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a b s t r a c t

A b-coloring of a graph is a coloring such that every color class admits a vertex adjacent
to at least one vertex receiving each of the colors not assigned to it. The b-chromatic
number of a graph G, denoted by χb(G), is the maximum number t such that G admits a
b-coloring with t colors. A graph G is b-continuous if it admits a b-coloring with t colors,
for every t = χ(G), . . . , χb(G), and it is b-monotonic if χb(H1) ≥ χb(H2) for every induced
subgraph H1 of G, and every induced subgraph H2 of H1. In this work, we prove that P4-tidy
graphs (a generalization of many classes of graphs with few induced P4s) are b-continuous
and b-monotonic. Furthermore, we describe a polynomial time algorithm to compute the
b-chromatic number for this class of graphs.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we deal with finite undirected graphs, without loops or multiple edges. A coloring of a graph G is an
assignment of colors (represented by natural numbers) to the vertices of G such that no two adjacent vertices are assigned
the same color. The minimum number k such that there exists a coloring of G with k colors is the chromatic number of G,
denoted by χ(G).

When we try to color the vertices of a graph using the minimum number of colors, we can start from a given coloring
and try to decrease the number of colors by eliminating color classes. One possible such procedure consists in trying to
reduce the number of colors by taking a color class such that we can recolor every vertex from that class with a different
color that is not used by any of its neighbors, if any such class exists. A vertex v of a colored graph G is dominant if it has at
least one neighbor of every color, except the one assigned to v. A dominant vertex cannot be recolored with this procedure.
A b-coloring of a graph is a coloring with dominant vertices in each color class, i.e., a coloring where we cannot apply the
strategy above to decrease the number of colors. The b-chromatic number of a graph G, denoted by χb(G), is the maximum
number t such that G admits a b-coloring with t colors [15]. Thus, χb(G) ≥ χ(G), and every coloring with χ(G) colors is a
b-coloring. A graph G is b-perfect if χb(H) = χ(H) for every induced subgraph H of G [12]. b-perfect graphs were recently
characterized by a finite list of forbidden induced subgraphs [14]. Note that b-perfect graphs can be coloredwith aminimum
number of colors in polynomial time, by simply applying the decreasing algorithm, starting from an arbitrary coloring.

The behavior of the b-chromatic number can be surprising. For example, the values of k for which a graph admits a
b-coloring with k colors do not necessarily form an interval of the set of integers; in fact any finite subset of N≥2 can
be the set of these values for some graph [9]. A graph G is b-continuous if it admits a b-coloring with t colors, for every
t = χ(G), . . . , χb(G). In [21] (see also [9]) it is proved that chordal graphs and some planar graphs are b-continuous.
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Another atypical property is that the b-chromatic number can increase when taking induced subgraphs. A graph G is
defined to be b-monotonic if χb(H1) ≥ χb(H2) for every induced subgraph H1 of G, and every induced subgraph H2 of H1 [3].

Irving and Manlove [15] proved that determining χb(G) is NP-hard for general graphs, but polynomial-time solvable for
trees. In [24], Kratochvíl et al. show that determining χb(G) is NP-hard even if G is a connected bipartite graph. More results
on algorithmic aspects and bounds for some graph classes can be found in [3,7,8,16,23].

An induced path on k vertices shall be denoted by Pk. Vertices of degree one (resp. two) in Pk will be called endpoints
(resp. midpoints). An induced subgraph of G isomorphic to Pk is simply said to be a Pk in G. A chordless cycle on k vertices is
denoted by Ck.

A cograph is a graph that does not contain P4 as an induced subgraph [5]. Several generalizations of cographs have been
defined in the literature, such as P4-sparse [11], P4-lite [17], P4-extendible [19] and P4-reducible graphs [18]. A graph class
generalizing all of them is the class of P4-tidy graphs [10]. Let G be a graph and A a P4 in G. A partner of A is a vertex v in
G−A such that A∪ {v} induces at least two P4s in G. A graph G is P4-sparse if no induced P4 has a partner and P4-tidy if every
induced P4 has at most one partner. Another generalization of P4-sparse graphs are (q, q4)-graphs. A graph is a (q, q4)-graph
if no set of at most q vertices induces more than q − 4 distinct P4’s [1]. There is no containment relationship between the
classes P4-tidy and (q, q4)-graphs.

In [3], it was proved that P4-sparse graphs are b-continuous and b-monotonic and a dynamic programming algorithm to
compute their b-chromatic number was presented. Recently, some of the results on P4-sparse graphs were also extended
for the class of (q, q4)-graphs, with fixed q [4]. In this paper, we extend these results to the class of P4-tidy graphs.

1.1. Definitions and preliminary results

Let G = (V , E) be a graph. We will denote by V (G) the vertex set V , by E(G) the edge set E, and by G the complement
graph of G. Given a subset of vertices X ⊂ V , we will denote by G[X] the subgraph of G induced by X . The complete graph
on n vertices will be denoted by Kn and the stable set of n vertices by Sn. Two vertices will be said to be true twins if they are
adjacent and have the same neighborhood, and false twins if they are non-adjacent but have the same neighbors. A vertex
is simplicial if its neighbors induce a complete subgraph. A vertex v controls a vertex w if v and w are non-adjacent and all
the neighbors ofw are neighbors of v.

Lemma 1 ([13]). Let G be a graph and ϕ a coloring of G. If v andw are false twins in G, then either none of them is dominant, or
ϕ(v) = ϕ(w).

This can be extended straightforward to the following one.

Lemma 2. Let G be a graph and ϕ a coloring of G. If v controlsw, then if w is dominant, so is v and ϕ(v) = ϕ(w).

Lemma 3 ([13]). Let G be a graph and ϕ a coloring of G with more than χ(G) colors. Then no simplicial vertex of G is dominant.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that V1 ∩ V2 = ∅. The union of G1 and G2 is the graph
G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). The union is clearly an associative operation and, for each nonnegative integer t , we will
denote by tG the union of t disjoint copies of G. The join of G1 and G2 is the graph G1 ∨ G2 = (V1 ∪ V2, E1 ∪ E2 ∪ V1 × V2).
That is, the vertex set of G1 ∨ G2 is V1 ∪ V2 and its edge set is E1 ∪ E2 plus all the possible edges with an endpoint in V1 and
the other one in V2.

Cographs can be built from isolated vertices by using these two operations.

Theorem 1 ([5]). Every non-trivial cograph is either a union or join of two smaller cographs.

Thus, the chromatic number of a cograph can be recursively calculated due to the following result.

Theorem 2 ([6]). If G is the trivial graph, then χ(G) = 1. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that
V1 ∩ V2 = ∅. Then,

i. χ(G1 ∪ G2) = max{χ(G1), χ(G2)}.
ii. χ(G1 ∨ G2) = χ(G1)+ χ(G2).

A similar result holds for the b-chromatic number, but the relation between the b-chromatic number of two graphs and
the b-chromatic number of their union is weaker.

Theorem 3 ([22]). If G is the trivial graph, then χb(G) = 1. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that
V1 ∩ V2 = ∅. Then,

i. χb(G1 ∪ G2) ≥ max{χb(G1), χb(G2)}.
ii. χb(G1 ∨ G2) = χb(G1)+ χb(G2).

P4-tidy graphs have also a useful decomposition theorem. We will use it extensively in this work to inductively prove
our results. A brief description of the theorem follows.
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Fig. 1. Possible quasi-starfishes of size two. From left to right: P4 , fork, P, P and kite.

Let G = (V , E) be a graph. Let F = {e ∈ E|e belongs to an induced P4 of G}. Let Gp = (V , F). A connected component of
Gp having exactly one vertex is called a weak vertex. Any connected component of Gp distinct from a weak vertex is called a
p-component of G. A graph G is p-connected if it has only one p-component and no weak vertices [2].

A p-connected graph G = (V , E) is p-separable if V can be partitioned into two sets (C, S) such that each P4 that contains
vertices from C and from S has its midpoints in C and its endpoints in S. We will call it a p-partition. If such a partition exists,
then it is unique [20].

An urchin (resp. starfish) of size k, k ≥ 2, is a p-separable graphwith p-partition (C, S), where C = {c1, . . . , ck} is a clique;
S = {s1, . . . , sk} is a stable set; si is adjacent to ci if and only if i = j (resp. i ≠ j).

A quasi-urchin (resp. quasi-starfish) of size k is a graph obtained from an urchin (resp. starfish) of size k by replacing at
most one vertex by K2 or S2. Note that the new vertices result in true or false twins, respectively, and they are in the same
set of the new p-partition (C∗, S∗). The elements of S∗ are called the legs and C∗ is called the body of the quasi-starfish or
quasi-urchin.

Note that there are five possible quasi-starfishes of size two, and they are also the five possible quasi-urchins of size
two: P4, P , P , fork and kite (see Fig. 1). To avoid ambiguity, we will consider these five graphs as quasi-starfishes, while
quasi-urchins will be always of size at least three.

When considering quasi-urchins and quasi-starfishes, we have ten kinds of them. We will call type 1 (resp. type 2) the
urchins (resp. starfishes); type 3 (resp. type 4) the urchins (resp. starfishes), where a vertex in the body was replaced by K2;
type 5 (resp. type 6) the urchins (resp. starfishes), where a vertex in the body was replaced by S2; type 7 (resp. type 8) the
urchins (resp. starfishes), where a leg was replaced by K2; and type 9 (resp. type 10) the urchins (resp. starfishes), where a
leg was replaced by S2. Recall that graphs of odd type have always size at least three and, with this condition, the ten types
form a partition over the family of quasi-urchins and quasi-starfishes.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with V1 ∩ V2 = ∅, such that G1 is p-separable with partition (V 1
1 , V

2
1 ).

Consider the graphwith vertex set V1 ∪V2 and edge set E1 ∪E2 ∪{xy | x ∈ V 1
1 , y ∈ V2}. We shall denote this graph by G1 YG2.

Theorem 4 ([20]). Every graph G either is p-connected or can be obtained uniquely from its p-components and weak vertices by
a finite sequence of ∪,∨ and Y operations.

Proposition 1 ([10]).A graphG is P4-tidy if and only if every p-component is isomorphic to either P5 or P5 or C5 or a quasi-starfish
or a quasi-urchin. Quasi-starfishes and quasi-urchins are the p-separable p-components of G.

Remark 1. Let G1 be a quasi-urchin or a quasi-starfish, and G2 be a graph. If G1 is type 7 or 8, all the legs are simplicial
vertices both in G1 and in G1 Y G2. Otherwise, both in G1 and in G1 Y G2, each leg of G1 is controlled by a vertex in the body of
G1. Then, by Lemmas 2 and 3, for every coloring of G1 (resp. G1 Y G2) with more than χ(G1) (resp. χ(G1 Y G2)) colors, if there
is a dominant vertex of color c in V (G1), then there is a dominant vertex of color c in the body of G1.

Lemma 4. Let G be a quasi-starfish or quasi-urchin of size k. Then,

i. If G is type 1, 2, 5, 6, 7, 9 or 10, then χ(G) = k.
ii. If G is type 3, 4 or 8, then χ(G) = k + 1.
iii. χb(G) = χ(G).

Proof. Items i. and ii. are easy to prove, since a coloring of the maximum clique of G can be extended to the whole graph
without increasing the number of colors. Let (C∗, S∗) be the p-partition of G. To prove item iii., suppose on the contrary that
we have a b-coloring ϕ of Gwithmore than χ(G) colors. By Remark 1, if there is a dominant vertex of color c in G, then there
is a dominant vertex of color c in C∗. If G is neither type 5 nor type 6, then |C∗

| ≤ χ(G), a contradiction. If G is type 5 or 6,
then there is a pair of false twins in C∗, so by Lemma 1, at most |C∗

| − 1 different colors can have dominant vertices and
|C∗

| − 1 ≤ χ(G), a contradiction. �

Lemma 5. Let G1 = (V1, E1) be a p-separable P4-tidy graph, and G2 = (V2, E2) a graph such that V1 ∩ V2 = ∅. Then,

i. If G1 is not type 8, then χ(G1 Y G2) = χ(G1)+ χ(G2); if G1 is type 8, then χ(G1 Y G2) = χ(G1)+ χ(G2)− 1.
ii. If G1 is not type 8, then χb(G1 Y G2) = χb(G1)+ χb(G2); if G1 is type 8, then χb(G1 Y G2) = χb(G1)+ χb(G2)− 1.

Proof. Let G = G1 Y G2. By Proposition 1, G1 is a quasi-urchin or a quasi-starfish. Let (C∗, S∗) be its p-partition. Then G
contains G1[C∗

]∨G2 as an induced subgraph, thus χ(G) ≥ χ(G1[C∗
]∨G2). On the other hand, every coloring of G1[C∗

]∨G2
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can be extended to Gwithout adding new colors, by giving to each vertex in S∗ either a color used by a non-neighbor of it in
C∗ or a color used in G2. Hence, χ(G) = χ(G1[C∗

] ∨ G2). By Theorem 2, χ(G1[C∗
] ∨ G2) = χ(G1[C∗

])+ χ(G2). By Lemma 4,
if G1 is type 8 then χ(G1[C∗

]) = χ(G1)− 1, otherwise χ(G1[C∗
]) = χ(G1). This concludes the proof of item i.

In order to prove item ii., we will show that χb(G) = χb(G2) + χ(G1[C∗
]). Any b-coloring of G2 can be extended to a

b-coloring of G by assigning χ(G1[C∗
]) new colors to C∗ and giving to each vertex in S∗ either a color used by a non-neighbor

of it in C∗ or a color used in G2. So, χb(G) ≥ χb(G2)+ χ(G1[C∗
]).

If χb(G) = χ(G), by item i., χb(G) = χ(G2)+χ(G1[C∗
]) ≤ χb(G2)+χ(G1[C∗

]). So, wemay suppose χb(G) > χ(G). Now
let ϕ be a b-coloring of G with more than χ(G) colors. By Remark 1, if there is a dominant vertex of color c in G, then there
is a dominant vertex of color c in C∗

∪ V (G2). Notice that the set of colors used by vertices in G2 and the set of colors used
in C∗ are disjoint, so C∗ should contain dominant vertices for all the colors used in V (C∗). In particular, if G1 is type 5 or 6,
by Lemma 1, it follows that the two non-adjacent vertices in C∗ receive the same color, thus C∗ is colored with χ(G1[C∗

])
colors. On the other hand, it is easy to see that ϕ restricted to V (G2) is a b-coloring of G2. So χb(G) ≤ χb(G2)+ χ(G1[C∗

]).
We have proved that χb(G) = χb(G2)+χ(G1[C∗

]). By Lemma 4, if G is type 8 then χ(G1[C∗
]) = χ(G1)−1 = χb(G1)−1,

otherwise χ(G1[C∗
]) = χ(G1) = χb(G1). This concludes the proof of item ii. �

2. b-continuity in P4-tidy graphs

In [3], a family of cographs with arbitrarily large difference between their b-chromatic number and their chromatic
numberwas shown. Therefore, it makes sense to analyze b-continuity in P4-tidy graphs. In this sectionwe prove that P4-tidy
graphs are b-continuous, by using the decomposition theorem for this class of graphs.

Lemma 6. If G is P5, P5, C5, a quasi-urchin or a quasi-starfish, then G is b-continuous.
Proof. If G = P5, then χ(G) = 2 and χb(G) = 3 and, for the remaining cases, by Lemma 4, χb(G) = χ(G). So, they are
trivially b-continuous. �

Lemma 7 ([3]). Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that V1 ∩ V2 = ∅. If G1 and G2 are b-continuous and
G = G1 ∪ G2, then G is b-continuous.

Lemma 8 ([3]). Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that V1 ∩ V2 = ∅. If G1 and G2 are b-continuous and
G = G1 ∨ G2, then G is b-continuous.

Lemma 9. Let G1 = (V1, E1) be a p-separable P4-tidy graph and G2 = (V2, E2) be a graph such that V1 ∩ V2 = ∅. If G2 is
b-continuous and G = G1 Y G2, then G is b-continuous.
Proof. By Proposition 1, G1 is a quasi-starfish or a quasi-urchin. Let (C∗, S∗) be the p-partition of G1. Suppose first that G1
is not type 8. Any b-coloring of G2 with t colors {1, . . . , t} can be extended to a b-coloring of G with t + χ(G1) colors, in
the following way. If we color G1 using colors {t + 1, . . . , t + χ(G1)}, then every dominant vertex in G2 will have now also
neighbors with colors t + 1, . . . , t + χ(G1), and every dominant vertex in C∗ will now also have neighbors with colors
1, . . . , t . Since C∗ contains dominant vertices of all colors in {t + 1, . . . , t + χ(G1)}, the resulting coloring is a b-coloring of
Gwith t + χ(G1) colors.

Suppose now that G1 is type 8. Any b-coloring of G2 with t colors {1, . . . , t} can be extended to a b-coloring of G with
t+χ(G1)−1 colors, in the followingway. If we color G1 using colors {t, . . . , t+χ(G1)−1} in such away that C∗ uses colors
from t+1 to t+χ(G1)−1, then every dominant vertex inG2 will nowalso have neighborswith colors t+1, . . . , t+χ(G1)−1,
and every dominant vertex in C∗ will now also have neighbors with colors 1, . . . , t . Since C∗ contains dominant vertices of
all colors in {t + 1, . . . , t + χ(G1)− 1}, this results in a b-coloring of Gwith t + χ(G1)− 1 colors.

SinceG2 is b-continuous, we can obtain b-colorings forGwith each color t ′, whereχ(G2)+χ(G1) ≤ t ′ ≤ χb(G2)+χb(G1)
in the first case, and χ(G2)+χ(G1)−1 ≤ t ′ ≤ χb(G2)+χb(G1)−1 in the second case. By Lemma 5, χ(G) = χ(G2)+χ(G1)
and χb(G) = χb(G2)+ χb(G1) in the first case, while χ(G) = χ(G2)+ χ(G1)− 1 and χb(G) = χb(G2)+ χb(G1)− 1 in the
second case, so G is b-continuous. �

Theorem 5. P4-tidy graphs are b-continuous.
Proof. Immediate by an inductive argument using the decomposition Theorem 4, Proposition 1, Lemmas 7–9 and 6 for the
base case of the induction. �

3. Computation of the b-chromatic number in P4-tidy graphs

The inequality in part i. of Theorem 3 can be strict, and this fact prevents us from using this result for directly computing
the b-chromatic number of P4-tidy graphs by using the decomposition Theorem 4. In fact, it is not difficult to build examples
showing that the b-chromatic number of the graphG1∪G2 does not depend only on the b-chromatic numbers ofG1 andG2. To
overcome this problem, we follow the approach in [3] in the definition of the dominance sequence domG ∈ ZN≥χ(G) of a graph
G, where dom[t] is the maximum number of distinct color classes that admit dominant vertices in any coloring of G with
t colors, for χ(G) ≤ t ≤ |V (G)|. We will compute this sequence recursively on P4-tidy graphs by using the decomposition
theorem. Then we will obtain the b-chromatic number of G as the maximum t such that domG[t] = t .
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Lemma 10. Let G be P5, P5, C5, a quasi-urchin or a quasi-starfish. The dominance sequence for G can be obtained in linear time.

Proof. It is easy to see that domP5 [2] = 2, domP5 [3] = 3, and domP5 [t] = 0 for t ≥ 4; domP5 [3] = 3, domP5 [4] = 1, and
domP5 [5] = 0; domC5 [3] = 3, and domC5 [t] = 0 for t ≥ 4. Now, letG = (C∗, S∗) be a quasi-urchin or quasi-starfish of size k.
Let (C, S) be the p-partition of the urchin or starfish, S = {s1, . . . , sk}, C = {c1, . . . , ck}. If a vertex in S (resp. C) was replaced
by two vertices, wewill assume that the vertexwas s1 (resp. c1) and that it was replaced by vertices s′1, s

′′

1 (resp. c
′

1, c
′′

1 ). Recall
that, for every graph G, domG[χ(G)] = χ(G). Consider now colorings of Gwithmore than χ(G) colors. By Remark 1, if there
is a dominant vertex of color c in G, then there is a dominant vertex of color c in C∗. So, for t > χ(G), domG[t] ≤ |C∗

|.
If G is type 1, then domG[k] = domG[k + 1] = k and domG[t] = 0 for t ≥ k + 2; if G is type 2, then domG[k + s] =

min{k, 2k − 2s} for 0 ≤ s ≤ k, and domG[t] = 0 for t > 2k [3].
We start by analyzing the different kinds of quasi-urchins.

Claim 1. If G is type 3, then domG[k + 1] = domG[k + 2] = k + 1, domG[t] = 0 for t ≥ k + 3.
In G there are k+1 vertices of degree k+1 and no vertex of degree at least k+2, so the upper bounds for each value of domG

are clear (a dominant vertex in a coloring with t colors must have degree at least t − 1). A coloring with k + 2 colors and k + 1
dominant vertices of different colors can be obtained by coloring all the vertices in S∗ with the same color, different from the colors
used in C∗. �

Claim 2. If G is type 5, then domG[k] = domG[k + 1] = k, domG[k + 2] = k − 1, domG[t] = 0 for t ≥ k + 3.
Since k ≥ 3, in G there are k − 1 vertices of degree k + 1, 2 vertices of degree k, and no vertex of degree at least k + 2. So, the

upper bounds on domG[t] for t ≥ k + 2 are clear. The upper bound for domG[k + 1] holds by Lemma 1. Two colorings attaining
the upper bounds for domG[k+1] and domG[k+2] are defined as follows. Vertices c2, . . . , ck receive colors 1, . . . , k−1; vertices
s1, . . . , sk receive color k + 1; vertices c ′

1, c
′′

1 receive both color k or colors k and k + 2, respectively. �

Claim 3. If G is type 7 or type 9, then domG[k] = domG[k + 1] = k, domG[k + 2] = 1, domG[t] = 0 for t ≥ k + 3.
Since k ≥ 3, in G there are k− 1 vertices of degree k, one vertex of degree k+ 1, and no vertex of degree at least k+ 2. So, the

upper bounds on domG[t] are clear. Two colorings attaining the upper bounds for domG[k + 1] and domG[k + 2] are defined as
follows. Vertices c1, . . . , ck receive colors 1, . . . , k; vertices s′1, s2, . . . , sk receive color k + 1; vertex s′′1 receives color 2 or k + 2,
respectively. �

We will now analyze the different kinds of quasi-starfishes.

Claim 4. If G is type 4, then domG[k + 1 + s] = min{k, 2k − 2s} + 1 for 0 ≤ s < k, and domG[t] = 0 for t > 2k.
Since χ(G) = k + 1, then domG[k + 1] = k + 1. Since the maximum degree of G is 2k − 1, it is clear that domG[t] = 0 for

t > 2k. Let t = k+1+ s such that 1 ≤ s ≤ k−1 and let ϕ be a coloring of G with t colors and maximum number of colors with
dominant vertices. At least one of c ′

1, c
′′

1 has a color different from ϕ(s1). Suppose without loss of generality that ϕ(c ′′

1 ) ≠ ϕ(s1),
then ϕ(c ′′

1 ) ≠ ϕ(v) for every v ∈ V (G). Let G′
= G − {c ′′

1 }. Thus the restriction of ϕ to G′ is a coloring with t − 1 colors, and
dominant vertices of G are still dominant in G′, therefore domG[t] ≤ domG′ [t − 1] + 1. Conversely, let ψ be a coloring of G′

with t − 1 colors (namely, colors 1, . . . , t − 1) and maximum number of colors with dominant vertices. We can extend ψ to a
t-coloring of G by defining ψ(c ′′

1 ) = t. Since t − 1 ≥ k + 1, no vertex in S∗ was dominant in G′, so every dominant vertex of G′

is still dominant in G. Besides, c ′′

1 is now dominant in G if and only if ψ(s1) = ψ(v) for some vertex v of G′, different from s1,
and this happens if and only if c ′

1 was dominant in G′. By symmetry of G′, we may assume that if domG′ [t − 1] > 0 then c ′

1 was
dominant in G′. So, if domG′ [t − 1] > 0, we have that domG[t] = domG′ [t − 1] + 1. Since G′ is type 2, we already know that
domG′ [k + s] = min{k, 2k − 2s}. Since s ≤ k − 1, domG′ [t − 1] > 0, and domG[k + 1 + s] = min{k, 2k − 2s} + 1. �

Claim 5. If G is type 6, then domG[k + s] = k for 0 ≤ s ≤
 k

2


, domG[k + s] = min{k − 1, 2k − 2s + 2} for

 k
2


≤ s ≤ k,

and domG[k + s] = 0 for s > k.
Since χ(G) = k, then domG[k] = k. Since the maximum degree of G is 2k − 1, it is clear that domG[t] = 0 for t > 2k. Let

t = k + s with 1 ≤ s ≤ k and let ϕ be a coloring of G with t colors and maximum number of colors with dominant vertices.
Suppose first that ϕ(c ′

1) = ϕ(c ′′

1 ). Then the number of colors with dominant vertices in G is the same as the number of
colors with dominant vertices when restricting ϕ to G′

= G − {c ′′

1 }. Conversely, any coloring of G′ can be extended to a
coloring of G by giving to c ′′

1 the color used by c ′

1, thus preserving the dominant vertices. Then, if ϕ(c ′

1) = ϕ(c ′′

1 ), it follows
that domG[k + s] = domG′ [k + s] and, since G′ is type 2, domG[k + s] = min{k, 2k − 2s}.

Suppose now that ϕ(c ′

1) ≠ ϕ(c ′′

1 ). By Lemma 1, none of c ′

1, c
′′

1 is dominant. So, in this case, the number of colors with dominant
vertices is at most k − 1. We may assume 2s > k, otherwise, by the arguments above, we can find a coloring ϕ′ of G with
ϕ′(c ′

1) = ϕ′(c ′′

1 ) and such that there are k colors with dominant vertices. Since k ≥ 2, this implies s > 1, hence t > k + 1. Since
ϕ(c ′

1) ≠ ϕ(c ′′

1 ), at least one of them has a color different from ϕ(s1). Suppose without loss of generality that ϕ(c ′′

1 ) ≠ ϕ(s1),
then ϕ(c ′′

1 ) ≠ ϕ(v) for every v ∈ V (G). Let G′
= G − {c ′′

1 }. Thus the restriction of ϕ to G′ is a coloring with t − 1 colors, and
dominant vertices of G are still dominant in G′. Since c ′′

1 was not dominant in G, the number of colors with dominant vertices
does not decrease. Conversely, let ψ be a coloring of G′ with t − 1 colors (namely, colors 1, . . . , t − 1) and maximum number of
colors with dominant vertices. By Lemma 3, all the dominant vertices are in C∗. We can extendψ to a t-coloring of G by defining
ψ(c ′′

1 ) = t. All dominant vertices in {c2, . . . , ck} are still dominant. If there were less than k dominant vertices, we may assume
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by symmetry of G′ that they were in {c2, . . . , ck}. If there were k dominant vertices in G′, vertex c1 is no longer dominant, still
c2, . . . , ck are dominant, and we know that, if ϕ(c ′

1) ≠ ϕ(c ′′

1 ), then in G there cannot be more than k − 1 colors with dominant
vertices. So, in that case, domG[k+s] = min{k−1, domG′ [k+s−1]}. Since G′ is type 2, domG[k+s] = min{k−1, 2k−2s+2}.

So, if 2s ≤ k, then domG[k + s] = k and the optimum is attained by a coloring where c ′

1 and c ′′

1 receive the same color. If
2s > k, then domG[k+ s] = min{k−1, 2k−2s+2} and the optimum is attained by a coloring where c ′

1 and c ′′

1 receive different
colors. �

Claim 6. If G is type 8, then domG[k+1] = k+1; then domG[k+ s] = k for 2 ≤ s ≤
 k+1

2


; domG[k+ s] = k−1 for s =

k+2
2

(when k is even); domG[k + s] = 2k − 2s + 2 for
 k+3

2


≤ s ≤ k; and domG[t] = 0 for t > 2k.

Since χ(G) = k + 1, then domG[k + 1] = k + 1. Since the maximum degree of G is 2k − 1, it is clear that domG[t] = 0 for
t > 2k. Let t = k + s with 2 ≤ s ≤ k and let ϕ be a t-coloring of G with maximum number of colors with dominant vertices.
For i ≥ 2, vertex ci will be dominant if and only if color ϕ(si) is used by some other vertex in G, and vertex c1 will be dominant if
and only if colors ϕ(s′1) and ϕ(s

′′

1) are used by some other vertices in (c1, s2, . . . , sk). We may assume without loss of generality
that ϕ(ci) = i, for i = 1, . . . , k, and that vertices in S∗ use colors k + 1, . . . , k + s. If some vertex si uses a color at most k, we
can always recolor it with a color from k + 1, . . . , k + s that is already used in S∗. Since s ≥ 2, we can do it also for s′1 and s′′1 . If
2s ≤ k+ 1, we can assign colors k+ 1, . . . , k+ s to vertices in S∗, repeating each of them at least once, in such a way that all the
vertices in C∗ are dominant. If 2s > k + 1, this is not possible. Since ϕ(s′1) ≠ ϕ(s′′1) and all the colors k + 1, . . . , k + s are used
in S∗, we may assume without loss of generality that ϕ(s′1) = k + 1, ϕ(s′′1) = k + 2, and ϕ(si) = k + 1 + i for i = 2, . . . , s − 1
(when s ≥ 3). To each of the k + 1 − s remaining vertices we can assign different colors from k + 1, . . . , k + s. If we assign color
k+ 1+ i to vertex sj, with s ≤ j ≤ k and 2 ≤ i ≤ s− 1, both ci and cj become dominant. If we assign color k+ 1 (resp. k+ 2) to
some vertex sj with s ≤ j ≤ k, then cj will be dominant but c1 will be dominant only if some other vertex sj′ , s ≤ j′ ≤ k, receives
k + 2 (resp. k + 1). So, as we have less than s remaining vertices, the optimum 2(k + 1 − s) is attained by assigning to ss, . . . , sk
different colors from k + 3 to k + s when k + 1 − s ≤ s − 2. The last case is when k + 1 − s = s − 1, that is, k is even and
2s = k+ 2. In this case we can assign to ss, . . . , sk−1 different colors from k+ 3 to k+ s and to vertex sk color k+ 1. In this case,
all the vertices of C∗ but c1 are dominant, and this is optimal. �

Claim 7. If G is type 10, then domG[k + s] = k for 0 ≤ s ≤
 k+1

2


; domG[k + s] = k − 1 for s =

k+2
2 (when k is even);

domG[k + s] = 2k − 2s + 2 for
 k+3

2


≤ s ≤ k; and domG[t] = 0 for t > 2k.

Since χ(G) = k, then domG[k] = k. A coloring with k+ 1 colors and k dominant vertices is obtained by giving colors 1, . . . , k
to vertices in C∗ and color k + 1 to each vertex in S∗. Since the maximum degree of G is 2k − 1, it is clear that domG[t] = 0 for
t > 2k. The arguments for k + 2 ≤ s ≤ 2k are very similar to those in the proof of Claim 6, and are omitted. �

In all the cases, given the type of the graph, the dominance sequence can be computed in linear time. The type of the
graph can be also determined in linear time [10]. �

Theorem 6 ([3]). Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that V1 ∩ V2 = ∅. Let G = G1 ∪ G2 and t ≥ χ(G).
Then

domG[t] = min{t, domG1 [t] + domG2 [t]}.

Theorem 7 ([3]). Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that V1 ∩ V2 = ∅. Let G = G1 ∨ G2 and
χ(G) ≤ t ≤ |V (G)|. Let a = max{χ(G1), t − |V (G2)|} and b = min{|V (G1)|, t − χ(G2)}. Then a ≤ b and

domG[t] = max
a≤j≤b

{domG1 [j] + domG2 [t − j]}.

Theorem 8. Let G1 = (V1, E1) be a quasi-urchin or a quasi-starfish of size k and G2 = (V2, E2) be a graph such that
V1 ∩ V2 = ∅, V2 ≠ ∅. Let G = G1 Y G2. Then, the following statements hold.
i. If G1 is type 1, 2, 7, 9 or 10, then

a. domG[k + r] = k + domG2 [r], for χ(G2) ≤ r ≤ |V2|;
b. domG[k + |V2| + s] = domG1 [k + s], for 1 ≤ s ≤ |V1| − k.

ii. If G1 is type 3 or 4, then
a. domG[k + 1 + r] = k + 1 + domG2 [r], for χ(G2) ≤ r ≤ |V2|;
b. domG[k + 1 + |V2| + s] = domG1 [k + 1 + s], for 1 ≤ s ≤ |V1| − k − 1.

iii. If G1 is type 5 or 6, then
a. domG[k + χ(G2)] = k + χ(G2);
b. domG[k + r] = max{k + domG2 [r], k − 1 + domG2 [r − 1]}, for χ(G2) < r ≤ |V2|;
c. domG[k + 1 + |V2|] = max{k, k − 1 + domG2 [|V2|]};
d. domG[k + |V2| + s] = domG1 [k + s], for 2 ≤ s ≤ |V1| − k.

iv. If G1 is type 8, then
a. domG[k + r] = k + domG2 [r], for χ(G2) ≤ r ≤ |V2|;
b. domG[k + 1 + |V2|] = k;
c. domG[k + |V2| + s] = domG1 [k + s], for 2 ≤ s ≤ |V1| − k.
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Proof. Recall that dom[χ(G)] = χ(G), and that the chromatic number of each type of quasi-starfish or quasi-urchin is
described in Lemma 4. Let (C∗, S∗) be the p-partition of G1. Notice first that in any coloring of G, the set of colors used by V2
and C∗ are disjoint. Let ϕ be a coloring of Gwith t colors, t > χ(G). Vertices in S∗ are either simplicial or have degree at most
χ(G)− 1 (recall that V2 ≠ ∅). So no vertex in S∗ can be dominant. If some vertex of S∗ has a color that is used neither in V2
nor in C∗, then no vertex in V2 is dominant. We start the case analysis. If G1 is type 1, 2, 7, 9 or 10, then C∗ is a clique of size k.
Every vertex in C∗ is dominant when the colors used by S∗ are used also in C∗

∪V2, and they are still dominant if we consider
ϕ restricted toG[V2∪C∗

]. By Theorem7, domG[k+r] = k+domG2 [r], forχ(G2) ≤ r ≤ |V2|. If t > k+|V2|, at least some color
must be used only in S∗. So the only candidates to be dominant vertices are vertices in C∗. Since they are adjacent to all the
vertices in V2, wemay assume that no vertex in S∗ uses a color used in V2, and each vertex of C∗ is dominant if and only if it is
dominant inG[V1], so domG[k+|V2|+s] = domG1 [k+s], for 1 ≤ s ≤ |V1|−k(∗). IfG1 is type 3 or 4, the analysis is the samebut
taking into account that C∗ is a clique of size k+1. If G1 is type 5 or 6, then C∗ is not a clique.Wemay assume that the original
set was C = {c1, . . . , ck} and vertex c1 was replaced by two false twins c ′

1, c
′′

1 . Item iii.a holds because χ(G) = k + χ(G2).
Most of the observations for the previous cases still hold. So, when χ(G2) < t − k ≤ |V2| + 1, we have two possibilities to
color C∗: we can either use k colors, being ϕ(c ′

1) = ϕ(c ′′

1 ), and in that case k vertices of different colors will be dominant in
C∗, or use k+1 colors and, by Lemma 1, only k−1 vertices in C∗ will be dominant. This leads to the expressions iii.b and iii.c.
Finally, when t > k + |V2| + 1, at least some color must be used only in S∗. The analysis in (∗) leads to the expression iii.d.
Finally, if G1 is type 8, then C∗ is a clique of size k but χ(G1) = k + 1. In this case, if χ(G2) ≤ r ≤ |V2|, necessarily one color
in V2 will be used also in S∗, but the analysis is the same as in case i.a. Also the case iv.c is similar to i.b. The only difference
is when t = k + 1+ |V2|. We cannot say that domG[k+ 1 + |V2|] = domG1 [k + 1] = k + 1, because we know that we have
dominant vertices only in C∗, so domG[k + 1 + |V2|] ≤ k. A coloring with k dominant vertices in C∗ is attainable by giving
colors 1, . . . , k to vertices in C∗, color k+1 to vertices in S∗

\{s′′1}, color k+2 to s′′1 , and colors k+2, . . . , k+1+|V2| to vertices
in V2. �

Theorem 9. The dominance vector and the b-chromatic number of a P4-tidy graph G can be computed in O(n3) time.

Proof. The previous results give a dynamic programming algorithm to compute the dominance sequence of a P4-tidy graph
from its decomposition tree, that can be computed in linear time [10]. By Theorems 6–8 and 4, Proposition 1 and the fact
that P4-tidy graphs are hereditary, we can compute recursively the dominance vector and consequently the b-chromatic
number of G in O(n3) time. Indeed, if G = G1 ∪ G2, by Theorem 6, the value for domG[t] is obtained from domG1 [t]
and domG2 [t] directly. By Theorem 8, the same case holds for G = G1 Y G2. If G = G1 ∨ G2, we must examine at most
n values of j for each value of t , by Theorem 7. We have at most n of these reduction steps, because in each case we
must compute two disjoint subgraphs. The base case, computing the dominance sequence of the trivial graph and the five
elementary subgraphs in the decomposition, can be done in O(1) by Lemma 10. So the total computation time is O(n3). Once
we have computed the dominance sequence of G, we obtain the b-chromatic number as the maximum value t such that
domG[t] = t . �

4. b-monotonicity in P4-tidy graphs

In this section, we will show that P4-tidy graphs are b-monotonic. To this end, we will prove the following property.

Theorem 10. For every P4-tidy graph G, every induced subgraph H of G and every t ≥ χ(G), domH [t] ≤ domG[t] holds.

We first state some necessary results.

Lemma 11. Let G be a P5, a P5, a C5, a quasi-urchin or a quasi-starfish. Then, for every t ≥ χ(G) and every vertex v of
G, domG−{v}[t] ≤ domG[t] holds.

Proof. The cases P5, P5 and C5 are easy to verify. Let G = (C∗, S∗) be a quasi-urchin or quasi-starfish of size k. Let (C, S) be
the p-partition of the urchin or starfish, S = {s1, . . . , sk}, C = {c1, . . . , ck}. If a vertex in S (resp. C) was replaced by two
vertices, wewill assume that the vertexwas s1 (resp. c1) and that it was replaced by vertices s′1, s

′′

1 (resp. c
′

1, c
′′

1 ). Let t ≥ χ(G),
and let v be a vertex of G. Let ϕ be a t-coloring of G−{v} that maximizes the number of color classes with dominant vertices.
Suppose first that v is a leg of G and either G is not type 8 or v is different from s′1, s

′′

1 . Then ϕ can be extended to a t-coloring
of G with the same number of dominant vertices by giving to v the color of some vertex in the body non-adjacent to it. If G
is type 8 and v = s′1, since t ≥ χ(G) = k + 1, we can give to s′1 either a color that is not used in the body of G or the color
ϕ(c1) (depending on whether ϕ(s′′1) = ϕ(c1) or not). Now, suppose that v is a vertex in the body of G. If v has a false twin,
we can color v with the color used by its false twin. Otherwise, since t ≥ χ(G), there is some color c that is not used in the
body of G. We will extend ϕ to a t-coloring of G with at least the same number of dominant vertices by setting ϕ(v) = c.
If some leg w of G adjacent to v was colored c , then all its neighbors are also neighbors of v, so we can recolor w with the
color of some vertex in the body non-adjacent to it, and all dominant vertices will still be dominant. The only case in which
we cannot do this is when G is type 8, v is not c1, one of s′1, s

′′

1 uses color c and the other one uses color ϕ(c1). But, in that
case, since t ≥ χ(G) = k + 1, there are in fact at least two colors c, c ′ not used in the body of G. So we can give color c ′ to
v, and recolor as mentioned above all the legs adjacent to it (note that neither s′1 nor s′′1 uses c ′ in the case we are dealing
with). Hence, domG−{v}[t] ≤ domG[t]. �
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Lemma 12. Let G1 = (V1, E1) be a quasi-starfish or a quasi-urchin and G2 = (V2, E2) be a b-continuous graph such that
V1 ∩ V2 = ∅ and, for every t ≥ χ(G2) and every induced subgraph H of G2, domH [t] ≤ domG2 [t]. Let G = G1 Y G2. Then, for
every t ≥ χ(G) and every vertex v of G, domG−{v}[t] ≤ domG[t] holds.
Proof. If t = χ(G) the statement is clearly true. Let t > χ(G), and let v be a vertex of G. Let ϕ be a t-coloring of G−{v} that
maximizes the number of color classes with dominant vertices. We will extend ϕ to a t-coloring of Gwith the same number
of color classes with dominant vertices. Let (C∗, S∗) be the p-partition of G1. Notice that, since t > χ(G) ≥ χ(G − {v}), no
vertex in S∗ is dominant.

Suppose first that v is a vertex of S∗. We can extend ϕ by giving to v a color not used by any of its neighbors (it is always
possible because t > χ(G)).

Suppose now that v is a vertex of V2. If |V2| = 1 then the lemma holds by Theorem 8 and the claims in the proof of
Lemma 10. If |V2| > 1, let r be the number of colors used by V2 − {v} in ϕ. If r ≥ χ(G2), since domG2 [r] ≥ domG2−{v}[r], we
can replace ϕ restricted to V2−{v} by an r-coloring of G2 with domG2 [r] color classes with dominant vertices, thus obtaining
a t-coloring of G with at least the same dominant color classes as before. Otherwise, r = χ(G2 − {v}) = χ(G2) − 1. Since
t > χ(G), it follows that t−r ≥ χ(G1). Notice that the equality can hold only ifG1 is type 8. Thenwe can replace ϕ restricted
to V2 − {v} by an (r + 1)-coloring of G2 and, by Lemma 10, ϕ restricted to V1 by a coloring of G1 with at most t − r − 1 new
colors and at least the same dominant color classes as before (if G1 is type 8 and t − r = χ(G1), we can assign to one of the
true twin vertices in S∗ a color used in V2).

Finally, suppose that v is a vertex in C∗. If v has a false twin v′ in C∗
− {v}, we are done by setting ϕ(v) = ϕ(v′). If there

are two false twins w,w′ in C∗
− {v} using different colors, we can assign to v color ϕ(w′) and to w′ color ϕ(w) (possibly

recoloring in a suitableway vertices in S∗), obtaining a t-coloring ofGwith at least the same dominant color classes as before.
Otherwise, v is adjacent to all vertices in C∗

− {v} and they are colored with χ(G[C∗
− {v}]) colors. Let r be the number of

colors used by V2 in ϕ. If ϕ restricted to V2 is not a b-coloring, we can eliminate one color class from V2 without decreasing
the number of color classes with dominant vertices, and give that color to v, that will be adjacent to all the vertices that
were dominant, thus obtaining the desired t-coloring for G. If ϕ restricted to V2 is a b-coloring and r > χ(G2), since G2 is
b-continuous, we can replace ϕ restricted to V2 by a b-coloring of G2 with r − 1 colors, thus giving the remaining color to v
as before. Finally, by Lemma 5 and being t > χ(G), if r = χ(G2) then t − r ≥ χ(G1). In that case, it is easy to see that we
can replace ϕ restricted to V1 by a t − r-coloring of G1, maintaining or increasing the number of color classes with dominant
vertices, thus obtaining the desired t-coloring of G. �

Lemma 13 ([3]). Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that V1 ∩ V2 = ∅, and let G = G1 ∪ G2. Assume that
for every t ≥ χ(Gi) and every induced subgraph H of Gi we have domH [t] ≤ domGi [t], for i = 1, 2. Then, for every t ≥ χ(G)
and every induced subgraph H of G, domH [t] ≤ domG[t] holds.

Lemma 14 ([3]). Let G1 = (V1, E1) and G2 = (V2, E2) be two b-continuous graphs such that V1 ∩ V2 = ∅, and let G = G1 ∨ G2.
Assume that for every t ≥ χ(Gi) and every induced subgraph H of Gi we have domH [t] ≤ domGi [t], for i = 1, 2. Then, for every
t ≥ χ(G) and every induced subgraph H of G, domH [t] ≤ domG[t] holds.

Lemma 15 ([3]). Let G be a graph. The maximum value of domG[t] is attained in t = χb(G).
Proof of Theorem 10. Let us consider a minimal counterexample for the theorem, that is, a P4-tidy graph G and an induced
subgraph H of G such that domH [t] > domG[t] for some t ≥ χ(G), but such that domH2 [t] ≤ domH1 [t] for every induced
subgraph H1 of H , every induced subgraph H2 of H1 and every t ≥ χ(H1). By Lemmas 13 and 14, G is neither the union nor
the join of two smaller graphs. Let W = V (G) \ V (H), namely, W = {w1, . . . , ws}. If we consider the sequence of graphs
defined by G0 = G,Gi = Gi−1 − {wi} for 1 ≤ i ≤ s, it turns out that Gs = H . Since domH [t] > domG[t], for some i ≥ 1, it
holds domGi [t] > domGi−1 [t]. Since the counterexample was minimal, it should be i = 1, thus H = G−{w} for some vertex
w of G. By Lemma 11, Theorem 5 and Lemma 12, Theorem 4 and Proposition 1, such a counterexample does not exist. �

Corollary 1. P4-tidy graphs are b-monotonic.
Proof. Since P4-tidy graphs are hereditary, it suffices to show that given a P4-tidy graph G, χb(G) ≥ χb(H) for every induced
subgraph H of G. Let G be a P4-tidy graph, and let H be and induced subgraph of G. If χb(H) < χ(G), then χb(H) < χb(G).
Otherwise, by Theorem 10, χb(H) = domH [χb(H)] ≤ domG[χb(H)] and, by Lemma 15, domG[χb(H)] ≤ domG[χb(G)] =

χb(G) implying that χb(G) ≥ χb(H). �
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