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Abstract

Many rings and algebras arising in quantum mechanics, algebraic analysis, and non-commutative
algebraic geometry can be interpreted as skew PBW (Poincaré–Birkhoff–Witt) extensions. In
the present paper we study two aspects of these non-commutative rings: their finitely generated
projective modules from a matrix-constructive approach, and the construction of the Gröbner
theory for their left ideals and modules. These two topics have interesting applications in func-
tional linear systems and in non-commutative geometry.
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modules, matrix-constructive methods, Buchberger’s algorithm, stably free modules, Hermite
rings, stable rank.

Received 12 October 2015; revised version 5 April 2016.
Published online *

[4]



1. Introduction

Many rings and algebras arising in quantum mechanics, algebraic analysis, and non-

commutative algebraic geometry can be interpreted as skew PBW (Poincaré–Birkhoff–

Witt) extensions. Indeed, Weyl algebras, enveloping algebras of finite-dimensional Lie

algebras (and their quantizations), well known classes of Ore algebras (for example, the

algebra of shift operators and the algebra for multidimensional discrete linear systems),

Artamonov quantum polynomials, diffusion algebras, Manin algebras of quantum matri-

ces, Witten’s deformation of U(sl(2,K)), among many others, are examples of skew PBW

extensions.

This type of non-commutative rings were defined firstly in [19] and represent a gen-

eralization of PBW extensions introduced by Bell and Goodearl [4]. Some other authors

have classified quantum algebras and other non-commutative rings of polynomial type

by similar notions: Levandovskyy [29] defined the G-algebras, Bueso, Gómez-Torrecillas

and Verschoren [7] introduced the PBW rings, Panov [39] defined the so-called Q-solvable

algebras. In all these cases they assume that either the ring of coefficients is a field or

the variables commute with the coefficients. As we will see below, for the skew PBW

extensions the ring of coefficients is arbitrary and the variables not necessarily commute.

Ring- and module-theoretical properties of skew PBW extensions have been studied

in some recent papers [35], [34], [47]. In the present paper we are interested in two aspects

of these non-commutative rings: the study of finitely generated projective modules from

a matrix-constructive perspective, and the construction of the Gröbner theory for left

ideals and modules. These two topics have interesting applications in functional linear

systems (as has been done for Ore algebras in [5], [11]–[13], [17], [40]–[46], [54] and [55]),

and in non-commutative algebraic geometry (see [49, Section 1.4] about non-commutative

Gröbner bases for some quantum algebras).

2. Skew PBW extensions

In this section we recall the definition of skew PBW extensions and some of their ele-

mentary properties, and we present examples of this class of non-commutative rings of

polynomial type (see [19] and [35]).

2.1. Definitions and elementary examples. We will see next that the skew PBW

extensions are a generalization of PBW extensions defined by Bell and Goodearl [4] in

1988.

[5]



6 O. Lezama and C. Gallego

Definition 1. Let R and A be rings. We say that A is a skew PBW extension of R, also

called a σ-PBW extension, if:

(i) R ⊆ A.

(ii) There exist finitely many elements x1, . . . , xn ∈ A such A is a left R-free module

with basis

Mon(A) = Mon{x1, . . . , xn} := {xα = xα1
1 · · ·xαn

n | α = (α1, . . . , αn) ∈ Nn},

where N := {0, 1, 2, . . . }.
(iii) For every 1 ≤ i ≤ n and r ∈ R− {0} there exists ci,r ∈ R− {0} such that

xir − ci,rxi ∈ R. (2.1)

(iv) For every 1 ≤ i, j ≤ n there exists ci,j ∈ R− {0} such that

xjxi − ci,jxixj ∈ R+Rx1 + · · ·+Rxn. (2.2)

Under these conditions we will write A = σ(R)〈x1, . . . , xn〉.

Remark 2. (i) Since Mon(A) is an R-basis for A, the elements ci,r and ci,j in the above

definition are unique.

(ii) If r = 0, then ci,0 = 0: in fact, 0 = xi0 = ci,0xi + si, with si ∈ R, but since

Mon(A) is an R-basis, we have ci,0 = 0 = si.

(iii) In Definition 1(iv), ci,i = 1: in fact, x2i − ci,ix2i = s0 + s1x1 + · · · + snxn, with

si ∈ R, hence 1− ci,i = 0 = si.

(iv) Let i < j. By (2.2) there exist cj,i, ci,j ∈ R such that xixj − cj,ixjxi ∈ R+Rx1 +

· · ·+Rxn and xjxi− ci,jxixj ∈ R+Rx1 + · · ·+Rxn, but since Mon(A) is an R-basis, we

have 1 = cj,ici,j , i.e., for every 1 ≤ i < j ≤ n, ci,j has a left inverse and cj,i has a right

inverse.

(v) Each element f ∈ A − {0} has a unique representation in the form f = c1X1 +

· · ·+ ctXt, with ci ∈ R− {0} and Xi ∈ Mon(A), 1 ≤ i ≤ t.

The following proposition justifies the notation that we have introduced for the skew

PBW extensions.

Proposition 3 ([18]). Let A be a skew PBW extension of R. Then, for every 1 ≤ i ≤ n,

there exist an injective ring endomorphism σi : R → R and a σi-derivation δi : R → R

such that

xir = σi(r)xi + δi(r)

for each r ∈ R.

A particular case of skew PBW extension is when all the derivations δi are zero.

Another interesting case is when all the σi are bijective and the constants cij are invertible.

We have the following definition.

Definition 4. Let A be a skew PBW extension.

(a) A is quasi-commutative if conditions (iii) and (iv) in Definition 1 are replaced by

(iii′) For every 1 ≤ i ≤ n and r ∈ R− {0} there exists ci,r ∈ R− {0} such that

xir = ci,rxi. (2.3)
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(iv′) For every 1 ≤ i, j ≤ n there exists ci,j ∈ R− {0} such that

xjxi = ci,jxixj . (2.4)

(b) A is bijective if σi is bijective for every 1 ≤ i ≤ n and ci,j is invertible for any

1 ≤ i < j ≤ n.

Some interesting examples of skew PBW extensions are the following.

Example 5. (i) Any PBW extension is a bijective skew PBW extension, since in this

case σi = iR for each 1 ≤ i ≤ n and ci,j = 1 for every 1 ≤ i, j ≤ n (see [4]).

(ii) Any skew polynomial ring R[x;σ, δ] of injective type, i.e., with σ injective, is a

skew PBW extension; in this case we have R[x;σ, δ] = σ(R)〈x〉. If additionally δ = 0,

then R[x;σ] is quasi-commutative.

(iii) Let R[x1;σ1, δ1] · · · [xn;σn, δn] be an iterated skew polynomial ring of injective

type, i.e., the following conditions hold:

• For 1 ≤ i ≤ n, σi is injective.

• For r ∈ R and 1 ≤ i ≤ n, σi(r), δi(r) ∈ R.

• For i < j, σj(xi) = cxi + d, where c, d ∈ R and c has a left inverse.

• For i < j, δj(xi) ∈ R+Rx1 + · · ·+Rxi.

Then R[x1;σ1, δ1] · · · [xn;σn, δn] is a skew PBW extension. Under the above conditions

we have

R[x1;σ1, δ1] · · · [xn;σn, δn] = σ(R)〈x1, . . . , xn〉.

In particular, any Ore extension R[x1;σ1, δ1] · · · [xn;σn, δn] of injective type, i.e., such

that for 1 ≤ i ≤ n, σi is injective, is a skew PBW extension. In fact, in Ore extensions,

for every r ∈ R and 1 ≤ i ≤ n, σi(r), δi(r) ∈ R, and for i < j, σj(xi) = xi and δj(xi) = 0.

An important subclass of Ore extensions of injective type are the Ore algebras of injective

type, i.e., when R = K[t1, . . . , tm], m ≥ 0. Thus, we have

K[t1, . . . , tm][x1;σ1, δ1] · · · [xn;σn, δn] = σ(K[t1, . . . , tm])〈x1, . . . , xn〉.

Some concrete examples of Ore algebras of injective type are the following.

The algebra of shift operators: let K be a field and h ∈ K. Then the algebra of shift

operators is defined by Sh := K[t][xh;σh, δh], where σh(p(t)) := p(t − h), and δh := 0

(observe that Sh can also be considered as a skew polynomial ring of injective type).

Thus, Sh is a quasi-commutative bijective skew PBW extension.

The mixed algebra Dh: As above, let K be a field and h ∈ K. Then the mixed algebra

Dh is defined by Dh := K[t]
[
x; iK[t],

d
dt

]
[xh;σh, δh], where σh(x) := x. Again, Dh is a

quasi-commutative bijective skew PBW extension.

The algebra for multidimensional discrete linear systems is defined by the formula

D := K[t1, . . . , tn][x1;σ1, 0] · · · [xn;σn, 0], where K is a field and

σi(p(t1, . . . , tn)) := p(t1, . . . , ti−1, ti + 1, ti+1, . . . , tn), σi(xi) = xi, 1 ≤ i ≤ n.

Thus, D is a quasi-commutative bijective skew PBW extension. Observe that none of

these examples is a PBW extension.
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(iv) Additive analogue of the Weyl algebra: Let K be a field. The K-algebra An(q1, . . .

. . . , qn) is generated by x1, . . . , xn, y1, . . . , yn and subject to the relations

xjxi = xixj , yjyi = yiyj , 1 ≤ i, j ≤ n,
yixj = xjyi, i 6= j,

yixi = qixiyi + 1, 1 ≤ i ≤ n,

where qi ∈ K − {0}. We observe that An(q1, . . . , qn) is isomorphic to the iterated skew

polynomial ring K[x1, . . . , xn][y1;σ1, δ1] · · · [yn;σn, δn] over the commutative polynomial

ring K[x1, . . . , xn]:

σj(yi) := yi, δj(yi) := 0, 1 ≤ i < j ≤ n,
σi(xj) := xj , δi(xj) := 0, i 6= j,

σi(xi) := qixi, δi(xi) := 1, 1 ≤ i ≤ n.

Thus, An(q1, . . . , qn) satisfies the conditions of (iii) and is bijective; we have

An(q1, . . . , qn) = σ(K[x1, . . . , xn])〈y1, . . . , yn〉.

(v) Multiplicative analogue of the Weyl algebra: Let K be a field. The K-algebra

On(λji) is generated by x1, . . . , xn and subject to the relations

xjxi = λjixixj , 1 ≤ i < j ≤ n,

where λji ∈ K−{0}. We note that On(λji) is isomorphic to the iterated skew polynomial

ring K[x1][x2;σ2] · · · [xn;σn]:

σj(xi) := λjixi, 1 ≤ i < j ≤ n.

On(λji) satisfies the conditions of (iii), and hence is an iterated skew polynomial ring of

injective type but it is not Ore. Thus,

On(λji) = σ(K[x1])〈x2, . . . , xn〉.

Moreover, On(λji) is quasi-commutative and bijective.

(vi) q-Heisenberg algebra: Let K be a field. The K-algebra Hn(q) is generated by

x1, . . . , xn, y1, . . . , yn, z1, . . . , zn and subject to the relations

xjxi = xixj , zjzi = zizj , yjyi = yiyj , 1 ≤ i, j ≤ n,
zjyi = yizj , zjxi = xizj , yjxi = xiyj , i 6= j,

ziyi = qyizi, zixi = q−1xizi + yi, yixi = qxiyi, 1 ≤ i ≤ n,

with q ∈ K − {0}. Note that Hn(q) is isomorphic to the iterated skew polynomial ring

K[x1, . . . , xn][y1;σ1] · · · [yn;σn][z1; θ1, δ1] · · · [zn; θn, δn] on the commutative polynomial

ring K[x1, . . . , xn]:

θj(zi) := zi, δj(zi) := 0, σj(yi) := yi, 1 ≤ i < j ≤ n,
θj(yi) := yi, δj(yi) := 0, θj(xi) := xi, δj(xi) := 0, σj(xi) := xi, i 6= j,

θi(yi) := qyi, δi(yi) := 0, θi(xi) := q−1xi, δi(xi) := yi, σi(xi) := qxi, 1 ≤ i ≤ n,

Since δi(xi) = yi /∈ K[x1, . . . , xn], Hn(q) is not a skew PBW extension of K[x1, . . . , xn],

however, with respect to K, Hn(q) satisfies the conditions of (iii), and hence Hn(q) is a
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bijective skew PBW extension of K:

Hn(q) = σ(K)〈x1, . . . , xn; y1, . . . , yn; z1, . . . , zn〉.

Remark 6. We remark that the skew PBW extensions are not a subclass of the collection

of iterated skew polynomial rings: take for example U(G) or the diffusion algebra (see [35]

and Section 2.3 below). On the other hand, the skew polynomial rings are not included

in the class of skew PBW extensions: take R[x;σ, δ] with σ not injective.

2.2. Basic properties. Next we present some basic properties of skew PBW extensions.

We start with some notation that we will use frequently.

Definition 7. Let A be a skew PBW extension of R with endomorphisms σi, 1 ≤ i ≤ n,

as in Proposition 3.

(i) For α = (α1, . . . , αn) ∈ Nn, we write σα := σα1
1 · · ·σαn

n , |α| := α1 + · · · + αn. If

β = (β1, . . . , βn) ∈ Nn, then α+ β := (α1 + β1, . . . , αn + βn).

(ii) For X = xα ∈ Mon(A), exp(X) := α and deg(X) := |α|.
(iii) Let 0 6= f ∈ A. Then t(f) is the finite set of terms that form f , i.e., if f = c1X1 +

· · ·+ ctXt with Xi ∈ Mon(A) and ci ∈ R− {0}, then t(f) := {c1X1, . . . , ctXt}.
(iv) Let f be as in (iii). Then deg(f) := max{deg(Xi)}ti=1.

The skew PBW extensions can be characterized in a similar way to what was done in

[6] for PBW rings.

Theorem 8 ([18]). Let A be a left polynomial ring over R with respect to {x1, . . . , xn},
i.e., conditions (i) and (ii) in Definition 1 are satisfied. Then A is a skew PBW extension

of R if and only if:

(a) For every xα ∈ Mon(A) and every 0 6= r ∈ R there exist unique rα := σα(r) ∈ R−{0}
and pα,r ∈ A such that

xαr = rαx
α + pα,r, (2.5)

where pα,r = 0 or deg(pα,r) < |α| if pα,r 6= 0. Moreover, if r is left invertible, then

rα is left invertible.

(b) For all xα, xβ ∈ Mon(A) there exist unique cα,β ∈ R and pα,β ∈ A such that

xαxβ = cα,βx
α+β + pα,β , (2.6)

where cα,β is left invertible, pα,β = 0 or deg(pα,β) < |α+ β| if pα,β 6= 0.

Remark 9. (i) A left inverse of cα,β will be denoted by c′α,β . We observe that if α = 0

or β = 0, then cα,β = 1 and hence c′α,β = 1.

(ii) Let θ, γ, β ∈ Nn and c ∈ R. Then we have the following identities:

σθ(cγ,β)cθ,γ+β = cθ,γcθ+γ,β , σθ(σγ(c))cθ,γ = cθ,γσ
θ+γ(c).

In fact, since xθ(xγxβ) = (xθxγ)xβ , we have

xθ(cγ,βx
γ+β + pγ,β) = (cθ,γx

θ+γ + pθ,γ)xβ ,

σθ(cγ,β)cθ,γ+βx
θ+γ+β + p = cθ,γcθ+γ,βx

θ+γ+β + q,
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with p = 0 or deg(p) < |θ + γ + β|, and q = 0 or deg(q) < |θ + γ + β|. From this we get

the first identity above. For the second, xθ(xγc) = (xθxγ)c, and hence

xθ(σγ(c)xγ + pγ,c) = (cθ,γx
θ+γ + pθ,γ)c, σθ(σγ(c))cθ,γx

θ+γ + p = cθ,γσ
θ+γ(c)xθ+γ + q,

with p = 0 or deg(p) < |θ + γ|, and q = 0 or deg(q) < |θ + γ|.
(iii) If A is quasi-commutative, then from the proof of Theorem 8 (see [18]) we conclude

that pα,r = 0 and pα,β = 0 for every 0 6= r ∈ R and all α, β ∈ Nn. On the other hand,

note that the evaluation function at 0, i.e., A → R, f ∈ A 7→ f(0) ∈ R, is a surjective

ring homomorphism with kernel 〈x1, . . . , xn〉, the two-sided ideal generated by x1, . . . , xn.

Thus, A/〈x1, . . . , xn〉 ∼= R.

(iv) If A is bijective, then cα,β is invertible for any α, β ∈ Nn.

(v) In Mon(A) we define

xα � xβ ⇔



xα = xβ

or

xα 6= xβ but |α| > |β|
or

xα 6= xβ , |α| = |β|but there is i with α1 = β1, . . . , αi−1 = βi−1, αi > βi.

It is clear that this is a total order on Mon(A), called the deglex order. If xα � xβ but

xα 6= xβ , we write xα � xβ . Each element f ∈ A − {0} can be represented in a unique

way as f = c1x
α1 + · · · + ctx

αt , with ci ∈ R − {0}, 1 ≤ i ≤ t, and xα1 � · · · � xαt . We

say that xα1 is the leader monomial of f and we write lm(f) := xα1 ; furthermore, c1 is

the leader coefficient of f , written lc(f) := c1; and c1x
α1 is the leader term of f , denoted

by lt(f) := c1x
α1 . If f = 0, we define lm(0) := 0, lc(0) := 0, lt(0) := 0, and we set X � 0

for any X ∈ Mon(A) (see also Section 6.1). We observe that

xα � xβ ⇒ lm(xγxαxλ) � lm(xγxβxλ) for all xγ , xλ ∈ Mon(A).

Natural and useful results that we will use later are the following properties.

Proposition 10 ([35]). Let A be a bijective skew PBW extension of a ring R. Then

(i) A is a right R-free module with basis Mon(A).

(ii) If R is a domain, then A is a domain.

Proposition 11 ([35]). Let A be a skew PBW extension of R. Then there exists a quasi-

commutative skew PBW extension Aσ of R in n variables z1, . . . , zn defined by

zir = ci,rzi, zjzi = ci,jzizj , 1 ≤ i, j ≤ n,

where ci,r, ci,j are the same constants that define A. If A is bijective, then Aσ is also

bijective.

Theorem 12 ([35]). Let A be an arbitrary skew PBW extension of a ring R. Then A is

a filtered ring with filtration given by

Fm :=

{
R if m = 0,

{f ∈ A | deg(f) ≤ m} if m ≥ 1,
(2.7)
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and the corresponding graded ring Gr(A) is a quasi-commutative skew PBW extension

of R. Moreover, if A is bijective, then Gr(A) is a quasi-commutative bijective skew PBW

extension of R.

The next theorem characterizes the quasi-commutative skew PBW extensions.

Theorem 13 ([35]). Let A be a quasi-commutative skew PBW extension of a ring R.

Then

(i) A is isomorphic to an iterated skew polynomial ring of endomorphism type.

(ii) If A is bijective, then each endomorphism is bijective.

Theorem 14 (Hilbert basis theorem). Let A be a bijective skew PBW extension of R. If

R is a left Noetherian ring, then so is A.

Proof. We repeat the proof given in [35]. According to Theorem 12, Gr(A) is a quasi-

commutative skew PBW extension, and by the hypothesis, Gr(A) is also bijective. By

Theorem 13, Gr(A) is isomorphic to an iterated skew polynomial ring R[z1; θ1] · · · [zn; θn]

such that each θi is bijective, 1 ≤ i ≤ n. This implies that Gr(A) is a left Noetherian

ring, and hence A is left Noetherian (see [38, Theorem 1.6.9]).

Many other properties of skew PBW extensions have been studied recently; for ex-

ample, Ore’s and Goldie’s theorems were proved in [34], prime ideals were investigated

in [33], the groups Ki, i ≥ 0, of algebraic K-theory were computed in [35], etc. We want

to conclude this section with two results that estimate the global and Krull dimensions

of bijective skew PBW extensions. We denote by lgld(S) the left global dimension of a

ring S and by lKdim(S) its left Krull dimension (see [50] and [38]).

Theorem 15 ([35]). Let A = σ(R)〈x1, . . . , xn〉 be a bijective skew PBW extension of a

ring R. Then

lgld(R) ≤ lgld(A) ≤ lgld(R) + n if lgld(R) <∞.

If A is quasi-commutative, then

lgld(A) = lgld(R) + n.

In particular, if R is semisimple, then lgld(A) = n.

Theorem 16 ([35]). Let A be a bijective skew PBW extension of a left Noetherian ring R.

Then

lKdim(R) ≤ lKdim(A) ≤ lKdim(R) + n.

If A is quasi-commutative, then

lKdim(A) = lKdim(R) + n.

In particular, if R = K is a field, then lKdim(A) = n.

Remark 17. The right versions of the above three theorems are also true.

2.3. More examples. Many other important and interesting examples of bijective skew

PBW extensions were presented and discussed in [35] and [48]. In this section we recall

other key examples; some of them will be used to illustrate the algorithms that will be

presented later in this paper.



12 O. Lezama and C. Gallego

Example 18. According to [24], a diffusion algebra D over a field K is generated by

{Di, xi | 1 ≤ i ≤ n} over K with relations

xixj = xjxi, xiDj = Djxi, 1 ≤ i, j ≤ n.
cijDiDj − cjiDjDi = xjDi − xiDj , i < j, cij , cji ∈ K∗.

Thus,D ∼= σ(K[x1, . . . , xn])〈D1, . . . , Dn〉 is a bijective non-quasi-commutative skew PBW

extension of K[x1, . . . , xn]. Observe that D is not a PBW extension or an iterated skew

polynomial ring of bijective type (see Example 5).

Example 19. Viktor Levandovskyy [29] has defined G-algebras and constructed the

theory of Gröbner bases for them (see Section 6 for the Gröbner theory of bijective skew

PBW extensions). Let K be a field. A K-algebra A is called a G-algebra if K ⊂ Z(A)

(the center of A) and A is generated by a finite set {x1, . . . , xn} of elements that satisfy

the following conditions:

(a) The collection of standard monomials of A is a K-basis of A.

(b) xjxi = cijxixj + dij for 1 ≤ i < j ≤ n, with cij ∈ K − {0} and dij ∈ A.

(c) There exists a total order <A on Mon(A) such that for i < j, lm(dij) <A xixj .

According to this definition, G-algebras look more general than skew PBW extensions

since dij is not necessarily linear; however, in G-algebras the coefficients of polynomials

are in a field and they commute with the variables x1, . . . , xn. Note that the class of

G-algebras does not include the class of skew PBW extensions over fields. For example,

consider the K-algebra A generated by x, y, z subject to the relations

yx− q2xy = x, zx− q1xz = z, zy = yz, q1, q2 ∈ K.

Thus, A is not a G-algebra in the sense of [29]. Note that if q1, q2 6= 0, then A ∼=
σ(K)〈x, y, z〉 is a bijective non-quasi-commutative skew PBW extension of K.

Example 20. Witten’s deformation of U(sl(2,K)). Edward Witten introduced and stud-

ied a 7-parameter deformation of the universal enveloping algebra U(sl(2,K)) over the

field K, depending on a 7-tuple ξ = (ξ1, . . . , ξ7) of parameters from K and subject to the

relations

xz − ξ1zx = ξ2x, zy − ξ3yz = ξ4y, yx− ξ5xy = ξ6z
2 + ξ7z.

The resulting algebra is denoted byW (ξ) and it is assumed that ξ1ξ3ξ5 6= 0 (see [29]). Note

that if ξ2ξ4ξ6 6= 0, then W (ξ) ∼= σ(σ(K[x])〈z〉)〈y〉 is a bijective non-quasi-commutative

skew PBW extension of σ(K[x])〈z〉, and in turn, σ(K[x])〈z〉 is a bijective non-quasi-

commutative skew PBW extension of K[x]. In [29] it is proved that W (ξ) is a G-algebra

only when ξ1 = ξ3 and ξ2 = ξ4. Thus, in general, W (ξ) is a skew PBW extension but is

not a G-algebra.

Example 21. In [6] (see also [7]) Bueso, Gómez-Torrecillas and Lobillo defined a type

of rings and algebras called left PBW rings. Many of the rings and algebras considered

in [35] (see also [48]) can also be interpreted as left PBW rings. Next we present an

example of a skew PBW extension that is not a left PBW ring. Let K be a field; for

any 0 6= q ∈ K, let R be an algebra generated by the variables a, b, c, d subject to the
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relations

ba = qab, db = qbd, ca = qac, dc = qcd,
bc = µcb, ad− da = (q−1 − q)bc,

for some µ ∈ K. Then R is not a left PBW ring unless µ = 1 (see [7]). Thus, for µ 6= 1,

R ∼= σ(K[b])〈a, c, d〉 is a bijective non-quasi-commutative skew PBW extension of K[b]

that is not a left PBW ring.

3. Finitely generated projective modules

One of the main purposes of the present work is to study finitely generated projective

modules over skew PBW extensions. Recall that if S is a ring and P is a module over S,

then P is said to be projective if there exists an S-module P ′ and a free S-module F

such that P ⊕ P ′ ∼= F ; in particular, P is a finitely generated projective module if there

exists r ≥ 0 such that P ⊕ P ′ ∼= Sr. Note that any free module is projective (the null

module 0 = S0 is free by definition). Given a ring S, one of the classical questions in

homological algebra is to determine if any finitely generated projective S-module is free.

It is well known that this is the case when S is a principal ideal domain, or when S

is local (see a matrix-constructive proof of this fact below, Proposition 27), or when

S = R[x1, . . . , xn] with R a principal ideal domain (Quillen–Suslin theorem, see [27]).

For skew PBW extensions, in general, the answer to this question is negative, as the next

trivial example shows [27]: if K is a division ring, then S := K[x, y] has a module P

such that P ⊕ S ∼= S2, but P is not free. Thus, instead we can ask if for skew PBW

extensions Serre’s theorem is true, i.e., if any finitely generated projective module P is

stably free, meaning that there exist r, s ≥ 0 such that P ⊕ Ss ∼= Sr (see Definition 36).

We will say that a ring S is PSF if any finitely generated projective S-module is stably

free (Definition 54).

3.1. Serre’s theorem. Next we will prove Serre’s theorem for bijective skew PBW

extensions (see also [35]). Some preliminaries are needed.

Proposition 22 ([38, Proposition 7.7.4]). Let S be a filtered ring. If Gr(S) is left regular,

then so is S.

Proposition 23 ([38, Theorem 7.7.5]). If R is a left regular and left Noetherian ring

and σ is an automorphism, then R[x;σ] is left regular.

Proposition 24 ([38, Theorem 12.3.2]). If B is a filtered ring with filtration {Bp}p≥0
such that Gr(B) is left Noetherian, left regular, and flat as a right B0-module, then B is

PSF when B0 is PSF.

Theorem 25. Let A be a bijective skew PBW extension of a ring R. If R is a left regular

and left Noetherian ring, then A is left regular.

Proof. Theorems 12 and 13 say that Gr(A) is isomorphic to an iterated skew polyno-

mial ring of automorphism type with coefficients in R; hence the result follows from

Propositions 23 and 22.
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Theorem 26 (Serre’s theorem). Let A = σ(R)〈x1, . . . , xn〉 be a bijective skew PBW

extension of a ring R such that R is left Noetherian, left regular and PSF. Then A is

PSF.

Proof. By Theorem 12, A is filtered, A0 = R, and Gr(A) is a quasi-commutative bijective

skew PBW extension of R; Theorem 14 says that Gr(A) is left Noetherian, and Theorem

25 implies that Gr(A) is left regular. Moreover, Gr(A) is flat as a right R-module (see

Proposition 10); then assuming that R is PSF we deduce from Proposition 24 that A is

PSF.

From Serre’s theorem we conclude that the study of finitely generated projective

modules over bijective skew PBW extensions is reduced to the investigation of stably

free modules (of course under certain conditions on the ring R of coefficients). In a more

general framework, and as preparatory material for the next sections, we are interested

in studying when stably free modules over non-commutative rings are free. A well known

result in this direction is Stafford’s theorem that we will prove later. Many characteri-

zations of stably free modules will also be presented. There are different techniques to

investigate stably free modules; one of the purposes of the present work is to combine

homological and matrix-constructive methods.

3.2. RC and IBN rings. In this section we gather some notation and well known

elementary properties of linear algebra for left modules over non-commutative rings. All

rings are non-commutative and modules will be left modules; S will represent an arbitrary

non-commutative ring; Sr is the left S-module of columns of size r × 1; if Ss
f−→ Sr is

an S-homomorphism, then there is a matrix associated to f in the canonical bases of Sr

and Ss, denoted F := m(f), and arranged by columns, i.e., F ∈Mr×s(S). In fact, if f is

given by

Ss
f−→ Sr, ej 7→ fj ,

where {e1, . . . , es} is the canonical basis of Ss, then f can be represented by a matrix,

i.e., if fj := [f1j · · · frj ]T , then the matrix of f in the canonical bases of Ss and Sr is

F := [f1 · · · fs] =

f11 · · · f1s
...

...

fr1 · · · frs

 ∈Mr×s(S).

Note that Im(f) is the column module of F , i.e., the left S-module generated by the

columns of F , denoted by 〈F 〉:

Im(f) = 〈f(e1), . . . , f(es)〉 = 〈f1, . . . , fs〉 = 〈F 〉.

Moreover, observe that if a := (a1, . . . , as)
T ∈ Ss, then

f(a) = (aTFT )T . (3.1)

In fact,

f(a) = a1f(e1) + · · ·+ asf(es) = a1f1 + · · ·+ asfs
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= a1

f11...
fr1

+ · · ·+ as

f1s...
frs

 =

a1f11 + · · ·+ asf1s
...

a1fr1 + · · ·+ asfrs



=

[a1 · · · as]

f11 · · · fr1
...

...

f1s · · · frs



T

= (aTFT )T .

Observe that the function m : HomS(Ss, Sr)→Mr×s(S) is bijective; moreover, if Sr
g−→

Sp is a homomorphism, then the matrix of gf in the canonical bases ism(gf) = (FTGT )T .

Thus, f : Sr → Sr is an isomorphism if and only if FT ∈ GLr(S). Finally, let C ∈Mr(S);

the columns of C form a basis of Sr if and only if CT ∈ GLr(S).

We also recall that

Syz({f1, . . . , fs}) := {a := (a1, . . . , as)
T ∈ Ss | a1f1 + · · ·+ asfs = 0}.

Note that

Syz({f1, . . . , fs}) = ker(f), (3.2)

but Syz({f1, . . . , fs}) 6= ker(F ) since we have

a ∈ Syz({f1, . . . , fs}) ⇔ aTFT = 0. (3.3)

A matrix characterization of finitely generated (f.g.) projective modules can be formulated

in the following way.

Proposition 27. Let S be an arbitrary ring and M an S-module. Then M is a f.g.

projective S-module if and only if there exists a square matrix F over S such that FT is

idempotent and M = 〈F 〉.

Proof. (⇒): If M = 0, then F = 0. Let M 6= 0. There exist s ≥ 1 and M ′ such that

Ss = M ⊕M ′; let f : Ss → Ss be the projection on M and F the matrix of f in the

canonical basis of Ss. Then f2 = f and (FTFT )T = F , so FTFT = FT ; note that

M = Im(f) = 〈F 〉.
(⇐): Let f : Ss → Ss be the homomorphism defined by F (see (3.1)). From FTFT =

FT we get f2 = f ; moreover, since M = 〈F 〉, we have Im(f) = M and hence M is a

direct summand of Ss, i.e., M is f.g. projective (observe that the complement M ′ of M

is ker(f) and f is the projection on M).

Remark 28. (i) When S is commutative, or when we consider right modules instead

of left modules, (3.1) says that f(a) = Fa. Moreover, in such cases Syz({f1, . . . , fs}) =

ker(F ) and the matrix of a composite homomorphism gf is given by m(gf) = m(g)m(f).

Note that f : Sr → Sr is an isomorphism if and only if F ∈ GLr(S); moreover, C ∈
GLr(S) if and only if its columns form a basis of Sr. In addition, Proposition 27 says

that M is a f.g. projective S-module if and only if there exists a square matrix F over S

such that F is idempotent and M = 〈F 〉.
(ii) If the matrices of homomorphisms of left modules are arranged by rows instead of

by columns, i.e., if S1×s is the left free module of row vectors of length s and the matrix
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of the homomorphism S1×s f−→ S1×r is defined by

F ′ =

f
′
11 · · · f ′1r
...

...

f ′s1 · · · f ′sr

 :=

f11 · · · fr1
...

...

f1s · · · frs

 ∈Ms×r(S),

then

f(a1, . . . , as) = (a1, . . . , as)F
′, (3.4)

i.e., f(aT ) = aTFT . Thus, the values given by (3.4) and (3.1) agree since F ′ = FT .

Moreover, the composite homomorphism gf means that g acts first, followed by f , and

hence the matrix of gf is given by m(gf) = m(g)m(f). Note that f : S1×r → S1×r is

an isomorphism if and only if m(f) ∈ GLr(S); moreover, C ∈ GLr(S) if and only if its

rows form a basis of S1×r. This left-row notation is used in [14]. Observe that with this

notation, the proof of Proposition 27 says that M is a f.g. projective S-module if and only

if there exists a square matrix F over S such that F is idempotent and M = 〈F 〉, but in

this case 〈F 〉 represents the module generated by the rows of F . Note that Proposition

27 could be formulated in this way: in fact, the set of idempotents matrices of Ms(S)

coincides with the set {FT | F ∈Ms(S), FT idempotent}.

Definition 29 ([27]). Let S be a ring.

(i) S satisfies the rank condition (RC) if for any integers r, s ≥ 1, given an epimorphism

Sr
f−→ Ss, we have r ≥ s.

(ii) S is an IBN ring (Invariant Basis Number) if for any integers r, s ≥ 1, Sr ∼= Ss if

and only if r = s.

Proposition 30 ([18]). Let S be a ring.

(i) S is RC if and only if, for any matrix F ∈Ms×r(S),

if F has a right inverse then r ≥ s.

(ii) S is RC if and only if, for any matrix F ∈Ms×r(S),

if F has a left inverse then s ≥ r.

Proposition 31. RC ⇒ IBN .

Proof. Let Sr
f−→ Ss be an isomorphism. Then f is an epimorphism, and hence r ≥ s;

considering f−1 we get s ≥ r.

Example 32. Most rings are RC, and hence IBN .

(i) Any field K is RC: Let Kr f−→ Ks be an epimorphism. Then dim(Kr) = r =

dim(ker(f)) + s, so r ≥ s.
(ii) Let S and T be rings and let S

f−→ T be a ring homomorphism. If T is an RC ring

then so is S. In fact, T is a right S-module, t · s := tf(s). Suppose that Sr
f−→ Ss is an

epimorphism. Then T ⊗S Sr
iT⊗f−−−→ T ⊗S Ss is also an epimorphism of left T -modules,

i.e., we have an epimorphism T r → T s, so r ≥ s (a similar result and proof is valid for

the IBN property).
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(iii) We can apply the property proved in (ii) in many situations. For example, any

commutative ring S is RC: Let J be a maximal ideal of S. Then the canonical homomor-

phism S → S/J shows that S is RC since S/J is a field.

(iv) Any ring S with finite uniform dimension (Goldie dimension, see [38] and [22])

is RC: In fact, suppose that Sr
f−→ Ss is an epimorphism. Then Sr ∼= Ss ⊕M and hence

r udim(S) = sudim(S) + udim(M), so r ≥ s.
(v) Since any left Noetherian ring S has finite uniform dimension, S is RC. In partic-

ular, any left Artinian ring is RC.

Since the objects studied in the present monograph are the skew PBW extensions, it

is natural to investigate the IBN and RC properties for these rings.

Proposition 33. Let B be a filtered ring. If Gr(B) is RC (IBN ), then B is RC (IBN ).

Proof. Let {Bp}p≥0 be the filtration of B and f : Br → Bs an epimorphism. For M := Br

we consider the standard positive filtration given by

F0(M) := B0 · e1 + · · ·+B0 · er, Fp(M) := BpF0(M), p ≥ 1,

where {ei}ri=1 is the canonical basis of Br. Let e′i := f(ei). Then Bs is generated by

{e′i}ri=1 and N := Bs has standard positive filtration given by

F0(N) := B0 · e′1 + · · ·+B0 · e′r, Fp(N) := BpF0(N), p ≥ 1.

Note that f is filtered and strict: In fact, f(Fp(M)) = Bpf(F0(M)) = Bp(B0 · f(e1) +

· · · + B0 · f(er)) = Bp(B0 · e′1 + · · · + B0 · e′r) = BpF0(N) = Fp(N). This implies that

Gr(M)
Gr(f)−−−→ Gr(N) is surjective. If we prove that Gr(M) and Gr(N) are free over Gr(B)

with bases of r and s elements, respectively, then from the hypothesis we conclude that

r ≥ s and hence B is RC.
Since every ei belongs to F0(M) and since Fp(M) =

∑r
i=1

⊕
Bp · ei, M is filtered-

free with filtered-basis {ei}ri=1, so Gr(M) is graded-free with graded-basis {ei}ri=1, ei :=

ei + F−1(M) = ei (recall that by definition of positive filtration, F−1(M) := 0). For

Gr(N) note that N is also filtered-free with respect to the filtration {Fp(N)}p≥0 given

above: Indeed, we will show next that the canonical basis {fj}sj=1 of N is a filtered basis.

If fj = xj1 · e′1 + · · ·+ xjr · e′r, with xji ∈ Bpij , let p := max{pij}, 1 ≤ i ≤ r, 1 ≤ j ≤ s.

Then fj ∈ Fp(N), moreover, for every q, Bq−p ·f1⊕· · ·⊕Bq−p ·fs ⊆ Bq−pFp(N) ⊆ Fq(N)

(recall that for k < 0, Bk = 0). In turn, let x ∈ Fq(N). Then x = b1 ·f1+· · ·+bs ·fs and in

Gr(N) we have x ∈ Gr(N)q, x = b1 ·f1 + · · ·+ bs ·fs. If bj ∈ Buj
, let u := max{uj}. Then

bj · fj ∈ Gr(N)u+p, so q = u+ p, i.e., u = q− p and hence x ∈ Bq−p · f1⊕ · · · ⊕Bq−p · fs.
Thus, we have proved that Bq−p ·f1⊕· · ·⊕Bq−p ·fs = Fq(N) for every q, and consequently

{fj}sj=1 is a filtered basis of N . From this we conclude that Gr(N) is graded-free with

graded-basis {fj}sj=1, fj := fj + Fp−1(N).

We can repeat this proof for the IBN property but assuming that f is an isomor-

phism.

Corollary 34. Let A be a skew PBW extension of a ring R. Then A is RC [IBN ] if

and only if R is RC [IBN ].
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Proof. We only consider the proof for RC, the case IBN is completely analogous.

(⇒): Since R ↪→ A, Example 32 shows that if A is RC, then R is RC.
(⇐): We consider first the skew polynomial ring R[x;σ] of endomorphism type. Then

R[x;σ] → R given by p(x) 7→ p(0) is a ring homomorphism, so R[x;σ] is RC since

R is RC. By Theorem 13, Gr(A) is isomorphic to an iterated skew polynomial ring

R[z1; θ1] · · · [zn; θn], so Gr(A) is RC. It remains to apply Proposition 33.

Remark 35. (i) The condition IBN for rings is independent of the side we are consider-

ing the modules. In fact, if we define left IBN rings and right IBN rings, depending on

left or right free S-modules, then S is left IBN if and only if S is right IBN (see [32]).

The same is true for the RC property.

(ii) From now on we will assume that all rings considered are RC.

3.3. Characterizations of stably free modules

Definition 36. Let M be an S-module and t ≥ 0 an integer. Then M is stably free of

rank t ≥ 0 if there exists an integer s ≥ 0 such that Ss+t ∼= Ss ⊕M .

The rank of M is denoted by rank(M). Note that any stably free module M is finitely

generated and projective. Moreover, as we will show in the next proposition, rank(M) is

well defined, i.e., rank(M) is unique for M .

Proposition 37. Let t, t′, s, s′ ≥ 0 be integers such that Ss+t ∼= Ss ⊕M and Ss
′+t′ ∼=

Ss
′ ⊕M . Then t′ = t.

Proof. We have Ss
′ ⊕ Ss+t ∼= Ss

′ ⊕ Ss ⊕M and Ss ⊕ Ss′+t′ ∼= Ss ⊕ Ss′ ⊕M ; then since

S is an IBN ring, we have s′ + s+ t = s+ s′ + t′, and hence t′ = t.

Corollary 38. M is stably free of rank t ≥ 0 if and only if there exist integers r, s ≥ 0

such that Sr ∼= Ss ⊕M , with r ≥ s and t = r − s.

Proof. If M is stably free of rank t, then Ss+t ∼= Ss ⊕M for some integers s, t ≥ 0.

Taking r := s + t we get the result. Conversely, if there exist integers r, s ≥ 0 such that

Sr ∼= Ss ⊕M with r ≥ s, then Ss+r−s ∼= Ss ⊕M , i.e., M is stably free of rank r − s.

Proposition 39. Let M be an S-module and let r, s ≥ 0 be integers such that Sr ∼=
Ss ⊕M . Then r ≥ s.

Proof. The canonical projection Sr → Ss is an epimorphism, but since we are assuming

that S is RC, we have r ≥ s.

Corollary 40. M is stably free if and only if there exist integers r, s ≥ 0 such that

Sr ∼= Ss ⊕M .

Proof. This is a direct consequence of Corollary 38 and Proposition 39.

Next we present other characterizations of stably free modules over non-commutative

rings.

Theorem 41. Let M be an S-module. Then the following conditions are equivalent:

(i) M is stably free.
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(ii) M is projective and has a finite free resolution

0→ Stk
fk−→ Stk−1

fk−1−−−→ · · · f1−→ St0
f0−→M → 0.

In this case

rank(M) =

k∑
i=0

(−1)iti. (3.5)

(iii) M is isomorphic to the kernel of an epimorphism of free modules: M ∼= ker(π),

π : Sr → Ss.

(iv) M is projective and has a finite presentation Ss
f1−→ Sr

f0−→ M → 0, where ker(f0)

is stably free.

(v) M has a finite presentation Ss
f1−→ Sr

f0−→M → 0, where f1 has a left inverse.

Proof. See [28, Chapter 21], [36], and [38, Chapter 11].

Definition 42. A finite presentation

Ss
f1−→ Sr

f0−→M → 0 (3.6)

of an S-module M is minimal if f1 has a left inverse.

Corollary 43. Let M be an S-module. Then M is stably free if and only if M has a

minimal presentation.

Proof. This is Theorem 41(i)⇔(v).

Unimodular matrices are closely related to stably free modules.

Definition 44. Let F be a matrix over S of size r × s.

(i) Let r ≥ s. Then F is unimodular if F has a left inverse.

(ii) Let s ≥ r. Then F is unimodular if F has a right inverse.

The set of unimodular column matrices of size r × 1 is denoted by Umc(r, S), and

Umr(s, S) is the set of unimodular row matrices of size 1× s.

Remark 45. Note that a column matrix is unimodular if and only if the left ideal

generated by its entries coincides with S, and a row matrix is unimodular if and only if

the right ideal generated by its entries is S.

We can add some other characterizations of stably free modules (cf. [45, Lemma 16]).

Corollary 46 ([18]). Let M be an S-module. Then the following conditions are equiv-

alent:

(i) M is stably free.

(ii) M is projective and has a finite system of generators f1, . . . , fr such that Syz({f1, . . .
. . . , fr}) is the module generated by the columns of a matrix F1 of size r × s such

that FT1 has a right inverse.

(iii) M is projective and has a finite system of generators f1, . . . , fr such that Syz({f1, . . .
. . . , fr}) is the module generated by the columns of a matrix F1 of size r × s such

that FT1 is unimodular.
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Another interesting result about stably free modules over arbitrary RC rings is pre-

sented next. For this, we recall that if M is a finitely presented left S-module with a

presentation Ss
f1−→ Sr

f0−→M → 0 and F1 is the matrix of f1 in the canonical bases, then

the right S-module MT defined by MT := Ss/Im(fT1 ), where fT1 : Sr → Ss is the ho-

momorphism of right free S-modules induced by the matrix FT1 , is called the transposed

module of M . Thus, MT is given by the presentation Sr
fT
1−−→ Ss →MT → 0.

Theorem 47 ([9]). Let M be an S-module with an exact sequence 0 → Ss
f1−→ Sr

f0−→
M → 0. Then MT ∼= Ext1S(M,S) and the following conditions are equivalent:

(i) M is stably free.

(ii) M is projective.

(iii) MT = 0.

(iv) FT1 has a right inverse.

(v) f1 has a left inverse.

3.4. Stafford’s theorem: a constructive proof. A well known result due Stafford

says that any left ideal of the Weyl algebras D := An(K) or Bn(K), with char(K) = 0, is

generated by two elements (see [51] and [45]). From Stafford’s theorem it follows that any

stably free left module M over D with rank(M) ≥ 2 is free. [45] gives a constructive proof

of this result that we want to study for arbitrary RC rings. Actually, we will consider the

generalization given in [45]; this result says that any stably free left S-module M with

rank(M) ≥ sr(S) is free, where sr(S) denotes the stable rank of the ring S. Our proof

have been adapted from [45], however we do not need the involution of ring S used in [45]

since we are using left notation for modules and column representation for homomor-

phism. This could justify our special left-column notation. In order to apply the results

to bijective skew PBW extensions we will estimate the stable rank of such extensions.

Definition 48. Let S be a ring and v := [v1 · · · vr]T ∈ Umc(r, S) a unimodular

column vector. Then v is called stable (reducible) if there exist a1, . . . , ar−1 ∈ S such

that v′ := [v1 + a1vr . . . vr−1 + ar−1vr]
T is unimodular. We say that the left stable

rank of S is d ≥ 1, denoted sr(S) = d, if d is the least positive integer such that every

unimodular column vector of length d + 1 is stable. We say that sr(S) = ∞ if for every

d ≥ 1 there exists a non-stable unimodular column vector of length d+ 1.

Remark 49. The right stable rank of S is defined in a similar way, and the two ranks

coincide. We now list some well known properties of the stable rank (see [2], [3], [8], [38],

[45], [51], [52], [53], or [21]).

Proposition 50 ([45]). Let S be a ring and v := [v1 · · · vr]T a unimodular stable

column vector over S. Then there exists U ∈ Er(S) such that Uv = e1.

Next we present a lemma that enables one to check when a stably free module is free.

Lemma 51. Let S be a ring and M a stably free S-module given by a minimal presentation

Ss
f1−→ Sr

f0−→ M → 0. Let g1 : Sr → Ss be such that g1f1 = iSs . Then the following

conditions are equivalent:
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(i) M is free of dimension r − s.
(ii) There exists a matrix U ∈ GLr(S) such that UGT1 =

[
Is
0

]
, where G1 is the matrix

of g1 in the canonical bases. In that case, the last r− s columns of UT form a basis

for M . Moreover, the first s columns of UT form the matrix F1 of f1 in the canonical

bases.

(iii) There exists a matrix V ∈ GLr(S) such that GT1 coincides with the first s columns

of V , i.e., GT1 can be completed to an invertible matrix V of GLr(S).

Proof. By the hypothesis, the exact sequence 0 → Ss
f1−→ Sr

f0−→ M → 0 splits, so

FT1 admits a right inverse GT1 , where F1 is the matrix of f1 in the canonical bases and

G1 is the matrix of g1 : Sr → Ss, with g1f1 = iSs , i.e., FT1 G
T
1 = Is. Moreover, there

exists g0 : M → Sr such that f0g0 = iM . From this we also get the split sequence

0→M
g0−→ Sr

g1−→ Ss → 0. Note that M ∼= ker(g1).

(i)⇒(ii): We have Sr = ker(g1) ⊕ Im(f1); by the hypothesis, ker(g1) is free. If s = r

then ker(g1) = 0 and hence f1 is an isomorphism, so f1g1 = iSs , i.e., GT1 F
T
1 = Is. Thus,

we can take U := FT1 .

Let r > s. If {e1, . . . , es} is the canonical basis of Ss, then {u1, . . . ,us} is a basis

of Im(f1) with ui := f1(ei), 1 ≤ i ≤ s; let {v1, . . . ,vp} be a basis of ker(g1) with

p = r−s. Then {v1, . . . ,vp,u1, . . . ,us} is a basis of Sr. We define Sr
h−→ Sr by h(ei) := ui

for 1 ≤ i ≤ s, and h(es+j) = vj for 1 ≤ j ≤ p. Clearly h is bijective; moreover,

g1h(ei) = g1(ui) = g1f1(ei) = ei and g1h(es+j) = g1(vj) = 0, i.e., HTGT1 =
[
Is
0

]
. Let

U := HT . Observe that the last p columns of UT form a basis of ker(g1) ∼= M and the

first s columns of UT form F1.

(ii)⇒(i): Let U(k) be the kth row of U . Then

UGT1 = [U(1) · · · U(s) · · · U(r)]
TGT1 =

[
Is
0

]
,

so U(i)G
T
1 = eTi , 1 ≤ i ≤ s, U(s+j)G

T
1 = 0, 1 ≤ j ≤ p, with p := r − s. This means that

(U(s+j))
T ∈ ker(g1) and hence 〈(U(s+j))

T | 1 ≤ j ≤ p〉 ⊆ ker(g1). On the other hand,

let c ∈ ker(g1) ⊆ Sr; then cTGT1 = 0 and cTU−1UGT1 = 0, thus cTU−1
[
Is
0

]
= 0 and

hence (cTU−1)T ∈ ker(l), where l : Sr → Ss is the homomorphism with matrix
[
Is 0

]
.

Let d = [d1, . . . , dr]
T ∈ ker(l). Then [d1, . . . , dr]

[
Is
0

]
= 0 and from this we conclude

that d1 = · · · = ds = 0, i.e., ker(l) = 〈es+1, . . . , es+p〉. From (cTU−1)T ∈ ker(l) we get

(cTU−1)T = a1 · es+1 + · · · + ap · es+p, so cTU−1 = (a1 · es+1 + · · · + ap · es+p)T , i.e.,

cT = (a1 · es+1 + · · · + ap · es+p)TU , and from this we get c ∈ 〈(U(s+j))
T | 1 ≤ j ≤ p〉.

This proves that ker(g1) = 〈(U(s+j))
T | 1 ≤ j ≤ p〉; but since U is invertible, ker(g1) is

free of dimension p. We have also proved that the last p columns of UT form a basis for

ker(g1) ∼= M .

(ii)⇔(iii): UGT1 =
[
Is
0

]
if and only if GT1 = U−1

[
Is
0

]
. But the first s columns of

U−1
[
Is
0

]
coincide with the first s columns of U−1; taking V := U−1 we get the re-

sult.

Theorem 52. Let S be a ring. Then any stably free S-module M with rank(M) ≥ sr(S)

is free of dimension rank(M).
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Proof. Since M is stably free, it has a minimal presentation, and hence it is given by an

exact sequence

0→ Ss
f1−→ Sr

f0−→M → 0;

moreover, note that rank(M) = r − s. Since this sequence splits, FT1 admits a right

inverse GT1 , where F1 is the matrix of f1 in the canonical bases and G1 is the matrix of

g1 : Sr → Ss, with g1f1 = iSs . The idea of the proof is to find a matrix U ∈ GLr(S) such

that UGT1 =
[
Is
0

]
and then apply Lemma 51.

We have FT1 G
T
1 = Is, and from this we find that the first column g1 of GT1 is uni-

modular. But since r > r− s ≥ sr(S), it follows that g1 is stable, and by Proposition 50,

there exists U1 ∈ Er(S) such that U1g1 = e1. If s = 1, we finish since GT1 = g1.

Let s ≥ 2. We have

U1G
T
1 =

[
1 ∗
0 F2

]
, F2 ∈M(r−1)×(s−1)(S).

Note that U1G
T
1 has a left inverse (for instance FT1 U

−1
1 ), and the form of this left inverse

is

L =

[
1 ∗
0 L2

]
, L2 ∈M(s−1)×(r−1)(S),

and hence L2F2 = Is−1. The first column of F2 is unimodular, and since r− 1 > r− s ≥
sr(S) we again apply Proposition 50 to obtain a matrix U ′2 ∈ Er−1(S) such that

U ′2F2 =

[
1 ∗
0 F3

]
, F3 ∈M(r−2)×(s−2)(S).

Let

U2 :=

[
1 0

0 U ′2

]
∈ Er(S).

Then

U2U1G
T
1 =

1 ∗ ∗
0 1 ∗
0 0 F3

 .
By induction on s and multiplying on the left by elementary matrices we get U ∈ Er(S)

such that

UGT1 =

[
Is
0

]
.

Corollary 53 (Stafford). Let D := An(K) or Bn(K), with char(K) = 0. Then any

stably free left D-module M satisfying rank(M) ≥ 2 is free.

Proof. The result follows from Theorem 52 since sr(D) = 2.

4. Hermite rings

Rings for which all stably free modules are free have attracted special attention in ho-

mological algebra. In this section we will consider a matrix-constructive interpretation of
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such rings. The material presented here can be considered as preparatory for the next

section where we study the Hermite condition for skew PBW extensions. Recall that all

rings considered are RC (see Remark 35).

4.1. Matrix descriptions of Hermite rings

Definition 54. Let S be a ring.

(i) S is a PF ring if every f.g. projective S-module is free.

(ii) S is a PSF ring if every f.g. projective S-module is stably free.

(iii) S is an Hermite ring, a property denoted by H, if any stably free S-module is free.

The right versions of the above rings (i.e., for right modules) are defined in a similar

way and denoted by PFr, PSFr and Hr, respectively. We say that S is a PF ring if S is

PF and PFr simultaneously; similarly we define the properties PSF and H. However, we

will prove below that these properties are left-right symmetric, i.e., they can be denoted

simply by PF , PSF and H.

From Definition 54 we get

H ∩ PSF = PF. (4.1)

The following theorem gives a matrix description of H rings (see [14] and compare with

[31] for the particular case of commutative rings; in [8] a different and independent proof

of this theorem for right modules is presented).

Theorem 55 ([18]). Let S be a ring. Then the following conditions are equivalent:

(i) S is H.

(ii) For every r ≥ 1, any unimodular row matrix u over S of size 1× r can be completed

to an invertible matrix of GLr(S) by adding r − 1 new rows.

(iii) For every r ≥ 1, if u is a unimodular row matrix of size 1 × r, then there exists a

matrix U ∈ GLr(S) such that uU = (1, 0, . . . , 0).

(iv) For every r ≥ 1, given a unimodular matrix F of size s × r, r ≥ s, there exists

U ∈ GLr(S) such that

FU = [Is | 0].

Remark 56. In a similar way to Remark 28, if we consider right modules and the right

S-module structure on the module Sr of columns vectors, the conditions of the previous

theorem can be reformulated properly (see [18]).

4.2. Matrix characterization of PF rings. In [14] some matrix characterizations of

projective-free rings are given. In this subsection we present another matrix interpretation

of this important class of rings. The main result here (Corollary 60) extends [31, Theorem

6.2.2]. This result has also been proved independently in [8, Proposition 11.4.9]. A matrix

proof of a Kaplansky theorem about finitely generated projective modules over local rings

is also included.

Theorem 57 ([18]). Let S be an Hermite ring and M a f.g. projective module given by

the column module of a matrix F ∈ Ms(S), with FT idempotent. Then M is free with



24 O. Lezama and C. Gallego

dim(M) = r if and only if there exists U ∈Ms(S) such that UT ∈ GLs(S) and

(UT )−1FTUT =

[
0 0

0 Ir

]T
. (4.2)

In that case, a basis of M is given by the last r rows of (UT )−1.

From the previous theorem we get the following matrix description of PF rings.

Corollary 58 ([18]). Let S be a ring. Then S is PF if and only if for each s ≥ 1, given

a matrix F ∈ Ms(S) with FT idempotent, there exists a matrix U ∈ Ms(S) such that

UT ∈ GLs(S) and

(UT )−1FTUT =

[
0 0

0 Ir

]T
, (4.3)

where r = dim(〈F 〉), 0 ≤ r ≤ s.

Remark 59. (i) If we consider right modules instead of left modules, then the previous

corollary can be reformulated in the following way: S is PFr if and only if for each s ≥ 1,

given an idempotent F ∈Ms(S), there exists U ∈ GLs(S) such that

UFU−1 =

[
0 0

0 Ir

]
, (4.4)

where r = dim(〈F 〉), 0 ≤ r ≤ s, and 〈F 〉 represents the right S-module generated by the

columns of F . The proof is as in the commutative case (see [31]).

(ii) Considering again left modules and arranging the matrices of homomorphisms by

rows and composing homomorphisms from the left to the right (see Remark 28), we get

the characterization (4.4) for the PF property. However, observe that in this case 〈F 〉
represents the left S-module generated by the rows of F . Note that Corollary 58 could

have been formulated this way: In fact,[
0 0

0 Ir

]T
=

[
0 0

0 Ir

]
and we can rewrite (4.3) as (4.4) changing FT to F (see Remark 28) and (UT )−1 to U .

(iii) If S is a commutative ring, of course PF = PFr = PF . Moreover, we will prove

in Corollary 61 that the projective-free property is left-right symmetric for general rings.

Corollary 60. S is PF if and only if for each s ≥ 1, given an idempotent matrix

F ∈Ms(S), there exists a matrix U ∈ GLs(S) such that

UFU−1 =

[
0 0

0 Ir

]
, (4.5)

where r = dim(〈F 〉), 0 ≤ r ≤ s, and 〈F 〉 represents the left S-module generated by the

rows of F .

Proof. This is the content of Remark 59(ii).

Corollary 61. Let S be a ring. Then S is PF if and only if S is PFr, i.e., PF =

PFr = PF .
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Proof. Let F ∈Ms(S) be an idempotent matrix. If S is PF, then there exists P ∈ GLs(S)

such that

UFU−1 =

[
0 0

0 Ir

]
,

where r is the dimension of the left S-module generated by the rows of F . Observe

that UFU−1 is also idempotent, and the matrices X := UF and Y := U−1 satisfy

UFU−1 = XY and F = Y X. Then from [14, Proposition 0.3.1] we conclude that the left

S-module generated by the rows of UFU−1 coincides with the left S-module generated

by the rows of F , and also the right S-module generated by the columns of UFU−1

coincides with the right S-module generated by the columns of F . This implies that the

S-module generated by the rows of F coincides with the right S-module generated by

the columns of F . This means that S is PFr. The symmetry of the problem completes

the proof.

Another interesting matrix characterization of PF rings is given in [14, Proposition

0.4.7]: a ring S is PF if and only if given an idempotent matrix F ∈ Ms(S) there exist

matrices X ∈ Ms×r(S), Y ∈ Mr×s(S) such that F = XY and Y X = Ir. A similar

matrix interpretation can be given for PSF rings by using [14, Proposition 0.3.1] and

Corollary 40:

Proposition 62. Let S be a ring. Then

(i) S is PSF if and only if given an idempotent matrix F ∈Mr(S) there exist s ≥ 0 and

matrices X ∈M(r+s)×r(S), Y ∈Mr×(r+s)(S) such that[
F 0

0 Is

]
= XY and Y X = Ir.

(ii) PSF = PSFr = PSF .

For the H property we have a similar characterization that proves the symmetry of

this condition.

Proposition 63 ([18]). Let S be a ring. Then

(i) S is H if and only if given an idempotent matrix F ∈Mr(S) with
[
F 0
0 1

]
= XY and

Y X = Ir for some X ∈ M(r+1)×r(S) and Y ∈ Mr×(r+1)(S), there exist

X ′ ∈Mr×(r−1)(S) and Y ′ ∈M(r−1)×r(S) such that F = X ′Y ′ and Y ′X ′ = Ir−1.

(ii) H = Hr = H.

We conclude this subsection by giving a matrix-constructive proof of a well known

theorem of Kaplansky.

Proposition 64. Any local ring S is PF .

Proof. Let M a projective left S-module. By Remark 28(ii), there exists an idempotent

matrix F = [fij ] ∈ Ms(S) such that the module generated by the rows of F coincides

with M . According to Corollary 60, we need to show that there exists U ∈ GLs(S) such

that the relation (4.5) holds. The proof is by induction on s.
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s = 1: In this case F = [fij ] = [f ]; since S is local, its idempotents are trivial, so

f = 1 or f = 0 and hence M is free.

s = 2: In view of the fact that S is local, two possibilities may arise:

• f11 is invertible. Then one can find G ∈ GL2(S) such that GFG−1 =
[
1 0
0 f

]
for

some f ∈ S. For this it is enough to take

G =

[
1 f−111 f12

−f21f−111 1

]
;

to show that this matrix is invertible with inverse

G−1 =

[
f11 −f12
f21 −f21f−111 f12 + 1

]
we can use the relations that exist between the entries of F . Let us check for example

that GG−1 = I2:

f11 + f−111 f12f21 = 1 because f211 + f12f21 = f11 and f11 is invertible;

−f12 − f−111 f12f21f
−1
11 f12 + f−111 f12

= −f12 + (1− f−111 f12f21)f−111 f12 = −f12 + f11f
−1
11 f12 = 0;

−f21f−111 f11 + f21 = 0;

f21f
−1
11 f12 − f21f

−1
11 f12 + 1 = 1.

Similar calculations show that G−1G = I2. Since F is idempotent, f is also idempotent;

applying the case s = 1 we get the result.

• 1− f11 is invertible. In the same way as above, we can find H ∈ GL2(S) such that

HFH−1 =
[
0 0
0 g

]
. It is enough to take

H =

[
1 −(1− f11)−1f12
f21 −f21(1− f11)−1f12 + 1

]
.

Note that

H−1 =

[
1− f11 (1− f11)−1f12
−f21 1

]
.

Indeed HH−1 = I2:

1− f11 + (1− f11)−1f12f21 = 1− f11 + f11 = 1 because f12f21 = (1− f11)f11;

(1− f11)−1f12 − (1− f11)−1f12 = 0;

f21(1− f11) + f21(1− f11)−1f12f21 − f21 = f21(1− f11) + f21f11 − f21 = 0;

f21(1− f11)−1f12 − f21(1− f11)−1f12 + 1 = 1.

An analogous calculation shows that H−1H = I2. Note that g is an idempotent of S,

hence g = 0 or g = 1 and the statement follows.
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Now suppose that the result holds for s− 1; two possibilities for f11 can occur:

• f11 is invertible. Taking

G =


1 f−111 f12 f−111 f13 . . . f−111 f1s

−f21f−111 1 0 . . . 0

−f31f−111 0 1 · · · 0
...

...

−fs1f−111 0 0 . . . 1


we see that G ∈ GLs(S) and its inverse is

G−1 =


f11 −f12 −f13 . . . −f1s
f21 −f21f−111 f12 + 1 −f21f−111 f13 . . . −f21f−111 f1s
f31 −f31f−111 f12 −f31f−111 f13 + 1 . . . −f31f−111 f1s
...

...

fs1 −fs1f−111 f12 −fs1f−111 f13 . . . −fs1f−111 f1s + 1

 .
Indeed, GG−1 = Is:

f11 + f−111 f12f21 + · · ·+ f−111 f1sfs1 = 1 because f211 + f12f21 + · · ·+ f1sfs1 = f11;

−f12 − f−111 f12f21f
−1
11 f12 + f−111 f12 − f

−1
11 f13f31f

−1
11 f12 − · · · − f

−1
11 f1sfs1f

−1
11 f12

= −f12 + (1− f−111

s∑
i=2

f1ifi1)f−111 f12 = −f12 + f11f
−1
11 f12 = 0;

...

−f1s − f−111 f12f21f
−1
11 f1s − f

−1
11 f13f31f

−1
11 f1s − · · · − f

−1
11 f1sfs1f

−1
11 f1s + f−111 f1s

= −f1s + (1− f−111

s∑
i=2

f1ifi1)f−111 f1s = −f1s + f11f
−1
11 f1s = 0;

−f21f−111 f11 + f21 = 0; f21f
−1
11 f12 − f21f

−1
11 f12 + 1 = 1;

f21f
−1
11 f1i − f21f

−1
11 f1i = 0 for every 3 ≤ i ≤ s;

...

−fs1f−111 f11 + fs1 = 0;

fs1f
−1
11 f1i − fs1f

−1
11 f1i = 0 for every 2 ≤ i ≤ s− 1;

fs1f
−1
11 f1s − fs1f

−1
11 f1s + 1 = 1.

Similarly, G−1G = Is. Moreover,

GFG−1 =

[
1 01,s−1

0s−1,1 F1

]
,

where F1 ∈Ms−1(S) is idempotent. Now we can apply the induction hypothesis.

• 1− f11 is invertible. Taking

H =


1 −(1− f11)−1f12 −(1− f11)−1f13 . . . −(1− f11)−1f1s
f21 −f21(1− f11)−1f12 + 1 −f21(1− f11)−1f13 . . . −f21(1− f11)−1f1s
f31 −f31(1− f11)−1f12 −f31(1− f11)−1f13 + 1 . . . −f31(1− f11)−1f1s
...

...
fs1 −fs1(1− f11)−1f12 −fs1(1− f11)−1f13 . . . −fs1(1− f11)−1f1s + 1


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we see that H ∈ GLs(S) with inverse given by

H−1 =


1− f11 (1− f11)−1f12 (1− f11)−1f13 . . . (1− f11)−1f1s
−f21 1 0 . . . 0

−f31 0 1 . . . 0
...

...

−fs1 0 0 . . . 1

 .
Indeed, HH−1 = Is:

1− f11 + (1− f11)−1
s∑
i=2

f1ifi1 = 1− f11 + f11 = 1 because

s∑
i=2

f1ifi1 = (1− f11)f11;

f21(1− f11) + f21

s∑
i=1

(1− f11)−1f1ifi1 − f21 = −f21f11 + f21f11 = 0;

f21(1− f11)−1f12 − f21(1− f11)−1f12 + 1 = 1;

f21(1− f11)−1f1i − f21(1− f11)−1f1i = 0 for 3 ≤ i ≤ s;
...

fs1(1− f11) + fs1

s∑
i=1

(1− f11)−1f1ifi1 − fs1 = −fs1f11 + f21f11 = 0;

fs1(1− f11)−1f1i − fs1(1− f11)−1f1i = 0 for 3 ≤ i ≤ s− 1;

fs1(1− f11)−1f1s − fs1(1− f11)−1f1s + 1 = 1.

Similarly, H−1H = Is. Furthermore,

HFH−1 =

[
0 01,s−1

0s−1,1 F2

]
with F2 ∈Ms−1(S) idempotent. One more time we apply the induction hypothesis.

5. d-Hermite rings and skew PBW extensions

Under suitable conditions on the ring R of coefficients, most of the bijective skew PBW

extensions are PSF (see Theorem 26). A different situation occurs for the H property. In

fact, as observed before, if K is a division ring, then S := K[x, y] has a module M such

that M ⊕ S ∼= S2, but M is not free, i.e., S is not H. Another example occurs in Weyl

algebras: Let K be a field with char(K) = 0. The Weyl algebra A1(K) = K[t]
[
x; ddt

]
is

not H since there exist stably free modules of rank 1 over An(K) that are not free ([14,

Corollary 1.5.3]; see also [38, Example 11.1.4]). In this section we will study a condition

weaker than the H property for skew PBW extensions: the d-Hermite condition. Recall

that we always assume that all rings are RC.

5.1. d-Hermite rings. The following proposition suggests the definition of d-Hermite

rings.
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Proposition 65. Let S be a ring. For any integer d ≥ 0, the following statements are

equivalent:

(i) Any stably free module of rank ≥ d is free.

(ii) Any unimodular row matrix over S of length ≥ d+1 can be completed to an invertible

matrix over S.

(iii) For every r ≥ d+ 1, if u is a unimodular row matrix of size 1× r, then there exists

a matrix U ∈ GLr(S) such that uU = (1, 0, . . . , 0), i.e., GLr(S) acts transitively on

Umr(r, S).

(iv) For every r ≥ d+ 1, given a unimodular matrix F of size s× r, r ≥ s, there exists

U ∈ GLr(S) such that

FU =
[
Is | 0

]
.

Proof. We can repeat the proof of [18, Theorem 2] taking r ≥ d+ 1.

Definition 66. Let S be a ring and d ≥ 0 an integer. Then S is d-Hermite, a property

denoted by d-H, if S satisfies any of the conditions in Proposition 65.

The next result extends Proposition 63.

Proposition 67. The d-Hermite condition is left-right symmetric.

Corollary 68. Let S be a ring. Then S is sr(S)-H.

Proof. This follows from Definition 66 and Theorem 52.

Corollary 69. Let S be a ring. If sr(S) = 1, then S is H.

Proof. According to Corollary 68, S is 1-H; however, it is well known that rings with

stable rank 1 are cancellable (see [16]), so by [18, Proposition 12], S is H.

Remark 70. (i) Observe that 0-Hermite rings coincide with H rings, and for commuta-

tive rings, 1-Hermite also coincides with H (see [27, Theorem I.4.11]). If K is a field with

char(K) = 0, by Corollary 53, A1(K) is 2-H, but as we observed before, A1(K) is not

1-H. In general, H ( 1-H ( 2-H ( · · · (see [14]).

(ii) Note that H = 1-H ∩ WF (a ring S is WF , weakly finite, if for all n ≥ 0,

P ⊕ Sn ∼= Sn if and only if P = 0).

(iii) Any left Artinian ring S is H since sr(S) = 1. In particular, semisimple and

semilocal rings are H.

(iv) Rings with big stable rank can be Hermite, for example sr(R[x1, . . . , xn]) = n+ 1

(see [38, Theorem 11.5.9]), but by the Quillen–Suslin theorem, R[x1, . . . , xn] is H.

5.2. Stable rank. Corollaries 53 and 68 motivate the task of computing the stable rank

of bijective skew PBW extensions. For this purpose we need to recall the famous stable

range theorem. This theorem relates the stable rank and the Krull dimension of a ring.

The original version of this classical result is due to Bass (1968, [3]) and states that if

S is a commutative Noetherian ring and Kdim(S) = d then sr(S) ≤ d + 1. Heitmann

extended the theorem to arbitrary commutative rings (1984, [23]). In 2004 Lombardi et

al. ([15, Theorem 2.4]; see also [37]) proved the theorem again for arbitrary commutative

rings using the Zariski lattice of a ring and the boundary ideal of an element. This proof
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is elementary and constructive. In 1981 Stafford [52] proved a non-commutative version

of the theorem for left Noetherian rings.

Proposition 71 (Stable range theorem, [52]). Let S be a left Noetherian ring with

lKdim(S) = d. Then sr(S) ≤ d+ 1.

From this we get the following modest result.

Proposition 72. Let R be a left Noetherian ring with finite left Krull dimension and

A = σ(R)〈x1, . . . , xn〉 a bijective skew PBW extension of R. Then

1 ≤ sr(A) ≤ lKdim(R) + n+ 1,

and A is d-H, with d := lKdim(R) + n+ 1.

Proof. The inequalities follow from Proposition 71 and [35, Theorem 4.2]. The second

statement follows from Corollary 68.

Example 73. The results in [35] for the Krull dimension of many interesting examples

of bijective skew PBW extensions can be combined with Proposition 72 in order to get an

upper bound for the stable rank. With this we can also estimate the d-Hermite condition.

Table 1 gives such estimations.

Remark 74. The values presented in Table 1 can be improved for some particular classes

of skew PBW extensions. For example, it is well known that sr(An(K)) = 2 if char(K) = 0

(see Remark 49). A challenging problem is to give exact values for the stable rank of all

examples of bijective PBW extensions presented in [35].

5.3. Kronecker’s theorem. Closely related to the stable range theorem is Kronecker’s

theorem saying that if S is a commutative ring with Kdim(S) < d, then every finitely

generated ideal I of S has the same radical as an ideal generated by d elements. In

this subsection we want to investigate this theorem for non-commutative rings using the

Zariski lattice and the boundary ideal, but generalizing these tools and their properties

to non-commutative rings. The main result will be applied to skew PBW extensions.

Definition 75. Let S be a ring and Spec(S) the set of all prime ideals of S. The Zariski

lattice of S is defined by

Zar(S) := {D(X) | X ⊆ S} with D(X) :=
⋂

X⊆P∈Spec(S)

P.

Zar(S) is ordered by inclusion. The description of the Zariski lattice is presented in

the next proposition. 〈X}, 〈X〉, {X〉 will represent the left, two-sided, and right ideal of

S generated by X, respectively. ∨ denotes the sup and ∧ the inf.

Proposition 76 ([20]). Let S be a ring, I, I1, I2, I3 two-sided ideals of S, X ⊆ S, and

x1, . . . , xn, x, y ∈ S. Then

(i) D(X) = D(〈X}) = D(〈X〉) = D({X〉).

(ii) D(I) = rad(S) if and only if I ⊆ rad(S). In particular, D(0) = rad(S).

(iii) D(I) = S if and only if I = S.

(iv) I ⊆ D(I) and D(D(I)) = D(I). Moreover, if I1 ⊆ I2, then D(I1) ⊆ D(I2).
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Table 1. Stable rank for some examples of bijective skew PBW extensions

Ring Upper bound

Habitual polynomial ring R[x1, . . . , xn] dim(R) + n+ 1
Ore extension of bijective type R[x1;σ1, δ1] · · · [xn;σn, δn] dim(R) + n+ 1
Weyl algebra An(K) 2n+ 1
Extended Weyl algebra Bn(K) n+ 1
Universal enveloping algebra U(g) of a Lie algebra g, K a commutative ring dim(K) + n+ 1
Tensor product R⊗K U(G) dim(R) + n+ 1
Crossed product R ∗ U(G) dim(R) + n+ 1
Algebra of q-differential operators Dq,h[x, y] 3
Algebra of shift operators Sh 3
Mixed algebra Dh 4
Discrete linear system K[t1, . . . , tn][x1;σ1] · · · [xn;σn] 2n+ 1
Linear partial shift operators K[t1, . . . , tn][E1, . . . , En] 2n+ 1
Linear partial shift operators K(t1, . . . , tn)[E1, . . . , En] n+ 1
Linear partial differential operators K[t1, . . . , tn][∂1, . . . , ∂n] 2n+ 1
Linear partial differential operators K(t1, . . . , tn)[∂1, . . . , ∂n] n+ 1
Linear partial difference operators K[t1, . . . , tn][∆1, . . . ,∆n] 2n+ 1
Linear partial difference operators K(t1, . . . , tn)[∆1, . . . ,∆n] n+ 1

Linear partial q-dilation operators K[t1, . . . , tn][H
(q)
1 , . . . , H

(q)
m ] n+m+ 1

Linear partial q-dilation operators K(t1, . . . , tn)[H
(q)
1 , . . . , H

(q)
m ] m+ 1

Linear partial q-differential operators K[t1, . . . , tn][D
(q)
1 , . . . , D

(q)
m ] n+m+ 1

Linear partial q-differential operators K(t1, . . . , tn)[D
(q)
1 , . . . , D

(q)
m ] m+ 1

Diffusion algebra 2n+ 1
Additive analogue of the Weyl algebra An(q1, . . . , qn) 2n+ 1
Multiplicative analogue of the Weyl algebra On(λji) n+ 1
Quantum algebra U ′(so(3,K)) 4
3-dimensional skew polynomial algebra 4
Dispin algebra U(osp(1, 2)) 4
Woronowicz algebra Wν(sl(2,K)) 4
Complex algebra Vq(sl3(C)) 11
Algebra U 3n+ 1
Manin algebra Oq(M2(K)) 5
Coordinate algebra of the quantum group SLq(2) 5
q-Heisenberg algebra Hn(q) 3n+ 1
Quantum enveloping algebra Uq(sl(2,K)) 4
Hayashi algebra Wq(J) 3n+ 1
Differential operators on a quantum space Sq, Dq(Sq) 2n+ 1
Witten’s deformation of U(sl(2,K)) 4

Quantum Weyl algebra of Maltsiniotis Aq,λ
n , K a commutative ring dim(K) + 2n+ 1

Quantum Weyl algebra An(q, pi,j) 2n+ 1
Multiparameter Weyl algebra AQ,Γn (K) 2n+ 1
Quantum symplectic space Oq(sp(K2n)) 2n+ 1
Quadratic algebra in three variables 4

(v) Let {Ij}j∈J be a family of two-sided ideals of S. Then D(
∑
j∈J Ij) =

∨
j∈J D(Ij).

In particular, D(x1, . . . , xn) = D(x1) ∨ · · · ∨D(xn).

(vi) D(I1I2) = D(I1) ∧D(I2). In particular, D(〈x〉〈y〉) = D(x) ∧D(y).

(vii) D(x+ y) ⊆ D(x, y).
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(viii) If 〈x〉〈y〉 ⊆ D(0), then D(x, y) = D(x+ y).

(ix) If x ∈ D(I), then D(I) = D(I, x).

(x) If S := S/I, then D(J) = D(J) for any two-sided ideal J of S containing I.

(xi) u ∈ D(I) if and only if u ∈ rad(S/I). In that case, if u ∈ D(I), there exists k ≥ 1

such that uk ∈ I.

(xii) Zar(S) is distributive:

D(I1) ∧ [D(I2) ∨D(I3)] = [D(I1) ∧D(I2)] ∨ [D(I1) ∧D(I3)],

D(I1) ∨ [D(I2) ∧D(I3)] = [D(I1) ∨D(I2)] ∧ [D(1) ∨D(I3)].

Definition 77. Let S be a ring and v ∈ S. The boundary ideal of v is defined by

Iv := 〈v〉+ (D(0) : 〈v〉), where (D(0) : 〈v〉) := {x ∈ S | 〈v〉x ⊆ D(0)}.

Note that Iv 6= 0 for every v ∈ S. On the other hand, if v is invertible or if v = 0,

then Iv = S. If S is a domain and v 6= 0, then Iv = 〈v〉.

Definition 78. Let S be a ring such that lKdim(S) exists. We say that S satisfies the

boundary condition if for any d ≥ 0 and v ∈ S,

lKdim(S) ≤ d ⇒ lKdim(S/Iv) ≤ d− 1.

Example 79. (i) Any commutative Noetherian ring satisfies the boundary condition:

indeed, for commutative Noetherian rings, the classical Krull dimension and the Krull

dimension coincide, so we can apply [37, Theorem 13.2].

(ii) Any prime ring S with left Krull dimension satisfies the boundary condition: in

fact, for prime rings, any non-zero two sided ideal is essential, so lKdim(S/Iv) < lKdim(S)

(see [38, Proposition 6.3.10]).

(iii) Any domain with left Krull dimension satisfies the boundary condition: indeed,

any domain is a prime ring.

Theorem 80 (Kronecker; see [20]). Let S be a domain such that lKdim(S) exists. If

lKdim(S) < d and u1, . . . , ud, u ∈ S, then there exist x1, . . . , xd ∈ S such that

D(u1, . . . , ud, u) = D(u1 + x1u, . . . , ud + xdu).

Corollary 81. Let S be a domain such that lKdim(S) exists. If lKdim(S) < d and

u1, . . . , ud+1 ∈ S are such that 〈u1, . . . , ud+1〉 = S, then there exist elements x1, . . . , xd ∈
S such that 〈u1 + x1ud+1, . . . , ud + xdud+1〉 = S.

Proof. The statement follows directly from Proposition 76(iii) and Theorem 80.

Corollary 82. Let A = σ(R)〈x1, . . . , xn〉 be a bijective skew PBW extension of a

left Noetherian domain R. If lKdim(R) < d and u1, . . . , ud+n, u ∈ A, then there ex-

ist y1, . . . , yd+n ∈ A such that

D(u1, . . . , ud+n, u) = D(u1 + y1u, . . . , ud+n + yd+nu).

Proof. This follows directly from Proposition 10, Theorem 14, [35, Theorem 4.2], and

Theorem 80.
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6. Gröbner bases for skew PBW extensions

In order to make constructive the theory of projective modules, stably free modules and

Hermite rings studied in the previous sections, we will now study the theory of Gröbner

bases of left ideals and modules for bijective skew PBW extensions. This theory was

initially investigated in [19], [25] and [26] for the particular case of quasi-commutative

bijective skew PBW extensions. We will extend the theory to arbitrary bijective skew

PBW extensions, in particular, Buchberger’s algorithm will be established for the general

bijective case. Note that our theory applies to all examples listed in Table 1.

We start by recalling the basic facts of Gröbner theory for arbitrary skew PBW

extensions; we will use the notation of Definition 7.

6.1. Monomial orders in skew PBW extensions. Let A = σ(R)〈x1, . . . , xn〉 be an

arbitrary skew PBW extension of R, and let � be a total order defined on Mon(A). If

xα � xβ but xα 6= xβ , we will write xα � xβ . By xβ � xα we mean that xα � xβ . Let

f 6= 0 be a polynomial in A. If

f = c1X1 + · · ·+ ctXt

with ci ∈ R−{0} and X1 � · · · � Xt the monomials of f , then lm(f) := X1 is the leading

monomial of f , lc(f) := c1 is the leading coefficient of f and lt(f) := c1X1 is the leading

term of f . If f = 0, we define lm(0) := 0, lc(0) := 0, lt(0) := 0, and we set X � 0 for any

X ∈ Mon(A). Thus, we extend � to Mon(A) ∪ {0}.
Definition 83. Let � be a total order on Mon(A). We say that � is a monomial order

on Mon(A) if the following conditions hold:

(i) For all xβ , xα, xγ , xλ ∈ Mon(A),

xβ � xα ⇒ lm(xγxβxλ) � lm(xγxαxλ).

(ii) xα � 1 for every xα ∈ Mon(A).

(iii) � is degree compatible, i.e., |β| ≥ |α| ⇒ xβ � xα.

Monomial orders are also called admissible orders. Condition (iii) is needed in the

proof of the following proposition, which in turn will be used in the division algorithm

(Theorem 93).

Proposition 84 ([19, Proposition 12]). Every monomial order on Mon(A) is a well-

order. Thus, there are no infinite decreasing chains in Mon(A).

From now on we will assume that Mon(A) is endowed with some monomial or-

der.

Definition 85. Let xα, xβ ∈ Mon(A). We say that xα divides xβ , denoted by xα |xβ ,

if there exist xγ , xλ ∈ Mon(A) such that xβ = lm(xγxαxλ). We will also say that any

monomial xα ∈ Mon(A) divides the polynomial zero.

Proposition 86 ([19, Proposition 14]). Let xα, xβ ∈ Mon(A) and f, g ∈ A−{0}. Then:

(a) lm(xαg) = lm(xα lm(g)) = xα+exp(lm(g)), i.e.,

exp(lm(xαg)) = α+ exp(lm(g)).
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In particular,

lm(lm(f) lm(g)) = xexp(lm(f))+exp(lm(g)), i.e.,

exp
(
lm(lm(f) lm(g))

)
= exp(lm(f)) + exp(lm(g))

and

lm(xαxβ) = xα+β , i.e., exp(lm(xαxβ)) = α+ β. (6.1)

(b) The following conditions are equivalent:

(i) xα |xβ.

(ii) There exists a unique xθ ∈ Mon(A) such that xβ = lm(xθxα) = xθ+α and hence

β = θ + α.

(iii) There exists a unique xθ ∈ Mon(A) such that xβ = lm(xαxθ) = xα+θ and hence

β = α+ θ.

(iv) βi ≥ αi for 1 ≤ i ≤ n, with β := (β1, . . . , βn) and α := (α1, . . . , αn).

Remark 87. We note that a least common multiple of monomials of Mon(A) exists: In

fact, let xα, xβ ∈ Mon(A). Then lcm(xα, xβ) = xγ ∈ Mon(A), where γ = (γ1, . . . , γn)

with γi := max{αi, βi} for each 1 ≤ i ≤ n.

6.2. Reduction in skew PBW extensions. Some natural computational conditions

on R will be assumed from now (see [30]).

Definition 88. A ring R is left Gröbner soluble (LGS) if the following conditions hold:

(i) R is left Noetherian.

(ii) Given a, r1, . . . , rm ∈ R there exists an algorithm which decides whether a is in the

left ideal Rr1 + · · ·+Rrm, and if so, finds b1, . . . , bm ∈ R such that a = b1r1 + · · ·+
bmrm.

(iii) Given r1, . . . , rm ∈ R there exists an algorithm which finds a finite set of generators

of the left R-module

SyzR[r1 . . . rm] := {(b1, . . . , bm) ∈ Rm | b1r1 + · · ·+ bmrm = 0}.

Remark 89. The above three conditions are needed in order to guarantee a Gröbner

theory in the rings of coefficients, in particular, to have an effective solution of the mem-

bership problem in R (see (ii) in Definition 90 below). From now on we will assume

that A = σ(R)〈x1, . . . , xn〉 is a skew PBW extension of R, where R is an LGS ring and

Mon(A) is endowed with some monomial order.

Definition 90. Let F be a finite set of non-zero elements of A, and let f, h ∈ A. We

say that f reduces to h by F in one step, denoted f
F−→ h, if there exist f1, . . . , ft ∈ F

and r1, . . . , rt ∈ R such that

(i) lm(fi) | lm(f), 1 ≤ i ≤ t, i.e., there exists xαi ∈ Mon(A) such that lm(f) =

lm(xαi lm(fi)), or equivalently, αi + exp(lm(fi)) = exp(lm(f)).

(ii) lc(f) = r1σ
α1(lc(f1))cα1,f1 + · · · + rtσ

αt(lc(ft))cαt,ft , where cαi,fi are defined as in

Theorem 8, i.e., cαi,fi := cαi,exp(lm(fi)).

(iii) h = f −
∑t
i=1 rix

αifi.
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We say that f reduces to h by F , denoted f
F−→+ h, if there exist h1, . . . , ht−1 ∈ A such

that

f
F−→ h1

F−→ h2
F−→ · · · F−→ ht−1

F−→ h.

Furthermore, f is reduced (also called minimal) with respect to F if f = 0 or there is

no one step reduction of f by F , i.e., (i) or (ii) fails. Otherwise, we will say that f is

reducible with respect to F . If f
F−→+ h and h is reduced with respect to F , then we say

that h is a remainder for f with respect to F .

Remark 91. (i) By Theorem 8, the coefficients cαi,fi in the previous definition are unique

and satisfy

xαi lm(fi) = cαi,fix
αi+exp(lm(fi)) + pαi,fi ,

where pαi,fi = 0 or deg(pαi,fi) < |αi + exp(lm(fi))|, 1 ≤ i ≤ t.
(ii) lm(f) � lm(h) and f − h ∈ 〈F}, where 〈F} is the left ideal of A generated by F .

(iii) The remainder of f is not unique.

(iv) By definition we will assume that 0
F−→ 0.

From the reduction relation we get the following interesting properties.

Proposition 92 ([19, Proposition 20]). Let A be a skew PBW extension such that cα,β
is invertible for each α, β ∈ Nn. Let f, h ∈ A, θ ∈ Nn and F = {f1, . . . , ft} be a finite set

of non-zero polynomials of A. Then

(i) If f
F−→ h, then there exists p ∈ A with p = 0 or lm(xθf) � lm(p) such that

xθf + p
F−→ xθh. In particular, if A is quasi-commutative, then p = 0.

(ii) If f
F−→+ h and p ∈ A is such that p = 0 or lm(h) � lm(p), then f + p

F−→+

h+ p.

(iii) If f
F−→+ h, then there exists p ∈ A with p = 0 or lm(xθf) � lm(p) such that

xθf + p
F−→+ xθh. If A is quasi-commutative, then p = 0.

(iv) If f
F−→+ 0, then there exists p ∈ A with p = 0 or lm(xθf) � lm(p) such that

xθf + p
F−→+ 0. If A is quasi-commutative, then p = 0.

The next theorem is the theoretical support of the division algorithm for skew PBW

extensions.

Theorem 93 ([19, Theorem 21]). Let F = {f1, . . . , ft} be a finite set of non-zero

polynomials in A and f ∈ A. Then the division algorithm below produces polynomials

q1, . . . , qt, h ∈ A, with h reduced with respect to F , such that f
F−→+ h and

f = q1f1 + · · ·+ qtft + h,

with

lm(f) = max{lm(lm(q1) lm(f1)), . . . , lm(lm(qt) lm(ft)), lm(h)}.
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Division algorithm in A

INPUT: f, f1, . . . , ft ∈ A with fj 6= 0 (1 ≤ j ≤ t)
OUTPUT: q1, . . . , qt, h ∈ A with f = q1f1 + · · ·+ qtft + h,

h reduced with respect to {f1, . . . , ft} and
lm(f) = max{lm(lm(q1) lm(f1)), . . . , lm(lm(qt) lm(ft)), lm(h)}

INITIALIZATION: q1 := 0, q2 := 0, . . . , qt := 0, h := f
WHILE h 6= 0 and there exists j such that lm(fj) divides lm(h) DO

Calculate J := {j | lm(fj) divides lm(h)}
FOR j ∈ J DO

Calculate αj ∈ Nn such that αj + exp(lm(fj)) = exp(lm(h))

IF the equation lc(h) =
∑
j∈J rjσ

αj (lc(fj))cαj ,fj is soluble,
where cαj ,fj are defined as in Theorem 8 THEN

Calculate one solution (rj)j∈J

h := h−
∑
j∈J rjx

αjfj

FOR j ∈ J DO
qj := qj + rjx

αj

ELSE
Stop

The following example illustrates the above procedure.

Example 94. We consider the diffusion algebra A in Example 18 with n = 2, K = Q,

c12 = −2 and c21 = −1. In this bijective skew PBW extension, D2D1 = 2D1D2 +

x2D1− x1D2 and the automorphisms σ1 and σ2 are the identity. We consider the deglex

order with D1 � D2 and the polynomials f1 := x1x2D1D2, f2 := x2D1, f3 = x1D2,

f = x1x
2
2D

2
1D2 + x21x2D2 in A. We want to divide f by f1, f2 and f3.

Step 1. We start with h := f , q1 := 0, q2 := 0, q3 := 0. Since lm(fj) | lm(f) for

j = 1, 2, 3, we compute αj = (αj1, αj2) ∈ N2 such that αj + exp(lm(fj)) = exp(lm(h))

and the corresponding value of σαj (lc(fj))cαj ,βj , where βj = exp(lm(fj)):

(α11, α12) + (1, 1) = (2, 1) ⇒ α11 = 1, α12 = 0,

σα1(lc(f1))cα1,β1
= x1x2,

(α21, α22) + (1, 1) = (2, 1) ⇒ α21 = 1, α22 = 1,

σα1(lc(f2))cα2,β2 = 2x2,

(α31, α32) + (1, 1) = (2, 1) ⇒ α31 = 2, α32 = 0,

σα1(lc(f3))cα3,β3
= x1.

Now, we solve the equation

lc(h) = x1x
2
2 = r1(x1x2) + r2(2x2) + r3(x1) ⇒ r1 = 3x2, r2 = − 1

2x1x2, r3 = −x22,

and with the relations defining A, we compute

h = h− (r1x
α1f1 + r2x

α2f2 + r3x
α3f3)

= h− 3x1x
2
2D

2
1D2 + 1

2x1x
2
2(2D2

1D2 + x2D
2
1 − x1D1D2)

= 1
2x1x

3
2D

2
1 − 1

2x
2
1x

2
2D1D2 + x21x2D2.
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We also compute

q1 := 3x2D1, q2 := − 1
2x1x2D1D2, q3 := −x22D2

1.

Step 2. lm(h) = D2
1, lc(h) = 1

2x1x
3
2. In this case, lm(fj) | lm(f) only for j = 2 and we

find that α2 = (α21, α22) ∈ N3 is such that αj + exp(lm(fj)) = exp(lm(h)) is α = (1, 0);

moreover, σα(lc(f2))cα,β = x2 and r = 1
2x1x

2
2 is such that lc(h) = rx2. Thus

h = h− rxα2f2 = − 1
2x

2
1x

2
2D1D2 + x21x2D2

and

q1 := 3x2D1, q2 := − 1
2x1x2D1D2 + 1

2x1x
2
2D1, q3 := −x22D2

1.

Step 3. Note that lm(h) = D1D2 and lm(fj) | lm(h) for j = 1, 2, 3. In this case we have:

(α11, α12) + (1, 1) = (1, 1) ⇒ α11 = 0, α12 = 0,

σα1(lc(f1))cα1,β1
= x1x2,

(α21, α22) + (1, 0) = (1, 1) ⇒ α21 = 0, α22 = 1,

σα2(lc(f2))cα2,β2
= 2x2,

(α31, α32) + (0, 1) = (1, 1, 1) ⇒ α31 = 1, α32 = 0,

σα3(lc(f3))cα3,β3
= x1.

We solve

− 1
2x

2
1x

2
2 = r1x1x2 + r2(2x2) + r3x1 ⇒ r1 = 3x1x2, r2 = −x21x2, r3 = − 3

2x1x
2
2;

thus

h = h− (r1x
α1f1 + r2x

α2f2 + r3x
α3f3)

= h−
(
3x21x

2
2D1D2 − x21x22(2D1D2 + x2D1 − x1D2)− 3

2x
2
1D1D2

)
= x21x

3
2D1 + (x21x2 − x31x22)D2

and also

q1 := 3x2D1−3x1x2, q2 := − 1
2x1x2D1D2+ 1

2x1x
2
2D1−x21x2D2, q3 := −x22D2

1− 3
2x1x

2
2D1.

Step 4. Finally, note that h = x21x
3
2D1 + (x21x2 − x31x22)D2 = x21x

2
2f1 + (x1x2 − x21x22)f3,

thus

f = q1f1 + q2f2 + q3f3

where

q1 := 3x2D1 − 3x1x2, q2 := − 1
2x1x2D1D2 + 1

2x1x
2
2D1 − x21x2D2 + x21x

2
2,

q3 := − x22D2
1 − 3

2x1x
2
2D1 + x1x2 − x21x22.

Moreover,

max{lm(lm(q1) lm(f1)), lm(lm(q2) lm(f2)), lm(lm(q3) lm(f3))}
= max{D2

1D2, D
2
1D2, D

2
1D2} = lm(f).
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6.3. Gröbner bases of left ideals. Our next purpose is to recall the definition of a

Gröbner basis for the left ideals of the skew PBW extension A = σ(R)〈x1, . . . , xn〉.

Definition 95. Let I 6= 0 be a left ideal of A and let G be a non-empty finite subset

of non-zero polynomials of I. We say that G is a Gröbner basis for I if each element

0 6= f ∈ I is reducible with respect to G.

We will say that {0} is a Gröbner basis for I = 0.

Theorem 96 ([19, Theorem 24]). Let I 6= 0 be a left ideal of A and let G be a finite

subset of non-zero polynomials of I. Then the following conditions are equivalent:

(i) G is a Gröbner basis for I.

(ii) For any polynomial f ∈ A,

f ∈ I if and only if f
G−→+ 0.

(iii) For any 0 6= f ∈ I there exist g1, . . . , gt ∈ G such that lm(gj) | lm(f), 1 ≤ j ≤ t (i.e.,

there exist αj ∈ Nn such that αj + exp(lm(gj)) = exp(lm(f))) and

lc(f) ∈ 〈σα1(lc(g1))cα1,g1 , . . . , σ
αt(lc(gt))cαt,gt}.

(iv) For α ∈ Nn, let 〈α, I} be the left ideal of R defined by

〈α, I} := 〈lc(f) | f ∈ I, exp(lm(f)) = α}.

Then 〈α, I} = J , with

J := 〈σβ(lc(g))cβ,g | g ∈ G, with β + exp(lm(g)) = α}.

From this theorem we get the following consequences.

Corollary 97. Let I 6= 0 be a left ideal of A. Then

(i) If G is a Gröbner basis for I, then I = 〈G}.
(ii) Let G be a Gröbner basis for I. If f ∈ I and f

G−→+ h, with h reduced, then h = 0.

(iii) Let G = {g1, . . . , gt} be a set of non-zero polynomials of I with lc(gi) ∈ R∗ for each

1 ≤ i ≤ t. Then G is a Gröbner basis of I if and only if given 0 6= r ∈ I there exists

i such that lm(gi) divides lm(r).

Proof. (i) This is a direct consequence of Theorem 96.

(ii) Let f ∈ I and f
G−→+ h, with h reduced. Since f − h ∈ 〈G} = I, we have h ∈ I; if

h 6= 0, then h can be reduced by G, but this is not possible since h is reduced.

(iii) If G is a Gröbner basis of I, then given 0 6= r ∈ I, r is reducible with re-

spect to G, hence there exists i such that lm(gi) divides lm(r). Conversely, if this

condition holds for some i, then r is reducible with respect to G since the equation

lc(r) = r1σ
αi(lc(gi)cαi,gi , with αi + exp(lm(gi)) = exp(lm(r)), is soluble with solution

r1 = lc(r)c′αi,gi(σ
αi(lc(gi)))

−1, where c′αi,gi is a left inverse of cαi,gi .

6.4. Buchberger’s algorithm for left ideals. In [19] Buchberger’s algorithm was

constructed for computing Gröbner bases of left ideals for the particular case of quasi-

commutative bijective skew PBW extensions. In this subsection we extend Buchberger’s
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procedure to the general case of bijective skew PBW extensions, i.e., without assum-

ing that they are quasi-commutative. Complementing Remark 89, from now on we will

assume that A = σ(R)〈x1, . . . , xn〉 is bijective.

We start by fixing some notation and proving a key lemma.

Definition 98. Let F := {g1, . . . , gs} ⊆ A, let XF be the least common multiple of

lm(g1), . . . , lm(gs), let θ ∈ Nn, βi := exp(lm(gi)) and γi ∈ Nn be such that γi + βi =

exp(XF ), 1 ≤ i ≤ s. Then BF,θ will denote a finite set of generators of

SF,θ := SyzR[σγ1+θ(lc(g1))cγ1+θ,β1
. . . σγs+θ(lc(gs))cγs+θ,βs

].

For θ = 0 := (0, . . . , 0), SF,θ will be denoted by SF and BF,θ by BF .

Remark 99. Let (b1, . . . , bs) ∈ SF,θ. Since A is bijective, there exists a unique (b′1, . . . , b
′
s)

∈ SF such that bi = σθ(b′i)cθ,γi for 1 ≤ i ≤ s: in fact, the existence and uniqueness

of (b′1, . . . , b
′
s) follow from the bijectivity of A. Now, since (b1, . . . , bs) ∈ SF,θ, we have∑s

i=1 biσ
θ+γi(lc(gi))cθ+γi,βi = 0. Replacing bi by σθ(b′i)cθ,γi in the last equation, we

obtain
s∑
i=1

σθ(b′i)cθ,γiσ
θ+γi(lc(gi))c

−1
θ,γi

cθ,γicθ+γi,βi
= 0;

multiplying by c−1θ,γi+βi
we get

s∑
i=1

σθ(b′i)cθ,γiσ
θ+γi(lc(gi))c

−1
θ,γi

cθ,γicθ+γi,βi
c−1θ,γi+βi

= 0.

Now we can use the identities of Remark 9, so
s∑
i=1

σθ(b′i)σ
θ
(
σγi(lc(gi))

)
σθ(cγi,βi) = 0,

and since σθ is injective, we have
∑s
i=1 b

′
iσ
γi(lc(gi))cγi,βi

= 0, i.e., (b′1, . . . , b
′
s) ∈ SF .

Lemma 100. Let g1, . . . , gs ∈ A, c1, . . . , cs ∈ R − {0} and α1, . . . , αs ∈ Nn be such that

α1 + exp(g1) = · · · = αs + exp(gs) := δ. If lm(
∑s
i=1 cix

αigi) ≺ xδ, then there exist

r1, . . . , rk ∈ R and l1, . . . , ls ∈ A such that

s∑
i=1

cix
αigi =

k∑
j=1

rjx
δ−exp(XF )

( s∑
i=1

bjix
γigi

)
+

s∑
i=1

ligi,

where XF is the least common multiple of lm(g1), . . . , lm(gs), γi ∈ Nn is such that

γi + exp(gi) = exp(XF ), 1 ≤ i ≤ s, and

BF := {b1, . . . ,bk} := {(b11, . . . , b1s), . . . , (bk1, . . . , bks)}.

Moreover, lm(xδ−exp(XF )
∑s
i=1 bjix

γigi) ≺ xδ for every 1 ≤ j ≤ k, and lm(ligi) ≺ xδ for

every 1 ≤ i ≤ s.

Proof. Let xβi := lm(gi) for 1 ≤ i ≤ s. Since xδ = lm(xαi lm(gi)), we have lm(gi) |xδ
and hence XF |xδ, so there exists θ ∈ Nn such that exp(XF ) + θ = δ. On the other

hand, γi + βi = exp(XF ) and αi + βi = δ, so αi = γi + θ for every 1 ≤ i ≤ s.

Now, lm(
∑s
i=1 cix

αigi) ≺ xδ implies that
∑s
i=1 ciσ

αi(lc(gi))cαi,βi
= 0. So we have
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i=1 ciσ

θ+γi(lc(gi))cθ+γi,βi = 0. This implies that (c1, . . . , cs) ∈ SF,θ; from Remark

99 we know that there exists a unique (c′1, . . . , c
′
s) ∈ SF such that ci = σθ(c′i)cθ,γi . Then

s∑
i=1

cix
αigi =

s∑
i=1

σθ(c′i)cθ,γix
αigi.

Now,

xθc′ix
γi = (σθ(c′i)x

θ + pc′i,θ)x
γi = σθ(c′i)x

θxγi + pc′i,θx
γi

= σθ(c′i)cθ,γix
θ+γi + σθ(c′i)pθ,γi + pc′i,θx

γi = σθ(c′i)cθ,γix
θ+γi + p′i

where p′i := σθ(c′i)pθ,γi + pc′i,θx
γi ; note that p′i = 0 or lm(p′i) ≺ xθ+γi for each i. Thus,

σθ(c′i)cθ,γix
θ+γi = xθc′ix

γi + pi, with pi = 0 or lm(pi) ≺ xθ+γi . Hence,
s∑
i=1

cix
αigi =

s∑
i=1

σθ(c′i)cθ,γix
αigi =

s∑
i=1

(xθc′ix
γi + pi)gi =

s∑
i=1

xθc′ix
γigi +

s∑
i=1

pigi,

with pigi = 0 or lm(pigi) ≺ xθ+γi+βi = xδ. On the other hand, since (c′1, . . . , c
′
s) ∈ SF ,

there exist r′1, . . . , r
′
k ∈ R such that (c′1, . . . , c

′
s) = r′1b1 + · · ·+ r′kbk = r′1(b11, . . . , b1s) +

· · ·+ r′k(bk1, . . . , bks), thus c′i =
∑k
j=1 r

′
jbji. Using this, we have

s∑
i=1

xθc′ix
γigi =

s∑
i=1

xθ
( k∑
j=1

r′jbji

)
xγigi =

s∑
i=1

( k∑
j=1

xθr′jbji

)
xγigi

=

s∑
i=1

( k∑
j=1

(σθ(r′j)x
θ + pr′j ,θ)bji

)
xγigi

=

s∑
i=1

( k∑
j=1

σθ(r′j)x
θbjix

γigi +

k∑
j=1

pr′j ,θbjix
γigi

)

=

k∑
j=1

s∑
i=1

σθ(r′j)x
θbjix

γigi +

s∑
i=1

k∑
j=1

pr′j ,θbjix
γigi

=

k∑
j=1

σθ(r′j)x
θ

s∑
i=1

bjix
γigi +

s∑
i=1

qigi,

where qi :=
∑k
j=1 pr′j ,θbjix

γi = 0 or lm(qi) ≺ xθ+γi . Therefore,

s∑
i=1

cix
αigi =

k∑
j=1

rjx
θ

s∑
i=1

bjix
γigi +

s∑
i=1

ligi,

with li := pi + qi for 1 ≤ i ≤ s and rj := σθ(r′j) for 1 ≤ j ≤ k. Finally, it is easy to

see that lm(xθ
(∑s

i=1 bjix
γigi)) ≺ xδ since lm(

∑s
i=1 bjix

γigi) ≺ xγi+βi , and lm(ligi) =

lm(pigi + qigi) ≺ xδ.

With the notation of Definition 98 and Lemma 100, we can prove the main result of

the present section.

Theorem 101. Let I 6= 0 be a left ideal of A and let G be a finite subset of non-zero

generators of I. Then the following conditions are equivalent:
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(i) G is a Gröbner basis of I.

(ii) For all F := {g1, . . . , gs} ⊆ G, and for any (b1, . . . , bs) ∈ BF ,

s∑
i=1

bix
γigi

G−→+ 0.

Proof. (i)⇒(ii): We observe that f :=
∑s
i=1 bix

γigi ∈ I, so by Theorem 96, f
G−→+ 0.

(ii)⇒(i): Let 0 6= f ∈ I. We will prove that condition (iii) of Theorem 96 holds. Let

G := {g1, . . . , gt}. Then there exist h1, . . . , ht ∈ A such that f = h1g1 + · · · + htgt, and

we can choose {hi}ti=1 such that

xδ := max{lm(lm(hi) lm(gi))}ti=1

is minimal. Let lm(hi) := xαi , ci := lc(hi), lm(gi) = xβi for 1 ≤ i ≤ t and F := {gi ∈ G |
lm(lm(hi) lm(gi)) = xδ}. Renumbering the elements of G we can assume that F =

{g1, . . . , gs}. We will consider two possible cases:

Case 1: lm(f) = xδ. Then lm(gi) | lm(f) for 1 ≤ i ≤ s and

lc(f) = c1σ
α1(lc(g1))cα1,β1

+ · · ·+ csσ
αs(lc(gs))cαs,βs

,

as required.

Case 2: lm(f) ≺ xδ. We will prove that this produces a contradiction. To begin, note

that f can be written as

f =

s∑
i=1

cix
αigi +

s∑
i=1

(hi − cixαi)gi +

t∑
i=s+1

higi; (6.2)

we have lm((hi − cix
αi)gi) ≺ xδ for every 1 ≤ i ≤ s and lm(higi) ≺ xδ for every

s+ 1 ≤ i ≤ t, so

lm
( s∑
i=1

(hi − cixαi)gi

)
≺ xδ and lm

( t∑
i=s+1

higi

)
≺ xδ,

and hence lm(
∑s
i=1 cix

αigi) ≺ xδ. By Lemma 100 (and its notation), we have

s∑
i=1

cix
αigi =

k∑
j=1

rjx
δ−exp(XF )

( s∑
i=1

bjix
γigi

)
+

s∑
i=1

ligi, (6.3)

where lm(xδ−exp(XF )
∑s
i=1 bjix

γigi) ≺ xδ for every 1 ≤ j ≤ k and lm(ligi) ≺ xδ for

1 ≤ i ≤ s. By the hypothesis,
∑s
i=1 bjix

γigi
G−→+ 0, whence, by Theorem 93, there exist

q1, . . . , qt ∈ A such that
∑s
i=1 bjix

γigi =
∑t
i=1 qigi, with

lm
( s∑
i=1

bjix
γigi

)
= max{lm(lm(qi) lm(gi))}ti=1.

But (bj1, . . . , bjs) ∈ BF , so lm(
∑s
i=1 bjix

γigi) ≺ XF and hence lm(lm(qi) lm(gi)) ≺ XF
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for every 1 ≤ i ≤ t. Thus,

k∑
j=1

rjx
δ−exp(XF )

( s∑
i=1

bjix
γigi

)
=

k∑
j=1

rjx
δ−exp(XF )

( t∑
i=1

qigi

)

=

t∑
i=1

k∑
j=1

rjx
δ−exp(XF )qigi =

t∑
i=1

q̃igi,

with q̃i :=
∑k
j=1 rjx

δ−exp(XF )qi and lm(q̃igi) ≺ xδ for every 1 ≤ i ≤ t. Substituting∑s
i=1 cix

αigi =
∑t
i=1 q̃igi +

∑s
i=1 ligi into equation (6.2), we obtain

f =

t∑
i=1

q̃igi +

s∑
i=1

(hi − cixαi)gi +

s∑
i=1

ligi +

t∑
i=s+1

higi,

and so we have expressed f as a combination of polynomials g1, . . . , gt, where every

term has leading monomial ≺ xδ. This contradicts the minimality of xδ and finishes the

proof.

Corollary 102. Let F = {f1, . . . , fs} be a set of non-zero polynomials of A. The algo-

rithm below produces a Gröbner basis for the left ideal 〈F} of A (here P (X) denotes the

set of subsets of a set X):

Buchberger’s algorithm for bijective skew PBW extensions

INPUT: F := {f1, . . . , fs} ⊆ A, fi 6= 0, 1 ≤ i ≤ s
OUTPUT: G = {g1, . . . , gt} a Gröbner basis for 〈F}
INITIALIZATION: G := ∅, G′ := F
WHILE G′ 6= G DO

D := P (G′)− P (G)

G := G′

FOR each S := {gi1 , . . . , gik} ∈ D DO

Compute BS

FOR each b = (b1, . . . , bk) ∈ BS DO

Reduce
∑k
j=1 bjx

γjgij
G′−→+ r, with r reduced with respect to G′ and γj defined as

in Definition 98
IF r 6= 0 THEN
G′ := G′ ∪ {r}

From Theorem 14 and the previous corollary we get the following direct conclusion.

Corollary 103. Each left ideal of A has a Gröbner basis.

6.5. Gröbner bases of modules. In this subsection we present the general theory of

Gröbner bases for submodules of Am, m ≥ 1, where A = σ(R)〈x1, . . . , xn〉 is a bijective

skew PBW extension of R, with R an LGS ring (see Definition 88) and Mon(A) endowed

with some monomial order (see Definition 83). Am is the left free A-module of column

vectors of length m ≥ 1; since A is a left Noetherian ring (Theorem 14), A is an IBN

ring (Invariant Basis Number, see [32]), and hence all bases of the free module Am have

m elements. Note moreover that Am is left Noetherian, and hence any submodule of Am
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is finitely generated. This theory was studied in [25] and [26], but now we will extend

Buchberger’s algorithm to the general bijective case without assuming that A is quasi-

commutative. The results presented in this section are an easy generalization of those of

the previous sections, i.e., taking m = 1 we get the theory of Gröbner bases for the left

ideals of A developed before. We will omit the proofs since most of them can be found

in [25] and [26] or they are an easy adaptation of those of the previous sections. The

theory presented in this section has also been studied by Gómez-Torrecillas et al. (see [6],

[7]) for left PBW algebras over division rings and assuming some special commutativity

conditions.

6.5.1. Monomial orders on Mon(Am). In this subsection we will represent the ele-

ments of Am as row vectors. We recall that the canonical basis of Am is

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , em = (0, 0, . . . , 1).

Definition 104. A monomial in Am is a vector X = Xei, where X = xα ∈ Mon(A)

and 1 ≤ i ≤ m, i.e.,

X = Xei = (0, . . . , X, . . . , 0),

where X is in the ith position, named the index of X, ind(X) := i. A term is a vector

cX, where c ∈ R. The set of monomials of Am will be denoted by Mon(Am). Let Y =

Y ej ∈ Mon(Am). We say that X divides Y if i = j and X divides Y . We will say that

any monomial X ∈ Mon(Am) divides the null vector 0. The least common multiple of X

and Y, denoted by lcm(X,Y), is 0 if i 6= j, and Uei, where U = lcm(X,Y ), if i = j.

Finally, we let exp(X) := exp(X) = α and deg(X) := deg(X) = |α|.

We now define monomials orders on Mon(Am).

Definition 105. A monomial order on Mon(Am) is a total order � satisfying:

(i) lm(xβxα)ei � xαei for every monomial X = xαei ∈ Mon(Am) and any monomial xβ

in Mon(A).

(ii) If Y = xβej � X = xαei, then lm(xγxβ)ej � lm(xγxα)ei for every monomial

xγ ∈ Mon(A).

(iii) � is degree compatible, i.e., deg(X) ≥ deg(Y)⇒ X � Y.

If X � Y but X 6= Y we will write X � Y, and Y � X means that X � Y.

Proposition 106. Every monomial order on Mon(Am) is a well-order.

Given a monomial order � on Mon(A), we can define two natural orders on Mon(Am).

Definition 107. Let X = Xei and Y = Y ej ∈ Mon(Am).

(i) The TOP (term over position) order is defined by

X � Y ⇔


X � Y
or

X = Y and i > j.
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(ii) The TOPREV order is defined by

X � Y ⇔


X � Y
or

X = Y and i < j.

Remark 108. (i) Note that

em � em−1 � · · · � e1 for TOP,

e1 � e2 � · · · � em for TOPREV.

(ii) The POT (position over term) and POTREV orders defined in [1] and [30] for

modules over classical polynomial commutative rings are not degree compatible.

(iii) Other examples of monomial orders on Mon(Am) are considered in [7], e.g., orders

with weight.

Fix a monomial order on Mon(A). Let f 6= 0 be a vector of Am. Then we may write

f as a sum of terms in the following way:

f = c1X1 + · · ·+ ctXt,

where c1, . . . , ct ∈ R− 0 and X1 � · · · � Xt are monomials in Mon(Am).

Definition 109. With the above notation, we say that:

(i) lt(f) := c1X1 is the leading term of f .

(ii) lc(f) := c1 is the leading coefficient of f .

(iii) lm(f) := X1 is the leading monomial of f .

For f = 0 we define lm(0) = 0, lc(0) = 0, lt(0) = 0, and if � is a monomial or-

der on Mon(Am), then we define X � 0 for any X ∈ Mon(Am). So, we extend � to

Mon(Am) ∪ {0}.

6.5.2. Division algorithm and Gröbner bases for submodules of Am. The reduc-

tion process, Theorem 93 and the division algorithm for left ideals can be easily adapted

for submodules of Am.

Definition 110. Let M 6= 0 be a submodule of Am and let G be a non-empty finite

subset of non-zero vectors of M . We say that G is a Gröbner basis for M if each element

0 6= f ∈M is reducible with respect to G.

We will say that {0} is a Gröbner basis for M = 0.

Theorem 111 ([26]). Let M 6= 0 be a submodule of Am and let G be a finite subset of

non-zero vectors of M . Then the following conditions are equivalent:

(i) G is a Gröbner basis for M .

(ii) For any vector f ∈ Am,

f ∈M if and only if f
G−→+ 0.

(iii) For any 0 6= f ∈ M there exist g1, . . . ,gt ∈ G such that lm(gj) | lm(f), 1 ≤ j ≤ t,

(i.e., ind(lm(gj)) = ind(lm(f)) and there exist αj ∈ Nn such that αj+exp(lm(gj)) =
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exp(lm(f))) and

lc(f) ∈ 〈σα1(lc(g1))cα1,g1 , . . . , σ
αt(lc(gt))cαt,gt}.

(iv) For α ∈ Nn and 1 ≤ u ≤ m, let 〈α,M}u be the left ideal of R defined by

〈α,M}u := 〈lc(f) | f ∈M, ind(lm(f)) = u, exp(lm(f)) = α}.

Then 〈α,M}u = Ju, with

Ju := 〈σβ(lc(g))cβ,g | g ∈ G, ind(lm(g)) = u and β + exp(lm(g)) = α}.

From this theorem we get the following consequences.

Corollary 112. Let M 6= 0 be a submodule of Am. Then

(i) If G is a Gröbner basis for M , then M = 〈G〉.
(ii) Let G be a Gröbner basis for M . If f ∈M and f

G−→+ h, with h reduced, then h = 0.

(iii) Let G = {g1, . . . ,gt} be a set of non-zero vectors of M with lc(gi) ∈ R∗ for each

1 ≤ i ≤ t. Then G is a Gröbner basis of M if and only if given 0 6= r ∈ M there

exists i such that lm(gi) divides lm(r).

Proof. The proof is an easy adaptation of the proof of Corollary 97.

Note that the remainder of f ∈ Am with respect to a Gröbner basis is not unique.

Moreover, if the term order is changed, a Gröbner basis may not be a Gröbner basis

any further. In fact, a counterexample was given in [30] for the trivial case when A =

R[x1, . . . , xn] is the commutative polynomial ring.

6.5.3. Buchberger’s algorithm for modules. Recall that we are assuming that A is

a bijective skew PBW extension. We will observe that every submodule M of Am has

a Gröbner basis, and we will construct the Buchberger algorithm for computing such

bases. The results obtained here improve those of [26] and [25] and generalize the results

obtained in Section 6.4 for left ideals.

We start by fixing some notation and proving a preliminary general result.

Definition 113. Let F := {g1, . . . ,gs} ⊆ Am be such that the least common multiple

of lm(g1), . . . , lm(gs), denoted by XF , is non-zero. Let θ ∈ Nn, βi := exp(lm(gi)) and

γi ∈ Nn be such that γi + βi = exp(XF ), 1 ≤ i ≤ s. Then BF,θ will denote a finite set of

generators of

SF,θ := SyzR[σγ1+θ(lc(g1))cγ1+θ,β1
· · · σγs+θ(lc(gs))cγs+θ,βs

].

For θ = 0 := (0, . . . , 0), SF,θ will be denoted by SF and BF,θ by BF .

Lemma 114. Let g1, . . . ,gs ∈ Am, c1, . . . , cs ∈ R−{0} and α1, . . . , αs ∈ Nn be such that

lm(xα1 lm(g1)) = · · · = lm(xαs lm(gs)) =: Xδ. If lm(
∑s
i=1 cix

αigi) ≺ Xδ, then there

exist r1, . . . , rk ∈ R and l1, . . . , ls ∈ A such that

s∑
i=1

cix
αigi =

k∑
j=1

rjx
δ−exp(XF )

( s∑
i=1

bjix
γigi

)
+

s∑
i=1

ligi,

where γi ∈ Nn is such that γi + exp(gi) = exp(XF ), 1 ≤ i ≤ s, and

BF := {b1, . . . ,bk} := {(b11, . . . , b1s), . . . , (bk1, . . . , bks)}.
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Moreover, lm(xδ−exp(XF )
∑s
i=1 bjix

γigi) ≺ Xδ for every 1 ≤ j ≤ k, and lm(ligi) ≺ Xδ

for every 1 ≤ i ≤ s.

Proof. It is easy to adapt the proof of Lemma 100.

Theorem 115. Let M 6= 0 be a submodule of Am and let G be a finite subset of non-zero

generators of M . Then the following conditions are equivalent:

(i) G is a Gröbner basis of M .

(ii) For all F := {g1, . . . ,gs} ⊆ G, with XF 6= 0, and for any (b1, . . . , bs) ∈ BF ,
s∑
i=1

bix
γigi

G−→+ 0.

Proof. See the proof of Theorem 101.

Corollary 116. Let F = {f1, . . . , fs} be a set of non-zero vectors in Am. The algorithm

below produces a Gröbner basis for the submodule 〈f1, . . . , fs〉 (again P (X) denotes the

set of subsets of a set X):

Buchberger’s algorithm for modules over bijective skew PBW extensions

INPUT: F := {f1, . . . , fs} ⊆ Am, fi 6= 0, 1 ≤ i ≤ s
OUTPUT: G = {g1, . . . ,gt} a Gröbner basis for 〈F 〉
INITIALIZATION: G := ∅, G′ := F
WHILE G′ 6= G DO

D := P (G′)− P (G)

G := G′

FOR each S := {gi1 , . . . ,gik} ∈ D, with XS 6= 0, DO

Compute BS

FOR each b = (b1, . . . , bk) ∈ BS DO

Reduce
∑k
j=1 bjx

γjgij
G′−→+ r, with r reduced with respect to G′ and γj defined

as in Definition 113
IF r 6= 0 THEN
G′ := G′ ∪ {r}

From Theorem 14 and the previous corollary we get the following direct conclusion.

Corollary 117. Every submodule of Am has a Gröbner basis.

Example 118. We will illustrate the above algorithm with the bijective skew PBW

extension R of Example 21. For computational reasons, we rewrite the generators and

relations for this algebra in the following way:

x := b, y := a, z := c, w := d

and

yx = q−1xy, wx = qxw, zy = qyz, wz = qzw,

zx = µ−1xz, wy = yw + (q − q−1)xz,

and therefore R ∼= σ(k[x])〈y, z, w〉. On Mon(R) we consider the deglex order with y �
z � w, and on Mon(A2) the TOPREV order, whence e1 > e2. Moreover, we will take
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K = Q, µ = 1
2 and q = 2

3 . From the above relations, we obtain σ1(x) = 3
2x, σ2(x) = 2x

and σ3(x) = 2
3x. Let f1 = xywe1 + we2 and f2 = zwe1 + xye2. We will construct a

Gröbner basis for M := 〈f1, f2〉:

Step 1. We start with G := ∅, G′ := {f1, f2}. Since G′ 6= G, we set D := P (G′)−P (G),

i.e., D := {S1, S2, S1,2}, where S1 := {f1}, S2 := {f2}, S1,2 := {f1, f2}. We also set

G := G′, and for every S ∈ D such that XS 6= 0 we compute BS :

• For S1 we have SyzQ[x][σ
γ1(lc(f1))cγ1,β1

], where β1 = exp(lm(f1)) = (1, 0, 1), γ1 =

(0, 0, 0) and cγ1,β1
= 1; thus BS1

= {0} and we do not add any vector to G′.

• For S2 we have an identical situation.

• For S1,2 we have X1,2 = lcm(lm(f1), lm(f2)) = yzwe1, thus γ1 = (0, 1, 0) and

γ2 = (1, 0, 0). Since zyw = 2
3yzw, we find cγ1,β1 = 2

3 and σγ1(lc(f1)) = σ2(x) = 2x.

Analogously, cγ2,β2
= 1 and σγ2(lc(f2)) = σ1(x2) = 9

4x
2. Hence, we must compute a

system of generators for SyzQ[x]

[
4
3x,

9
4x

2
]
. Such generator set can be BS1,2 =

{(
3
4x,−

4
9

)}
.

From this we get

3
4xzf1 −

4
9yf2 = 3

4xz(xywe1 + we2)− 4
9y(x2zwe1 + xye2)

= x2zywe1 + 3
4xzwe2 − x2yzwe1 − 2

3xy
2e2 = − 2

3xy
2e2 + 3

4xzwe2 := f3,

Observe that f3 is reduced with respect to G′. We set G′ := {f1, f2, f3}.

Step 2. Since G = {f1, f2} 6= G′ = {f1, f2, f3}, we set D := P(G′) − P(G), i.e.,

D := {S3, S1,3, S2,3, S1,2,3}, where S1 := {f1}, S1,3 := {f1, f3}, S2,3 := {f2, f3}, S1,2,3 :=

{f1, f2, f3}. We further set G := G′, and for every S ∈ D such that XS 6= 0 we must

compute BS . Since XS1,3
= XS2,3

= XS1,2,3
= 0, we only need to consider S3.

• We have to compute

SyzQ[x][σ
γ3(lc(f3))cγ3,β3

],

where β3 = exp(lm(f3)) = (2, 0, 0), XS3 = lcm{lm(f3)} = lm(f3) = y2e2, exp(XS3) =

(0, 2, 0), γ3 = exp(XS3
)− β3 = (0,0, 0), xγ3xβ3 = y2, so cγ3,β3

= 1. Hence

σγ3(lc(f3))cγ3,β3 = σγ3(− 2
3x)1 = σ0

2σ
0
3(− 2

3x) = − 2
3x

and SyzQ[x]

[
− 2

3x
]

= {0}, i.e., BS3
= {0}. This means that we do not add any vector

to G′, and hence G = {f1, f2, f3} is a Gröbner basis for M .

Remark 119. There are some classical and elementary applications of Gröbner theory

that we will study in a forthcoming paper; for example, we can solve the membership

problem, we can compute the syzygy module, the intersection and the quotient of ideals

and submodules, the matrix presentation of a finitely presented module, the kernel and

the image of homomorphism between modules, the one-sided inverse of a matrix, etc. With

this, we can make constructive the theory of projective modules, stably free modules and

Hermite rings studied in the present work.
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Projective modules and Gröbner bases for skew PBW extensions 49

[26] H. Jiménez and O. Lezama, Gröbner bases of modules over σ-PBW extensions, Acta Math.

Acad. Paedagog. Nyházi. (N.S.) 32 (2016), 39–66.

[27] T. Y. Lam, Serre’s Problem on Projective Modules, Springer Monogr. Math., Springer,

2006.

[28] S. Lang, Algebra, 3rd ed., Springer, 2002.

[29] V. Levandovskyy, Non-commutatve computer algebra for polynomial algebras: Gröbner
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