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Abstract

The detection of a v; flux in a neutrino telescope would provide a way to measure the
cosmic flux without the background of the atmospheric v, ’s. Given that effects of
new physics could alter the flux arriving at the detector, in this work we consider, as a
particular scenario, the effects of leptoquarks on the propagation in the Earth of tau
neutrinos. We calculate their contribution to the neutrino—nucleon interaction and their
effect on the transport. We show the resulting v: flux and compare it with the v, flux
after through the planet. Finally, we obtain the 90 % C.L. region (Sensitivity Region)

where neutrino telescopes will be sensible to the leptoquark effects.
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Abstract The detection of a v; flux in a neutrino telescope
would provide a way to measure the cosmic flux without the
background of the atmospheric v,’s. Given that effects of
new physics could alter the flux arriving at the detector, in
this work we consider, as a particular scenario, the effects
of leptoquarks on the propagation in the Earth of tau neutri-
nos. We calculate their contribution to the neutrino—nucleon
interaction and their effect on the transport. We show the re-
sulting v, flux and compare it with the v, flux after through
the planet. Finally, we obtain the 90 % C.L. region (Sensi-
tivity Region) where neutrino telescopes will be sensible to
the leptoquark effects.

1 Introduction

The Standard Model (SM) for the interactions of elementary
particles has been successfully tested at the level of quantum
corrections. In particular, high precision and collider experi-
ments have tested the model and have placed the border line
for new physics effects at energies of the order of 1 TeV [1].
On the other hand, new physics (NP) effects in the neutrino
sector have recently received an important amount of ex-
perimental information coming from flavor oscillation [2].
This fact is the first evidence of neutrino masses different
from zero, and hence, of physics beyond the SM. Similarly,
the neutrino sector, and in particular neutrino—nucleon in-
teractions, could be the place where new physics (NP) may
become manifest again.

Certain types of NP can already be present at the TeV
scale and participate in neutrino—nucleon interactions yield-
ing effects that could become apparent in neutrino tele-
scopes. These machines are able to explore the high energy
neutrino—nucleon collision reaching center-of-mass energies
orders of magnitude above those of man made accelerators.

2e-mail: sampayo@mdp.edu.ar
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In spite of having large uncertainties on the beam compo-
sition and fluxes, cosmic ray experiments present a unique
opportunity to look for new physics in the neutrino sector at
scales far beyond the TeV for which energetic cosmic and at-
mospheric neutrinos interact with the nucleons of the Earth.
In particular, the physics associated to the third family is less
known and their properties poorly measured, which turn this
into a possible scenario where NP could become manifest.

Several models of astrophysical phenomena predict the
generation of fluxes of electron and muon neutrinos. These
appear from the disintegration of mesons (pions and kaons)
which are produced by the interactions of accelerated parti-
cles with the astrophysical ambient matter and radiation (see
e.g. [3-6]). Given the flavor mixing oscillations and the large
distance between the production place and the detection on
Earth, equal fluxes of the three flavors are expected: v, v,
and v;.!

One way for disentangling a diffuse flux of astrophysical
neutrinos of ultra-high energies from the atmospheric back-
ground is by studying the behavior of the flux as a function
of the energy. On the other hand, since the v; component
does not belong to the atmospheric flux, it would be possible
to detect the cosmic flux by identifying tau neutrinos. Thus,
in the search for ultra-high energy cosmological neutrinos
the cleanly identification of high energy tau neutrinos would
be a convincing evidence. This is possible since tau neutri-
nos are not produced in standard cosmic ray atmospheric
interactions which create electron and muon neutrinos. Fur-
thermore, neither the effect of oscillations over atmospheric
distances or the effect of prompt neutrinos originated in the
decay of charmed particles in the atmosphere would produce
extremely small atmospheric tau neutrino flux.

In these conditions, is important to understand different
mechanisms which could modify the v; propagation in the
Earth. As was pointed in Ref. [8], high energy v, flux atten-
uation in the Earth differs from v, flux attenuation due to the

IDeviations from a 1:1:1 ratio of neutrino flavors could arise if the
dominant neutrino sources are strongly magnetized (see e.g. Ref. [7]).
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fact that a T produced in charged-current (CC) interactions
with nucleons decays before it loses energy. For each v; lost
in CC interactions, another v, appears after a t decay, albeit
at a lower energy.

The calculation of the propagation of v, of cosmic ori-
gin in the Earth depends on our knowledge of the high en-
ergy neutrino cross section which is indeed limited and it
could be significatively affected at center-of-mass energies
beyond the TeV by the onset of new physics beyond the SM.
In particular, the existence of families of quarks and leptons
suggest a possible link between them [9]. Many theories,
such as composite models, technicolor, and grand unified
theories, predict the existence of new particles called lepto-
quarks, which mediate quark—lepton transitions [10, 11]. It
is important to note that simultaneous trilinear coupling of
the leptoquark to a purely hadronic channel is excluded in
order to avoid a too fast baryon decay [12]. Current bounds
on leptoquarks coming from pair production in colliders
impose mpq > 660 GeV for the first family [13], m g >
600 GeV for the second family [14], and m1 g > 250 GeV
for the third family [15]. The low bound for the mass of
the third family of leptoquarks implies the possibility that
an appreciable effect in the tau neutrino propagation could
be generated, and hence, affect the search of cosmic neutri-
nos through v; detection. It is important to notice that the
current limits on the masses of the third family of scalar lep-
toquarks were placed directly based on their contribution to
the radiative corrections to the Z-physics. These bounds can
be found in Table II of Ref. [16] for different kinds of lepto-
quarks. On the other hand, and in order to keep the analysis
as simple as possible, we shall consider here only flavor di-
agonal contributions, although mixing between leptoquark
generations could also take place.

In this work, we study the effects arising from lepto-
quarks on the v,-propagation. We shall consider the sim-
ple case of a SU(2)-singlet scalar leptoquark S coupled to
the third family, which interacts with quarks and leptons
through the lagrangian

L1o=(g00%itoLL + grigxTr)S. (D

where Q = (¢,b)! and L = (v, 7)" are the quarks and lep-
tons SU(2) left-handed doublets, tz and tg are the right-
handed singlets, and g; and gg the corresponding coupling
constants.

In Fig. 1, we show the v,—N processes. In addition to the
SM contribution for charged and neutral currents, we show
the leptoquark relevant diagram, for which the correspond-
ing cross section for charged and neutral currents are given
by [17, 18]:

@ Springer
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Fig. 1 Diagrams contributing to the weak and leptoquark v;-nucleon
cross section

CC ~
dO'LQ _ i(gZ +g2) N
dxdy —32n 70 G —m2 )2 + (Pmyg)?
x §(x, mLqQ), )
NC ~
dULQ ) gi Ky

=L s(x, m
dxdy 327 (5 — m%Q)2 + (I'mpg)? (x.m1)

where s =xS, S = 2Mproton £ and the leptoquark width is

2 \2
F:(mLQ/16JT)|:(g%+g12Q)<1— mz’ ) —i—g%}. 3)
miq

On the other hand, the corresponding SM cross section reads
for charged currents,

CC 2 2 2
do —@( MW )) x[QCC+(1—y)2QCC],

dxdy 7 \(Q2+ M%V
(€]

and for the neutral currents,
doNC _ G%s M% 2
dxdy 7w \ Q>+ M}

x Y x[gf(Q'+ (1 -y)7*0)

i=U,D
+8R (0" + (1 —y20")]. (5)

where the quark combinations 0€C, 0€C, Q' and Q' for
an isoscalar target are given in [19, 20] and gg =1/2 —
2xw/3, gf = —1/2+xw/3, g§ = —2xw /3, g§ = xw/3,
cw =cosbw, xw = sin® Ow .
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In Fig. 2, we show for completeness the diagrams for the
7—N collision. This process is not considered because it is
negligible in comparison with t-decay and those initiated
by v;. In particular, the leptoquark contribution is so weak
because it is proportional to the z-quark distribution inside
the nucleon.

In Fig. 3, we show the behavior of the total cross section
(0"(E) = 0°“(E) + oNC(E) + o §(E) + o5 (E)) with
the neutrino energy for different values of mpq and the cou-
plings g1 = ggr = 1. We can appreciate a disagreement with
the SM predictions, due to the leptoquark contribution for
values of E, where the leptoquark can be on shell.

On the other hand, for kinematic reasons there are no con-
tributions of leptoquarks to the t-decay since the final quark
b or ¢t is more massive than the t lepton.

T Vr T Vr

qi qi t t

Fig. 2 Diagrams contributing to the weak and leptoquark 7-nucleon
cross section

10 R e B e s e
o'[em?] |
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10% ,,,,,,,,,, m, =500 GeV ,
10'37 [ PRI EEPERTITY EETETRETTY EETETHTITT EETETETTTT EETARTTIT ETSTETTYT EETTETTIT EEPATTTIT .......
10> 10° 10* 10° 10° 10" 10° 10° 10" 10" 10"
E. [GeV]
v

Fig. 3 Total cross section for the SM and for different values of the
leptoquark mass my g and for g7, =gr =1

2 The surviving neutrino flux

The surviving flux of neutrinos of energy E, with inclination
6 with respect to nadir direction, @ (E, 0), is the solution of
the complete transport equation [21-23]:

0P, T
oy O (E)Dy, (E, x)
X
+ol(E )/ oy & By RN E)
+o, (E)/ (1 ‘Pr(Ey,X)K CE,y)
d
+2,(E)/0 %@(Ey,x)K““(l -,
(6)
0D, T
5 = -0, (E)D(E, X)
X
d
= Ze(EY (E, ) + 7 (v (E)Pr (E, 1))
dy
TE / @, (Ey, x)KNC(E,
07 (B) | s By OKYEEL )
T body ccC
Lo (E)/ D, (B, )KE(E, )
’ o (I—y)
where x(Z) = foz N4 p(z)dz for the penetration distance Z

in the Earth. The functions involved in the above equations
are

1
(E/m)pucty '

1 dolC(Ey,y)
ol (E) dy

Y=

)

KNC( )

e (7)
1 doSC(Ey.y)
o (E) dy ’
dn(l—y)
dy

KSC(E, y) =

K®(E,y)=1-y)

where dn/dy =), B (gé) + Pg’i). The polarization of the
decaying ™ is P, which for ™ production initiated by neu-
trino interactions V — A is P = —1. The constants B; are the
branching fraction into decay channel i. The functions gf),
g} and the details of the calculation can be found in [24].
The functions

NC
NC do; - (Ey,y)
K~ (E,y)= oT(E) & ,

CC (8)
KEC(E, y) = 47 (ErY)

ol (E) dy

and the function for the losses of electromagnetic energy
y(E) = a + BE will not be taken into account because, in

@ Springer
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the energy range studied (<10® GeV), they are negligible
[22]. The negative term in Eq. (6) corresponds to absorption
effects and the positive one to regeneration. Here, 0 < x <
X(6) where X (0) = x(2Rg cos6) = [7X* °°S"NAp(z) dz
is the number of nucleons per unit area 1n the neutrino path
through the Earth, N4 is the Avogadro number, Rg is the
radius of the Earth, 6 is the nadir angle taken from the
down-going normal to the neutrino telescope and the Earth
density p(r) is given by the Preliminary Reference Earth
Model [25].

For E, < 108 GeV, both the t* energy loss and the
T-nucleon interactions can be neglected in front of the
t-decay. Thus, we obtain a simplified system of transport
equations:

0D
— = —oNE)®, (E, )

+ 3, (E)/

L= -3 (E)P(E, X)

Ld
TE/ y
ERCER s

To solve the system, we deal first with the propagation equa-
tion for the t-lepton considering the term dependent on the
v-flux as an inhomogeneity:

@ (Ey, x)K%(1 —y),

9
90 ©)

@, (Ey, )KSC(E, y).

0P,

+ 2 (E)YP: =G(E, %), (10)
ax
where

T body cc
Q(E,X)ZUU,(E)[ Dy, (Ey, X)K; 7 (E, ).
o (I—=y)
(11)

It is a first order differential equation with a trivial solution.
If we replace the solution in the transport equation for the
vy, we obtain

0lnd, (E, x)
ax
=—o, (E)

U dy @, (Ey )
+ UTE/ Y KNCE
5 E) | T e E g N B

///dydyd” y)(l— B

x ZHE)K®(E, y)o ! (Ey)KSC(Ey, ')

o~ (- 5Ty Pre(Eyy', 1X)

12
¢Vr(E9X) ( )

@ Springer

In order to find a solution for this equation, we make the
following approximation [26]: we replace the fluxes ratio
inside the integrals of the second member by the ratios of
fluxes that solve the homogeneous equation (i.e., only con-
sidering absorption effects),

@vr (Ey, X) ¢V1— (E ) *(‘T\;[;_(Ey)*”vTr (E)x (13)
b, (E, x) Y (E)
and
0
¢V1 (Eyy" nx) ¢VT (Eyy/) e_(avT-;(Eyy/)_o-\z;(E))X’ (14)
.. (E. x) @9 (E)

where @((F) is the v; initial flux at the Earth surface which
is of cosmic origin. As we explain below, we will use dif-
ferent behaviors with the energy for the initial flow. Thus,
integrating the transport equation we have

®,, (E,0) = @Y (E)e 7% EXOXO), (15
where
os(E. X0))
=0, (E)
. 1 . | — ¢—AE).E)
—UVT(E)/(; dYS(E,Y)Ku, (E,y)<m>
1 pl
—/ / dydy'&(Ey, y')E(E, y)
o, (E )K (Eyvy) dec
Y (E)K;*(E,
XQ(Ey,Eyy/) (BYEE )
_ —AE,.E) _ —Q(Ey.E)
{ 1—e ; _ I—e } (16)
A(Eyy, E) 2(Ey, E)
where
?U(Ey)
E, PN VN
§(E,y) (1= »)®%E)
/ D) (Eyy)
Ey,,y)=—21"2"|
)= T enE,)
(17

A(E\, E) =0, (E1) — 0, (E2),

R(E1, Ey) = Z:(E)) — 0, (E2).

It is important to mention that the solution of the transport
equation, Eq. (15) is the first, but quite accurate, approxima-
tion of the iterative method described in Ref. [27].

The selection of up-going v, ’s reduces the great majority
of background events from muon bremsstrahlung and tracks
arising from muons produced in cosmic ray showers. The
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muon bremsstrahlung generates showers inside or near the
detector and constitutes a background for the shower gen-
erated by the neutrino—nucleon collision. Moreover, as ex-
plained above, for v;’s there is no atmospheric flux compet-
ing with the cosmic flux. We here consider the cases of inci-
dent, energy dependent, neutrino flux of cosmic origin, and
rather than using specific flux models, we consider power
law fluxes ~E" forn =1, 2:

M
o0 (E,) = ’
ve (Ev;) E,,(1+E, /Ep)? (18)
N,
0 —
q)vf (Ev,) = E_gr7

which originated by a different production mechanisms, and
where Eg = 108 GeV.

15 ———r ——

(a) m ,=200GeV
(b) m ,=300GeV
(c) m_,=400GeV

1.01
‘
1

)
w
4
05 i
n=1
0=0°
(o)
0.0 e M. . e
10° 10* 10° 10°

E, [GeV]

In order to show the effects caused by leptoquarks on the
v propagation, we present in Figs. 4 and 5 the ratio

D,(E,0)

R(E,0) = S0

19
as a function of the neutrino energy for two different angles,
and in Figs. 6 and 7 as a function of the angle 6 for two dif-
ferent energies. We present our results in a form that allows
to disentangle the different contributions. With a solid line,
we indicate the ratio R for the tau neutrino with the con-
tribution of leptoquarks of different mass, the line labeled
(a) for mp g =200 GeV, (b) for my g =300 GeV and (c) for
mpq = 400 GeV. The dashed line represents the correspond-
ing ratio for the standard v; propagation without leptoquark
effects and finally, for comparison, a dotted line is used to
show the ratio corresponding to v,,’s. The quantity R(E, 0)
is independent of the constants A1 and N>.

1.0k —

(a) m ,=200GeV
(b) m ,=300GeV 1
(c) m ,=400GeV

n=2

A0
02k 0=0

0.0 el
10° 10

E, [GeV]

Fig. 4 The ratio R(E, 0) as a function of the energy for the nadir angle & = 0° and two different behaviors with the energy of the initial flux

16 — — —

(@) m ,=200 GeV
(b) m ,=300 GeV
(c) m =400 GeV

0.8

R(E,0)

0.6

04k

0.2

00 11 11
4 5 6
10 10 EV [GeV] 10

Fig. 5 As Fig. 4 but for 6 = 60°

T T UL |
1.0 (a) m =200 GeV T
(b) m_,=300 GeV
(c) m =400 GeV
0.8 |- i
< 06
1)
4
04 |
n=2
0=60°
02+
0.0
10* 10° 10 107

E, [GeV]
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Fig. 6 The ratio R(E, 6) as a function of the nadir angle 6 for the energy E, = 10° GeV and two different behavior for the initial flux with the

energy
T T T T T T T T T
12}
n=1
E=10°GeV
09
)
™ (a) m =200 GeV
Foel (b)m =300 GeV

(c) m =400 GeV

20 30

Fig. 7 As Fig. 6 but for the energy E, = 10° GeV

In Fig. 8, we show the behavior with the energy for Earth
skimming neutrinos which graze the Earth just below the
horizon. These neutrinos have high probability of interacting
with the crust and producing t-leptons. If these t-leptons
are produced close enough to the surface, they can emerge
and create an extensive air shower detectable by surface de-
tector as those of the Auger observatory. Thus, it is essential
to estimate of the emerging t flux and as it can be affected
by physics beyond the SM as in the case of leptoquarks. In
this case of Earth skimming neutrinos, the regeneration ef-
fect is notable and reinforced by the leptoquark contribution
for E~! power law spectrum. For E~2, the absorption ef-
fects are clearly dominant, as can be seen in Figs. 6 and 7,
or, most specifically, in Fig. 8. Finally, and in order to es-
timate the sensitivity of neutrino telescopes to leptoquarks,
we use the number of events as observable and define the
statistical sensitivity as

(N _ NSM)Z
N .

S= (20)

@ Springer
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80 90

This amount is basically a comparison between the observed
number of events and the Standard Model prediction for
events distributed according to a Poisson distribution. The
expected number of events at a neutrino telescope like Ice-
Cube, in the energy interval AE and in the angular interval
A6, can be estimated as
N =nTT/ / d2dE,c““(E)®, (E,0), 1)
A0 JAE
where nt is the number of target nucleons in the effective
detection volume, 7 is the running time that we take to be
15 yr, and 0CC(E) is the charged-current neutrino—nucleon
cross section. We take the detection volume for the events
equal to the instrumented volume for IceCube, which is
roughly 1 km? and corresponds to nt ~ 6 x 1038, The func-
tion @, (E, 0) in Eq. (21) is the surviving flux (Eq. (15)).
In Eq. (20), we consider the total events in the energy
range (10°~107 GeV), which is sufficiently high to have
appreciable leptoquark effects (see Fig. 3) and yet not so
high to have enough neutrino flux. We perform this anal-
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Fig. 9 90 % C.L. Sensitivity region in the (g, m1q) plane

ysis taking into account the neutrinos arriving to the tele-
scope in the intermediate angular region 30° < 6 < 60°.
We consider both E~! and E~2 power law spectra with
the adequate constants to meet the preliminary IceCube up-
per limit E72®(E) = 1.4 x 1078 GeVem™2s~!sr™! in
the energy range of interest [28]. We take into account the
combined statistical of two neutrino telescopes working to-
gether: IceCube and the planed neutrino telescope in the
north hemisphere, KM3NeT [29]. Moreover, we consider
the effect of both v; and v;. The results for both power
law spectra are similar in the considered regions and then
we only present the results for E~2 taking N> = 1.25 x
1078 GeVem=2s 1sr~!. In Fig. 9, we show our results as a
90 % C.L. sensitivity region in the (mq, g) plane. This sen-

sitivity region represents the possible bounds that could be
obtained with neutrino telescopes, although lower than the
obtained indirectly by Z-physics [16], they represent an in-
dependent complementary way to bound the physics of the
third generation of leptoquark.

3 Conclusions

In the present work, we have studied the leptoquark con-
tribution to the neutrino—nucleon cross section and the ef-
fect on the surviving tau-neutrino flux in a neutrino tele-
scope like IceCube. We found a considerable disagreement
with the SM prediction for the neutrino observable defined
above, particularly for low values of myq. For high values
of myq, this disagreement tends to disappear. Finally, we
observe an enhanced regeneration effect due to leptoquark
contribution for Earth skimming neutrinos and E~! initial
power law spectrum. We included a study on the sensitivity
for the considered new physics showing the region where
the effects would be appreciable to a 90 % C.L. (Fig. 9).
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