On the b-coloring of P_{4}-tidy graphs

Clara Inés Betancur Velasquez ${ }^{\text {a,b }}$, Flavia Bonomo ${ }^{\text {a,b,* }}$, Ivo Koch ${ }^{\text {b }}$
${ }^{\text {a }}$ CONICET, Argentina
${ }^{\mathrm{b}}$ Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina

ARTICLE INFO

Article history:

Received 24 January 2010
Received in revised form 24 September 2010
Accepted 5 October 2010
Available online 27 October 2010

Keywords:

b-coloring
b-continuity
b-monotonicity
P_{4}-tidy graphs

Abstract

A b-coloring of a graph is a coloring such that every color class admits a vertex adjacent to at least one vertex receiving each of the colors not assigned to it. The b-chromatic number of a graph G, denoted by $\chi_{b}(G)$, is the maximum number t such that G admits a b-coloring with t colors. A graph G is b-continuous if it admits a b-coloring with t colors, for every $t=\chi(G), \ldots, \chi_{b}(G)$, and it is b-monotonic if $\chi_{b}\left(H_{1}\right) \geq \chi_{b}\left(H_{2}\right)$ for every induced subgraph H_{1} of G, and every induced subgraph H_{2} of H_{1}. In this work, we prove that P_{4}-tidy graphs (a generalization of many classes of graphs with few induced $P_{4} \mathrm{~s}$) are b-continuous and b-monotonic. Furthermore, we describe a polynomial time algorithm to compute the b-chromatic number for this class of graphs.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we deal with finite undirected graphs, without loops or multiple edges. A coloring of a graph G is an assignment of colors (represented by natural numbers) to the vertices of G such that no two adjacent vertices are assigned the same color. The minimum number k such that there exists a coloring of G with k colors is the chromatic number of G, denoted by $\chi(G)$.

When we try to color the vertices of a graph using the minimum number of colors, we can start from a given coloring and try to decrease the number of colors by eliminating color classes. One possible such procedure consists in trying to reduce the number of colors by taking a color class such that we can recolor every vertex from that class with a different color that is not used by any of its neighbors, if any such class exists. A vertex v of a colored graph G is dominant if it has at least one neighbor of every color, except the one assigned to v. A dominant vertex cannot be recolored with this procedure. A b-coloring of a graph is a coloring with dominant vertices in each color class, i.e., a coloring where we cannot apply the strategy above to decrease the number of colors. The b-chromatic number of a graph G, denoted by $\chi_{b}(G)$, is the maximum number t such that G admits a b-coloring with t colors [15]. Thus, $\chi_{b}(G) \geq \chi(G)$, and every coloring with $\chi(G)$ colors is a b-coloring. A graph G is b-perfect if $\chi_{b}(H)=\chi(H)$ for every induced subgraph H of G [12]. b-perfect graphs were recently characterized by a finite list of forbidden induced subgraphs [14]. Note that b-perfect graphs can be colored with a minimum number of colors in polynomial time, by simply applying the decreasing algorithm, starting from an arbitrary coloring.

The behavior of the b-chromatic number can be surprising. For example, the values of k for which a graph admits a b-coloring with k colors do not necessarily form an interval of the set of integers; in fact any finite subset of $\mathbb{N}_{\geq 2}$ can be the set of these values for some graph [9]. A graph G is b-continuous if it admits a b-coloring with t colors, for every $t=\chi(G), \ldots, \chi_{b}(G)$. In [21] (see also [9]) it is proved that chordal graphs and some planar graphs are b-continuous.

[^0]Another atypical property is that the b-chromatic number can increase when taking induced subgraphs. A graph G is defined to be b-monotonic if $\chi_{b}\left(H_{1}\right) \geq \chi_{b}\left(H_{2}\right)$ for every induced subgraph H_{1} of G, and every induced subgraph H_{2} of H_{1} [3].

Irving and Manlove [15] proved that determining $\chi_{b}(G)$ is NP-hard for general graphs, but polynomial-time solvable for trees. In [24], Kratochvíl et al. show that determining $\chi_{b}(G)$ is NP-hard even if G is a connected bipartite graph. More results on algorithmic aspects and bounds for some graph classes can be found in [3,7,8,16,23].

An induced path on k vertices shall be denoted by P_{k}. Vertices of degree one (resp. two) in P_{k} will be called endpoints (resp. midpoints). An induced subgraph of G isomorphic to P_{k} is simply said to be a P_{k} in G. A chordless cycle on k vertices is denoted by C_{k}.

A cograph is a graph that does not contain P_{4} as an induced subgraph [5]. Several generalizations of cographs have been defined in the literature, such as P_{4}-sparse [11], P_{4}-lite [17], P_{4}-extendible [19] and P_{4}-reducible graphs [18]. A graph class generalizing all of them is the class of P_{4}-tidy graphs [10]. Let G be a graph and A a P_{4} in G. A partner of A is a vertex v in $G-A$ such that $A \cup\{v\}$ induces at least two $P_{4} s$ in G. A graph G is P_{4}-sparse if no induced P_{4} has a partner and P_{4}-tidy if every induced P_{4} has at most one partner. Another generalization of P_{4}-sparse graphs are ($q, q 4$)-graphs. A graph is a $(q, q 4)$-graph if no set of at most q vertices induces more than $q-4$ distinct P_{4} 's [1]. There is no containment relationship between the classes P_{4}-tidy and ($q, q 4$)-graphs.

In [3], it was proved that P_{4}-sparse graphs are b-continuous and b-monotonic and a dynamic programming algorithm to compute their b-chromatic number was presented. Recently, some of the results on P_{4}-sparse graphs were also extended for the class of ($q, q 4$)-graphs, with fixed $q[4]$. In this paper, we extend these results to the class of P_{4}-tidy graphs.

1.1. Definitions and preliminary results

Let $G=(V, E)$ be a graph. We will denote by $V(G)$ the vertex set V, by $E(G)$ the edge set E, and by \bar{G} the complement graph of G. Given a subset of vertices $X \subset V$, we will denote by $G[X]$ the subgraph of G induced by X. The complete graph on n vertices will be denoted by K_{n} and the stable set of n vertices by S_{n}. Two vertices will be said to be true twins if they are adjacent and have the same neighborhood, and false twins if they are non-adjacent but have the same neighbors. A vertex is simplicial if its neighbors induce a complete subgraph. A vertex v controls a vertex w if v and w are non-adjacent and all the neighbors of w are neighbors of v.

Lemma 1 ([13]). Let G be a graph and φ a coloring of G. If v and w are false twins in G, then either none of them is dominant, or $\varphi(v)=\varphi(w)$.

This can be extended straightforward to the following one.
Lemma 2. Let G be a graph and φ a coloring of G. If v controls w, then if w is dominant, so is v and $\varphi(v)=\varphi(w)$.
Lemma 3 ([13]). Let G be a graph and φ a coloring of G with more than $\chi(G)$ colors. Then no simplicial vertex of G is dominant.
Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs such that $V_{1} \cap V_{2}=\emptyset$. The union of G_{1} and G_{2} is the graph $G_{1} \cup G_{2}=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$. The union is clearly an associative operation and, for each nonnegative integer t, we will denote by $t G$ the union of t disjoint copies of G. The join of G_{1} and G_{2} is the graph $G_{1} \vee G_{2}=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2} \cup V_{1} \times V_{2}\right)$. That is, the vertex set of $G_{1} \vee G_{2}$ is $V_{1} \cup V_{2}$ and its edge set is $E_{1} \cup E_{2}$ plus all the possible edges with an endpoint in V_{1} and the other one in V_{2}.

Cographs can be built from isolated vertices by using these two operations.
Theorem 1 ([5]). Every non-trivial cograph is either a union or join of two smaller cographs.
Thus, the chromatic number of a cograph can be recursively calculated due to the following result.
Theorem 2 ([6]). If G is the trivial graph, then $\chi(G)=1$. Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs such that $V_{1} \cap V_{2}=\emptyset$. Then,
i. $\chi\left(G_{1} \cup G_{2}\right)=\max \left\{\chi\left(G_{1}\right), \chi\left(G_{2}\right)\right\}$.
ii. $\chi\left(G_{1} \vee G_{2}\right)=\chi\left(G_{1}\right)+\chi\left(G_{2}\right)$.

A similar result holds for the b-chromatic number, but the relation between the b-chromatic number of two graphs and the b-chromatic number of their union is weaker.

Theorem 3 ([22]). If G is the trivial graph, then $\chi_{b}(G)=1$. Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs such that $V_{1} \cap V_{2}=\emptyset$. Then,
i. $\chi_{b}\left(G_{1} \cup G_{2}\right) \geq \max \left\{\chi_{b}\left(G_{1}\right), \chi_{b}\left(G_{2}\right)\right\}$.
ii. $\chi_{b}\left(G_{1} \vee G_{2}\right)=\chi_{b}\left(G_{1}\right)+\chi_{b}\left(G_{2}\right)$.
P_{4}-tidy graphs have also a useful decomposition theorem. We will use it extensively in this work to inductively prove our results. A brief description of the theorem follows.

Fig. 1. Possible quasi-starfishes of size two. From left to right: P_{4}, fork, \bar{P}, P and kite.
Let $G=(V, E)$ be a graph. Let $F=\left\{e \in E \mid e\right.$ belongs to an induced P_{4} of $\left.G\right\}$. Let $G_{p}=(V, F)$. A connected component of G_{p} having exactly one vertex is called a weak vertex. Any connected component of G_{p} distinct from a weak vertex is called a p-component of G. A graph G is p-connected if it has only one p-component and no weak vertices [2].

A p-connected graph $G=(V, E)$ is p-separable if V can be partitioned into two sets (C, S) such that each P_{4} that contains vertices from C and from S has its midpoints in C and its endpoints in S. We will call it a p-partition. If such a partition exists, then it is unique [20].

An urchin (resp. starfish) of size $k, k \geq 2$, is a p-separable graph with p-partition (C, S), where $C=\left\{c_{1}, \ldots, c_{k}\right\}$ is a clique; $S=\left\{s_{1}, \ldots, s_{k}\right\}$ is a stable set; s_{i} is adjacent to c_{i} if and only if $i=j$ (resp. $i \neq j$).

A quasi-urchin (resp. quasi-starfish) of size k is a graph obtained from an urchin (resp. starfish) of size k by replacing at most one vertex by K_{2} or S_{2}. Note that the new vertices result in true or false twins, respectively, and they are in the same set of the new p-partition $\left(C^{*}, S^{*}\right)$. The elements of S^{*} are called the legs and C^{*} is called the body of the quasi-starfish or quasi-urchin.

Note that there are five possible quasi-starfishes of size two, and they are also the five possible quasi-urchins of size two: P_{4}, P, \bar{P}, fork and kite (see Fig. 1). To avoid ambiguity, we will consider these five graphs as quasi-starfishes, while quasi-urchins will be always of size at least three.

When considering quasi-urchins and quasi-starfishes, we have ten kinds of them. We will call type 1 (resp. type 2) the urchins (resp. starfishes); type 3 (resp. type 4) the urchins (resp. starfishes), where a vertex in the body was replaced by K_{2}; type 5 (resp. type 6) the urchins (resp. starfishes), where a vertex in the body was replaced by S_{2}; type 7 (resp. type 8) the urchins (resp. starfishes), where a leg was replaced by K_{2}; and type 9 (resp. type 10) the urchins (resp. starfishes), where a leg was replaced by S_{2}. Recall that graphs of odd type have always size at least three and, with this condition, the ten types form a partition over the family of quasi-urchins and quasi-starfishes.

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs with $V_{1} \cap V_{2}=\emptyset$, such that G_{1} is p-separable with partition $\left(V_{1}^{1}, V_{1}^{2}\right)$. Consider the graph with vertex set $V_{1} \cup V_{2}$ and edge set $E_{1} \cup E_{2} \cup\left\{x y \mid x \in V_{1}^{1}, y \in V_{2}\right\}$. We shall denote this graph by $G_{1} \underline{\vee} G_{2}$.

Theorem 4 ([20]). Every graph G either is p-connected or can be obtained uniquely from its p-components and weak vertices by a finite sequence of \cup, \vee and \vee operations.

Proposition 1 ([10]).A graph G is P_{4}-tidy if and only if every p-component is isomorphic to either P_{5} or $\overline{P_{5}}$ or C_{5} or a quasi-starfish or a quasi-urchin. Quasi-starfishes and quasi-urchins are the p-separable p-components of G.

Remark 1. Let G_{1} be a quasi-urchin or a quasi-starfish, and G_{2} be a graph. If G_{1} is type 7 or 8 , all the legs are simplicial vertices both in G_{1} and in $G_{1} \underline{\vee} G_{2}$. Otherwise, both in G_{1} and in $G_{1} \underline{G_{2}}$, each leg of G_{1} is controlled by a vertex in the body of G_{1}. Then, by Lemmas 2 and 3, for every coloring of G_{1} (resp. $G_{1} \underline{\vee} G_{2}$) with more than $\chi\left(G_{1}\right)$ (resp. $\chi\left(G_{1} \underline{\vee} G_{2}\right)$) colors, if there is a dominant vertex of color c in $V\left(G_{1}\right)$, then there is a dominant vertex of color c in the body of G_{1}.

Lemma 4. Let G be a quasi-starfish or quasi-urchin of size k. Then,
i. If G is type $1,2,5,6,7,9$ or 10 , then $\chi(G)=k$.
ii. If G is type 3,4 or 8 , then $\chi(G)=k+1$.
iii. $\chi_{b}(G)=\chi(G)$.

Proof. Items i. and ii. are easy to prove, since a coloring of the maximum clique of G can be extended to the whole graph without increasing the number of colors. Let $\left(C^{*}, S^{*}\right)$ be the p-partition of G. To prove item iii., suppose on the contrary that we have a b-coloring φ of G with more than $\chi(G)$ colors. By Remark 1 , if there is a dominant vertex of color c in G, then there is a dominant vertex of color c in C^{*}. If G is neither type 5 nor type 6 , then $\left|C^{*}\right| \leq \chi(G)$, a contradiction. If G is type 5 or 6 , then there is a pair of false twins in C^{*}, so by Lemma 1 , at most $\left|C^{*}\right|-1$ different colors can have dominant vertices and $\left|C^{*}\right|-1 \leq \chi(G)$, a contradiction.

Lemma 5. Let $G_{1}=\left(V_{1}, E_{1}\right)$ be a p-separable P_{4}-tidy graph, and $G_{2}=\left(V_{2}, E_{2}\right)$ a graph such that $V_{1} \cap V_{2}=\emptyset$. Then,
i. If G_{1} is not type 8 , then $\chi\left(G_{1} \underline{\vee} G_{2}\right)=\chi\left(G_{1}\right)+\chi\left(G_{2}\right)$; if G_{1} is type 8 , then $\chi\left(G_{1} \underline{\vee} G_{2}\right)=\chi\left(G_{1}\right)+\chi\left(G_{2}\right)-1$.
ii. If G_{1} is not type 8 , then $\chi_{b}\left(G_{1} \vee G_{2}\right)=\chi_{b}\left(G_{1}\right)+\chi_{b}\left(G_{2}\right)$; if G_{1} is type 8 , then $\chi_{b}\left(G_{1} \vee G_{2}\right)=\chi_{b}\left(G_{1}\right)+\chi_{b}\left(G_{2}\right)-1$.

Proof. Let $G=G_{1} \vee G_{2}$. By Proposition $1, G_{1}$ is a quasi-urchin or a quasi-starfish. Let $\left(C^{*}, S^{*}\right)$ be its p-partition. Then G contains $G_{1}\left[C^{*}\right] \vee G_{2}$ as an induced subgraph, thus $\chi(G) \geq \chi\left(G_{1}\left[C^{*}\right] \vee G_{2}\right)$. On the other hand, every coloring of $G_{1}\left[C^{*}\right] \vee G_{2}$
can be extended to G without adding new colors, by giving to each vertex in S^{*} either a color used by a non-neighbor of it in C^{*} or a color used in G_{2}. Hence, $\chi(G)=\chi\left(G_{1}\left[C^{*}\right] \vee G_{2}\right)$. By Theorem 2, $\chi\left(G_{1}\left[C^{*}\right] \vee G_{2}\right)=\chi\left(G_{1}\left[C^{*}\right]\right)+\chi\left(G_{2}\right)$. By Lemma 4, if G_{1} is type 8 then $\chi\left(G_{1}\left[C^{*}\right]\right)=\chi\left(G_{1}\right)-1$, otherwise $\chi\left(G_{1}\left[C^{*}\right]\right)=\chi\left(G_{1}\right)$. This concludes the proof of item i.

In order to prove item ii., we will show that $\chi_{b}(G)=\chi_{b}\left(G_{2}\right)+\chi\left(G_{1}\left[C^{*}\right]\right)$. Any b-coloring of G_{2} can be extended to a b-coloring of G by assigning $\chi\left(G_{1}\left[C^{*}\right]\right)$ new colors to C^{*} and giving to each vertex in S^{*} either a color used by a non-neighbor of it in C^{*} or a color used in G_{2}. So, $\chi_{b}(G) \geq \chi_{b}\left(G_{2}\right)+\chi\left(G_{1}\left[C^{*}\right]\right)$.

If $\chi_{b}(G)=\chi(G)$, by item i., $\chi_{b}(G)=\chi\left(G_{2}\right)+\chi\left(G_{1}\left[C^{*}\right]\right) \leq \chi_{b}\left(G_{2}\right)+\chi\left(G_{1}\left[C^{*}\right]\right)$. So, we may suppose $\chi_{b}(G)>\chi(G)$. Now let φ be a b-coloring of G with more than $\chi(G)$ colors. By Remark 1, if there is a dominant vertex of color c in G, then there is a dominant vertex of color c in $C^{*} \cup V\left(G_{2}\right)$. Notice that the set of colors used by vertices in G_{2} and the set of colors used in C^{*} are disjoint, so C^{*} should contain dominant vertices for all the colors used in $V\left(C^{*}\right)$. In particular, if G_{1} is type 5 or 6 , by Lemma 1, it follows that the two non-adjacent vertices in C^{*} receive the same color, thus C^{*} is colored with $\chi\left(G_{1}\left[C^{*}\right]\right)$ colors. On the other hand, it is easy to see that φ restricted to $V\left(G_{2}\right)$ is a b-coloring of G_{2}. So $\chi_{b}(G) \leq \chi_{b}\left(G_{2}\right)+\chi\left(G_{1}\left[C^{*}\right]\right)$.

We have proved that $\chi_{b}(G)=\chi_{b}\left(G_{2}\right)+\chi\left(G_{1}\left[C^{*}\right]\right)$. By Lemma 4 , if G is type 8 then $\chi\left(G_{1}\left[C^{*}\right]\right)=\chi\left(G_{1}\right)-1=\chi_{b}\left(G_{1}\right)-1$, otherwise $\chi\left(G_{1}\left[C^{*}\right]\right)=\chi\left(G_{1}\right)=\chi_{b}\left(G_{1}\right)$. This concludes the proof of item ii.

2. b-continuity in P_{4}-tidy graphs

In [3], a family of cographs with arbitrarily large difference between their b-chromatic number and their chromatic number was shown. Therefore, it makes sense to analyze b-continuity in P_{4}-tidy graphs. In this section we prove that P_{4}-tidy graphs are b-continuous, by using the decomposition theorem for this class of graphs.

Lemma 6. If G is $P_{5}, \overline{P_{5}}, C_{5}$, a quasi-urchin or a quasi-starfish, then G is b-continuous.
Proof. If $G=P_{5}$, then $\chi(G)=2$ and $\chi_{b}(G)=3$ and, for the remaining cases, by Lemma $4, \chi_{b}(G)=\chi(G)$. So, they are trivially b-continuous.

Lemma 7 ([3]). Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs such that $V_{1} \cap V_{2}=\emptyset$. If G_{1} and G_{2} are b-continuous and $G=G_{1} \cup G_{2}$, then G is b-continuous.

Lemma 8 ([3]). Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs such that $V_{1} \cap V_{2}=\emptyset$. If G_{1} and G_{2} are b-continuous and $G=G_{1} \vee G_{2}$, then G is b-continuous.

Lemma 9. Let $G_{1}=\left(V_{1}, E_{1}\right)$ be a p-separable P_{4}-tidy graph and $G_{2}=\left(V_{2}, E_{2}\right)$ be a graph such that $V_{1} \cap V_{2}=\emptyset$. If G_{2} is b-continuous and $G=G_{1} \vee G_{2}$, then G is b-continuous.
Proof. By Proposition 1, G_{1} is a quasi-starfish or a quasi-urchin. Let $\left(C^{*}, S^{*}\right)$ be the p-partition of G_{1}. Suppose first that G_{1} is not type 8 . Any b-coloring of G_{2} with t colors $\{1, \ldots, t\}$ can be extended to a b-coloring of G with $t+\chi\left(G_{1}\right)$ colors, in the following way. If we color G_{1} using colors $\left\{t+1, \ldots, t+\chi\left(G_{1}\right)\right\}$, then every dominant vertex in G_{2} will have now also neighbors with colors $t+1, \ldots, t+\chi\left(G_{1}\right)$, and every dominant vertex in C^{*} will now also have neighbors with colors $1, \ldots, t$. Since C^{*} contains dominant vertices of all colors in $\left\{t+1, \ldots, t+\chi\left(G_{1}\right)\right\}$, the resulting coloring is a b-coloring of G with $t+\chi\left(G_{1}\right)$ colors.

Suppose now that G_{1} is type 8 . Any b-coloring of G_{2} with t colors $\{1, \ldots, t\}$ can be extended to a b-coloring of G with $t+\chi\left(G_{1}\right)-1$ colors, in the following way. If we color G_{1} using colors $\left\{t, \ldots, t+\chi\left(G_{1}\right)-1\right\}$ in such a way that C^{*} uses colors from $t+1$ to $t+\chi\left(G_{1}\right)-1$, then every dominant vertex in G_{2} will now also have neighbors with colors $t+1, \ldots, t+\chi\left(G_{1}\right)-1$, and every dominant vertex in C^{*} will now also have neighbors with colors $1, \ldots, t$. Since C^{*} contains dominant vertices of all colors in $\left\{t+1, \ldots, t+\chi\left(G_{1}\right)-1\right\}$, this results in a b-coloring of G with $t+\chi\left(G_{1}\right)-1$ colors.

Since G_{2} is b-continuous, we can obtain b-colorings for G with each color t^{\prime}, where $\chi\left(G_{2}\right)+\chi\left(G_{1}\right) \leq t^{\prime} \leq \chi_{b}\left(G_{2}\right)+\chi_{b}\left(G_{1}\right)$ in the first case, and $\chi\left(G_{2}\right)+\chi\left(G_{1}\right)-1 \leq t^{\prime} \leq \chi_{b}\left(G_{2}\right)+\chi_{b}\left(G_{1}\right)-1$ in the second case. By Lemma $5, \chi(G)=\chi\left(G_{2}\right)+\chi\left(G_{1}\right)$ and $\chi_{b}(G)=\chi_{b}\left(G_{2}\right)+\chi_{b}\left(G_{1}\right)$ in the first case, while $\chi(G)=\chi\left(G_{2}\right)+\chi\left(G_{1}\right)-1$ and $\chi_{b}(G)=\chi_{b}\left(G_{2}\right)+\chi_{b}\left(G_{1}\right)-1$ in the second case, so G is b-continuous.

Theorem 5. P_{4}-tidy graphs are b-continuous.
Proof. Immediate by an inductive argument using the decomposition Theorem 4, Proposition 1, Lemmas 7-9 and 6 for the base case of the induction.

3. Computation of the \boldsymbol{b}-chromatic number in $\boldsymbol{P}_{\mathbf{4}}$-tidy graphs

The inequality in part i. of Theorem 3 can be strict, and this fact prevents us from using this result for directly computing the b-chromatic number of P_{4}-tidy graphs by using the decomposition Theorem 4. In fact, it is not difficult to build examples showing that the b-chromatic number of the graph $G_{1} \cup G_{2}$ does not depend only on the b-chromatic numbers of G_{1} and G_{2}. To overcome this problem, we follow the approach in [3] in the definition of the dominance sequence dom ${ }_{G} \in \mathbb{Z}^{\mathbb{N} \geq x(G)}$ of a graph G, where $\operatorname{dom}[t]$ is the maximum number of distinct color classes that admit dominant vertices in any coloring of G with t colors, for $\chi(G) \leq t \leq|V(G)|$. We will compute this sequence recursively on P_{4}-tidy graphs by using the decomposition theorem. Then we will obtain the b-chromatic number of G as the maximum t such that $\operatorname{dom}_{G}[t]=t$.

Lemma 10. Let G be $P_{5}, \overline{P_{5}}, C_{5}$, a quasi-urchin or a quasi-starfish. The dominance sequence for G can be obtained in linear time.
Proof. It is easy to see that $\operatorname{dom}_{P_{5}}[2]=2, \operatorname{dom}_{P_{5}}[3]=3$, and $\operatorname{dom}_{P_{5}}[t]=0$ for $t \geq 4$; $\operatorname{dom}_{\overline{P_{5}}}[3]=3, \operatorname{dom}_{\overline{P_{5}}}[4]=1$, and $\operatorname{dom}_{\overline{P_{5}}}[5]=0$; $\operatorname{dom}_{C_{5}}[3]=3$, and $\operatorname{dom}_{c_{5}}[t]=0$ for $t \geq 4$. Now, let $G=\left(C^{*}, S^{*}\right)$ be a quasi-urchin or quasi-starfish of size k. Let (C, S) be the p-partition of the urchin or starfish, $S=\left\{s_{1}, \ldots, s_{k}\right\}, C=\left\{c_{1}, \ldots, c_{k}\right\}$. If a vertex in S (resp. C) was replaced by two vertices, we will assume that the vertex was s_{1} (resp. c_{1}) and that it was replaced by vertices $s_{1}^{\prime}, s_{1}^{\prime \prime}\left(\right.$ resp. $\left.c_{1}^{\prime}, c_{1}^{\prime \prime}\right)$. Recall that, for every graph $G, \operatorname{dom}_{G}[\chi(G)]=\chi(G)$. Consider now colorings of G with more than $\chi(G)$ colors. By Remark 1, if there is a dominant vertex of color c in G, then there is a dominant vertex of color c in C^{*}. So, for $t>\chi(G)$, dom $[t] \leq\left|C^{*}\right|$.

If G is type 1 , then $\operatorname{dom}_{G}[k]=\operatorname{dom}_{G}[k+1]=k$ and $\operatorname{dom}_{G}[t]=0$ for $t \geq k+2$; if G is type 2 , then $\operatorname{dom}_{G}[k+s]=$ $\min \{k, 2 k-2 s\}$ for $0 \leq s \leq k$, and $\operatorname{dom}_{G}[t]=0$ for $t>2 k[3]$.

We start by analyzing the different kinds of quasi-urchins.
Claim 1. If G is type 3, then $\operatorname{dom}_{G}[k+1]=\operatorname{dom}_{G}[k+2]=k+1$, $\operatorname{dom}_{G}[t]=0$ for $t \geq k+3$.
In G there are $k+1$ vertices of degree $k+1$ and no vertex of degree at least $k+2$, so the upper bounds for each value of dom $_{G}$ are clear (a dominant vertex in a coloring with t colors must have degree at least $t-1$). A coloring with $k+2$ colors and $k+1$ dominant vertices of different colors can be obtained by coloring all the vertices in S^{*} with the same color, different from the colors used in C^{*}.

Claim 2. If G is type 5 , then $\operatorname{dom}_{G}[k]=\operatorname{dom}_{G}[k+1]=k$, $\operatorname{dom}_{G}[k+2]=k-1$, $\operatorname{dom}_{G}[t]=0$ for $t \geq k+3$.
Since $k \geq 3$, in G there are $k-1$ vertices of degree $k+1,2$ vertices of degree k, and no vertex of degree at least $k+2$. So, the upper bounds on $\operatorname{dom}_{G}[t]$ for $t \geq k+2$ are clear. The upper bound for $\operatorname{dom}_{G}[k+1]$ holds by Lemma 1 . Two colorings attaining the upper bounds for $\operatorname{dom}_{G}[k+1]$ and $\operatorname{dom}_{G}[k+2]$ are defined as follows. Vertices c_{2}, \ldots, c_{k} receive colors $1, \ldots, k-1$; vertices s_{1}, \ldots, s_{k} receive color $k+1$; vertices $c_{1}^{\prime}, c_{1}^{\prime \prime}$ receive both color k or colors k and $k+2$, respectively.

Claim 3. If G is type 7 or type 9 , then $\operatorname{dom}_{G}[k]=\operatorname{dom}_{G}[k+1]=k$, $\operatorname{dom}_{G}[k+2]=1, \operatorname{dom}_{G}[t]=0$ for $t \geq k+3$.
Since $k \geq 3$, in G there are $k-1$ vertices of degree k, one vertex of degree $k+1$, and no vertex of degree at least $k+2$. So, the upper bounds on $\operatorname{dom}_{G}[t]$ are clear. Two colorings attaining the upper bounds for $\operatorname{dom}_{G}[k+1]$ and dom $_{G}[k+2]$ are defined as follows. Vertices c_{1}, \ldots, c_{k} receive colors $1, \ldots, k$; vertices $s_{1}^{\prime}, s_{2}, \ldots, s_{k}$ receive color $k+1$; vertex $s_{1}^{\prime \prime}$ receives color 2 or $k+2$, respectively.

We will now analyze the different kinds of quasi-starfishes.
Claim 4. If G is type 4, then $\operatorname{dom}_{G}[k+1+s]=\min \{k, 2 k-2 s\}+1$ for $0 \leq s<k$, and $\operatorname{dom}_{G}[t]=0$ for $t>2 k$.
Since $\chi(G)=k+1$, then $\operatorname{dom}_{G}[k+1]=k+1$. Since the maximum degree of G is $2 k-1$, it is clear that $\operatorname{dom}_{G}[t]=0$ for $t>2 k$. Let $t=k+1+s$ such that $1 \leq s \leq k-1$ and let φ be a coloring of G with t colors and maximum number of colors with dominant vertices. At least one of $c_{1}^{\prime}, c_{1}^{\prime \prime}$ has a color different from $\varphi\left(s_{1}\right)$. Suppose without loss of generality that $\varphi\left(c_{1}^{\prime \prime}\right) \neq \varphi\left(s_{1}\right)$, then $\varphi\left(c_{1}^{\prime \prime}\right) \neq \varphi(v)$ for every $v \in V(G)$. Let $G^{\prime}=G-\left\{c_{1}^{\prime \prime}\right\}$. Thus the restriction of φ to G^{\prime} is a coloring with $t-1$ colors, and dominant vertices of G are still dominant in G^{\prime}, therefore $\operatorname{dom}_{G}[t] \leq \operatorname{dom}_{G^{\prime}}[t-1]+1$. Conversely, let ψ be a coloring of G^{\prime} with $t-1$ colors (namely, colors $1, \ldots, t-1$) and maximum number of colors with dominant vertices. We can extend ψ to a t-coloring of G by defining $\psi\left(c_{1}^{\prime \prime}\right)=t$. Since $t-1 \geq k+1$, no vertex in S^{*} was dominant in G^{\prime}, so every dominant vertex of G^{\prime} is still dominant in G. Besides, $c_{1}^{\prime \prime}$ is now dominant in G if and only if $\psi\left(s_{1}\right)=\psi(v)$ for some vertex v of G^{\prime}, different from s_{1}, and this happens if and only if c_{1}^{\prime} was dominant in G^{\prime}. By symmetry of G^{\prime}, we may assume that if $\operatorname{dom}_{G^{\prime}}[t-1]>0$ then c_{1}^{\prime} was dominant in G^{\prime}. So, if $\operatorname{dom}_{G^{\prime}}[t-1]>0$, we have that $\operatorname{dom}_{G}[t]=\operatorname{dom}_{G^{\prime}}[t-1]+1$. Since G^{\prime} is type 2 , we already know that $\operatorname{dom}_{G^{\prime}}[k+s]=\min \{k, 2 k-2 s\}$. Since $s \leq k-1, \operatorname{dom}_{G^{\prime}}[t-1]>0$, and $\operatorname{dom}_{G}[k+1+s]=\min \{k, 2 k-2 s\}+1$.

Claim 5. If G is type 6, then $\operatorname{dom}_{G}[k+s]=k$ for $0 \leq s \leq\left\lfloor\frac{k}{2}\right\rfloor$, $\operatorname{dom}_{G}[k+s]=\min \{k-1,2 k-2 s+2\}$ for $\left\lfloor\frac{k}{2}\right\rfloor \leq s \leq k$, and $\operatorname{dom}_{G}[k+s]=0$ for $s>k$.

Since $\chi(G)=k$, then $\operatorname{dom}_{G}[k]=k$. Since the maximum degree of G is $2 k-1$, it is clear that $\operatorname{dom}_{G}[t]=0$ for $t>2 k$. Let $t=k+s$ with $1 \leq s \leq k$ and let φ be a coloring of G with t colors and maximum number of colors with dominant vertices.

Suppose first that $\varphi\left(c_{1}^{\prime}\right)=\varphi\left(c_{1}^{\prime \prime}\right)$. Then the number of colors with dominant vertices in G is the same as the number of colors with dominant vertices when restricting φ to $G^{\prime}=G-\left\{c_{1}^{\prime \prime}\right\}$. Conversely, any coloring of G^{\prime} can be extended to a coloring of G by giving to $c_{1}^{\prime \prime}$ the color used by c_{1}^{\prime}, thus preserving the dominant vertices. Then, if $\varphi\left(c_{1}^{\prime}\right)=\varphi\left(c_{1}^{\prime \prime}\right)$, it follows that $\operatorname{dom}_{G}[k+s]=\operatorname{dom}_{G^{\prime}}[k+s]$ and, since G^{\prime} is type $2, \operatorname{dom}_{G}[k+s]=\min \{k, 2 k-2 s\}$.

Suppose now that $\varphi\left(c_{1}^{\prime}\right) \neq \varphi\left(c_{1}^{\prime \prime}\right)$. By Lemma 1 , none of $c_{1}^{\prime}, c_{1}^{\prime \prime}$ is dominant. So, in this case, the number of colors with dominant vertices is at most $k-1$. We may assume $2 s>k$, otherwise, by the arguments above, we can find a coloring φ^{\prime} of G with $\varphi^{\prime}\left(c_{1}^{\prime}\right)=\varphi^{\prime}\left(c_{1}^{\prime \prime}\right)$ and such that there are k colors with dominant vertices. Since $k \geq 2$, this implies $s>1$, hence $t>k+1$. Since $\varphi\left(c_{1}^{\prime}\right) \neq \varphi\left(c_{1}^{\prime \prime}\right)$, at least one of them has a color different from $\varphi\left(s_{1}\right)$. Suppose without loss of generality that $\varphi\left(c_{1}^{\prime \prime}\right) \neq \varphi\left(s_{1}\right)$, then $\varphi\left(c_{1}^{\prime \prime}\right) \neq \varphi(v)$ for every $v \in V(G)$. Let $G^{\prime}=G-\left\{c_{1}^{\prime \prime}\right\}$. Thus the restriction of φ to G^{\prime} is a coloring with $t-1$ colors, and dominant vertices of G are still dominant in G^{\prime}. Since $c_{1}^{\prime \prime}$ was not dominant in G, the number of colors with dominant vertices does not decrease. Conversely, let ψ be a coloring of G^{\prime} with $t-1$ colors (namely, colors $1, \ldots, t-1$) and maximum number of colors with dominant vertices. By Lemma 3, all the dominant vertices are in C^{*}. We can extend ψ to at-coloring of G by defining $\psi\left(c_{1}^{\prime \prime}\right)=t$. All dominant vertices in $\left\{c_{2}, \ldots, c_{k}\right\}$ are still dominant. If there were less than k dominant vertices, we may assume
by symmetry of G^{\prime} that they were in $\left\{c_{2}, \ldots, c_{k}\right\}$. If there were k dominant vertices in G^{\prime}, vertex c_{1} is no longer dominant, still c_{2}, \ldots, c_{k} are dominant, and we know that, if $\varphi\left(c_{1}^{\prime}\right) \neq \varphi\left(c_{1}^{\prime \prime}\right)$, then in G there cannot be more than $k-1$ colors with dominant vertices. So, in that case, $\operatorname{dom}_{G}[k+s]=\min \left\{k-1\right.$, $\left.\operatorname{dom}_{G^{\prime}}[k+s-1]\right\}$. Since G^{\prime} is type $2, \operatorname{dom}_{G}[k+s]=\min \{k-1,2 k-2 s+2\}$.

So, if $2 s \leq k$, then $\operatorname{dom}_{G}[k+s]=k$ and the optimum is attained by a coloring where c_{1}^{\prime} and $c_{1}^{\prime \prime}$ receive the same color. If $2 s>k$, then $\operatorname{dom}_{G}[k+s]=\min \{k-1,2 k-2 s+2\}$ and the optimum is attained by a coloring where c_{1}^{\prime} and $c_{1}^{\prime \prime}$ receive different colors.

Claim 6. If G is type 8 , then $\operatorname{dom}_{G}[k+1]=k+1$; then $\operatorname{dom}_{G}[k+s]=k$ for $2 \leq s \leq\left\lfloor\frac{k+1}{2}\right\rfloor$; $\operatorname{dom}_{G}[k+s]=k-1$ for $s=\frac{k+2}{2}$ (when k is even); $\operatorname{dom}_{G}[k+s]=2 k-2 s+2$ for $\left\lfloor\frac{k+3}{2}\right\rfloor \leq s \leq k$; and $\operatorname{dom}_{G}[t]=0$ for $t>2 k$.

Since $\chi(G)=k+1$, then $\operatorname{dom}_{G}[k+1]=k+1$. Since the maximum degree of G is $2 k-1$, it is clear that $\operatorname{dom}_{G}[t]=0$ for $t>2 k$. Let $t=k+s$ with $2 \leq s \leq k$ and let φ be a t-coloring of G with maximum number of colors with dominant vertices. For $i \geq 2$, vertex c_{i} will be dominant if and only if color $\varphi\left(s_{i}\right)$ is used by some other vertex in G, and vertex c_{1} will be dominant if and only if colors $\varphi\left(s_{1}^{\prime}\right)$ and $\varphi\left(s_{1}^{\prime \prime}\right)$ are used by some other vertices in $\left(c_{1}, s_{2}, \ldots, s_{k}\right)$. We may assume without loss of generality that $\varphi\left(c_{i}\right)=i$, for $i=1, \ldots, k$, and that vertices in S^{*} use colors $k+1, \ldots, k+s$. If some vertex s_{i} uses a color at most k, we can always recolor it with a color from $k+1, \ldots, k+s$ that is already used in S^{*}. Since $s \geq 2$, we can do it also for s_{1}^{\prime} and $s_{1}^{\prime \prime}$. If $2 s \leq k+1$, we can assign colors $k+1, \ldots, k+s$ to vertices in S^{*}, repeating each of them at least once, in such a way that all the vertices in C^{*} are dominant. If $2 s>k+1$, this is not possible. Since $\varphi\left(s_{1}^{\prime}\right) \neq \varphi\left(s_{1}^{\prime \prime}\right)$ and all the colors $k+1, \ldots, k+s$ are used in S^{*}, we may assume without loss of generality that $\varphi\left(s_{1}^{\prime}\right)=k+1, \varphi\left(s_{1}^{\prime \prime}\right)=k+2$, and $\varphi\left(s_{i}\right)=k+1+i$ for $i=2, \ldots, s-1$ (when $s \geq 3$). To each of the $k+1-s$ remaining vertices we can assign different colors from $k+1, \ldots, k+s$. If we assign color $k+1+i$ to vertex s_{j}, with $s \leq j \leq k$ and $2 \leq i \leq s-1$, both c_{i} and c_{j} become dominant. If we assign color $k+1(r e s p . k+2)$ to some vertex s_{j} with $s \leq j \leq k$, then c_{j} will be dominant but c_{1} will be dominant only if some other vertex $s_{j^{\prime}}, s \leq j^{\prime} \leq k$, receives $k+2$ (resp. $k+1$). So, as we have less than s remaining vertices, the optimum $2(k+1-s)$ is attained by assigning to s_{s}, \ldots, s_{k} different colors from $k+3$ to $k+s$ when $k+1-s \leq s-2$. The last case is when $k+1-s=s-1$, that is, k is even and $2 s=k+2$. In this case we can assign to s_{s}, \ldots, s_{k-1} different colors from $k+3$ to $k+s$ and to vertex s_{k} color $k+1$. In this case, all the vertices of C^{*} but c_{1} are dominant, and this is optimal.

Claim 7. If G is type 10 , then $\operatorname{dom}_{G}[k+s]=k$ for $0 \leq s \leq\left\lfloor\frac{k+1}{2}\right\rfloor$; $\operatorname{dom}_{G}[k+s]=k-1$ for $s=\frac{k+2}{2}$ (when k is even); $\operatorname{dom}_{G}[k+s]=2 k-2 s+2$ for $\left\lfloor\frac{k+3}{2}\right\rfloor \leq s \leq k$; and $\operatorname{dom}_{G}[t]=0$ for $t>2 k$.

Since $\chi(G)=k$, then $\operatorname{dom}_{G}[k]=k$. A coloring with $k+1$ colors and k dominant vertices is obtained by giving colors $1, \ldots, k$ to vertices in C^{*} and color $k+1$ to each vertex in S^{*}. Since the maximum degree of G is $2 k-1$, it is clear that $\operatorname{dom}_{G}[t]=0$ for $t>2 k$. The arguments for $k+2 \leq s \leq 2 k$ are very similar to those in the proof of Claim 6 , and are omitted.

In all the cases, given the type of the graph, the dominance sequence can be computed in linear time. The type of the graph can be also determined in linear time [10].

Theorem 6 ([3]). Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs such that $V_{1} \cap V_{2}=\emptyset$. Let $G=G_{1} \cup G_{2}$ and $t \geq \chi(G)$. Then

$$
\operatorname{dom}_{G}[t]=\min \left\{t, \operatorname{dom}_{G_{1}}[t]+\operatorname{dom}_{G_{2}}[t]\right\}
$$

Theorem 7 ([3]). Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs such that $V_{1} \cap V_{2}=\emptyset$. Let $G=G_{1} \vee G_{2}$ and $\chi(G) \leq t \leq|V(G)|$. Let $a=\max \left\{\chi\left(G_{1}\right), t-\left|V\left(G_{2}\right)\right|\right\}$ and $b=\min \left\{\left|V\left(G_{1}\right)\right|, t-\chi\left(G_{2}\right)\right\}$. Then $a \leq b$ and

$$
\operatorname{dom}_{G}[t]=\max _{a \leq j \leq b}\left\{\operatorname{dom}_{G_{1}}[j]+\operatorname{dom}_{G_{2}}[t-j]\right\}
$$

Theorem 8. Let $G_{1}=\left(V_{1}, E_{1}\right)$ be a quasi-urchin or a quasi-starfish of size k and $G_{2}=\left(V_{2}, E_{2}\right)$ be a graph such that $V_{1} \cap V_{2}=\emptyset, V_{2} \neq \emptyset$. Let $G=G_{1} \vee G_{2}$. Then, the following statements hold.
i. If G_{1} is type $1,2,7,9$ or 10 , then
a. $\operatorname{dom}_{G}[k+r]=k+\operatorname{dom}_{G_{2}}[r]$, for $\chi\left(G_{2}\right) \leq r \leq\left|V_{2}\right|$;
b. $\operatorname{dom}_{G}\left[k+\left|V_{2}\right|+s\right]=\operatorname{dom}_{G_{1}}[k+s]$, for $1 \leq s \leq\left|V_{1}\right|-k$.
ii. If G_{1} is type 3 or 4 , then
a. $\operatorname{dom}_{G}[k+1+r]=k+1+\operatorname{dom}_{G_{2}}[r]$, for $\chi\left(G_{2}\right) \leq r \leq\left|V_{2}\right|$;
b. $\operatorname{dom}_{G}\left[k+1+\left|V_{2}\right|+s\right]=\operatorname{dom}_{G_{1}}[k+1+s]$, for $1 \leq s \leq\left|V_{1}\right|-k-1$.
iii. If G_{1} is type 5 or 6 , then
a. $\operatorname{dom}_{G}\left[k+\chi\left(G_{2}\right)\right]=k+\chi\left(G_{2}\right)$;
b. $\operatorname{dom}_{G}[k+r]=\max \left\{k+\operatorname{dom}_{G_{2}}[r], k-1+\operatorname{dom}_{G_{2}}[r-1]\right\}$, for $\chi\left(G_{2}\right)<r \leq\left|V_{2}\right|$;
c. $\operatorname{dom}_{G}\left[k+1+\left|V_{2}\right|\right]=\max \left\{k, k-1+\operatorname{dom}_{G_{2}}\left[\left|V_{2}\right|\right]\right\}$;
d. $\operatorname{dom}_{G}\left[k+\left|V_{2}\right|+s\right]=\operatorname{dom}_{G_{1}}[k+s]$, for $2 \leq s \leq\left|V_{1}\right|-k$.
iv. If G_{1} is type 8 , then
a. $\operatorname{dom}_{G}[k+r]=k+\operatorname{dom}_{G_{2}}[r]$, for $\chi\left(G_{2}\right) \leq r \leq\left|V_{2}\right|$;
b. $\operatorname{dom}_{G}\left[k+1+\left|V_{2}\right|\right]=k$;
c. $\operatorname{dom}_{G}\left[k+\left|V_{2}\right|+s\right]=\operatorname{dom}_{G_{1}}[k+s]$, for $2 \leq s \leq\left|V_{1}\right|-k$.

Proof. Recall that $\operatorname{dom}[\chi(G)]=\chi(G)$, and that the chromatic number of each type of quasi-starfish or quasi-urchin is described in Lemma 4. Let $\left(C^{*}, S^{*}\right)$ be the p-partition of G_{1}. Notice first that in any coloring of G, the set of colors used by V_{2} and C^{*} are disjoint. Let φ be a coloring of G with t colors, $t>\chi(G)$. Vertices in S^{*} are either simplicial or have degree at most $\chi(G)-1$ (recall that $V_{2} \neq \emptyset$). So no vertex in S^{*} can be dominant. If some vertex of S^{*} has a color that is used neither in V_{2} nor in C^{*}, then no vertex in V_{2} is dominant. We start the case analysis. If G_{1} is type $1,2,7,9$ or 10 , then C^{*} is a clique of size k. Every vertex in C^{*} is dominant when the colors used by S^{*} are used also in $C^{*} \cup V_{2}$, and they are still dominant if we consider φ restricted to $G\left[V_{2} \cup C^{*}\right]$. By Theorem 7, $\operatorname{dom}_{G}[k+r]=k+\operatorname{dom}_{G_{2}}[r]$, for $\chi\left(G_{2}\right) \leq r \leq\left|V_{2}\right|$. If $t>k+\left|V_{2}\right|$, at least some color must be used only in S^{*}. So the only candidates to be dominant vertices are vertices in C^{*}. Since they are adjacent to all the vertices in V_{2}, we may assume that no vertex in S^{*} uses a color used in V_{2}, and each vertex of C^{*} is dominant if and only if it is dominant in $G\left[V_{1}\right]$, so $\operatorname{dom}_{G}\left[k+\left|V_{2}\right|+s\right]=\operatorname{dom}_{G_{1}}[k+s]$, for $1 \leq s \leq\left|V_{1}\right|-k(*)$. If G_{1} is type 3 or 4 , the analysis is the same but taking into account that C^{*} is a clique of size $k+1$. If G_{1} is type 5 or 6 , then C^{*} is not a clique. We may assume that the original set was $C=\left\{c_{1}, \ldots, c_{k}\right\}$ and vertex c_{1} was replaced by two false twins $c_{1}^{\prime}, c_{1}^{\prime \prime}$. Item iii.a holds because $\chi(G)=k+\chi\left(G_{2}\right)$. Most of the observations for the previous cases still hold. So, when $\chi\left(G_{2}\right)<t-k \leq\left|V_{2}\right|+1$, we have two possibilities to color C^{*} : we can either use k colors, being $\varphi\left(c_{1}^{\prime}\right)=\varphi\left(c_{1}^{\prime \prime}\right)$, and in that case k vertices of different colors will be dominant in C^{*}, or use $k+1$ colors and, by Lemma 1 , only $k-1$ vertices in C^{*} will be dominant. This leads to the expressions iii.b and iii.c. Finally, when $t>k+\left|V_{2}\right|+1$, at least some color must be used only in S^{*}. The analysis in (*) leads to the expression iii.d. Finally, if G_{1} is type 8 , then C^{*} is a clique of size k but $\chi\left(G_{1}\right)=k+1$. In this case, if $\chi\left(G_{2}\right) \leq r \leq\left|V_{2}\right|$, necessarily one color in V_{2} will be used also in S^{*}, but the analysis is the same as in case i.a. Also the case iv.c is similar to i.b. The only difference is when $t=k+1+\left|V_{2}\right|$. We cannot say that $\operatorname{dom}_{G}\left[k+1+\left|V_{2}\right|\right]=\operatorname{dom}_{G_{1}}[k+1]=k+1$, because we know that we have dominant vertices only in C^{*}, so $\operatorname{dom}_{G}\left[k+1+\left|V_{2}\right|\right] \leq k$. A coloring with k dominant vertices in C^{*} is attainable by giving colors $1, \ldots, k$ to vertices in C^{*}, color $k+1$ to vertices in $S^{*} \backslash\left\{s_{1}^{\prime \prime}\right\}$, color $k+2$ to $s_{1}^{\prime \prime}$, and colors $k+2, \ldots, k+1+\left|V_{2}\right|$ to vertices in V_{2}.

Theorem 9. The dominance vector and the b-chromatic number of a P_{4}-tidy graph G can be computed in $O\left(n^{3}\right)$ time.
Proof. The previous results give a dynamic programming algorithm to compute the dominance sequence of a P_{4}-tidy graph from its decomposition tree, that can be computed in linear time [10]. By Theorems 6-8 and 4, Proposition 1 and the fact that P_{4}-tidy graphs are hereditary, we can compute recursively the dominance vector and consequently the b-chromatic number of G in $O\left(n^{3}\right)$ time. Indeed, if $G=G_{1} \cup G_{2}$, by Theorem 6 , the value for $\operatorname{dom}_{G}[t]$ is obtained from dom $G_{G_{1}}[t]$ and $\operatorname{dom}_{G_{2}}[t]$ directly. By Theorem 8 , the same case holds for $G=G_{1} \vee G_{2}$. If $G=G_{1} \vee G_{2}$, we must examine at most n values of j for each value of t, by Theorem 7. We have at most n of these reduction steps, because in each case we must compute two disjoint subgraphs. The base case, computing the dominance sequence of the trivial graph and the five elementary subgraphs in the decomposition, can be done in $O(1)$ by Lemma 10 . So the total computation time is $O\left(n^{3}\right)$. Once we have computed the dominance sequence of G, we obtain the b-chromatic number as the maximum value t such that $\operatorname{dom}_{G}[t]=t$.

4. \boldsymbol{b}-monotonicity in $\boldsymbol{P}_{\mathbf{4}}$-tidy graphs

In this section, we will show that P_{4}-tidy graphs are b-monotonic. To this end, we will prove the following property.
Theorem 10. For every P_{4}-tidy graph G, every induced subgraph H of G and every $t \geq \chi(G), \operatorname{dom}_{H}[t] \leq \operatorname{dom}_{G}[t]$ holds.
We first state some necessary results.
Lemma 11. Let G be a P_{5}, a $\overline{P_{5}}, a C_{5}$, a quasi-urchin or a quasi-starfish. Then, for every $t \geq \chi(G)$ and every vertex v of $G, \operatorname{dom}_{G-\{v\}}[t] \leq \operatorname{dom}_{G}[t]$ holds.

Proof. The cases $P_{5}, \overline{P_{5}}$ and C_{5} are easy to verify. Let $G=\left(C^{*}, S^{*}\right)$ be a quasi-urchin or quasi-starfish of size k. Let (C, S) be the p-partition of the urchin or starfish, $S=\left\{s_{1}, \ldots, s_{k}\right\}, C=\left\{c_{1}, \ldots, c_{k}\right\}$. If a vertex in S (resp. C) was replaced by two vertices, we will assume that the vertex was s_{1} (resp. c_{1}) and that it was replaced by vertices $s_{1}^{\prime}, s_{1}^{\prime \prime}$ (resp. $c_{1}^{\prime}, c_{1}^{\prime \prime}$). Let $t \geq \chi(G)$, and let v be a vertex of G. Let φ be a t-coloring of $G-\{v\}$ that maximizes the number of color classes with dominant vertices. Suppose first that v is a leg of G and either G is not type 8 or v is different from $s_{1}^{\prime}, s_{1}^{\prime \prime}$. Then φ can be extended to a t-coloring of G with the same number of dominant vertices by giving to v the color of some vertex in the body non-adjacent to it. If G is type 8 and $v=s_{1}^{\prime}$, since $t \geq \chi(G)=k+1$, we can give to s_{1}^{\prime} either a color that is not used in the body of G or the color $\varphi\left(c_{1}\right)$ (depending on whether $\varphi\left(s_{1}^{\prime \prime}\right)=\varphi\left(c_{1}\right)$ or not). Now, suppose that v is a vertex in the body of G. If v has a false twin, we can color v with the color used by its false twin. Otherwise, since $t \geq \chi(G)$, there is some color c that is not used in the body of G. We will extend φ to a t-coloring of G with at least the same number of dominant vertices by setting $\varphi(v)=c$. If some leg w of G adjacent to v was colored c, then all its neighbors are also neighbors of v, so we can recolor w with the color of some vertex in the body non-adjacent to it, and all dominant vertices will still be dominant. The only case in which we cannot do this is when G is type $8, v$ is not c_{1}, one of $s_{1}^{\prime}, s_{1}^{\prime \prime}$ uses color c and the other one uses color $\varphi\left(c_{1}\right)$. But, in that case, since $t \geq \chi(G)=k+1$, there are in fact at least two colors c, c^{\prime} not used in the body of G. So we can give color c^{\prime} to v, and recolor as mentioned above all the legs adjacent to it (note that neither s_{1}^{\prime} nor $s_{1}^{\prime \prime}$ uses c^{\prime} in the case we are dealing with). Hence, $\operatorname{dom}_{G-\{v\}}[t] \leq \operatorname{dom}_{G}[t]$.

Lemma 12. Let $G_{1}=\left(V_{1}, E_{1}\right)$ be a quasi-starfish or a quasi-urchin and $G_{2}=\left(V_{2}, E_{2}\right)$ be a b-continuous graph such that $V_{1} \cap V_{2}=\emptyset$ and, for every $t \geq \chi\left(G_{2}\right)$ and every induced subgraph H of G_{2}, $\operatorname{dom}_{H}[t] \leq \operatorname{dom}_{G_{2}}[t]$. Let $G=G_{1} \underline{\vee} G_{2}$. Then, for every $t \geq \chi(G)$ and every vertex v of G, $\operatorname{dom}_{G-\{v\}}[t] \leq \operatorname{dom}_{G}[t]$ holds.
Proof. If $t=\chi(G)$ the statement is clearly true. Let $t>\chi(G)$, and let v be a vertex of G. Let φ be a t-coloring of $G-\{v\}$ that maximizes the number of color classes with dominant vertices. We will extend φ to a t-coloring of G with the same number of color classes with dominant vertices. Let $\left(C^{*}, S^{*}\right)$ be the p-partition of G_{1}. Notice that, since $t>\chi(G) \geq \chi(G-\{v\})$, no vertex in S^{*} is dominant.

Suppose first that v is a vertex of S^{*}. We can extend φ by giving to v a color not used by any of its neighbors (it is always possible because $t>\chi(G)$).

Suppose now that v is a vertex of V_{2}. If $\left|V_{2}\right|=1$ then the lemma holds by Theorem 8 and the claims in the proof of Lemma 10. If $\left|V_{2}\right|>1$, let r be the number of colors used by $V_{2}-\{v\}$ in φ. If $r \geq \chi\left(G_{2}\right)$, since $\operatorname{dom}_{G_{2}}[r] \geq \operatorname{dom}_{G_{2}-\{v\}}[r]$, we can replace φ restricted to $V_{2}-\{v\}$ by an r-coloring of G_{2} with dom $_{G_{2}}[r]$ color classes with dominant vertices, thus obtaining a t-coloring of G with at least the same dominant color classes as before. Otherwise, $r=\chi\left(G_{2}-\{v\}\right)=\chi\left(G_{2}\right)-1$. Since $t>\chi(G)$, it follows that $t-r \geq \chi\left(G_{1}\right)$. Notice that the equality can hold only if G_{1} is type 8 . Then we can replace φ restricted to $V_{2}-\{v\}$ by an $(r+1)$-coloring of G_{2} and, by Lemma 10, φ restricted to V_{1} by a coloring of G_{1} with at most $t-r-1$ new colors and at least the same dominant color classes as before (if G_{1} is type 8 and $t-r=\chi\left(G_{1}\right)$, we can assign to one of the true twin vertices in S^{*} a color used in V_{2}).

Finally, suppose that v is a vertex in C^{*}. If v has a false twin v^{\prime} in $C^{*}-\{v\}$, we are done by setting $\varphi(v)=\varphi\left(v^{\prime}\right)$. If there are two false twins w, w^{\prime} in $C^{*}-\{v\}$ using different colors, we can assign to v color $\varphi\left(w^{\prime}\right)$ and to w^{\prime} color $\varphi(w)$ (possibly recoloring in a suitable way vertices in S^{*}), obtaining a t-coloring of G with at least the same dominant color classes as before. Otherwise, v is adjacent to all vertices in $C^{*}-\{v\}$ and they are colored with $\chi\left(G\left[C^{*}-\{v\}\right]\right)$ colors. Let r be the number of colors used by V_{2} in φ. If φ restricted to V_{2} is not a b-coloring, we can eliminate one color class from V_{2} without decreasing the number of color classes with dominant vertices, and give that color to v, that will be adjacent to all the vertices that were dominant, thus obtaining the desired t-coloring for G. If φ restricted to V_{2} is a b-coloring and $r>\chi\left(G_{2}\right)$, since G_{2} is b-continuous, we can replace φ restricted to V_{2} by a b-coloring of G_{2} with $r-1$ colors, thus giving the remaining color to v as before. Finally, by Lemma 5 and being $t>\chi(G)$, if $r=\chi\left(G_{2}\right)$ then $t-r \geq \chi\left(G_{1}\right)$. In that case, it is easy to see that we can replace φ restricted to V_{1} by a $t-r$-coloring of G_{1}, maintaining or increasing the number of color classes with dominant vertices, thus obtaining the desired t-coloring of G.

Lemma 13 ([3]). Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs such that $V_{1} \cap V_{2}=\emptyset$, and let $G=G_{1} \cup G_{2}$. Assume that for every $t \geq \chi\left(G_{i}\right)$ and every induced subgraph H of G_{i} we have $\operatorname{dom}_{H}[t] \leq \operatorname{dom}_{G_{i}}[t]$, for $i=1$, 2 . Then, for every $t \geq \chi(G)$ and every induced subgraph H of $G, \operatorname{dom}_{H}[t] \leq \operatorname{dom}_{G}[t]$ holds.

Lemma 14 ([3]). Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two b-continuous graphs such that $V_{1} \cap V_{2}=\emptyset$, and let $G=G_{1} \vee G_{2}$. Assume that for every $t \geq \chi\left(G_{i}\right)$ and every induced subgraph H of G_{i} we have $\operatorname{dom}_{H}[t] \leq \operatorname{dom}_{G_{i}}[t]$, for $i=1$, 2 . Then, for every $t \geq \chi(G)$ and every induced subgraph H of $G, \operatorname{dom}_{H}[t] \leq \operatorname{dom}_{G}[t]$ holds.

Lemma 15 ([3]). Let G be a graph. The maximum value of $\operatorname{dom}_{G}[t]$ is attained in $t=\chi_{b}(G)$.
Proof of Theorem 10. Let us consider a minimal counterexample for the theorem, that is, a P_{4}-tidy graph G and an induced subgraph H of G such that $\operatorname{dom}_{H}[t]>\operatorname{dom}_{G}[t]$ for some $t \geq \chi(G)$, but such that $\operatorname{dom}_{H_{2}}[t] \leq \operatorname{dom}_{H_{1}}[t]$ for every induced subgraph H_{1} of H, every induced subgraph H_{2} of H_{1} and every $t \geq \chi\left(H_{1}\right)$. By Lemmas 13 and $14, G$ is neither the union nor the join of two smaller graphs. Let $W=V(G) \backslash V(H)$, namely, $W=\left\{w_{1}, \ldots, w_{s}\right\}$. If we consider the sequence of graphs defined by $G_{0}=G, G_{i}=G_{i-1}-\left\{w_{i}\right\}$ for $1 \leq i \leq s$, it turns out that $G_{s}=H$. Since dom ${ }_{H}[t]>\operatorname{dom}_{G}[t]$, for some $i \geq 1$, it holds $\operatorname{dom}_{G_{i}}[t]>\operatorname{dom}_{G_{i-1}}[t]$. Since the counterexample was minimal, it should be $i=1$, thus $H=G-\{w\}$ for some vertex w of G. By Lemma 11, Theorem 5 and Lemma 12, Theorem 4 and Proposition 1, such a counterexample does not exist.

Corollary 1. P_{4}-tidy graphs are b-monotonic.
Proof. Since P_{4}-tidy graphs are hereditary, it suffices to show that given a P_{4}-tidy graph $G, \chi_{b}(G) \geq \chi_{b}(H)$ for every induced subgraph H of G. Let G be a P_{4}-tidy graph, and let H be and induced subgraph of G. If $\chi_{b}(H)<\chi(G)$, then $\chi_{b}(H)<\chi_{b}(G)$. Otherwise, by Theorem 10, $\chi_{b}(H)=\operatorname{dom}_{H}\left[\chi_{b}(H)\right] \leq \operatorname{dom}_{G}\left[\chi_{b}(H)\right]$ and, by Lemma 15, $\operatorname{dom}_{G}\left[\chi_{b}(H)\right] \leq \operatorname{dom}_{G}\left[\chi_{b}(G)\right]=$ $\chi_{b}(G)$ implying that $\chi_{b}(G) \geq \chi_{b}(H)$.

Acknowledgements

We would like to thank the anonymous referees for their careful reading and valuable suggestions that helped us to significantly improve this work. Authors were partially supported by ANPCyT PICT-2007-00518 and PICT-2007-00533, and UBACyT Grants X069 and X606 (Argentina).

References

[1] L. Babel, S. Olariu, On the structure of graphs with few $P_{4} \mathrm{~s}$, Discrete Applied Mathematics 84 (1998) 1-13.
[2] L. Babel, S. Olariu, On the p-connectedness of graphs-a survey, Discrete Applied Mathematics 95 (1-3) (1999) 11-33.
[3] F. Bonomo, G. Durán, F. Maffray, J. Marenco, M. Valencia-Pabon, On the b-coloring of cographs and P_{4}-sparse graphs, Graphs and Combinatorics 25 (2) (2009) 153-167.
[4] V. Campos, C. Linhares Sales, A. Maia, R. Sampaio, On b-colorings of graphs with few P_{4} 's, in: Proceedings of the 8th French Combinatorial Conference, Paris, 2010.
[5] D. Corneil, H. Lerchs, L. Stewart Burlingham, Complement reducible graphs, Discrete Applied Mathematics 3 (3) (1981) $163-174$.
[6] D. Corneil, Y. Perl, L. Stewart, Cographs: recognition, applications and algorithms, Congressus Numerantium 43 (1984) $249-258$.
[7] S. Corteel, M. Valencia-Pabon, J. Vera, On approximating the b-chromatic number, Discrete Applied Mathematics 146 (1) (2005) 618-622.
[8] B. Effantin, H. Kheddouci, The b-chromatic number of some power graphs, Discrete Mathematics and Theoretical Computer Science 6(1)(2003)45-54.
[9] T. Faik, La b-continuité des b-colorations: complexité, propriétés structurelles et algorithmes, Ph.D. Thesis, LRI Université Paris-Sud, Orsay, France, 2005.
[10] V. Giakoumakis, F. Roussel, H. Thuillier, On P_{4}-tidy graphs, Discrete Mathematics and Theoretical Computer Science 1 (1997) 17-41.
[11] C.T. Hoàng, Perfect graphs, Ph.D. Thesis, School of Computer Science, McGill University, Montreal, 1985.
[12] C.T. Hoàng, M. Kouider, On the b-dominating coloring of graphs, Discrete Applied Mathematics 152 (2005) 176-186.
[13] C.T. Hoàng, C. Linhares Sales, F. Maffray, On minimally b-imperfect graphs, Discrete Applied Mathematics 157 (17) (2009) $3519-3530$.
[14] C.T. Hoàng, F. Maffray, M. Mechebbek, A characterization of b-perfect graphs, Manuscript, 2010.
[15] R.W. Irving, D.F. Manlove, The b-chromatic number of a graph, Discrete Applied Mathematics 91 (1999) 127-141.
[16] M. Jakovac, S. Klavžar, The b-chromatic number of cubic graphs, Graphs and Combinatorics 26 (1) (2010) 107-118.
[17] B. Jamison, S. Olariu, A new class of brittle graphs, Studies in Applied Mathematics 81 (1989) 89-92.
[18] B. Jamison, S. Olariu, P_{4}-reducible graphs-a class of uniquely tree representable graphs, Studies in Applied Mathematics 81 (1989) $79-87$.
19] B. Jamison, S. Olariu, On a unique tree representation for P_{4}-extendible graphs, Discrete Applied Mathematics 34 (1991) 151-164.
[20] B. Jamison, S. Olariu, p-components and the homogeneous decomposition of graphs, SIAM Journal on Discrete Mathematics 8 (1995) $448-463$.
[21] J. Kára, J. Kratochvíl, M. Voigt, b-continuity, Technical Report M 14/04, Technical University Ilmenau, Faculty of Mathematics and Natural Sciences, 2004.
[22] S. Klein, M. Kouider, On b-perfect graphs, in: Annals of the XII Latin-Ibero-American Congress on Operations Research, Havanna, Cuba, October 2004.
[23] M. Kouider, M. Zaker, Bounds for the b-chromatic number of some families of graphs, Discrete Mathematics 306 (2006) 617-623.
[24] J. Kratochvíl, Zs. Tuza, M. Voigt, On the b-chromatic number of a graph, Lecture Notes in Computer Science 2573 (2002) 310-320.

[^0]: * Corresponding author at: Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.

 E-mail address: fbonomo@dc.uba.ar (F. Bonomo).

