discretization method proposed
in the previous section, the boundary condition (9)
can be solved exactly. In Figure 2, we show an
example of the convergence of the numerical (box-
based) positive energy Sturmians. We make use of
the same potential as before, and took 7. = 30, as
the boundary of the radial grid.

For outgoing wave boundary condition, we ana-
lyze the convergence of the methods with their
intrinsic parameters: the scale factor A in the
Laguerre scheme or the box radius 7may in the Hamil-
tonian discretization method. We chose a short range
potential of an exponential type V = —e~*', which
has exact solution for [ = 0.

In Figure 3, we see that the Laguerre expansion
exhibits a rather independent behavior of the A value
for the range considered: both real and imaginary
part oscillate around the exact value, and the ampli-
tude diminishes as the number of basis elements
increases.

In Figure 4, we see a different behavior than in
the previous case for the Hamiltonian discretiza-
tion: here the solution approaches to the exact value
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T T

T i T
— N=500 [34:—2.3968

x-x N=8000 B4=-25]04

30 X SOED

2 o--0 N=2000 [34:—2.4922 =

FIGURE 2. Sturmian function of order four (increasing
in the absolute value of the eigenvalue) versus the radial
coordinate, for various sizes of the discretized
Hamiltonian matrix. Here we set E =2, Vp = —1/r,

fmax = 30(a.u.), I = 0 and V = e 99" /r. The functions
where normalized to unity at r = 3.4.

oscillating and decreasing in amplitude as the rmax
increases. Note that, if a “bad” cut radius is chosen,
the eigenvalue will not be corrected by increas-
ing the size of the grid (diminish dx). In contrast,
in Figure 3, we see that the Laguerre eigenvalues,
even with a small number of element basis, only
give an error in the second significant decimal digit.
The eigenvalues found by the Green’s integral dis-
cretization as in Eq. (38) show the same trend as the

-1,04 +-=+ N=150 |
*—% N=
_3,02 L L | L N=200 L |
k Q i
3,031 S R i
> 3,04k [
o ~d

E 3,05
3,06

T

&}

N

th

w b
w5

) e
~

>

th

FIGURE 3. Convergence of the first eigenvalue of an
exponential potential with « = 1 for the Laguerre

expansion. Top: real part and bottom: imaginary part.
The energy is E = 1.7 a.u.

T ' T r

G—© Exact
&8 dx=0.1
X dx=0.05
+-—+ dx=0.025 —
*—* dx=0.01

Re(B,)

Im(B)

FIGURE 4. Same as Figure 3 for the Hamiltonian radial
discretization.

Hamiltonian discretization and are not shown here.
Similar results were obtained for different smooth
potentials. Also, we note that high order eigenval-
ues show the same behavior, although they converge
with different percentage relative error to the exact
values.

For completeness, we show calculations for the
eigenfunctions of V, = —1/r and a short range
Yukawa potential V. = —e " /r with « = 1 in
Figure 5. Both eigenvalues and eigenfunctions con-
verge with the three different methods. However,
the eigenvalues for each method do not converge in
the same way, as seen before, and also the Coulomb
potential somehow adds a background noise. In
Figure 6, we show the Sturmian functions for a
Coulomb box potential (defined as a Coulomb poten-
tial up to a radius r = ry and zero for v > ry) taking
Vo = 0, and see that convergence is achieved more
rapidly than in the previous case. Further studies on
this matter will be addressed in a future work.

4. Application: NV -Electron Atoms
with a Model Potential

4.1. BOUND STATES AND CRITICAL NUCLEAR
CHARGE

In the precedent section, we have shown that
either the Laguerre expansion or the Hamiltonian
discretization can describe the solutions of a vari-
ety of two-body potentials. Hence, they are suitable
to expand any solution of a Schrédinger equation
for a given system. Let us consider the radial wave
equation for an atomic bound state described with a

VOL. 110, NO. 5 DOI 10.1002/qua
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Im(S_ (1))

L 9 ¥ ¥ ¥ L -] 1
0 5 10 15 20 25 30
r(a.u.)

FIGURE 5. Top: real part and bottom: imaginary part of
the Sturmian function for the Yukawa potential with
a=1,/=1,and E = 2.1 a.u. for the first eigenvalue.
Solid line: Laguerre expansion with N = 100 and

B1 = 2.571 —14.870; circle: Green function discretization
with rmax = 10 a.u. and g = 2.571 — 14.871; cross:
Hamiltonian discretization with rnax = 10 a.u. and

B1 = 2.570 — 14.878. Both discretization schemes give
the same functions for all practical purposes.

potential of the form Vi, + V

[HO + V]fn,l (1’) = En,l n,l(r)/ (42)

where H is given by Eq. (4) and V contains the short
range part of the total potential. We can expand the
solution using the negative energy Sturmian basis
set with the same Hj as in Eq. (42) and a short range
potential V of the same range as V. We have

M
£y =Nuy D bySui() (43)
v=1

with N,; some normalization constant and gy/, the
Sturmian found with either one of the methods
described before. Replacing this on Eq. (42) an
projecting again onto the basis set we obtain the
equation

M M
Z bv,[[EOv’,v + Mu’/u] = En,l Z bv,lov’,w (44)

v=1 v=1

where we have defined the overlap matrix O,/, =
(Su’,l|Sv,l)/ and Mv’,v = _ﬂv,l(sv’,l|v|sv,l> + (Sv/,I|V|SU,l>'
To find the energy eigenvalues, we search for the
energy of the basis set such that det(M) = 0, and
therefore E,,; = E.

We consider now a potential that describes a NV-
electron system in the one electron model as [10]

1
wmm=—;+§a—f% (45)

with y = (M — 1)/Z, and Z the nuclear charge. This
effective potential must tend to —Z/r at small dis-
tances and to (—Z + AN —1)/r as r increases. After the
scaling transformation r = Zr/, the potential tends
to —1/r at small r and (=1 + (N — 1)/Z)/r for large
1, giving the correct limiting behavior for an effec-
tive potential of an A-electron atom. In a previous
work [21], we analyzed Eq. (45) solving the Stur-
mian equation [Eq. (15) or Eq. (17)] taking y = B,
Vo=—-1/rand V = 1(1 —e™).

In the methods presented earlier, one can take
the potentials V, and V freely, depending on the
problem under scrutiny. For this system, it is conve-
nient to choose the potentials as Vo = (y — 1)/r and
V = —ye~% /r to construct the Sturmian basis set. In
this way, V, contains all the long range (Coulomb)
interactions. Then, we solve the wave equation (44)
in the Sturmian basis. This means that now both the
Sturmian basis set and the bound state function £
will have the correct asymptotic behavior.

As a first test, we mapped the He and Li-
isoelectronic series by determining the parameter §
such that for y = (M — 1)/Z, the scaled ionization
energy E = —Ip/Z? is an eigenvalue of (42). The
results are shown in Table I. These values can be

Re(S, (1)

Im(S (1))

r(a.u.)

FIGURE 6. Idem 5 for the Coulomb box potential with
I=0and E =1.2 (a. u.) for the first eigenvalue.
Laguerre: N = 40 and 3y = —0.295 —:0.778, Green
discretization: rax = 2.0 a.u. and gy = —0.292 —:0.775,
Hamiltonian discretization: rax = 2.0 a.u. and

B1 = —0.292 —10.775.
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TABLE |

Value of the parameter § in (45) for the He and Li-isoelectronic series.

V4 1 2 3 4 5 6 7
SHe 0.9091 1.0662 1.1307 1.1637 1.1837 1.1973 1.2068
3L — — 0.7015 0.7459 0.7724 0.7895 0.8027

obtained with either the Laguerre expansion or the
radial discretization with the same potentials V; and
V for the Sturmians, setting adequate values for A
and 7y, for each method. We choose tho achieve four
significant figures N = 40 for the Laguerre expan-
sion and dx = 3.3 x 10 a.u. in the numerical grid
method.

Then, we can extrapolate y such that for E = 0,
ve = (N — 1)/Z, to obtain the critical charge Z.. The
corresponding 8 value is obtained by linear extrapo-
lation from the neutral atom and the negative ion of
the series. In Figure 7 we plot the energy as a func-
tion of y. It is clear from this figure that the energy
is a nonlinear function of the charge in the vicinity
of E = 0. We obtained a critical charge Z. = 0.92 for
the He and Z. = 2.07 for the Li, in good agreement
with other authors [10].

We explore the bound state waves as a function
of the nuclear charge, for Z — Z. in Figure 8. It is
clear how the function becomes unbounded as it gets
closer to the critical charge, and they slowly change
their character to continuum functions, spreading
out to large distances.

E (a.u)

E (a.u)
LoL
F=)
()

T

L | L | L | L | L | L |
0,5 0,6 0,7 0,8 0,9 1 1,1
=(N-1)/Z

FIGURE 7. Energy as a function of y = (N — 1)/Z for
the He (top) and Li (bottom) isoelectronic series.

4.2. STURMIAN FUNCTION OF THE
SCATTERING PROBLEM

Let us consider now the radial Schrodinger equa-
tion for a potential of the form V, + V, Eq. (42) for a
scattering problem

[Ho — EIf(r) = = Vf(r) (46)

where Hj is given again by Eq. (4) and V is a
short range potential whose effect is to change the
scattering solution of

[Hy — Elfo(r) =0 (47)

by adding a function which is regular at the origin
and purely outgoing atlarge distances [9]. If the solu-
tion of Eq. (47) is known, then the additional function
can be expanded in the outgoing Sturmian functions
for an auxiliary potential V with range similar to that
defined by V. We expand

M
fu @) =for) + Y b,Su(). (48)

v=1

05 ‘ .

0.4 — 7=1 -
7=0.98

= 03 - 7=0.96 -
=, 7=0.93

NINNN
[N

£ 1 1o L
— ]

r(a.u.)

FIGURE 8. Bound state functions for the He (top) and
Li (bottom) isoelectronic series for different charges.
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Introducing this expression into Eq. (46) and project-
ing onto (S, gives

M
D byy(Buboy — (SualVIS,) = SwalVIfa),  (49)
v=1

using the normalization (27). Solving Eq. (49) for the
coefficients b,, we find an expression for the scat-
tering function fy(r) corresponding to the potential
Vo+ V.

The asymptotic form of the regular solution f is

fo(r) — sin(kr — In /2 — Z/kIn(2kr) + o1),  (50)

where ¢ is the Coulomb phase shift. The Sturmian
basis set in which we expand the scattering term is
solution of the same Hamiltonian Hy. As the auxiliary
potential V is a short range potential, the general
asymptotic form of the outgoing Sturmian basis
set is

ikr—Irt/2-Z/k In(2kr)+0))

(1)

see Eq. (11). Inserting the asymptotic forms from

Eq. (50) and Eq. (51) in Eq. (48), we obtain an
expression for fy at large distances

Su,l(r) — av,lH]-'—(r) — o51),16

fM — el [Fi(r) cos A; + Gi(r) sin Af]. (52)

Here A, is a phase shift due to the short range distort-
ing potential V in Eq. (46), and F;(r) and G,(r) are the
regular and irregular Coulomb wave functions. The
value of the phase shift A; could be obtained directly
using explicitly the asymptotic form (51), but the cal-
culation of the parameters «,; showed some numer-
ical instabilities. Instead, if » = r. is the point where
the potential V goes to zero, then the phase shift A,
can be obtained from the numerical values of f); and
its derivative: defining p = f;,(r = ro) /fm(r = rc)

_ F (rc) - F,(rc)
A=t 1 ,01—1> . 53
= <G;(rc) — pGi(ro) 3)

We can split the terms in the potential (45) accord-
ing to its range (V, containing long range part of
Vmod) as

)
Ty

Vo V=— (54)

Z 6—67
»
Choosing the Sturmian basis set to be solution of

V, with an auxiliary Yukawa potential V, we solve
the matrix system (49) to find the coefficients b, and

to obtain the scattering function fy; and the phase
shift A].

In Figure 9, we plot the results obtained for the
potential Vo4 corresponding to a He atom with
y = 0.5 and § given in Table I. We used two of
the three different method explained in the previous
section to calculate the Sturmian basis set. The results
are compared with numerical solution of Eq. (46).
The Green’s integral discretization has been left apart
because it gives the same results as the Hamiltonian
discretization, but the program to solve the eigen-
system takes longer. The function was renormalized
to behave as a sine for large distances.

Our results give a very good representation of
the scattering function summing very few Sturmians
(for example, we used N = 160 basis set elements in
the Laguerre basis set but we sum up to N = 80
to achieve convergence in the phase shift). The two
methods converge to the exact solution up to r = 80
a. u.. There, the Laguerre solution fails both in phase
and amplitude to give the exact solution, while the
discretization methods do not accurately describe
the phase of the wave. This is due to the represen-
tation of the asymptotic region in the methods: the
Laguerre basis gives the correct solution until the
exponential fall off dominates, while the discretiza-
tion gives the exact solution of the Schrodinger
equation for 7 < 7pax.

In Table II we show the values for the phase
shift A; for E = 0.7 a. u. and angular momentum
1=0,1,2,3, compared against the exact value. There

A[™ is the phase shift calculated using the Laguerre
expansion of the Sturmian basis setand Al is the one

0,583 AR R T 71

£,
fn]
|

0518 &4 ! P -

. | L ) . b | ° . : ! .
0 10 20 30 40 50
r{a.u.)

FIGURE 9. Scattering function for the potential (45) for
E = 0.7 a.u., | = 0 and solid line: numerical solution,
cross: Laguerre expansion, and circle: Hamiltonian
discretization.
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TABLE Il
Phase shift A, for E = 0.7 a. u. and angular
momentum / = 0,1, 2, 3 with the different methods to
calculate the Sturmian basis set: A}* is the phase
shift calculated using the Laguerre expansion and AY
the one obtained with the discretization method.

/=0 I=1 I=2 /=3
AY® 0.4788805 0.1523833 0.0507797 0.0180913
Af 0.4788805 0.1523838 0.0507805 0.0180920
A% 0.4788809 0.1523838 0.0507805 0.0180920

The exact value AP was found by solving the Schrédinger
equation (46) numerically.

computed with the Hamiltonian discretization. To
obtain the best result with each method, the Sturmian
basis set used to solve Eq. (49) was different accord-
ing to the method: for example, for the Laguerre
expansion we set « = 1 for the short range Yukawa
potential (close to the § of the potential to solve) and
aparameter A = 2.1. For the radial discretization, the
exponential of the Yukawa was o = 0.6 and the box
radius was max = 10 a.u. This shows that, although
we can reproduce similar results with each method,
they do not discretize the space in the same way.

To continue the analysis on the critical charge, we
calculated the s phase shift as a function of the energy
as the charge approaches to the critical charge. We see
in Figure 10 that it goes to 7 as the charge and energy
decreases for the Helium model. This is due to a zero
energy resonance at the critical charge, according to
Levinson’s theorem [22]. For the Lithium, it seems
that the phase shift goes to 7 as the charge goes
to the critical value, but the zero energy resonance
appears to be at a charge value beyond the critical
one. This is an indication of the different features of
these systems, modeled with an effective one elec-
tron potential, and are directly related to the different
behavior of the one-electron ionization cross section
as a function of the critical charge for Helium or
Lithium [23].

5. Concluding Remarks

In this article, we present different schemes to
obtain Sturmian functions for both negative as well
as positive energies. One method is based on the
expansion of the Sturmian functions in Laguerre
polynomials, whereas the other one involves the dis-
cretization of the radial coordinate in a uniform grid.
Both methods are able to accurately describe wave

functions containing long range Coulomb potentials.
Moreover, the methods can accommodate different
boundary conditions for the scattering regime: we
consider the possibility of any asymptotic behav-
ior, such as stationary, outgoing, or incoming wave
boundary conditions at large but finite distances.

The schemes presented here show excellent agree-
ment with exact wave functions. Furthermore, both
methods are robust as our study of both proce-
dures in terms of their parameters shows: results
do not depend on the A coefficient of Laguerre
polynomials or the maximum value of the radial
grid in the numerical discretization. Moreover, these
parameters can be used freely to improve the calcu-
lations. The Sturmian functions for positive energy
and outgoing wave condition were obtained for
a Coulomb potential plus a short range, Yukawa
potential, showing convergence for the eigenfunc-
tion and eigenvalues in the three different ways
of calculation, in terms of the number of Laguerre
polynomials, or the size of the radial grid.

A more stringent test of the procedures is the cal-
culation of critical charges and wave functions in
the energy threshold. The positive energy, outgo-
ing Sturmian functions were used as a basis set to
obtain the scattering function for a Hellmann [24]
potential for a given N -electron atom with nuclear
charge Z. We also were able to calculate the phase
shift A; due to the short range potential in Eq. (46).
The method shows a very good convergence, given
that few terms are needed in the sum in Eq. (48) and
the accuracy of the phase shift obtained is very good
compared to other numerical results. This means

/:T§ 7=1 J
s - 7-098
e [ 7=0.96 J
& — 7=0.93
o 21
z
=
aW
1
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(=)
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<
_‘
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FIGURE 10. Phase shift for s-waves of the potential
(45) as a function of the energy for the He (top) and Li
(bottom) isoelectronic series for different charges.
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that, although a large basis set is required for the
scattering function to be accurate at large r values,
we do not need to sum up all the basis elements to
achieve a convergent result. Both methods have the
ability to describe continuum close to the threshold,
and also bound states that are spanned up to large
radial distances.

We finally would like to point out that both meth-
ods rely on the separation of the interaction in two
terms. This feature provides greater flexibility, since
for the same problem, different separation of the
potential can be used according to the specific char-
acteristics of the physical problem one is interested
to analyze.

In summary, all methods presented here are suit-
able to perform calculations in a wide variety of
two-body problems. Work is in progress now to use
them as a basis set to expand three-body continuum
functions, such as those needed to describe double
photoionization or electron-impact single ionization
of atoms and molecules.
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