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ABSTRACT
Brillinger defined dynamic principal components (DPC) for time series based on a reconstruction criterion.
He gave a very elegant theoretical solution and proposed an estimator which is consistent under station-
arity. Here, we propose a new enterally empirical approach to DPC. The main differences with the existing
methods—mainly Brillinger procedure—are (1) theDPCweproposeneednot be a linear combinationof the
observations and (2) it can be based on a variety of loss functions including robust ones. Unlike Brillinger,
we do not establish any consistency results; however, contrary to Brillinger’s, which has a very strong sta-
tionarity flavor, our concept aims at a better adaptation to possible nonstationary features of the series.
We also present a robust version of our procedure that allows to estimate the DPC when the series have
outlier contamination. We give iterative algorithms to compute the proposed procedures that can be used
with a large number of variables. Our nonrobust and robust procedures are illustrated with real datasets.
Supplementary materials for this article are available online.

1. Introduction

Dimension reduction is very important in vector time series
because the number of parameters in a model grows very fast
with the dimension m of the vector of time series. There-
fore, finding simplifying structures or factors in these mod-
els is important to reduce the number of parameters required
to apply them to real data. Besides, these factors, as we will
see in this article, may allow to reconstruct with a small error
the datasets and therefore to reduce the amount of informa-
tion to be stored. Dimension reduction is usually achieved by
finding linear combinations of the time series variables which
have interesting properties. Suppose the time series vector zt =
(z1,t , . . . , zm,t ), where 1 ≤ t ≤ T, and we assume, for sim-
plicity, that z = T−1∑T

t=1 zt , which will estimate the mean
if the process is stationary, is zero and Z the T × m matrix
whose rows are z1, . . . , zT . Let C = Z′Z/T, be the sample
covariance matrix, λ1 ≥ λ2 . . . ≥ λm eigenvalues ofC and v̂i =
(̂v1,i, . . . , v̂m,i)

′, 1 ≤ i ≤ m, the corresponding eigenvectors
satisfying v′

iv′
j = δi j. Then,

p̂i = ( p̂i,1, . . . , p̂i,T )′ = Ẑvi, 1 ≤ i ≤ m (1)

is the ith principal component of C. Let k < m, P̂k the k × T
matrix with rows equal p′

1, . . . ,p′
k and call V̂k them × kmatrix

whose ith row is v′
i. Let Pk = (pi,t ) be any k × T matrix and

Vk = (v j,i) any m × kmatrix and suppose that we reconstruct
all the data z j,t using the k columns ofVk by

∑k
i=1 v j,i pi,t . Then,

the mean squared error of the reconstructed series is

MSE(Pk,Vk) = (1/mT )
m∑
j=1

T∑
t=1

(
z j,t −

k∑
i=1

v j,i pi,t

)2

.
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Okamoto and Kanasawa (1968) showed that

(P̂k, V̂k) = arg min
Pk∈Rk×T ,Vk∈Rm×k

MSE(Pk,Vk). (2)

Note that in (2), the minimization is performed on all possible
k × mmatrices Pk, and therefore it is not required that the ele-
ment pi,t of Pk are linear combinations of zt . However, the ele-
ments of the optimal matrix P̂k given by (1) have this property.
One drawback of this reconstruction is that it is static, that is,
to reconstruct an observation of period t only the values of the
components in that period are used.

Ku, Storer, and Georgakis (1995) proposed to apply classi-
cal principal components to the augmented observations z∗

t =
(z′

t−h, z
′
t−h+1, . . . , z

′
t )

′, h + 1 ≤ t ≤ T, that includes the values
of the series up to lag h.These principal components provide lin-
ear combinations of the present and past values of the time series
with largest variance. However, it is not clear from their defini-
tion that these principal components have good reconstruction
properties.

An alternative way to find interesting linear combinations
was proposed by Box and Tiao (1977) who suggested maximiz-
ing the predictability of the linear combinations ct = γ ′zt . Other
linear methods for dimension reduction in time series models
have been given by the scalar component models, SCM (Tiao
and Tsay 1989) and the reduced-rank models (Ahn and Reinsel
1990; Reinsel and Velu 1998).

Brillinger (1981) addressed the reconstruction problem as
follows. Suppose zero mean m dimensional stationary process
{zt} , −∞ < t < ∞. The dynamic principal components are
defined by searching for m × 1 vectors ch,−∞ < h < ∞ and
β j,−∞ < j < ∞, so that if we consider as first principal com-
ponent the linear combination

©  American Statistical Association

http://dx.doi.org/10.1080/01621459.2015.1072542
mailto:victoryohai@gmail.com
http://www.tandfonline.com/r/JASA


1122 D. PEÑA AND V. J. YOHAI

ft =
∞∑

h=−∞
c′
hzt−h, (3)

then

E

⎡⎣⎛⎝zt −
∞∑

j=−∞
β j ft+ j

⎞⎠′⎛⎝zt −
∞∑

j=−∞
β j ft+ j

⎞⎠⎤⎦ (4)

isminimum.Brillinger elegantly solved this problemby showing
that ck is the inverse Fourier transform of the principal compo-
nents of the cross spectral matrices for each frequency, and β j
is the inverse Fourier transform of the conjugates of the same
principal components. See Brillinger (1981) and Shumway and
Stoffer (2000) for the details of the method. Note that when this
procedure is adapted to finite samples the number of lags in
(3) and in the reconstruction of the series should be truncated.
We can mention two shortcomings of Brillinger’s procedure: (1)
Brillinger’s procedure can be used with nonstationary series, but
in this case the mean square error of the reconstructed series
may not be close to its possible minimum value (2) it is not clear
how to robustify these principal components using a reconstruc-
tion criterion.

A related line of research are factor models for time series.
Static factor models assume a contemporaneous relationship
between the series and a small number of factors. Some of these
models assume stationarity (Peña and Box 1987; Stock andWat-
son 1988, 2002; Bai andNg 2002, and Lam and Yao 2012, among
others). All these models use the eigenvalues of the lag covari-
ancematrices of the process and are related to the principal com-
ponents (PC) of the time series. Some generalizations to the
nonstationary case are Peña and Poncela (2006) for integrated
processes, Pan and Yao (2008) for general nonstationary pro-
cesses and Motta, Hafner and von Sachs (2011) and Motta and
Ombao (2012) for locally stationary processes.

Dynamic factor models are closely related to dynamic prin-
cipal components (DPC), because they assume that one impor-
tant part of the original series can be explained in a dynamic
way by a relatively small number of common factors. Forni et al.
(2000) proposed a very general dynamic factor model allowing
for an infinite number of factor lags and low correlation between
any two idiosyncratic components. They showed that the com-
mon component of the series can be consistently estimated by
increasing the number of series to infinity. This estimator is
obtained by projecting the data in the first q dynamic princi-
pal components which include leads and lags. These principal
components are obtained as in Brillinger by the Fourier trans-
forms of the eigenvectors of the spectral matrix. This model was
applied for prediction by Forni et al. (2005), where the authors
proposed a one-sided method of estimation of a dynamic fac-
tor model for forecasting. The forecasts generated with this pro-
cedure improve the ones derived by Stock and Watson (2002)
using static principal components. Forni et al. (2009) proposed
amodel that can be seen either as a static model with r factors or
as a dynamic model with q factor with q < r and develop esti-
mationmethods for the factor structure with finite-dimensional
factor space. Forni and Lippi (2011) proposed a one-sided
solution for the general dynamic factor model of Forni et al.
(2000). Forni et al. (2015) proposed a model with possibly

infinite-dimensional factor spaces and obtained a one-sided
representation for the dynamic factor model. While some of
these models (Stock and Watson 1998, 2002; Bai and Ng 2002;
Forni et al. 2009) make assumptions on the relation between the
series under study and the way factors are loaded, other ones
(Forni et al. 2000; Forni et al. 2015) do notmake any assumption
of that type. Hallin and Lippi (2013) give a general presentation
of the methodological foundations of dynamic factor models.

The procedure we propose is different from these approaches
as follows: (1) it is entirely data-analytic and does not assume any
given model; (2) it does not assume a fixed number of factors
to be identified. Instead, the number of components is chosen
to achieve a desired degree of accuracy in the reconstruction of
the original series. These differences are the usual ones between
the two classical approaches for dimension reduction: principal
components and factor models.

In this article, we address the sample reconstruction of a vec-
tor of time series from theDPCs by using a finite number of lags.
Even if we do not prove consistency, some interesting features of
our procedure with respect to previous ones are: (1) the DPCwe
propose do not need to be a linear or stationary combination of
the data and consequently, it may lead to a better adaptation to
a possible nonstationary behavior of the series and (2) it can be
easily robustified by changing the loss function to minimize, for
example, from the mean square error criterion to a robust scale.

The rest of this article is organized as follows. In Section 2,
we describe the proposed dynamic principal components of a
vector time series based on a reconstruction criterion. In Sec-
tion 3, we study the particular case where the proposed dynamic
principal components depend only on one lag. In Section 4, we
show the results of a Monte Carlo study that compares the pro-
posed dynamic principal components procedure with the ordi-
nary principal components used in a dynamic way and with the
Brillinger’s DPC procedure. The comparison is done for both:
stationary and nonstationary series. We also compare our pro-
cedure with the one developed by Forni et al. (2009) for the fac-
tor models introduced in this work. We show the good perfor-
mance of our proposal in all these models, including the case
of very large number of series. We also apply our procedure to
two nonstationary vector time series real examples. In Section 5,
we define robust dynamic principal components using a robust
reconstruction criterion and illustrate in one example the good
performance of this estimator to drastically reduce the influence
of outliers. In Section 6, some final conclusions are presented.
Supplemental material containing mathematical derivations is
available online.

2. Finding Time Series with Optimal Reconstruction
Properties

Suppose that we observe z j,t , 1 ≤ j ≤ m, 1 ≤ t ≤ T, and
consider two integer numbers k1 ≥ 0 and k2 ≥ 0. We can
define the first dynamic principal component with k1 lags
and k2 leads as a vector f =( ft )−k1+1≤t≤T+k2 , so that the
reconstruction of series z j,t , 1 ≤ j ≤ m, as a linear combina-
tion of ( ft−k1, ft−k1+1, . . . . ft , ft+1, . . . , ft+k2 ) is optimal with
the mean square error (MSE) criterion. More precisely, given
a possible factor f, a m × (k1 + k2) matrix of coefficients
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γ = (γ j,i)1≤ j≤m,−k1≤i≤k2 , and α = (α1, . . . , αm), the recon-
struction of the original series z j,t is defined as

ẑ j,t =
k2∑

i=−k1

γ j,i ft+i + α j.

Let k = k1 + k2 and put

f ∗
t = ft−k1 , 1 ≤ t ≤ T + k, β∗

j,h = γ j,h−k1−1, 1 ≤ h ≤ k + 1.

and also define

f ∗∗
t = f ∗

t+k, 1 − k ≤ t ≤ T,
β∗∗
j,h = β∗

j,k+2−h, 1 ≤ h ≤ k + 1. (5)

Then, the reconstructed series can also be obtained as

ẑ j,t =
k∑

i=−k1

β j,i ft+i+k1 + α j =
k∑

h=0

β∗
j,h+1 f

∗
t+h + α j

=
k∑

h=0

β∗∗
j,h+1, f

∗∗
t−h + α j.

Then, without generality we can use indistinctly k lags or k leads
of the principal component to reconstruct the series. Although
the reconstruction of the series with k lags is intuitively more
appealing, we will derive the optimal solution for the case of k
leads. The reason for this is that to derive the optimal solution
using lags requires to dealwithmore cumbersome equations due
to the occurrence of negative subscripts. Anyway, once obtained
the forward optimal solution we can immediately obtain the
backward one using (5).

Let f = ( f1, . . . , fT+k)
′, β = (β j,i)1≤ j≤m,1≤i≤k+1 and

α = (α1, . . . αm), then the MSE loss function when we recon-
struct them series using k leads is given by

MSE(f, β, α) = 1
Tm

m∑
j=1

T∑
t=1

(z j,t − ẑ j,t (f, β j, α j))
2

= 1
Tm

m∑
j=1

T∑
t=1

(
z j,t −

k∑
i=0

β j,i+1 ft+i − α j

)2

.

(6)

Note that this loss function is well defined and makes sense
even in the case of nonstationary vector time series. The opti-
mal choices of f = ( f1, . . . , fT+k)

′ and β = (β j,i)1≤ j≤m,1≤i≤k+1,
α = (α1, . . . αm) are defined by

(̂f,β̂, α̂) = arg min
f∈RT+k,β∈Rm×(k+1),α∈Rm

MSE(f, β, α). (7)

Clearly if f is optimal, γ f+δ is optimal too. Thus, we can choose
f so that

∑T+k
t=1 ft = 0 and (1/(T + k))

∑T+k
t=1 f 2t = 1.We call

f̂the first DPC of order k of the observed series z1, . . . , zt . Note
that the firstDPCof order 0 corresponds to the first regular prin-
cipal component of the data.

Let C j(α j) = (c j,t,q(α j))1≤t≤T+k,1≤q≤k+1 be the (T + k)×
(k + 1)matrix defined by

c j,t,q(α j) ={
(z j,t−q+1 − α j) if 1 ∨ (t − T + 1) ≤ q ≤ (k + 1) ∧ t
0 if otherwise ,

(8)

where a ∨ b = max(a, b)and a ∧ b = min(a, b). Let D j(β j) =
(d j,t,q(β j)) be the (T + k)× (T + k) given by

d j,t,q(β j) =
t∧T∑

v=(t−k)∨1
β j,q−v+1β j,t−v+1

if (t − k) ∨ 1 ≤ q ≤ (t + k) ∧ (T + k) and 0 otherwise
and

D(β) =
m∑
j=1

D j(β j). (9)

Differentiating (6) with respect to ft in Section 1 of the supple-
mental material we derive the following equation:

f = D(β)−1
m∑
j=1

C j(α)β j. (10)

Obviously, the coefficients β j and α j, 1 ≤ j ≤ m, can be
obtained using the least-squares estimator, that is,(

β j
α j

)
= (

F(f)′F(f)
)−1 F(f)′ z( j), (11)

where z( j) = (z j,1, . . . , z j,T )′ andF(f) is theT × (k + 2)matrix
with tth row ( ft , ft+1, . . . , ft+k, 1).Then, the first DPC is deter-
mined by Equations (10) and (11).The secondDPC is defined as
the first DPC of the residuals r j,t (f, β). Higher order DPC are
defined in a similar manner.

2.1 Computational Algorithm for the DPC

To define an iterative algorithm to compute (̂f,β̂,α̂) is enough to
give f (0) and a rule describing how to compute β(h), α(h), f (h+1)

once f (h) is known. The following two steps based on (10) and
(11) describe a natural rule to perform this recursion.

Step 1. Based on (11), define β(h)j and α(h)j , for 1 ≤ j ≤ m, by(
β
(h)
j

α
(h)
j

)
=
(
F(f (h))′F(f (h))

)−1
F(f (h))′z( j).

Step 2. Based on (10), define f (h+1) by

f∗ = D(β(h))−1C(α(h))β(h)

and

f (h+1)= (T+k)1/2(f∗ − f
∗
)/|||f∗ − f

∗||.
The initial value f (0) can be chosen equal to the standard

(nondynamic) first principal component, completed with k
zeros. We stop the iterations when

MSE(f (h), β(h), α(h))−MSE(f (h+1), β(h+1), α(h+1))

MSE(f (h), β(h), α(h))
< ε

for some value ε.
Remark 2.1. Note that the dimension of the matrices to be
inverted to compute f (h), β(h), α(h) are independent of the num-
ber of time series and therefore we can deal with large number
of variables.
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Remark 2.2. Note also that there are no restrictions on the values
of f and in particular we do not assume, as in Brillinger, that
their components must be linear combinations of the series. In
this way, the values of f can be adapted to the nonstationarity
character of the time series.

Assume we are considering p dynamic principal components
of order k and let β j,i,s 1 ≤ j ≤ m, 1 ≤ i ≤ k + 1, be the coeffi-
cient β j.i corresponding to the sth component, 1 ≤ s ≤ p. Then,
the number of values required to reconstruct the original series
are the (T + k)p values of the p factors plus (k + 1)mp values
for the coefficients β j,i,s plus them intercepts α j. Thus, the pro-
portion of the original information required to reconstruct the
series is ((T + k)p+ (k + 1)mp+ m)/mT and when T is large
compared to k and m, this ratio is close to p/m. In practice,
the number of lags to reconstruct the series, k, and the num-
ber of principal components, p, need to be chosen. Of course
the accuracy of the reconstruction improves when any of these
two numbers is enlarged, but also the size of the information
required will also increase. For large T increasing the number of
components introduces more values to store than increasing the
number of lags. However, we should also take into account the
reduction in MSE due to enlarging each of these components.
In general, increasing the number of lags after some point will
have a negligible effect on theMSE. Then, if the level of theMSE
is larger than desired, a new component should be added. Thus,
one possible strategy is to start with one principal component
and increase the number of lags until the reduction of further
lags is smaller than some value ε. Then, a new principal compo-
nent is introduced and the same procedure is applied. The pro-
cess stops when the MSE reaches some satisfactory value. Note
that this rule is similar to what is generally used for determining
the number p in ordinary principal components.

3. Dynamic Principal ComponentsWhen k = 1

To illustrate the computation of the first DPC, let us consider the
simplest case of k = 1. Then, we search for β̂=(β̂ j,i)1≤ j≤m,1≤i≤2

and f̂= ( f̂1, . . . , f̂T+1)
′ such that

(̂f,β̂ ) = argmin
1

T∑
t=1

m∑
j=1

(z j,t − β j,1 ft − β j,2 ft+1)
2. (12)

Suppose now that zt is stationary, then in Section 2 of the
supplemental material is shown that, except in both ends, f̂t can
be approximated by

f̂ ∗
t = 1

α

⎡⎣ m∑
j=1

β̂ j,1

∞∑
q=−∞

c|t−q|z j,q +
m∑
j=1

β̂ j,2

∞∑
q=−∞

c|t−q|z j,q−1

⎤⎦ ,
(13)

where |c| < 1. Therefore, the DPC is approximated by linear
combinations of the stationary series z j,t +∑∞

i=1c
i(z j,t+i +

z j,t−i), and z j,t−1 +∑∞
i=1c

i(z j,t−1+i + z j,t−1−i), 1 ≤ j ≤ m.
These series give the largest weight to the periods t and t − 1
respectively and the weights decrease geometrically when we
move away of these values. We conjecture that in the case of the
first DPC of order k, a similar approximation outside both ends
of f̂t by an stationary process can be obtained.

Table . MSE of the reconstructed series for the stationary model with one factor.

m T OPC2 DPC2 BDPC10

  . . .
 . . .

  . . .
 . . .

  . . .
 . . .

  . . –
 . . –

4. Monte Carlo Simulation and Examples

4.1 Simulation Results for the Stationary Case

We perform a Monte Carlo study using as vector series zt =
(z1,t , z2,t , . . . , zm,t )′, 1 ≤ t ≤ T generated as follows:

zi,t = 10 sin(2π(i/m)) ft + 10 cos(2π(i/m)) ft−1

+10(i/m) ft−2 + ui,t , 1 ≤ i ≤ m, 1 ≤ t ≤ T, (14)

where ft ,−2 ≤ t ≤ T and ui,t , 1 ≤ t ≤ T, 1 ≤ i ≤ m are iid
random variables with distribution N(0, 1). We compute three
different principal components: (1) the ordinary principal com-
ponent used in a dynamic way with k lags to reconstruct the
original series (OPCk), (2) the dynamic principal component
(DPCk) proposed here, (iii) Brillinger dynamic principal com-
ponents (BDPCk) adapted for finite samples as follows:

ft =
k∑

i=−k

c′
izt−i, k + 1 ≤ t ≤ T − k, (15)

where ck are the coefficients defined below (4) in Section 1. In
this simulation, we used OPC2, DPC2, and BDPC10. To recon-
struct the original series with the three procedures we used least
squares. The BDPCk components were computed using the R
code developed for Hörmann, Kidziński, and Hallin (2014) that
was kindly provided by the authors. However, we were not able
to run this program for dimensionm = 1000 because of lack of
enough memory (our computer has 8 GB of installed memory).
We performed for each case 1000 Monte Carlo replications and
in Table 1 we show the MSE of the reconstructed series.

We observe that the performances of DPC2 and BDPC10 are
quite similar and that the MSEs are close to one, that is, equal
to the variance of the error terms ui,ts. We also observe that
the MSE of the reconstructed series with the OPC2 procedure
is much larger.

In Figure 1, we plot the estimated factor loadings for a dataset
satisfying (14) with T = 200 andm = 1000.

We observe that the estimated loadings follow a pattern quite
close to the one satisfied by the true values: sin, cosine, and a
linear trend.

4.2 Simulation Results in the Nonstationary Case:
VARI(1, 1)Model

In this case, we consider a VARI(1, 1) m-dimensional vector
series zt generated as follows. Consider a stationary VAR(1)
model xt = Axt−1 + ut , 1 ≤ t ≤ T, where the uts are iid m-
dimensional vectors with distribution Nm(0, I) and let zt =
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Figure . Loadings for one replication of the stationary model with T=  andm= .

zt−1 + xt .We consider 1000 replications and in each replication
we generate a new matrix A of the form A = V
V ′, where V
is an orthogonal matrix generated at random with uniform dis-
tribution and 
 is a diagonal matrix, where the diagonal ele-
ments are independent with uniform distribution in the inter-
val [0, 0.9]. We took m = 20, 100, and 200 and T = 400. We
obtained the first principal component using theOPC10,DPC10,

and BDPC10 procedures. In Table 2, we show the percentage of
explained variance for each procedure. We consider that, since
in this case we are not dealing with a factor model, this mea-
sure of performance is easier to interpret than the MSE of the
reconstructed series.

We observe that the best performance is achieved by the
DPC10. We also tried to use the different procedures with larger
number of lags obtaining essentially the same results.

Table . Percentage of explained variance in the VARI(,) model.

m OPC10 DPC10 BDPC10

   
   
   

4.3 Simulation Results Using the FactorModel in Forni
et al. (2009)

In this section, we compare by means of a Monte Carlo simu-
lation the dynamic principal components procedures with the
one developed by Forni et al. (2009) (FGLR) for a special class
of factor models that may be seen either as a static model
with r factors or as a dynamic model with q factor with q <
r. In our Monte Carlo study, we consider a vector series zt =
(z1,t , z2,t , . . . , zm,t )′, 1 ≤ t ≤ T, where

zi,t = sin(2π i/m) f1t + cos(2i/m) f2t
+ui,t , 1 ≤ i ≤ m, 1 ≤ t ≤ T,

where all the ui,t are independent with distributionN(0, 1).The
vector of static factors ft = ( f1t , f2t ) satisfies the autoregressive
model ft = Aft−1 + vtb,1 ≤ t ≤ T, where all vt are indepen-
dent N(0, 1), A is a 2 × 2 diagonal matrix with diagonal equal
to (−0.8, 0.7) and b = (1, 1)′.We took m = 5, 100, and 1000,
T = 200 and 400 and the number of replications was 1000.Note
that in this case r = 2 and q = 1. In Table 3, we show the MSEs
of the reconstructed series. The code for the FGLR procedure
was kindly provided by the authors of Forni et al. (2009). As was
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Table . MSE of the reconstructed series for a factor model with r = 2 and q = 1.

m T DPC5 BDPC10 FGLR

  . . .
 . . .

  . . .
 . . .

  . – .
 . – .

explained in Section 4.1, we were not able to run the BDPC10
procedure withm = 1000.

We observe that for small m the MSEs of the reconstructed
series with the principal components procedures are smaller
than those reconstructed with the FGLR. Instead, for large
m, both reconstruction errors are close to the variance of the
idiosyncratic component ui,t . The reason for this is that the goal
of factor analysis models is accounting for cross-correlations
(the instantaneous ones, in the static case, the instantaneous and
lagged ones in the dynamic case) while the goal of principal
components is dimension reduction, that is, to obtain an approx-
imate reconstruction of the original data based on an small num-
ber of unobserved variables, However, it can be proved that
when m increases the MSEs of the reconstructed series using
dynamic factor analysis or dynamic principal components con-
verge to the variance of the idiosyncratic component. There-
fore, the comparison between both principal component meth-
ods and the FGLR factor analysis method is only relevant when
m is large. The results presented in Table 3 indicates that both
DPC and FGLR give very good results in this case.

4.4 Example 1

We illustrate the DPC with a small datasets with six series cor-
responding to the Industrial Production Index (IPI) of France,
Germany, Italy, United Kingdom, USA, and Japan. We use
monthly data from January 1991 to December 2012 and the data
are taken from Eurostat. The six series are plotted in Figure 2.

In Table 4, we show the percentage of the variance explained
by the OPCk and DPCk procedures for k = 1, 5, 10, 12 and for
the BDPC12 procedure. The reason to take only k = 12 for the
BPC is to be close to the original Brillinger definition.

We note that the reconstruction of the series using the DPC
is notably better than the one obtained by means of the OPC
and BDPC procedures with the same lags. Increasing the num-
ber of lags obviously improves the reconstruction obtained by
both components, although the improvement is larger with the
DPC.

Figure 3 shows the boxplots of the absolute value of the recon-
structed series errors for theOPC12 andDPC12 procedures.Note

Table . Percentage of explained variance of the IPI series using the OPC, DPC, and
BDPC procedures.

k OPCk DPCk BDPCk

 66 82 –
 77 90 –
10 78 95 –
12 80 97 89

Table . Explained variability of the OPC and DPC for the stock prices series with
different number of lags.

k OPCk DPCk BDPCk

   –
   –
   –
   

that the reconstruction errors are significantly smaller when
using the DPC12 procedure.

4.5 Example 2

In this example, the dataset is composed of 30 daily stock prices
in the stock market in Madrid corresponding to the 251 trad-
ing days of the year 2004. The source of the data is the Min-
istry of Economy, Spain. In Table 5, we show the percentage
of the variance explained by the different procedures using the
OPCk,DPCk, and BDPCk procedures.

We observe that the best performance corresponds to the
DPCk procedure. As shown in Table 5 including lags in the
OPC does not make much difference in the results, but it has
an important effect on the DPC. In Figure 4, we show the per-
centage of the variance explained be the DPC5 against the one
explained by the DPC5. for the 30 stock prices. We note the for
most of the variables the best performance correspond to the
DPC5 procedure.

Figure 5 presents the first OPC5 and DPC5. The first DPC5,

which is much smoother than the first OPC5, seems to be very
useful to represent the general trend of the set of time series.

5. Robust Generalized DPCS

As most procedures defined by minimizing the mean square
error, the DPC given by (7) is not robust. In fact, a very
small fraction of outliers may have an unbounded influence on
(f, α, β).The procedure proposed byBrillinger seems to be very
difficult to robustify. At first sight, it may seems that it may be
robustified by using a robust estimator of the spectral matrix.
For example, Spangl and Dutter (2005) and Li (2012) proposed
robust estimators for the spectral matrix. However, this is not
enough to obtain robust DPCs. In fact, a robust estimator of
the spectral matrix only guarantees the robustness of the coef-
ficients in the linear combinations defining the principal com-
ponents. However, the result of applying these coefficients to the
original series may be largely affected by outlying observations.
Instead, the DPC procedure defined by (7) is easier to robus-
tify. A standard way to obtain robust estimates for many statis-
tical models is to replace the minimization of the mean square
scale for theminimization of a robustM-scale. This strategy was
used for many statistical models, including among others lin-
ear regression (Rousseeuw and Yohai 1984), the estimation of
a scatter matrix and multivariate location for multivariate data
(Davies 1987) and to estimate the ordinary principal compo-
nents (Maronna 2005). The estimators defined by means of a
robust M-scale are called S-estimators. In this section we intro-
duce S-estimators for DPC.
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Figure . Industrial production index of six countries –.

Special care is required for time series with strong seasonality.
The reason is that when the values corresponding to a particular
season are very different to the others they will be considered as
outliers by a robust procedure, and therefore they will be down-
weighted. As a consequence, the reconstruction of this season
may be affected by large errors. Thus, the procedure we present
here assumes that the series have been adjusted by seasonality to
avoid this problem.

5.1 Generalized S-DPCs

Let ρ0 be a symmetric, nondecreasing function for x ≥ 0 and
ρ0(0) = 0. Given a sample x = (x1, . . . , xn), the M-scale esti-
mator S(x) is defined as the value s solution of

1
n

n∑
i=1

ρ0

(xi
s

)
= b. (16)

If ρ0 is bounded, then the breakdown point to ∞ of S(x), that
is, the minimum fraction of outliers than can take S(x) to ∞ is
b/max ρ0.Moreover, the breakdownpoint to 0, that is, themini-
mum fraction of inliers that can take S(x) to 0, is 1− (b/max ρ0).
Note that if b/max ρ0 = 0.5 both breakdown points are 0.5 (see
Section 3.2.2 in Maronna, Martin and Yohai 2006). In what
follows, we assume without loss of generality that max ρ0 = 1.
Moreover, ρ0 is chosen so that Eφ(ρ0(x)) =b,where φ is the
standard normal distribution. This condition guarantees that for
normal samples S(x) is a consistent estimator of the standard
deviation. One very popular family of ρ functions is the Tukey

biweight family defined by

ρTc (x) =
{
1 − (

1 − (x/c)2
)3 if |x| ≤ c

1 if |x| > c
.

Given f = ( f1, . . . , fT+k), β j = (β j,0, β j,1, . . . , β j,k) and
α j, 1 ≤ j ≤ m, let r j,t (f, β j, α j) =z j,t −∑k

i=0 β j,i ft+i − α j,

r j(f, β j, α j) = (r j,1(f, β j, α j), . . . ,r j,T (f, β j, α j)). Let β the
m × (k + 1)matrix whose jth row is β j , α = (α1, . . . αm) and

SRS(f, β, α) = 1
m

m∑
j=1

S2(r j(f, β j, α j)). (17)

We define the first S-DPC f̂ by

(̂f, β̂, α̂) = arg min
f∈RT+k,β∈Rm×(k+1),α∈Rm

SRS(f, β, α). (18)

Note that β̂ and α̂ are the coefficients that should be used to
reconstruct the z j,t ’s from f̂.

We can observe that the only difference with the definition
given in (7) is that instead of minimizing the MSE of the resid-
uals, we minimize the sum of squares of the robust M-scales
applied to the residuals of the m series. Put ψ = ρ ′,w(u) =
ψ(u)/u,

s j = s j(f, β j, α j) = S(r(f, β j,α j)). (19)
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Figure . Boxplots of the absolute values of the errors of the reconstructed IPI series.

Figure . Percentage of the variance explained by the DPC5 against the percentage
explained by the OPC5 procedure.

Figure . First OPC5 and DPC5 for the stock prices series.
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Then s j satisfies

1
T

T∑
t=1

ρ

(
zv−

∑k
i=0 β j,i+1 fv+i − α j

s j

)
= b. (20)

Define the weights

w j,t = w j,t (f, β j, α j) = w

( r j,t (f, β j)

s j

)
,

1 ≤ j ≤ m, 1 ≤ t ≤ T (21)

and

Wj,t,v = Wj,t,v (f, β, α, s)

= s2jw j,v (f, β j, α j, s j)∑t∧T
h=(t−k)∨1 w j,h(f, β j, α j, s j)r2j,h

, (22)

where s =(s1, . . . sm). Let C j(f, β j, s) = (c j,t,q(f, β j,

s))1≤t≤T+k,0≤q≤k be the (T + k)× (k + 1) matrix defined
by

c j,t,q(f, β, α,s) = Wj,t,t−q+1(f, β, α, s)(z j,t−q+1 − α j) (23)

if 1 ∨ (t − T + 1) ≤ q ≤ (k + 1) ∧ t and 0 otherwise. D j
(f, β, α,s) = (d j,t,q(f, β, α,s)) the (T + k)× (T + k) matrix
with elements

d j,t,q(f, β, α,s) =
t∧T∑

v=(t−k)∨1
Wj,t,vβ j,q−v+1β j,t−v+1

if (t − k) ∨ 1 ≤ q ≤ (t + k) ∧ (T + k) and 0 otherwise, and

D(f, β, α,s) =
m∑
j=1

D j(f, β, α,s). (24)

Differentiating (20) with respect to ft we derive in Section 3 of
the supplemental material the following equation:

f = D(f, β, α, s)−1
m∑
j=1

C j(f, β, α,s)β j. (25)

Let F(f) be the T × (k + 2) matrix with tth row
( ft , ft+1, . . . , ft+k, 1) and W j(f, β,s) be the diag-
onal matrix with diagonal elements equal to
w j,1((f, β j, s), . . . ,w j,T (f, β j, s). Then differentiating (20)
with respect to β j,i and α jwe derive in Section 3 of the supple-
mental material(

β j
α j

)
= (

F(f)′W j(f, β j, s)F(f)
)−1 F(f)W j(f, β j, s)

′z( j).

(26)

Then, the first S-PDC is determined by Equations (19), (25), and
(26). Note that the estimator defined by (7) is an S-estimate cor-
responding to ρ20 (u) = u2 and b = 1. Then for this case (25)
and (26) become (10) and (11), respectively. The second S-DPC
is defined as the first S-DPC of the residuals r j,t (f, β). Higher
order S-DPC are defined in a similar manner.

One important point is the choice of b. At first sight, b = 0.5
may seem a good choice, since in this case we are protected

against up to 50% of large outliers. However, the following argu-
ment shows that this choice may not be convenient. The rea-
son is that with this choice, the procedure has the so-called
50% exact fitting property. This means that when 50% of the
r j,t (f, β j,α j)s are zero the scale S(r j(f, β j, α j)) is 0 no mat-
ter the value of the remaining values. Moreover, if 50% of the
|r j,t (f, β j,α j)| are small the scale S(r j(f, β j, α j)) is small too.
Then when b = 0.5, the procedure may choose f, β, and α so
to reconstruct the values corresponding to 50% of the data even
if the dataset do not contain outliers. For this reason it is conve-
nient to choose a smaller value as b, as for example b = 0.10. In
that case to obtain S(r j(f, β j, α j)) = 0, it is required that 90%
of the r j,t (f, β j,α j)s be 0. Onemaywonder why for regression is
common to use b = 0.5 and the 50% exact fitting property does
not cause the problems mentioned above. The reason is that in
this case, if there are no outliers, the regression hyperplane fit-
ting 50% of the observations also fits the remaining 50%. This
does not occur in the case of the dynamic principal components.

5.2 Computational Algorithm for the S-DPC

An iterative algorithm similar to the one described for the DPC
in Section 2 can be used to compute the S-DPC. The only differ-
ence is that it should be based on (25)and (26) instead on (10)
and (11).

The initial value f (0) can be chosen equal to a regular (non-
dynamic) robust principal component, for example, the one
proposed in Maronna (2005). Once f (0) is computed we can
use this value to compute a matrix F(0) = F with ith row
( f (0)i , f (0)i+1, . . . , f

(0)
i+k, 1). The jth row of β(0) and α(0)j can be

obtained using a regression S-estimate taking z( j) as response
and F(0) as design matrix. Finally, s(0)j = S(r j(f (0), β(0)).

A procedure similar to the one described at the end of Sec-
tion 2 can be used to determine a convenient number of lags and
components replacing the MSE by the SRS.

5.3 Example 3

Wewill use the data of example 2 to illustrate the performance of
the robustDPC. This dataset wasmodified as follows: each of the
7530 values composing the dataset was modified with probabil-
ity 0.05 adding 20 to the real value. In Table 6, we show theMSEs
of the series reconstructed with the DPC. Since the DPC is very
sensitive to the presence of outliers, we also compute the S-DPC.
Since the MSE is also very sensitive to outliers, we evaluate the
performance of the dynamic principal components procedures
using the SRS criterion. We take as ρ the bisquare function with
c = 5.13 and b = 0.1. These values make theM-scale consistent
to the standard deviation in the Gaussian case. Table 6 gives the
MSEs and the SRSs for the DPCk and S-DPCk procedures for
k = 1, 5, and 10.

Table . MSE and SRS of the DPCk and S DPCk for the contaminated stock prices
series.

k MSE of the DPCk SRS of the DPCk SRS of the S-DPCk

 . . .
 . . .
 . . .
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Figure . Boxplots of the residual absolute values of the stock prices obtained with the DPC5 and S-DPCC5 procedures.

We observe that the robust measure of performance SRS cor-
responding to the S-DPC is much smaller than the one corre-
sponding to the DPC. In Figure 6, we show the boxplots for the
first 16 stock prices with the DPCk and with the S-DPCk. For a
better visualization, we have eliminated the outliers larger than
10. These boxplots shows that the S-DPCk is much less affected
by the outliers than the DPCk.The boxplots of the 14 remaining
stocks are similar, but are not shown by shortness sake.

6. Conclusions

We have proposed two dynamic principal components proce-
dures for multivariate time series: the first one using a mini-
mum squared error criterion to evaluate the reconstruction of
the original time series and the second one using a robust scale
criterion. Both criteria make sense even if in the case of non-
stationary series. A Monte Carlo study shows that the proposed
dynamic principal component based on the MSE criterion can
improve considerably the reconstruction obtained using ordi-
nary principal components in a dynamic way. In the case of sta-
tionary series, the performance of the proposed procedure is
comparable with a finite sample version of Brillinger’s approach
and in the case of nonstationary series our procedure seems to
behave better. We have also shown in an example that the robust

procedure based on a robust scale is not much affected by the
presence of outliers.

A simple heuristic rule to determine a convenient value for
the number of components, p, and the number of lags, k, is sug-
gested. However, further research may lead to better methods to
choose these parameters trading off accuracy in the series recon-
struction and economy in the number of values stored for that
purpose.

Although the proposed DPC seems to be very powerful for
data reconstruction they have some limitations for forecasting,
because they use information from leads and lags to reconstruct
the series, and this is not convenient for forecasting. However,
they may be useful to find the dimension of the factors space in
factor models and this will be the subject of further research.

Supplementary Materials

The supplemental material available online contains the proofs
of (10), (13), (25), and (26).
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Hörmann, S., Kidziński, L., and Hallin, M. (2014), “Dynamic Functional
Principal Components,” Journal of the Royal Statistical Society, Series
B, 77, 319–348. [1124]

Ku, W., Storer, R. H., and Georgakis, C. (1995), “Disturbance Detec-
tion and Isolation by Dynamic Principal Component Anal-

ysis,” Chemometrics and Intelligent Laboratory Systems, 30,
179–196. [1121]

Lam, C., and Yao, Q. (2012), “Factor Modeling for High Dimensional Time
Series: Inference for the Number of Factors,” The Annals of Statistics,
40, 694–726. [1122]

Li, T. (2012), “On Robust Spectral Analysis by Least Absolute Deviations,”
Journal of Time Series Analysis, 33, 298–303. [1126]

Maronna, R. A. (2005), “Principal Components andOrthogonal Regression
Based on Robust Scales,” Technometrics, 47, 264–273. [1126,1129]

Maronna, R. A., Martin, R. D., and Yohai, V. J. (2006), Robust Statistics,
Chichester: Wiley. [1127]

Motta, G., Hafner, C. M., and von Sachs, R. (2011), “Locally Stationary Fac-
tor Models: Identification an Nonparametric Estimation,” Econometric
Theory, 27, 2011, 1279–1319. [1122]

Motta, G., and Ombao, H. (2012), “Evolutionary Factor Analysis of Repli-
cated Time Series,” Biometrics, 68, 825–836. [1122]

Okamoto, M., and Kanazawa, M. (1968), “Minimization of Eigenvalues of
a Matrix and Optimality of Principal Components,” Annals of Mathe-
matical Statistics, 39, 859–863. [1121]

Pan, J., and Yao, Q. (2008), “Modelling Multiple Time Series via Common
Factors,” Biometrika, 95, 365–379. [1122]

Peña, D., and Box, G. E. P. (1987), “Identifying a Simplifying Structure
in Time Series,” Journal of the American Statistical Association, 82,
836–843. [1122]

Peña, D., and Poncela, P. (2006), “Nonstationary Dynamic Factor Analysis,”
Journal of Statistical Planning and Inference, 136, 1237–1256. [1122]

Reinsel, G. C., andVelu, R. P. (1998),Multivariate Reduced-Rank Regression,
New York: Springer. [1121]

Rousseeuw, P. J., and Yohai, V. (1984), “Robust Regression by Means of
S Estimators,” in Robust and Nonlinear Time Series Analysis, eds. J.
Franke, W. Härdle, and R. D. Martin, Lecture Notes in Statistics 26,
New York: Springer-Verlag, pp. 256–274. [1126]

Shumway, R. H., and Stoffer, D. S. (2000),Time Series Analysis and Its Appli-
cations, New York: Springer. [1122]

Spangl, B., andDutter, R. (2005), “On Robust Estimation of Power Spectra,”
Austrian Journal of Statistics, 34, 199–210. [1126]

Stock, J. H., andWatson,M.W. (1988), “Testing for Common Trends,” Jour-
nal of the American Statistical Association, 83, 1097–1107. [1122]

——— (2002), “Forecasting Using Principal Components From a Large
Number of Predictors,” Journal of the American Statistical Association,
97, 1167–1179. [1122]

Tiao, G. C., and Tsay, R. S. (1989), “Model Specification in Multivari-
ate Time Series,” Journal of the Royal Statistical Society, Series B, 51,
157–195. [1121]


	Abstract
	1.Introduction
	2.Finding Time Series with Optimal Reconstruction Properties
	2.1.Computational Algorithm for the DPC

	3.Dynamic Principal Components When 
	4.Monte Carlo Simulation and Examples
	4.1.Simulation Results for the Stationary Case
	4.2.Simulation Results in the Nonstationary Case: VARI Model
	4.3.Simulation Results Using the Factor Model in Forni etal. (2009)
	4.4.Example 1
	4.5.Example 2

	5.Robust Generalized DPCS
	5.1.Generalized S-DPCs
	5.2.Computational Algorithm for the S-DPC
	5.3.Example 3

	6.Conclusions
	Acknowledgment
	Funding
	References

